WO1998046883A1 - Capacity control apparatus for variable displacement hydraulic pump - Google Patents

Capacity control apparatus for variable displacement hydraulic pump Download PDF

Info

Publication number
WO1998046883A1
WO1998046883A1 PCT/JP1998/001556 JP9801556W WO9846883A1 WO 1998046883 A1 WO1998046883 A1 WO 1998046883A1 JP 9801556 W JP9801556 W JP 9801556W WO 9846883 A1 WO9846883 A1 WO 9846883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
load
valve
differential pressure
capacity
Prior art date
Application number
PCT/JP1998/001556
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Morino
Yousuke Oda
Nobumi Yoshida
Naoki Ishizaki
Mutsumi Ono
Takashi Hori
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1998046883A1 publication Critical patent/WO1998046883A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/57Control of a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/65Methods of control of the load sensing pressure
    • F15B2211/651Methods of control of the load sensing pressure characterised by the way the load pressure is communicated to the load sensing circuit

Definitions

  • the present invention relates to a hydraulically operated, variable pressure sensing system used to supply hydraulic oil to a hydraulic pump of a hydraulic pump.
  • the present invention relates to a device for controlling the displacement of a displacement hydraulic pump.
  • variable hydraulic pump 1 the discharge pressure oil of a variable displacement hydraulic pump (hereinafter referred to as a variable hydraulic pump) 1 is supplied to a hydraulic actuator 3 by an operation valve 2.
  • the capacity of the variable hydraulic pump 1 is reduced by its own discharge pressure (hereinafter referred to as the pump discharge pressure).
  • P0 the pressure of the variable hydraulic pump 1
  • P0-PLS the pressure of the hydraulic actuator 3
  • the small-diameter pressure receiving chamber 6 of the servo cylinder 5 that tilts the capacity control member 4 such as the swash plate of the variable hydraulic pump 1 is connected to the discharge path 1a of the variable hydraulic pump 1, and the pump discharge pressure is changed.
  • P 0 is supplied, and the large-diameter pressure receiving chamber 7 of the servo cylinder 5 is passed through the first circuit 9 by the LS (load sensing) valve 8 to the tanks 10 and 2.
  • Discharge of variable hydraulic pump 1 via circuit 11 The connection is controlled to one side of the path la, and the differential pressure between the pump discharge pressure P 0 and the load pressure PLS is controlled by the LS valve 8 so as to be always constant as a set differential pressure.
  • the S valve 8 is pushed to the supply position A by the pump discharge pressure P0 acting on the first pressure receiving portion 12 and the negative pressure P from the operation valve 2 acting on the second pressure receiving portion 13 is applied.
  • the pressure is pushed to the drain position B by LS, and the pressure difference between the pump discharge pressure P 0 and the load pressure P LS always becomes the set pressure difference.
  • the LS valve 8 is in the drain position B, and the large-diameter pressure receiving chamber 7 of the servo piston 5 is tanked. 10, the displacement control member 4 tilts in the direction of larger displacement, the capacity of the variable hydraulic pump 1 increases, the pump discharge pressure P 0 increases, and the differential pressure increases. .
  • the S valve 8 is in the supply position A, and the pump discharge pressure is supplied to the large-diameter pressure receiving chamber 7 of the servo piston 5, and the displacement control member 4 is tilted in the small displacement direction to change the variable hydraulic pump.
  • the pump discharge pressure P0 decreases, and the differential pressure decreases.
  • the LS valve 8 controls the capacity of the variable hydraulic pump 1 so that the differential pressure between the pump discharge pressure P 0 and the load pressure P LS becomes the set differential pressure.
  • C 1 is a flow rate coefficient
  • A is an opening area of the operation valve 2
  • Q is a flow rate flowing to the hydraulic actuator.
  • the opening area of the operating valve 2 is determined by the communication between the pump port 14 and the first actuator port 15 or between the pump port 14 and the second actuator 16. Area. The opening area is determined by the stroke of operating the solenoid valve 17 from the neutral position C to the first position D or the second position E by operating the solenoid 17. Is
  • the first circuit 9 is connected to one of the tank 10 and one of the discharge passages 1 a by a PC (Pressure Control) valve 18.
  • the PC valve 18 is pushed to the drain position F by the spring 19 and is pushed to the supply position G by the pump discharge pressure P0 acting on the pressure receiving portion 18a.
  • the pressing force of the spring 19 is changed by the tilting position (capacity) of the displacement control member 4 of the variable hydraulic pump 1, and the maximum absorption torque (capacity X port) of the variable hydraulic pump 1 is changed.
  • the pump discharge pressure P 0) is limited to reduce the pressure.
  • the pump discharge pressure P0 is set to a value within the range of the set maximum absorption torque (capacity at that time X pump discharge pressure P0). If the pressure is PC pressure, the PC valve 18 will be at the drain position F at the spring 19, and the pump discharge pressure P0 will be (capacity at that time X pump discharge pressure P0 )> When the pressure reaches the set maximum absorption torque, the PC valve 18 becomes the supply position G at the pump discharge pressure P 0, and the large-diameter pressure receiving chamber of the servo piston 5 7 is supplied with the pump discharge pressure Po, and the capacity of the variable hydraulic pump 1 is reduced.
  • the operator operates the levers 17 to open the operating valve 2 in a state of (small capacity).
  • the valve is operated in the opposite direction.
  • the opening area of the control valve 2 increases.
  • the rate of change of the pump discharge flow rate becomes slow. That is, as the target discharge flow rate approaches, the increase in the pump discharge flow rate gradually approaches the target value (the approach speed up to the target flow rate becomes slower).
  • the approach speed up to the target flow rate is reduced.
  • the lower part can be suppressed (the force S that can keep the LS differential pressure drop state within a small time range), but the control loop gainer S The control system becomes unstable, causing problems such as hunting.
  • the operator when the operating valve 2 has a large opening area and the pump discharge flow rate is large (large capacity), the operator operates the lever 17 to open the operating valve 2 with a small opening area. When operated in the direction, the opening area force S of the control valve 2 decreases.
  • the required flow rate of the operating valve becomes smaller than the pump discharge flow rate, the pump discharge pressure P0 increases, the actual differential pressure (PO-PLS) increases, and the set differential pressure increases.
  • the LS valve 8 is operated to the supply position A and An attempt is made to reduce the capacity of the variable hydraulic pump 1 and increase the pump discharge flow rate as described above.
  • the actual differential pressure is reduced (increased) within a stable range as a control system.
