WO1998047173A1 - Transistor mos a fort gradient de dopage sous sa grille - Google Patents

Transistor mos a fort gradient de dopage sous sa grille Download PDF

Info

Publication number
WO1998047173A1
WO1998047173A1 PCT/FR1998/000751 FR9800751W WO9847173A1 WO 1998047173 A1 WO1998047173 A1 WO 1998047173A1 FR 9800751 W FR9800751 W FR 9800751W WO 9847173 A1 WO9847173 A1 WO 9847173A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
type
substrate
conductivity
mos transistor
Prior art date
Application number
PCT/FR1998/000751
Other languages
English (en)
Inventor
Constantin Papadas
Jorge L. Regolini
Thomas Skotnicki
André GROUILLET
Christine Morin
Original Assignee
Stmicroelectronics S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics S.A. filed Critical Stmicroelectronics S.A.
Priority to US09/402,853 priority Critical patent/US6465332B1/en
Priority to EP98920620A priority patent/EP0974159A1/fr
Publication of WO1998047173A1 publication Critical patent/WO1998047173A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2205Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities from the substrate during epitaxy, e.g. autodoping; Preventing or using autodoping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Definitions

  • the present invention relates generally to the formation of a very thin epitaxial layer on a more heavily doped substrate. It applies in particular to the manufacture of MOS transistors. It relates more particularly to very small MOS transistors in which the length of the gate is much less than a micrometer, for example from less than 0.1 ⁇ m to approximately 0.5 ⁇ m.
  • FIG. 1 very schematically shows a sectional view of a conventional MOS transistor.
  • This MOS transistor is formed in an active area of a monocrystalline silicon substrate 1 delimited by a thick oxide region 2.
  • This thick oxide region has been represented as corresponding to a region obtained by growth of oxide according to a process says LOCOS. It could correspond to any known type of delimitation of active zones, for example digging of the surface of the silicon and filling of oxide.
  • the MOS transistor comprises a gate 4 provided with lateral spacers 5, commonly made of silicon oxide or silicon.
  • the gate 4 is separated from the silicon surface by a layer of gate oxide 6.
  • the drain and the source are represented as being of the LDD type, that is to say comprising more weakly doped regions 10 and 11 extending to the limits of the grid and more heavily doped regions 12 and 13 extending substantially to the limits of the spacers.
  • the regions 10 and 11 are formed by implantation using the grid 4 as a mask, and the regions 12 and 13 are formed by implantation as the mask the grid 4 widened by the spacers 5.
  • the substrate is of type P and the regions 10 to 13 of type N.
  • the operating mode of such MOS transistors is well known.
  • grid 4 When a voltage is applied to grid 4, the type of apparent conductivity of the surface substrate reverses under the grid region and an inversion or depletion layer is formed which constitutes a channel region between regions 10 and 11. This channel provides conduction between the source and the drain if a suitable voltage is applied between source and drain.
  • this MOS transistor is subject to various parasitic effects and in particular to the phenomenon of piercing (in English "punch through").
  • the piercing phenomenon takes place in particular when the doping under the gate is such that, for a certain gate voltage, the inverted zone under the gate extends deep between the heavily doped source and drain regions 12 and 13. This piercing effect causes that, if the voltage remains applied between source and drain while the gate voltage is interrupted, the MOS transistor does not turn back on.
  • the drain-substrate and source-substrate junctions are relatively deep and this piercing phenomenon can be avoided by known means.
  • the dimensions of the MOS transistor become clearly submicronical (that is to say that the length of the gate becomes less than a micrometer, for example of the order of less than 0.1 ⁇ m to approximately 0.5 ⁇ m)
  • all the dimensions of the transistor are reduced accordingly and in particular the junctions become very shallow.
  • the junction depth xl of regions 10 and 11 can be of the order of 50 nm (500 angstroms) and the junction depth x2 of regions 12 and 13 can be of around 200 nm. Under such conditions, the piercing phenomenon is particularly acute.
  • One of the known means for avoiding piercing consists in producing in the channel zone a lower weakly doped upper region followed by a more heavily doped region (see EP-A-0530046 of SGS-Thomson Microelectronics, Inc). Then, when the gate is excited, the depletion zone is limited to the thickness of the least doped region and there is no inversion of the most doped region. This means that one seeks to obtain a vertical doping profile under the grid such as that represented by the curve 20 of FIG. 2 with a first doping level cl when the depth is less than xO, the depth xO being less than the junction depth x1, and a second significantly higher doping level c2 at least in a determined region beyond the depth xO.
  • Another object of the present invention is to apply this method to the manufacture of a very small MOS transistor (less than 0.1 to 0.5 micrometer of gate length).
  • the present invention also relates to a MOS transistor obtained by the method of the present invention.
  • the present invention provides a method of manufacturing a zone of the first type of conductivity with a steep doping gradient in the direction of the thickness, comprising the steps consisting in providing a monocrystalline semiconductor substrate, coating the substrate with a thin oxide layer, implant nitrogen in the upper surface of the substrate, the nitrogen dose being between 5 10 13 and 5 10 15 at./cm 2 , anneal, and make grow an epitaxial layer with a lower doping level than the substrate, or intrinsic.
  • this method consists in using a substrate of any conductivity type and in carrying out a nitrogen implantation and an implantation of dopant atoms of the first type of conductivity. quickly, before making an epitaxial layer of the first type of conductivity with a low doping level, or intrinsic.
  • the dose of nitrogen is between 1 and 10 10 1 ⁇ at./cm 2 . and more preferably between 3 and 7 ÎO 1 ⁇ at./cm 2 .
  • nitrogen is implanted at an energy of the order of 10 keV.
  • the epitaxial layer has a thickness of the order of 30 to 60 nm. This method applies to the manufacture of the area located under the gate of an MOS transistor from a substrate of the first type of conductivity.
  • the present invention also relates to an MOS transistor of the LDD type comprising, under its gate area, a first lightly doped region followed by a second region of the same type of conductivity with a higher doping level with a large doping gradient between the two. regions, in which the interface zone between the two regions contains nitrogen atoms.
  • the first region extends over a depth substantially equal to or less than the depth of the lightly doped LDD type drain and source regions.
  • FIG. 1 described previously represents schematically a sectional view of an N-channel MOS transistor
  • FIG. 2 represents doping profiles
  • FIGS. 3A to 3C represent successive stages in the manufacture of an MOS transistor according to the present invention
  • FIG. 4 represents a doping profile obtained for a MOS transistor according to the present invention.
  • the method according to the present invention provides for forming on the surface of a layer of silicon doped with a first type of conductivity, for example type P, an implantation of nitrogen at low dose while the upper surface of the structure is coated with a thin layer of oxide, then annealing and then growing an epitaxial layer of the same type of conductivity as the substrate but very weakly doped or even intrinsic.
  • a first type of conductivity for example type P
  • an implantation of nitrogen at low dose while the upper surface of the structure is coated with a thin layer of oxide
  • the method provides, after the implantation of nitrogen, to carry out the implantation of a dopant, for example boron to obtain the type of conductivity P, then to carry out an annealing and then only to deposit an epitaxial layer with a lower doping level (quasi-intrinsic) than that resulting from the implantation of boron, the epitaxial layer also being doped with boron, preferably in situ.
  • a dopant for example boron
  • annealing annealing
  • the nitrogen implantation dose will be chosen to obtain the desired effect. It should be sufficient to block an upward exodiffusion of the doping atoms contained in the substrate but should not be too high to avoid creating dislocations in the substrate which would prevent a good quality monocrystalline epitaxial layer from being obtained.
  • nitrogen will be implanted at low energy, for example 10 keV, with a dose in the range of 5 10 13 to 5 10 15 at./cm 2 , and preferably in the range of 1 to 10 10 14 at./cm 2 and more preferably in a range of 3 to 7 10 14 at./cm 2.
  • the procedure is in an active area of a substrate 1 delimited by thick oxide 2.
  • the substrate 1 is initially doped with type P at a concentration of the order of ÎO 1 ⁇ at./cm 3 .
  • the substrate is covered with a thin layer of oxide 30.
  • Nitrogen atoms are implanted on the surface under 10 keV at a dose of the order of 3 to 7 10 14 at./cm 2 .
  • Boron is then implanted at a dose capable of providing after annealing a maximum doping of the order of 10 ---- 8 at./cm 3 .
  • Annealing is then carried out, for example at 800 ° C. for 10 minutes.
  • the oxide layer 30 is eliminated and a lightly doped P type silicon layer 31 is grown by epitaxy, for example with boron and with a doping concentration. of the order of ÎO 1 ⁇ atoms / cm 3 , or intrinsic.
  • This layer may have a very small thickness, for example of the order of 20 to 60 nm.
  • FIG. 4 the elements of which are designated by the same references as in FIG. 1.
  • xO denotes the thickness of the epitaxial layer 31, xl the depth of regions 10 and 11 and x2 the depth of regions 12 and 13.
  • the presence of a lower region including the concentration of dopants has a high gradient compared to that of the epitaxial layer, and extending downwards from the depth xO ensures the desired result of avoiding drilling phenomena.
  • the Applicant has carried out tests by manufacturing an epitaxial layer 31 without the implantation of nitrogen and then an epitaxial layer 31 with the implantation of nitrogen according to the present invention and has found that the value a was only of the order of twenty nm in the context of the present invention but became significantly greater than 40 nm when an epitaxial layer 31 was produced without providing for prior implantation of nitrogen.
  • MOS transistor of extremely small dimensions, for example a MOS transistor with a gate dimension of 0.12 ⁇ m, for which the values that xO, xl and x2 would be 20, 40 and 70 nm, as shown by way of example in Figure 4.
  • the inventors observed on a completed experimental device that the nitrogen was essentially concentrated in the interface zone under the epitaxial layer.
  • the transistor according to the present invention will have the desired effects of insensitivity to the piercing phenomenon.
  • the invention has been described in the context of a particular example, and in particular in the case where the dopant is boron.
  • the dopant is boron.
  • the advantages of the present invention are also obtained. However, the results are less good because indium produces dislocations difficult to make up for by annealing.
  • the dopants could also be of type N.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