  • the time there is a difference between the time it takes to reach the target discharge flow rate (capacity) because it has to be forgiven, and the time up to the target discharge flow rate (capacity) is given priority. In some cases, even a hunting situation has to be compromised.
  • the pressure signals of the pump discharge pressure P 0 and the load pressure PLS are particularly affected by the pressure loss due to the leakage of the piping in the piping 20 and the piping 21, the inertia of the hydraulic oil, etc. If the pressure change is sudden (for example, sudden operation), the first and second pressure receiving sections 12 and 13 of the LS valve 8 are not transmitted as scheduled differential pressure signals. The operation of the initially set pump tilt angle is delayed, The tilt angle operation may be excessive.
  • an object of the present invention is to provide a displacement control device for a variable displacement hydraulic pump which can solve the above-mentioned problem. Disclosure of the invention
  • the first invention operates by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual differential pressure is used.
  • LS valve 8 for controlling the capacity of the variable displacement hydraulic pump 1 so that the pressure becomes the set differential pressure, and the difference between the actual differential pressure and the set differential pressure and the time of the actual differential pressure.
  • a pressure reducing valve 31 acting as a pressure difference, wherein when the actual differential pressure and the set differential pressure are equal, the pseudo load pressure is equal to the load pressure, and the actual differential pressure is equal to the set differential pressure.
  • the pseudo load pressure is set lower than the load pressure in accordance with the degree of change in the actual differential pressure.
  • the pseudo load pressure is set to be higher than the negative load pressure according to the degree of change of the actual differential pressure, and the pressure reducing valve 31 supplies the pseudo load pressure to the load.
  • the output pressure is the load pressure.
  • the pseudo load pressure is lower than the load pressure, the output pressure is higher than the load pressure, and the pseudo load pressure is higher than the load pressure.
  • high pressure the output pressure is lower than the load pressure.
  • the pump pressure and the load pressure act on the LS valve 8 at the time of a delay, and the variable pressure hydraulic pump is balanced.
  • the capacity of the pump 1 is controlled so as to become the set differential pressure.
  • the LS valve 8 controls to increase the capacity of the variable displacement hydraulic pump 1 more than based on the actual differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 is increased in a short time, and the responsiveness is improved.
  • the LS valve 8 controls the capacity of the variable displacement hydraulic pump 1 to decrease more than based on the actual differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 is reduced in a short time, and the response is improved.
  • the pseudo load pressure when the pseudo load pressure has a high degree of change in the actual differential pressure, the pseudo load pressure is set to be lower and higher than the load pressure, so that the capacity of the variable displacement hydraulic pump 1 is increased.
  • the decreasing speed is in accordance with the operating speed of the operating valve 2. Thereby, the responsiveness is further improved.
  • the pressure reducing valve 31 in the first invention is pushed toward the drain position by the pressure of the first pressure receiving chamber 32 and the second pressure receiving chamber 33.
  • Communicating position by the pressure of the third pressure receiving chamber 34 The accumulator 37 is provided with an accumulator 37 and a throttle 35, and the accumulator 37 is provided in the accumulator chamber 38 of the accumulator 37.
  • the back pressure chamber 41 of the accumulator 37 is connected to the load pressure detection circuit 36 via the throttle 35, and the throttle 35 and the back pressure chamber are connected.
  • the first pressure receiving chamber 3 2 of the pressure reducing valve 3 1 is connected to the output side, and the third pressure receiving chamber 3 2 of the pressure reducing valve 3 1 is connected to the output side.
  • the pressure receiving chamber 34 is a displacement control device for the variable displacement hydraulic pump connected to the load pressure detection circuit 36.
  • the piston 3 is provided by the pressure difference between the pump discharge pressure and the load pressure acting on the accumulator chamber 38 and the back pressure chamber 41 of the accumulator 37. 9 moves and load pressure flows into and out of the back pressure chamber 41. As a result, a differential pressure is generated before and after the throttle 35, so that a pseudo load pressure lower or higher than the load pressure is generated.
  • the pseudo load pressure is lower than the load pressure according to the operating speed of the operating valve.
  • the capacity of the variable displacement hydraulic pump increases and decreases more quickly when the operating valve is suddenly operated, so that the responsiveness is further improved.
  • the third invention operates by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual pressure difference LS valve 8 that controls the capacity of variable displacement hydraulic pump 1 so that the differential pressure becomes the set differential pressure.
  • a means for generating a control pressure based on a difference between the actual differential pressure and the set differential pressure and a change in the actual differential pressure per unit time wherein the means includes an actual differential pressure and a set differential pressure.
  • the control pressure is equal to the load pressure.
  • the control pressure is set to the load pressure according to the degree of change of the actual differential pressure.
  • the control pressure When the actual differential pressure is larger than the set differential pressure, the control pressure is set higher than the negative pressure according to the degree of change of the actual differential pressure.
  • the capacity When the control pressure is equal to the load pressure, the capacity is controlled so that it becomes the set differential pressure, and when the control pressure is lower than the load pressure, the capacity is increased so that it becomes higher than the set differential pressure.
  • the control pressure is higher than the load pressure, the capacity is reduced so that it becomes lower than the set differential pressure.
  • DOO Ru displacement controller der of the variable displacement hydraulic port down-flop, wherein.
  • the control pressure equal to the pump discharge pressure and the load pressure acts on the LS valve 8, and the LS valve 8 balances. Then, the displacement of the variable displacement hydraulic pump 1 is controlled so as to become the set differential pressure.
  • the LS valve 8 controls to increase the capacity of the variable displacement hydraulic pump 1 so as to be equal to or higher than the set differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 increases in a short time, and the response improves.
  • the LS valve is used. Since a control pressure higher than the load pressure acts on the LS valve 8 and a differential pressure higher than the actual differential pressure acts on the LS valve 8, the LS valve 8 has the capacity of the variable displacement hydraulic pump 1.
  • the fourth invention is that the LS valve 8 according to the third invention is operated in a capacity decreasing direction by a pump discharge pressure and a control pressure, and is operated in a capacity increasing direction by two load pressures.
  • the pump discharge pressure is supplied to the accumulator chamber 38 of the accumulator 37 by using the accumulator 37 and the throttle 35 as a means.
  • the load pressure is supplied to the back pressure chamber 41 via the throttle 35, and the control pressure is detected from the back pressure chamber 41 closer to the back pressure chamber 41 of the variable pressure hydraulic pump. It is a capacity control device.
  • the piston 3 is provided by the differential pressure between the pump discharge pressure and the load pressure acting on the pressure accumulating chamber 38 and the back pressure chamber 41 of the accumulator 37. 9 moves and load pressure flows into and out of the back pressure chamber 41. As a result, a differential pressure is generated before and after the throttle 35, so that a control pressure lower and higher than the load pressure is generated.