L'invention concerne un transistor MOS de type LDD comprenant sous sa zone de grille une première région faiblement dopée (31) suivie d'une deuxième région du même type de conductivité à niveau de dopage plus élevé avec un gradient de dopage important entre les deux régions. La zone d'interface entre les deux régions contient des atomes d'azote résultant d'une implantation d'azote réalisée avant croissance de la couche épitaxiale.

Description

TRANSISTOR MOS A FORT GRADIENT DE DOPAGE SOUS SA GRILLE
La présente invention concerne de façon générale la formation d'une couche épitaxiée très mince sur un substrat plus fortement dopé. Elle s'applique notamment à la fabrication des transistors MOS. Elle vise plus particulièrement des transistors MOS de très petite dimension dans lesquels la longueur de la grille est nettement inférieure à un micromètre, par exemple de moins de 0,1 μm à environ 0,5 μm.
La figure 1 représente de façon très schématique une vue en coupe d'un transistor MOS classique. Ce transistor MOS est formé dans une zone active d'un substrat de silicium monocristallin 1 délimité par une région d'oxyde épais 2. Cette région d'oxyde épais a été représentée comme correspondant à une région obtenue par croissance d'oxyde selon un procédé dit LOCOS. Elle pourrait correspondre à tout type connu de délimitation de zones actives, par exemple creusement de la surface du silicium et remplissage d'oxyde. Le transistor MOS comprend une grille 4 munie d'espaceurs latéraux 5, couramment en oxyde ou ni rure de silicium. La grille 4 est séparée de la surface du silicium par une couche d'oxyde de grille 6. Le drain et la source sont repré- sentes comme étant de type LDD, c'est-à-dire comprenant des régions plus faiblement dopées 10 et 11 s'étendant jusqu'aux limites de la grille et des régions plus fortement dopées 12 et 13 s'étendant sensiblement jusqu'aux limites des espaceurs. De façon classique, les régions 10 et 11 sont formées par implantation en utilisant comme masque la grille 4, et les régions 12 et 13 sont formées par implantation en utilisant comme masque la grille 4 élargie par les espaceurs 5.
Dans le cas représenté d'un transistor MOS à canal N, le substrat est de type P et les régions 10 à 13 de type N. Le mode de fonctionnement de tels transistors MOS est bien connu. Quand une tension est appliquée sur la grille 4, le type de conductivite apparent du substrat en surface s'inverse sous la région de grille et il se forme une couche d'inversion ou de déplétion qui constitue une région de canal entre les régions 10 et 11. Ce canal assure une conduction entre la source et le drain si une tension convenable est appliquée entre source et drain. De façon connue, ce transistor MOS est sujet à divers effets parasites et notamment au phénomène de perçage (en anglais "punch through" ) . Le phénomène de perçage prend place notamment quand le dopage sous la grille est tel que, pour une certaine tension de grille, la zone inversée sous la grille s'étend pro- fondement entre les régions de source et de drain fortement dopées 12 et 13. Cet effet de perçage entraîne que, si la tension reste appliquée entre source et drain tandis que la tension de grille est interrompue, le transistor MOS ne se rebloque pas.
Quand le transistor MOS a des dimensions minimales supérieures au micromètre, les jonctions drain-substrat et source-substrat sont relativement profondes et ce phénomène de perçage peut être évité par des moyens connus. Par contre, quand les dimensions du transistor MOS deviennent nettement submicroni- ques (c'est-à-dire que la longueur de la grille devient infé- rieure au micromètre, par exemple de l'ordre de moins de 0,1 μm à environ 0,5 μm), toutes les dimensions du transistor sont réduites en conséquence et notamment les jonctions deviennent très peu profondes. Par exemple, la profondeur de jonction xl des régions 10 et 11 peut être de l'ordre de 50 nm (500 angstrôms) et la profondeur de jonction x2 des régions 12 et 13 peut être de l'ordre de 200 nm. Dans de telles conditions, le phénomène de perçage est particulièrement aigu.