  • LS valve 8 sets the differential pressure between pump discharge pressure and one load pressure. At the same time, the capacity is controlled by the control pressure and the other load pressure. As a result, when the control pressure is lower than the load pressure, the LS valve 8 operates in the capacity increasing direction at the other load pressure. The capacity of the hydraulic pump 1 increases in a short time, and the response is improved.
  • the LS valve 8 when the control pressure is higher than the load pressure, the LS valve 8 operates in the direction of decreasing the capacity by the control pressure. The capacity is reduced in a short time and the response is improved.
  • FIG. 1 is a hydraulic circuit diagram of a conventional example.
  • FIG. 2 is a hydraulic circuit diagram showing the first embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram showing a second embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 2, a pressure reducing valve 31 is provided in a circuit 30 connecting the discharge passage 1 a of the variable hydraulic pump 1 and the second pressure receiving portion 13 of the LS valve 8. The pressure reducing valve 31 is pushed toward the drain position a by the pressure of the first and second pressure receiving chambers 32 and 33, and is moved toward the communication position b by the pressure of the third pressure receiving chamber 34.
  • the pressed Te first pressure receiving chamber 3 2 is connected to the circuitry 3 6 out load pressure via a diaphragm 35, a second pressure receiving chamber 3 3 is connected to the output side of the pressure reducing valve 3 1, 3
  • the pressure receiving chamber 34 is connected to a load pressure detection circuit 36.
  • P 1 is the output pressure
  • P 2 is the pressure in the first pressure receiving chamber 32
  • P 3 is the pressure in the third pressure receiving chamber 34.
  • the input side of the pressure reducing valve 31 is connected to a pressure accumulating chamber 38 of an accumulator 37, and the accumulator 37 has a piston 39 connected to a spring 4.
  • the pressure of 0 and the back pressure chamber (spring chamber) 4 1 is pushed in the direction of decreasing the pressure in the accumulator chamber.
  • the back pressure chamber 41 is connected to a load pressure detection circuit 36 via the restrictor 35, and is connected.
  • the actual differential pressure is equal to the set differential pressure.
  • the capacity is small (the pump discharge flow rate is small) corresponding to the opening area of the control valve 2.
  • the pump discharge pressure P 0 acts on the accumulator chamber 38 of the accumulator 37
  • the load pressure PLS acts on the back pressure chamber 41
  • the piston Numeral 39 denotes a position where the differential pressure between the pump discharge pressure PO and the load pressure PLS and the force of the spring 40 are no longer in balance, and then stop.
  • the actual load pressure PLS detected by the load pressure detection circuit 36 acts on the first pressure receiving chamber 32 of the pressure reducing valve 31, and the actual load pressure PLS also acts on the third pressure receiving chamber 34 of the pressure reducing valve 31.
  • PLS is than to act, the output pressure of the pressure reducing valve 3 1 is One by the being this c actual ing negative Ni ⁇ PLS, LS valve 8 of the actual load pressure PLS and Po emissions flop discharge pressure PO
  • the differential pressure balances with the set differential pressure, and the discharge flow rate (capacity) of the variable hydraulic pump 1 becomes the required flow rate of the operation valve.
  • the output pressure of the pressure reducing valve 31 becomes higher than the actual load pressure PLS by the pressure ⁇ corresponding to the above-mentioned pressure drop, and the second pressure receiving portion 13 of the LS valve 8 has ( P LS + ⁇ ⁇ ) acts. Therefore, the differential pressure between the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 becomes PO— (PLS + ⁇ P), and the actual load pressure p LS and the pump discharge pressure P It is smaller than the differential pressure (PO-PLS) from 0.
  • the force that pushes the LS valve 8 to the drain position B is larger than the force based on the actual differential pressure, and the large-diameter pressure receiving chamber 7 of the servo piston 5 and the first circuit 9 Since the opening area is large, the displacement speed of the displacement control member 4 increases, and the displacement of the variable hydraulic pump 1 increases rapidly.
  • the pump discharge pressure P O increases, and the actual differential pressure is slightly smaller than the set L S differential pressure.
  • the pressure in the accumulator chamber 38 of the accumulator 37 increases (pump discharge pressure PO), the piston 39 is pushed, and the spring 40 once expands.
  • the oil in the back pressure chamber 41 of the accumulator 37 flows back to the load pressure detection circuit 36 because it moves in the direction of contraction from the state, but there is a restriction 35.
  • the pressure in the back pressure chamber 41 of the accumulator 37 is higher than the actual LS pressure (PLS), but the change in differential pressure is small. Changes in pressure and movement are less. Therefore, the pressure in the back pressure chamber 41 of the accumulator 37 is almost equal to the actual LS pressure (PLS), and the pressure is slightly higher.
  • the pressure in the back pressure chamber 41 of the accumulator 37 is equal to the actual load pressure (PLS).
  • the output pressure (P1) of the pressure reducing valve 31 is slightly higher or almost equal to the actual load pressure (PLS) because the pressure is slightly higher and the force is equivalent.
  • the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is slightly smaller than the differential pressure between the actual pump discharge pressure PO and the actual load pressure PLS. High or almost equal.
  • the LS valve 8 is operated, and the tilt angle of the displacement control member 4 is reduced (the pump discharge amount is reduced to increase the brake force), or the LS valve 8 is operated. Brake in the direction of opening and closing (increase the pump discharge amount).
  • the pump discharge pressure P 0 increases, and the actual differential pressure is larger than the set differential pressure.
  • the pressure in the back pressure chamber 41 of the accumulator 37 acting on the first pressure receiving portion 32 of the pressure reducing valve 31 is higher than the actual load pressure PLS. Therefore, the output pressure of the pressure reducing valve 31 becomes lower than the actual load pressure PLS.
  • the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is equal to the difference between the pump discharge pressure PO and the actual load pressure PLS.
  • the LS valve 8 is operated to the supply position A to reduce the capacity of the variable hydraulic pump 1 and reduce the discharge flow rate. Therefore, the pump discharge flow rate matches the required flow rate of the operation valve.
  • the pump discharge pressure P O increases, and the actual differential pressure is larger than the set differential pressure (the pump discharge flow rate is higher than the required flow rate of the operation valve).
  • the pressure acting on the first pressure receiving chamber 32 of the pressure reducing valve 31 becomes higher than the actual load pressure PLS only by a pressure increase corresponding to the flow resistance of the throttle 35, and the pressure reducing valve becomes higher.