L'un des moyens connus pour éviter le perçage consiste à réaliser dans la zone de canal une région supérieure plus fai- blement dopée suivie d'une région plus fortement dopée (voir EP- A-0530046 de SGS-Thomson Microelectronics, Inc). Alors, quand la grille est excitée, la zone de déplétion est limitée à l'épaisseur de la région la moins dopée et il n'y a pas d'inversion de la région la plus dopée. Ceci signifie que l'on cherche à obtenir un profil de dopage vertical sous la grille tel que celui représenté par la courbe 20 de la figure 2 avec un premier niveau de dopage cl quand la profondeur est inférieure à xO, la profondeur xO étant inférieure à la profondeur de jonction xl, et un deuxième niveau de dopage nettement plus élevé c2 au moins dans une région déterminée au-delà de la profondeur xO.
En outre, l'obtention d'un tel profil permet de bien contrôler la tension de seuil et, si le niveau de dopage le plus faible est suffisamment faible, d'avoir une mobilité élevée dans le canal.
Toutefois, si l'obtention d'un tel profil est réalisable pour des dispositifs de dimensions minimales de l'ordre du micromètre ou même de 0,5 μm, elle devient en pratique impossible avec les techniques courantes quand les dimensions diminuent. En effet, pour réaliser un profil tel que celui illustré en figure 2, il faut par exemple former dans le substrat P une première couche plus fortement dopée suivie d'une couche plus faiblement dopée, par exemple formée par épitaxie. Mais, lors des recuits ultérieurs et notamment lors des recuits de redistribution des régions de source et de drain, il y aura une redistribution et des dopants de type P sous la grille et, au lieu d'obtenir un gradient de dopage très net tel que celui illustré par la figure 20, on obtient finalement un gradient atténué tel que celui désigné par la courbe 21. Les moyens classiques ne permettent pas de résoudre ce problème quand la valeur visée de xO est par exemple de l'ordre de 20 à 50 nm. En effet, il est connu de limiter 1 'exodiffusion d'une couche enterrée sous une couche épitaxiée relativement épaisse en prévoyant une forte implantation d'atomes tels que de l'azote à une concentration de l'ordre de 10---8 atomes/cm3 (FR-A- 2301923) ou comprise entre 1018 et 1022 atomes/cm3 (EP-A- 0253059). Pour de telles concentrations d'azote, il existe inévitablement une zone où la couche épitaxiée est perturbée au voisinage de l'interface avec la couche sous-jacente. De tels procédés ont donc été écartés dans le cas où l'épaisseur de la couche épitaxiée visée est de l'ordre de 20 à 50 nm
C'est donc un objet de la présente invention que de prévoir un procédé d'obtention d'un profil de dopage à gradient très raide, ce profil de dopage restant raide après des opérations de recuit thermique.
Un autre objet de la présente invention est d'appliquer ce procédé à la fabrication d'un transistor MOS de très petite dimension (moins de 0,1 à 0,5 micromètre de longueur de grille). La présente invention vise également un transistor MOS obtenu par le procédé de la présente invention.
Pour atteindre ces objets, la présente invention prévoit un procédé de fabrication d'une zone du premier type de conductivite à gradient de dopage raide dans le sens de l'épais- seur, comprenant les étapes consistant à prévoir un substrat semiconducteur monocristallin, revêtir le substrat d'une couche mince d'oxyde, implanter de l'azote dans la surface supérieure du substrat, la dose d'azote étant comprise entre 5 1013 et 5 1015 at./cm2, procéder à un recuit, et faire croître une couche épitaxiée à plus faible niveau de dopage que le substrat, ou intrinsèque.
Selon un mode de réalisation de la présente invention, ce procédé consiste à utiliser un substrat de type de conductivite quelconque et à procéder à une implantation d'azote et à une implantation d'atomes du dopant du premier type de conducti- vite, avant de réaliser une couche épitaxiée du premier type de conductivite à faible niveau de dopage, ou intrinsèque.
Selon un mode de réalisation de la présente invention, la dose d'azote est comprise entre 1 et 10 ÎO1^ at./cm2. et encore de préférence entre 3 et 7 ÎO1^ at./cm2.
Selon un mode de réalisation de la présente invention, l'azote est implanté sous une énergie de l'ordre de 10 keV.
Selon un mode de réalisation de la présente invention, la couche épitaxiée a une épaisseur de l'ordre de 30 à 60 nm. Ce procédé s'applique à la fabrication de la zone située sous la grille d'un transistor MOS à partir d'un substrat du premier type de conductivite.
Ainsi, la présente invention vise également un transistor MOS de type LDD comprenant sous sa zone de grille une première région faiblement dopée suivie d'une deuxième région du même type de conductivite à niveau de dopage plus élevé avec un gradient de dopage important entre les deux régions, dans lequel la zone d'interface entre les deux régions contient des atomes d'azote. Selon un mode de réalisation de la présente invention, la première région s'étend sur une profondeur sensiblement égale ou inférieure à la profondeur des régions de drain et de source faiblement dopées de type LDD.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 décrite précédemment représente schémati- quement une vue en coupe d'un transistor MOS à canal N ; la figure 2 représente des profils de dopage ; les figures 3A à 3C représentent des étapes successives de fabrication d'un transistor MOS selon la présente invention ; et la figure 4 représente un profil de dopage obtenu pour un transistor MOS selon la présente invention.
De façon générale, le procédé selon la présente invention prévoit de former à la surface d'une couche de silicium dopée selon un premier type de conductivite, par exemple le type P, une implantation d'azote à faible dose tandis que la surface supérieure de la stucture est revêtue d'une couche mince d'oxyde, puis de procéder à un recuit et de faire croître ensuite une couche épitaxiée de même type de conductivite que le substrat mais très faiblement dopée ou même intrinsèque.
L'expérience montre que, à la suite des recuits usuels dans le domaine de la fabrication des semiconducteurs, par exemples les recuits de redistribution de drain et de source, la présence de l'implantation d'azote bloque toute exodiffusion des atomes dopants du substrat initial vers la couche épitaxiée, supérieure. On obtient ainsi un profil de dopage extrêmement raide.
Selon un autre aspect de la présente invention, le procédé prévoit, après l'implantation d'azote, de réaliser l'implantation d'un dopant, par exemple du bore pour obtenir le type de conductivite P, puis de procéder à un recuit et ensuite seulement de procéder au dépôt d'une couche épitaxiée à plus faible niveau de dopage (quasi-intrinsèque) que celle résultant de l'implantation de bore, la couche épitaxiée étant également dopée au bore, de préférence in-situ. Bien entendu, la dose d'implantation d'azote sera choisie pour obtenir l'effet désiré. Elle devra être suffisante pour assurer le blocage d'une exodiffusion vers le haut des atomes dopants contenus dans le substrat mais ne devra pas être trop élevée pour éviter de créer dans le substrat des dislocations qui empêcheraient d'obtenir une couche épitaxiée monocristalline de bonne qualité. A titre d'exemple, l'azote sera implanté sous faible énergie, par exemple 10 keV, avec une dose comprise dans la plage de 5 1013 à 5 1015 at./cm2, et de préférence dans la plage de 1 à 10 1014 at./cm2 et encore de préférence dans une plage de 3 à 7 1014 at./cm2.On arrive ainsi à une concentration maximum d'azote en surface de l'ordre de ÎO1^ at./cm3. Grâce à l'existence de la couche mince d'oxyde, le maximum de concentration d'azote est très proche de la surface et l'azote se concentre essentiellement sur une profondeur de l'ordre de 10 nm.
On va maintenant décrire plus particulièrement une application de la présente invention à la fabrication d'un transistor MOS.
Comme le représente la figure 3A, on procède dans une zone active d'un substrat 1 délimitée par de l'oxyde épais 2. On considérera le cas où le substrat 1 est initialement dopé de type P à une concentration de l'ordre de ÎO1^ at./cm3. Le substrat est recouvert d'une couche mince d'oxyde 30.
On procède à une implantation d'atomes d'azote en surface sous 10 keV à une dose de l'ordre de 3 à 7 1014 at./cm2.
On implante ensuite du bore à une dose propre à fournir après recuit un dopage maximum de l'ordre de 10----8 at./cm3.
On procède alors à un recuit, par exemple à 800°C pendant 10 minutes. A une étape ultérieure dont le résultat est illustré en figure 3B, on élimine la couche d'oxyde 30 et l'on fait croître par épitaxie une couche de silicium 31 faiblement dopée de type P, par exemple au bore et avec une concentration de dopage de l'ordre de ÎO1^ atomes/cm3, ou intrinsèque. Cette couche pourra avoir une épaisseur très faible, par exemple de l'ordre de 20 à 60 nm.
Ensuite, on procède de façon classique à la création d'un transistor MOS tel que représenté en figure 3, dont les éléments sont désignés par les mêmes références qu'en figure 1. On obtient alors après recuit, un profil de dopage sous la grille tel qu'illustré en figure 4, où xO désigne l'épaisseur de la couche épitaxiée 31, xl la profondeur des régions 10 et 11 et x2 la profondeur des régions 12 et 13. La présence d'une région inférieure dont la concentration en dopants présente un gradient élevée par rapport à celle de la couche épitaxiée, et s'étendant vers le bas à partir de la profondeur xO assure le résultat souhaité d'éviter les phénomènes de perçage.