  • the output pressure of 31 is lower than the actual load pressure PLS only by the pressure P corresponding to the pressure rise.
  • the pressure (PLS ⁇ P) acts on the second pressure receiving portion 13 of the LS valve 8. Accordingly, the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is PO-(PLS- ⁇ ), and the difference between the pump discharge pressure PO and the actual Load pressure differential pressure (PO—PLS).
  • the force for pushing the LS valve 8 to the supply position A is larger than the force based on the actual differential pressure, and the large-diameter pressure receiving chamber 7 of the servo piston 5 and the opening of the second circuit 11 are opened. Since the opening area is large, the displacement speed of the displacement control member 4 increases, and the displacement of the variable hydraulic pump 1 decreases rapidly.
  • the accumulator 37 and the throttle 35 have the difference between the actual pressure difference between the pump discharge pressure PO and the load pressure PLS, and the actual pressure difference between the pump pressure PLS and the load pressure PLS.
  • the c concrete to form the means that occurs a pseudo-negative Ni ⁇ in time Tsu by to the person Ri changes in differential pressure is sometimes not equal the set differential pressure and the actual differential pressure, a queue-time
  • the pseudo load pressure becomes equal to the load pressure because the pin 39 of the rater 37 is settled and the pressurized oil does not flow to the throttle 35.
  • the spring 40 expands and pushes the piston 39 to apply a load pressure to the back pressure chamber 41, and a differential pressure is generated before and after the throttle 35 so that the pseudo load pressure is lower than the load pressure.
  • a differential pressure is generated before and after the throttle 35 so that the pseudo load pressure is lower than the load pressure.
  • the actual differential pressure is larger than the set differential pressure, and sometimes, the piston 39 moves in the direction to contract the S-spring 40, causing the load pressure in the back pressure chamber 41 to flow out and restricting.
  • a differential pressure is generated around 35, and the pseudo load pressure becomes higher than the load pressure.
  • the speed at which the load pressure flows into and out of the back pressure chamber 41 of the accumulator 37 is determined by the pressure change rate of the pump discharge pressure, that is, the time corresponding to the actual load pressure time.
  • the pressure reducing valve 31 reduces the pump discharge pressure with the load pressure and the pseudo load pressure to make the output pressure higher and lower than the load pressure. Specifically, when the pseudo differential pressure is equal to the load pressure, the output pressure is equal to the load pressure, and when the pseudo differential pressure is lower than the load pressure, the output pressure is lower than the negative pressure. If the pseudo differential pressure is higher than the load pressure, the output pressure will be lower than the load pressure.
  • the LS valve 8 becomes the communication position A and the drain position B based on the differential pressure between the pump discharge pressure and the output pressure of the pressure reducing valve 31, the actual differential pressure becomes the set differential pressure as described above.
  • the differential pressure between the pump discharge pressure acting on the LS valve 8 and the output pressure of the pressure reducing valve 31 is larger than the differential pressure between the pump discharge pressure and the load pressure.
  • the force for pushing the LS valve 8 to the drain position B increases, and the pump discharge pressure is quickly supplied to the large-diameter chamber 7 of the servo piston 5.
  • the capacity of the variable hydraulic pump 1 increases in a short time.
  • the difference between the actual differential pressure and the set differential pressure becomes smaller. Since the differential pressure acting on the valve 8 is larger than the actual differential pressure difference, the force for pushing the LS valve 8 to the drain position B is large. As a result, a large amount of pump discharge pressure is continuously supplied to the large-diameter chamber 7 of the servo piston 5, so that the asymptotic increase in the discharge flow rate of the variable hydraulic pump 1 is suppressed. Be done. That is, it prevents a decrease in the change in the approach speed to the target discharge flow rate.
  • the differential pressure between the pump discharge pressure acting on the LS valve 8 and the output pressure of the pressure reducing valve 31 becomes the pump pressure. It becomes larger than the differential pressure between the discharge pressure and the load pressure.
  • the force for pushing the LS valve 8 to the communication position A increases, and the hydraulic oil in the large-diameter chamber of the servo piston 5 flows out to the tank, and the pressure of the variable hydraulic pump 1 increases.
  • the capacity decreases in a short time.
  • the difference between the actual differential pressure and the set differential pressure becomes smaller. Since the differential pressure acting on the valve 8 is larger than the actual differential pressure difference, the force for pushing the LS valve 8 to the communication position A is large. By this Since a large amount of pressure oil in the large-diameter chamber 7 of the servo piston 5 continues to flow out to the tank, the decrease in the discharge flow rate of the variable hydraulic pump 1 is suppressed. That is, it prevents the change in the approach speed to the target discharge flow rate.
  • the LS valve 8 is provided with a third pressure receiving portion 50 and a fourth pressure receiving portion 51.
  • the load pressure detection circuit 36 is squeezed and the squeeze 3 5 is squeezed to communicate with the back pressure chamber 41 of the accumulator 37, and the circuit 30 is stored in the accumulator 37. Access to rooms 3-8.
  • the third pressure receiving portion 50 is connected to the back pressure chamber 41 closer to the throttle 35 than to the throttle 35, and the fourth pressure receiving portion 51 is connected to the load pressure detection circuit 36.
  • the LS valve 8 has a differential pressure between a pump discharge pressure PO acting on the first pressure receiving portion 12 and a load pressure PLS acting on the second pressure receiving portion 13, and a control pressure acting on the third pressure receiving portion 50. It is pushed to the communication position A and the drain position B by the pressure difference between the pressure and the load pressure acting on the fourth pressure receiving portion 51.
  • the piston 39 of the accumulator 37 is settled when the actual differential pressure between the pump discharge pressure and the load pressure is equal to the set differential pressure. Load pressure does not flow to Thereby, the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 is equal to the load pressure.
  • the piston 39 of the accumulator 37 is pump discharge.
  • the spring moves by the spring 40 and the load pressure flows into the back pressure chamber 41.
  • a differential pressure is generated before and after the throttle 35, and the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 becomes lower than the load pressure.
  • the piston 39 of the accumulator 37 has a spring 40 at the pump discharge pressure when the actual differential pressure between the pump discharge pressure and the load pressure is larger than the set differential pressure. , And the load pressure in the back pressure chamber 41 flows out. As a result, a differential pressure is generated before and after the restrictor 35, and the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 becomes higher than the load pressure.
  • the accumulator 37 and the throttle 35 reduce and increase the load pressure according to the difference between the actual differential pressure between the pump discharge pressure and the load pressure and the differential pressure between the set differential pressure.
  • a means for controlling the pressure is formed.
  • the third pressure receiving section 50 of the S valve 8 is operated as described above.
  • the control pressure acting on the LS valve 8 becomes the load pressure
  • the load pressure S acts on the fourth pressure receiving portion 51 of the LS valve 8
  • the LS valve 8 acts on the first pressure receiving portion 12. Balancing at a position corresponding to the pump discharge pressure and the load pressure acting on the second pressure receiving portion 13, the variable hydraulic pump 1 maintains its capacity.
  • valve 17 Operate the valve 17 to increase the opening area of the control valve 2 so that the required flow rate of the control valve is less than the discharge flow rate of the variable hydraulic pump 1.
  • the pump discharge pressure decreases as described above, and the actual differential pressure between the pump discharge pressure and the load pressure decreases.
  • the accumulator 37 is actuated, and the third pressure receiving portion 50 of the LS valve 8 is actuated by a pressure lower than the load pressure.
  • the LS valve 8 is pushed toward the drain position B by the load pressure acting on the fourth pressure receiving portion 51.
  • the LS valve 8 moves toward the drain position B due to the differential pressure between the pump discharge pressure acting on the first pressure receiving part 12 and the negative pressure acting on the second pressure receiving part 13. It is pushed.
  • the L S valve 8 is the same as when the set differential pressure is increased.
  • the opening area for communicating the first circuit 9 with the large-diameter chamber 7 of the servopiston 5 by the LS valve 8 is larger than that of a normal LS valve. Since a large amount of pressure oil in the large-diameter chamber 7 flows out to the tank, the capacity of the variable hydraulic pump 1 increases quickly.
  • the actual differential pressure is slightly smaller than the set differential pressure.
  • the piston 39 of the accumulator 37 slightly moves in the direction of contracting the spring 40, and approaches the above-mentioned settled position.
  • the load pressure in the back pressure chamber 41 flows out, and a differential pressure is generated around the throttle 35.However, since the outflow is small, the pressure difference around the throttle 35 is small. There is little change in movement. Therefore, the control pressure is slightly higher than the load pressure, or equivalently, the pressure of the third pressure receiving portion 50 of the S valve 8 is slightly higher than or equal to the load pressure.
  • the LS valve 8 is pushed toward the communicating position A to reduce the capacity of the variable hydraulic pump 1 (brake the capacity boost B).
  • the accumulator 37 is actuated as described above, and the third pressure receiving portion 50 of the LS valve 8 receives a force higher than the load pressure on the third pressure receiving portion 50.
  • the LS valve 8 is pushed toward the communication position A by the pressure difference between the LS valve 8 and the load pressure acting on the fourth pressure receiving portion 51.
  • the LS valve 8 is pushed toward the communication position A by the differential pressure between the pump discharge pressure acting on the first pressure receiving part 12 and the negative load pressure acting on the second pressure receiving part 13. Is That is, the L S valve 8 is the same as when the set differential pressure is reduced.
  • the opening area for communicating the second circuit 11 with the large-diameter chamber 7 of the servopiston 5 by the LS valve 8 is larger than that of a normal LS valve.
  • the capacity of the variable hydraulic pump 1 decreases quickly.
  • the discharge flow rate of the variable hydraulic pump 1 is close to the required flow rate of the operation valve.
  • the actual differential pressure is slightly larger than the set differential pressure.
  • the piston 39 of the accumulator 37 is slightly moved by the spring 40 to approach the above-mentioned settled position.
  • Back pressure chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

The responsiveness of a variable displacement hydraulic pump is improved by controlling the increase and decrease of the capacity thereof in a short period of time. A servo cylinder (5) for tilt-turning a capacity control member (4) of a variable displacement hydraulic pump (1), and an LS valve (8) allowing communication of a larger-diameter chamber (7) of this servo cylinder (5) with a pump discharge passage and a tank are provided, whereby a capacity control operation is carried out so that an actual difference between a pump discharge pressure and a load pressure always corresponds to a set differential pressure. The LS valve (8) is operated by a pump discharge pressure in a capacity decreasing direction and by a dummy load pressure in a capacity increasing direction. The pump discharge pressure is reduced by an accumulator (37), a restriction (35) and a pressure reducing valve (31) so as to set the dummy load pressure equal to, lower than and higher than a load pressure, whereby the LS valve (8) is operated excessively in the capacity increasing direction and capacity decreasing direction as compared with a normal case so that the capacity increases and decreases in a shorter period of time.

Description

明細書 可変容量型油圧ポ ン プ の容量制御装置 技術分野  Description Capacity control device for variable displacement hydraulic pump
本発 明 は 、 油圧式ノ、° ヮ ーシ ョ ベル の 油 圧ァ ク チ ュ エ ータ に圧油を 供給する 口 ード セ ン シ ン グ 油圧シ ス テ ム に用 い ら れる 可変容量型油圧ポ ン プ の容量を 制御す る 装置に 関する 。 背景技術  The present invention relates to a hydraulically operated, variable pressure sensing system used to supply hydraulic oil to a hydraulic pump of a hydraulic pump. The present invention relates to a device for controlling the displacement of a displacement hydraulic pump. Background art
図 1 に 示すよ う に 、 可変容量型油圧ポ ン プ ( 以 下、 可変油圧ポン プと いう 。 ) 1 の 吐出圧油を 操作弁 2 で 油 圧 ァ ク チ ユ エ ータ 3 に 供給し 、 そ の 油 圧ァ ク チ ュ エ ータ 3 で 作業機を 作動する 油圧シ ス テ ム に おい て 、 可変油圧ポン プ 1 の容量を 、 自 己 の 吐出圧 ( 以下、 ポ ン プ 吐出圧 P 0と い う 。 ) と 油圧ァ ク チユ エ ータ 3 の 圧力 ( 以下負荷圧 P L Sと い う ) の 差圧 ( P 0— P L S ) が 一定と な る よ う に制御し て レ、る 。  As shown in FIG. 1, the discharge pressure oil of a variable displacement hydraulic pump (hereinafter referred to as a variable hydraulic pump) 1 is supplied to a hydraulic actuator 3 by an operation valve 2. In the hydraulic system in which the working machine is operated by the hydraulic actuator 3, the capacity of the variable hydraulic pump 1 is reduced by its own discharge pressure (hereinafter referred to as the pump discharge pressure). P0) and the pressure (P0-PLS) of the hydraulic actuator 3 (hereinafter referred to as the load pressure PLS) is controlled to be constant. .