En figure 4, on a désigné par a la largeur à mi-hauteur
(coordonnées logarithmiques) de la courbe rejoignant la région à faible niveau de dopage à la région à fort niveau de dopage. Il est clair que plus le profil de dopage présente un gradient raide, plus cette valeur a est faible.
La demanderesse a réalisé des essais en fabriquant une couche épitaxiée 31 sans l'implantation d'azote puis une couche épitaxiée 31 avec l'implantation d'azote selon la présente invention et à constaté que la valeur a était seulement de l'ordre d'une vingtaine de nm dans le cadre de la présente invention mais devenait sensiblement supérieure à 40 nm quand on réalisait une couche épitaxiée 31 sans prévoir d'implantation préalable d'azote.
Il en résulte que l'on peut fabriquer un transistor MOS de dimensions extrêmement réduites, par exemple un transistor MOS d'une dimension de grille de 0,12 μm, pour lequel les valeurs que xO, xl et x2 seraient de 20, 40 et 70 nm, comme cela est indiqué à titre d'exemple en figure 4.
Les inventeurs ont observé sur un dispositif expérimental achevé que l'azote était essentiellement concentré dans la zone d'interface sous la couche épitaxiée.
Bien entendu, le transistor selon la présente invention présentera les effets recherchés d'insensibilité au phénomène de perçage.
L'invention a été décrite dans le cadre d'un exemple particulier, et notamment dans le cas où le dopant est du bore. On pourrait aussi imaginer d'utiliser un dopant à plus fort nombre atomique et diffusant plus lentement pour former la région à niveau de dopage plus élevé, par exemple de l'indium. On obtient aussi alors les avantages de la présente invention. Toutefois, les résultats sont moins bons car l'indium produit des dislocations difficiles à rattraper par des recuits. Les dopants pourraient également être de type N.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une zone du premier type de conductivite à gradient de dopage raide dans le sens de l'épaisseur, comprenant les étapes suivantes : prévoir un substrat semiconducteur monocristallin (1), revêtir le substrat d'une couche mince d'oxyde (30), implanter de l'azote dans la surface supérieure du substrat, la dose d'azote étant comprise entre 5 1013 et 5 ÎO1^ at./cm2, procéder à un recuit, et faire croître une couche épitaxiée (31) à plus faible niveau de dopage que le substrat, ou intrinsèque.
2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à utiliser un substrat de type de conductivite quelconque et à procéder à une implantation d'azote et à une implantation d'atomes du dopant du premier type de conductivite, avant de réaliser une couche épitaxiée du premier type de conductivite à faible niveau de dopage, ou intrinsèque.
3. Procédé selon la revendication 1, caractérisé en ce que la dose d'azote est comprise entre 1 et 1010--*-4 at./cm2.
4 Procédé selon la revendication 1, caractérisé en ce que la dose d'azote est comprise entre 3 et 7 1014 at./cm2.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'azote est implanté sous une énergie de l'ordre de 10 keV.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la couche épitaxiée a une épaisseur de l'ordre de 30 à 60 nm.
7. Utilisation du procédé selon l'une quelconque des revendications 1 à 6 à la fabrication de la zone située sous la grille (14) d'un transistor MOS à partir d'un substrat du premier type de conductivite.
8. Transistor MOS de type LDD comprenant sous sa zone de grille une première région faiblement dopée (31) suivie d'une deuxième région du même type de conductivite à niveau de dopage plus élevé avec un gradient de dopage important entre les deux régions, caractérisé en ce que la zone d'interface entre les deux régions contient des atomes d'azote.
9. Transistor selon la revendication 8, caractérisé en ce que la première région s'étend sur une profondeur sensiblement égale ou inférieure à la profondeur des régions de drain et de source faiblement dopées de type LDD.
PCT/FR1998/000751 1997-04-11 1998-04-14 Transistor mos a fort gradient de dopage sous sa grille WO1998047173A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/402,853 US6465332B1 (en) 1997-04-11 1998-04-14 Method of making MOS transistor with high doping gradient under the gate
EP98920620A EP0974159A1 (fr) 1997-04-11 1998-04-14 Transistor mos a fort gradient de dopage sous sa grille