例え ば、 可変油圧ポン プ 1 の斜板等の容量制御部材 4 を 傾転する サーボ シリ ン ダ 5 の 小径受圧室 6 を 可変 油圧ポン プ 1 の吐出路 1 a に接続し てポン プ吐出圧 P 0 を 供給し 、 そ のサ ーボ シリ ン ダ 5 の 大径受圧室 7 を L S ( ロ ード セ ン シ ン グ ) 弁 8 で第 1 回路 9 を 経てタ ン ク 1 0 、 第 2 回路 1 1 を 経て 可変油圧ポン プ 1 の 吐出 路 l a の 一方に接続制御し 、 こ の L S 弁 8 によ っ て ポ ン プ吐出圧 P 0と 負荷圧 P L S の 差圧を 設定差圧と し て 常に一定と なる よ う に制 御 し て レヽ る 。 For example, the small-diameter pressure receiving chamber 6 of the servo cylinder 5 that tilts the capacity control member 4 such as the swash plate of the variable hydraulic pump 1 is connected to the discharge path 1a of the variable hydraulic pump 1, and the pump discharge pressure is changed. P 0 is supplied, and the large-diameter pressure receiving chamber 7 of the servo cylinder 5 is passed through the first circuit 9 by the LS (load sensing) valve 8 to the tanks 10 and 2. Discharge of variable hydraulic pump 1 via circuit 11 The connection is controlled to one side of the path la, and the differential pressure between the pump discharge pressure P 0 and the load pressure PLS is controlled by the LS valve 8 so as to be always constant as a set differential pressure. Review
前記し S 弁 8 は第 1 受圧部 1 2 に 作用 する ポン プ吐 出圧 P 0で供給位置 A に 押さ れ、 第 2 受圧部 1 3 に 作 用 する 操作弁 2 か ら の 負 荷圧 P LSで ド レ ー ン 位置 B に 押さ れ、 ポ ン プ 吐出圧 P 0と 負荷圧 P LSの 差圧が 常 に設定差圧と な る よ う にし て レ、る 。  The S valve 8 is pushed to the supply position A by the pump discharge pressure P0 acting on the first pressure receiving portion 12 and the negative pressure P from the operation valve 2 acting on the second pressure receiving portion 13 is applied. The pressure is pushed to the drain position B by LS, and the pressure difference between the pump discharge pressure P 0 and the load pressure P LS always becomes the set pressure difference.
具体的 に は、 実際の差圧が設定差圧よ り も 小さ く な る と L S 弁 8 が ド レ ーン 位置 B と な っ て サーボピ ス ト ン 5 の 大径受圧室 7 がタ ン ク 1 0 に接続し て容量制御 部材 4 は容量大方向 に傾転し 、 可変油圧ポン プ 1 の容 量が 増加し て ポ ン プ 吐出圧 P 0が 高く な っ て 前記差圧 が 大き く な る 。  Specifically, when the actual differential pressure becomes smaller than the set differential pressure, the LS valve 8 is in the drain position B, and the large-diameter pressure receiving chamber 7 of the servo piston 5 is tanked. 10, the displacement control member 4 tilts in the direction of larger displacement, the capacity of the variable hydraulic pump 1 increases, the pump discharge pressure P 0 increases, and the differential pressure increases. .
一方、 実際の 差圧が設定差圧よ り も 大き く な る と L On the other hand, when the actual differential pressure becomes larger than the set differential pressure, L
S 弁 8 は供給位置 A と な っ て サーボ ピ ス ト ン 5 の 大径 受圧室 7 にポン プ吐出圧が供給さ れて 容量制御部材 4 が容量小方向 に傾転し て 可変油圧ポン プ 1 の容量が減 少し 、 ポ ン プ 吐出圧 P 0が 低く な っ て 前記差圧が 小さ く な る 。 The S valve 8 is in the supply position A, and the pump discharge pressure is supplied to the large-diameter pressure receiving chamber 7 of the servo piston 5, and the displacement control member 4 is tilted in the small displacement direction to change the variable hydraulic pump. As the capacity of 1 decreases, the pump discharge pressure P0 decreases, and the differential pressure decreases.
こ の 作用 に よ っ て L S 弁 8 はポ ン プ 吐出圧 P 0と 負 荷圧 P LSの 差圧が設定差圧と な る よ う に 可変油圧ボ ン プ 1 の容量を 制御する 。  By this action, the LS valve 8 controls the capacity of the variable hydraulic pump 1 so that the differential pressure between the pump discharge pressure P 0 and the load pressure P LS becomes the set differential pressure.
こ れに よ つ て 、 ポ ン プ 吐出圧 P 0と 負荷圧 P LSと の 差圧 Δ Ρ は A P = C 1 X ( Q Z A ) 2と な り 、 油圧ァ ク チユ エ ータ 3 の負荷圧 に 関係な く 、 可変油圧ポ ン プ 1 の 吐 出 流 量が 操作弁 2 の 開 口 面積 ( 操作弁 要 求 流 量) に 見合っ た 流量と な る よ う に制御さ れる 。 As a result, the differential pressure Δ between the pump discharge pressure P 0 and the load pressure P LS becomes AP = C 1 X (QZA) 2 and the hydraulic pressure Irrespective of the load pressure of the cutout 3, the discharge flow rate of the variable hydraulic pump 1 will be a flow rate that matches the opening area of the control valve 2 (the required flow rate of the control valve). Is controlled by
但 し 、 C 1 は 流 量係 数 、 A は 操 作 弁 2 の 開 口 面 積 Q は 油圧ァ ク チユ エ ータ へ流れる 流量であ る 。  Here, C 1 is a flow rate coefficient, A is an opening area of the operation valve 2, and Q is a flow rate flowing to the hydraulic actuator.