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/04710 1997-04-11
FR9704710A FR2762138B1 (fr) 1997-04-11 1997-04-11 Transistor mos a fort gradient de dopage sous sa grille

Publications (1)

Publication Number Publication Date
WO1998047173A1 true WO1998047173A1 (fr) 1998-10-22

Family

ID=9506002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000751 WO1998047173A1 (fr) 1997-04-11 1998-04-14 Transistor mos a fort gradient de dopage sous sa grille

Country Status (4)

Country Link
US (1) US6465332B1 (fr)
EP (1) EP0974159A1 (fr)
FR (1) FR2762138B1 (fr)
WO (1) WO1998047173A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139431A2 (fr) * 2000-03-30 2001-10-04 International Business Machines Corporation Réduction des effets inversés de canal court

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794898B1 (fr) 1999-06-11 2001-09-14 France Telecom Dispositif semi-conducteur a tension de seuil compensee et procede de fabrication
TW486750B (en) * 2000-04-17 2002-05-11 Varian Semiconductor Equipment Methods for forming ultrashallow junctions in semiconductor wafers using low energy nitrogen implantation
US9728637B2 (en) 2013-11-14 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanism for forming semiconductor device with gate
US9281215B2 (en) * 2013-11-14 2016-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanism for forming gate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301923A1 (fr) * 1975-02-20 1976-09-17 Siemens Ag Procede pour l'elimination de composants parasites dans les circuits integres
EP0253059A2 (fr) * 1986-03-20 1988-01-20 Hitachi, Ltd. Procédé pour supprimer la montée de la couche enterrée d'un dispositif semi-conducteur
EP0530046A1 (fr) * 1991-08-30 1993-03-03 STMicroelectronics, Inc. Transistor en circuit intégré
US5557129A (en) * 1994-06-22 1996-09-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor MOSFET device having a shallow nitrogen implanted channel region