前記操作弁 2 の 開 口 面積はポン プポ ート 1 4 と 第 1 ァ ク チ ユ エ ータ ポ ート 1 5 又はポン プポ ート 1 4 と 第 2 ァ ク チユ エータ 1 6 の 連通面積であ る 。 レ ノ 一 1 7 を 操作し て 操作弁 2 を 中 立位置 C か ら 第 1 位置 D 又 は 第 2 位置 E に 向 け て 操作する ス ト ロ ーク によ っ て 開 口 面積が 決定さ れる 。  The opening area of the operating valve 2 is determined by the communication between the pump port 14 and the first actuator port 15 or between the pump port 14 and the second actuator 16. Area. The opening area is determined by the stroke of operating the solenoid valve 17 from the neutral position C to the first position D or the second position E by operating the solenoid 17. Is
図 1 に おい て 、 第 1 回路 9 は P C ( プ レ ッ シ ャ ーコ ン ト ロ ール) 弁 1 8 でタ ン ク 1 0 と 吐出路 1 a の 一方 に接続さ れる 。 こ の P C 弁 1 8 はス プリ ン グ 1 9 でド レ ー ン 位置 F に 押さ れ、 受圧部 1 8 a に作用 する ポ ン プ 吐出圧 P 0 で供給位置 G に 押さ れる 。 前記ス プ リ ン グ 1 9 の 押力 は可変油圧ポ ン プ 1 の容量制御部材 4 の 傾転位置 ( 容量) で変更さ れて 可変油圧ポン プ 1 の 最 大吸収 ト ルク ( 容量 X ポ ン プ 吐出圧 P 0 ) を 制 限し て レヽ 。  In FIG. 1, the first circuit 9 is connected to one of the tank 10 and one of the discharge passages 1 a by a PC (Pressure Control) valve 18. The PC valve 18 is pushed to the drain position F by the spring 19 and is pushed to the supply position G by the pump discharge pressure P0 acting on the pressure receiving portion 18a. The pressing force of the spring 19 is changed by the tilting position (capacity) of the displacement control member 4 of the variable hydraulic pump 1, and the maximum absorption torque (capacity X port) of the variable hydraulic pump 1 is changed. The pump discharge pressure P 0) is limited to reduce the pressure.
具体的 に は 、 可変油圧ポン プ 1 があ る 容量の 時にポ ン プ吐出圧 P 0が 、 ( そ の 時の容量 X ポン プ吐出圧 P 0 ) く 設定し た 最大吸収ト ルク の範囲の圧力であ れば P C 弁 1 8 はス プ リ ン グ 1 9 で ド レ ー ン 位置 F と な る ポンプ吐出圧 P 0が、 ( その時の容量 Xポンプ吐出圧 P 0 ) > 設定し た 最大吸収ト ル ク の圧力 と な る と P C 弁 1 8 が ポ ン プ 吐 出圧 P 0で 供給位置 G と な り 、 サ ーボ ピ ス ト ン 5 の 大径受圧室 7 に ポ ン プ 吐 出圧 P oが 供給さ れて 可変油圧ポ ン プ 1 の 容量が小さ く な る 。 Specifically, when the variable hydraulic pump 1 has a certain capacity, the pump discharge pressure P0 is set to a value within the range of the set maximum absorption torque (capacity at that time X pump discharge pressure P0). If the pressure is PC pressure, the PC valve 18 will be at the drain position F at the spring 19, and the pump discharge pressure P0 will be (capacity at that time X pump discharge pressure P0 )> When the pressure reaches the set maximum absorption torque, the PC valve 18 becomes the supply position G at the pump discharge pressure P 0, and the large-diameter pressure receiving chamber of the servo piston 5 7 is supplied with the pump discharge pressure Po, and the capacity of the variable hydraulic pump 1 is reduced.
前記可変油圧ポ ン プ の 容量制御装置であ る と 、 操作 弁 2 を 操作し て 開 口 面積を 変化さ せた 場合に 可変油圧 ポ ン プ 1 の 容量制御 に 時間遅れ、 過容量状態、 ハン チ ン グ 等が 生じ る 。 こ の こ と は 、 操作弁 2 を 急操作し て 開 口 面積を 急激に 変化さ せた 場合に 著し い。  With the capacity control device for the variable hydraulic pump, if the opening area is changed by operating the operation valve 2, the capacity control of the variable hydraulic pump 1 is delayed, resulting in an Ching etc. occur. This is remarkable when the opening area is rapidly changed by suddenly operating the operation valve 2.
具体的 に は 、 操作弁 2 が 開 口 面積小でポン プ吐出流 量が 少な レ、 ( 容量小) 状態から 、 操作者が レ バ ー 1 7 を 操作し て 操作弁 2 を 開 口 面積 大方 向 に 操作し た 時. 操作弁 2 の 開 口 面積が 大き く な る 。  Specifically, when the operating valve 2 has a small opening area and the pump discharge flow rate is small, the operator operates the levers 17 to open the operating valve 2 in a state of (small capacity). When the valve is operated in the opposite direction. The opening area of the control valve 2 increases.
こ の た め に 、 操作弁要求流量がポ ン プ吐出流量よ り も 多く な つ て ポ ン プ 吐 出圧 P 0が 低下し 、 実際の 差圧 For this reason, when the required flow rate of the operation valve becomes larger than the pump discharge flow rate, the pump discharge pressure P0 decreases, and the actual differential pressure
( P 0 - P L S ) が 小さ く な り 、 設定差圧よ り も 小さ く な る 。 こ れによ つ て L S 弁 8 力 S ド レ ー ン 位置 B に 作動 し て 前述の よ う に 可変油圧ポン プ 1 の容量を 大き く し , ポン プ吐出流量を 増加さ せよ う と する 。 (P0-PLS) becomes smaller, and becomes smaller than the set differential pressure. As a result, the LS valve 8 is actuated to the 8 force S drain position B to increase the capacity of the variable hydraulic pump 1 and increase the pump discharge flow rate as described above.
し かし 通常の斜板、 斜軸のポン プ容量可変機構メ カ ニズ ム と し て は 、 傾転角 の 変更を 油圧シリ ン ダ 型ァ ク チュ エ ータ ( サーボ ピ ス ト ン 5 ) を 使用 し て いる た め 所定の 吐出流量 ( 容量) と な る た め に は 、 あ る 程度の 時間 が必要と な る 。 よ っ て 、 ポン プ吐出流量が所定の 吐出流量に近づく に つれ ( 実際の 差圧が設定差圧に 近 づく に つれ) 、 L S 弁 8 の 開 口 面積を 絞り 始め る ( 実 際の 差圧が 設定差圧と な れば、 L S 弁 8 の 開 口 はほ と ん ど 閉じ る ) 。 However, as a mechanism of the pump mechanism with a variable pump capacity of a swash plate and a swash axis, the change of the tilt angle is controlled by a hydraulic cylinder type actuator (servo piston 5). ), It takes a certain amount of time to reach the specified discharge flow rate (capacity). Therefore, as the pump discharge flow rate approaches the predetermined discharge flow rate (the actual differential pressure approaches the set differential pressure). As a result, the opening area of the LS valve 8 is started to be reduced (when the actual differential pressure reaches the set differential pressure, the opening of the LS valve 8 is almost closed).
L S 弁 8 の 開 口 面積が 絞ら れれば、 ポ ン プ吐出流量 ( 容量) の 変化速度が 遅く な る 。 すな わち 、 目 標の ポ ン プ吐出流量に 近づく に つれ、 ポン プ吐出流量の増加 が 目 標値に 対し 漸近する ( 目 標流量ま での接近速度が 遅く な る ) 。  If the opening area of the LS valve 8 is reduced, the rate of change of the pump discharge flow rate (capacity) becomes slow. That is, as the target discharge flow rate approaches, the increase in the pump discharge flow rate gradually approaches the target value (the approach speed up to the target flow rate becomes slower).