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031231A (ja) * 1983-07-29 1985-02-18 Toshiba Corp 半導体基体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301923A1 (fr) * 1975-02-20 1976-09-17 Siemens Ag Procede pour l'elimination de composants parasites dans les circuits integres
EP0253059A2 (fr) * 1986-03-20 1988-01-20 Hitachi, Ltd. Procédé pour supprimer la montée de la couche enterrée d'un dispositif semi-conducteur
EP0530046A1 (fr) * 1991-08-30 1993-03-03 STMicroelectronics, Inc. Transistor en circuit intégré
US5557129A (en) * 1994-06-22 1996-09-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor MOSFET device having a shallow nitrogen implanted channel region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"HIGH PERFORMANCE FET STRUCTURE MADE USING MEDIUM TO LOW TEMPERATURE EPITAXY", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 33, no. 11, 1 April 1991 (1991-04-01), pages 53 - 55, XP000110307 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139431A2 (fr) * 2000-03-30 2001-10-04 International Business Machines Corporation Réduction des effets inversés de canal court
EP1139431A3 (fr) * 2000-03-30 2003-08-13 International Business Machines Corporation Réduction des effets inversés de canal court

Also Published As

Publication number Publication date
FR2762138B1 (fr) 1999-07-02
FR2762138A1 (fr) 1998-10-16
EP0974159A1 (fr) 2000-01-26
US6465332B1 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
KR102082191B1 (ko) 에피택셜 웨이퍼, 접합 웨이퍼 및 이들의 제조 방법
EP1837916B1 (fr) Procédé de réalisation d'un transistor à canal comprenant du germanium
EP0164281B1 (fr) Procédé de fabrication d'une couche isolante enterrée dans un substrat semiconducteur, par implantation ionique
EP2840594B1 (fr) Recristallisation de blocs de source et de drain par le haut
FR2530867A1 (fr) Dispositifs mos a barriere de schottky et leur procede de fabrication
EP1039546A1 (fr) Dispositif semi-conducteur à courant de fuite réduit et son procédé de fabrication
JPH0778998A (ja) 薄膜トランジスタを具える電子デバイスの製造方法
FR2468208A1 (fr) Dispositif semiconducteur avec une diode zener
WO1998047173A1 (fr) Transistor mos a fort gradient de dopage sous sa grille
FR3067516A1 (fr) Realisation de regions semiconductrices dans une puce electronique
FR2953062A1 (fr) Diode de protection bidirectionnelle basse tension
FR2803101A1 (fr) Procede de fabrication de composants de puissance verticaux
FR3051972A1 (fr) Procede de realisation d'un transistor comprenant des source et drain obtenus par recristallisation de semi-conducteur
EP1328969B1 (fr) Procédé de formation d'un transistor mos
FR2791178A1 (fr) NOUVEAU DISPOSITIF SEMI-CONDUCTEUR COMBINANT LES AVANTAGES DES ARCHITECTURES MASSIVE ET soi, ET PROCEDE DE FABRICATION
FR2593641A1 (fr) Procede pour fabriquer un transistor a effet de champ a grille isolee.
EP4235765A2 (fr) Procédé amélioré de fabrication d'un circuit intégré comportant un transistor nmos et un transistor pmos
FR2766845A1 (fr) Procede d'epitaxie sur un substrat de silicium comprenant des zones fortement dopees a l'arsenic
EP0948038B1 (fr) Procédé de fabrication d'une diode à avalanche à seuil réglable
JP3274038B2 (ja) 半導体装置
EP0037764B1 (fr) Structure de dispositif à semiconducteur à anneau de garde, et à fonctionnement unipolaire
FR3069702A1 (fr) Procede de fabrication simultanee de transistors soi et de transistors sur substrat massif
EP1033748A1 (fr) Nouveau transistor à implantation d'indium dans un alliage SiGe et procédés de fabrication
EP0065464B1 (fr) Procédé de fabrication de circuits intégrés de type MOS
FR2877141A1 (fr) Procede de formation de silicium-germanium dans la partie superieure d'un substrat de silicium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998920620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402853

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998920620

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998543567

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1998920620

Country of ref document: EP