前記実際の 差圧と 設定差圧と の 差 に よ る L S 弁 8 の 開 口 面積の 変化量 ( L S 弁開 口 ゲイ ン ) を 大き く すれ ば 、 目 標 流 量ま で の 接近速度 の 低 下 は 抑 制 で き る が ( L S 差圧の低下状態を 少な い 時間範囲 内 に と ど め る こ と はでき る 力 S ) 、 制御ループゲイ ン カ Sあ 力 Sる こ と に よ り 、 制御系 と し て 不安定と な り 、 ハ ン チ ン グ 等の 不 具合を 起こ す。  If the amount of change in the opening area of the LS valve 8 (LS valve opening gain) due to the difference between the actual differential pressure and the set differential pressure is increased, the approach speed up to the target flow rate is reduced. The lower part can be suppressed (the force S that can keep the LS differential pressure drop state within a small time range), but the control loop gainer S The control system becomes unstable, causing problems such as hunting.
よ っ て 、 制御系 と し て 安定な 範囲 内で実際の差圧の 低下状態を 許さ ざ る を 得な い。  Therefore, it is inevitable for the control system to allow the actual differential pressure drop state within a stable range.
ま た 、 操作弁 2 が 開 口 面積大でポ ン プ吐出流量が 多 レ、 ( 容量大) の 状態か ら 、 操作者が レ バ ー 1 7 を 操作 し て 操作弁 2 を 開 口 面積小方向 に操作し た 時、 操作弁 2 の 開 口 面積力 S 小さ く な る 。  In addition, when the operating valve 2 has a large opening area and the pump discharge flow rate is large (large capacity), the operator operates the lever 17 to open the operating valve 2 with a small opening area. When operated in the direction, the opening area force S of the control valve 2 decreases.
こ の た め に 、 操作弁要求流量がポン プ吐出流量よ り も 少な く な っ て ポ ン プ 吐 出圧 P 0が 上昇し 、 実際の 差 圧 ( P O — P L S ) が増し 、 設定差圧よ り も 大き く な る こ れに よ つ て L S 弁 8 が供給位置 A に作動し て 前述 の よ う に 可変油圧ポ ン プ 1 の容量を 小さ く し 、 ポ ン プ 吐出流量を 増加さ せよ う と する 。 For this reason, the required flow rate of the operating valve becomes smaller than the pump discharge flow rate, the pump discharge pressure P0 increases, the actual differential pressure (PO-PLS) increases, and the set differential pressure increases. As a result, the LS valve 8 is operated to the supply position A and An attempt is made to reduce the capacity of the variable hydraulic pump 1 and increase the pump discharge flow rate as described above.
し か し 、 前述 の よ う に 所 定の ポ ン プ 吐 出 流量 ( 容 量) と な る ま で にあ る 程度の 時間が 必要と な る 。 よ つ て 、 ポ ン プ吐出流量が 所定の 吐出流量と な る ま で 実際 の 差圧 は増加する が 、 ポ ン プ吐出流量が操作弁要求流 量ま で減少し 近づく に つれ ( 実際の 差圧が設定差圧 に 近 づ く に つ れ) 、 L S 弁 8 の 開 口 面積を 絞 り 始め る c L S 弁 8 の 開 口 面積が 絞ら れれば、 ポ ン プ吐出流量 の 変化速度が遅く な る 。 すな わち 、 目 標のポン プ吐出 流量に近づく に つれ、 ポ ン プ吐出流量の減少が 目 標値 漸近する ( 目 標 流 量ま で の 接近速度 が 遅く な る 。 ) c 前述の よ う に 、 操作弁 2 を 開 口 面積大方向 、 開 口 面 積小方 向 に操作する い ずれでも 制御系 と し て安定な 範 囲 内で 実際の差圧の 低下 ( 増加) 状態を あ る 時間 内の 間 、 許さ ざ る を 得な い から 目 標吐出流量 ( 容量) と な る ま で に 時間差が 生じ る し 、 目 標吐出流量 ( 容量) と な る ま での 時間を 優先する よ う な 場合によ っ て は、 ハ ン チ ン グ 気味でも 妥協せざ る を 得な い。 However, as described above, it takes a certain amount of time to reach the specified pump discharge flow rate (capacity). As a result, the actual differential pressure increases until the pump discharge flow rate reaches the predetermined discharge flow rate, but as the pump discharge flow rate decreases and approaches the required flow rate of the operation valve (actual differential pressure). pressure Re twofold rather closer to the set pressure differential), if squeezed open port area of c LS valve 8 the apertures area Ru Ri start down the LS valve 8, it slow rate of change of the port down flop discharge flow rate . That is, as the target discharge flow rate approaches, the pump discharge flow rate decreases asymptotically to the target value (the approach speed up to the target flow rate decreases.) C As described above. Thus, regardless of whether the operating valve 2 is operated in the direction of large opening area or in the direction of small opening area, the actual differential pressure is reduced (increased) within a stable range as a control system. During the time, there is a difference between the time it takes to reach the target discharge flow rate (capacity) because it has to be forgiven, and the time up to the target discharge flow rate (capacity) is given priority. In some cases, even a hunting situation has to be compromised.
ま た 、 ポン プ吐出圧 P 0、 負荷圧 P L Sの圧力信号が 配 管 2 0 、 配管 2 1 の ボ リ ユ ー ム ゃ漏れ に よ る 圧損、 作動油 の慣性力 な ど に よ り 、 特に圧力変化が急な 場合 ( 急操作な ど ) 、 予定ど おり の差圧信号と し て L S 弁 8 の 第 1 · 第 2 受 圧 部 1 2 , 1 3 に 伝 わ ら な レ、 た め、 当 初設定のポン プ傾転角 の 作動が遅れる こ と や、 ボン プ傾転角 の 作動が行き 過ぎ る 場合があ る 。 Also, the pressure signals of the pump discharge pressure P 0 and the load pressure PLS are particularly affected by the pressure loss due to the leakage of the piping in the piping 20 and the piping 21, the inertia of the hydraulic oil, etc. If the pressure change is sudden (for example, sudden operation), the first and second pressure receiving sections 12 and 13 of the LS valve 8 are not transmitted as scheduled differential pressure signals. The operation of the initially set pump tilt angle is delayed, The tilt angle operation may be excessive.
そ こ で 、 本発 明 は前述の課題を 解決でき る よ う に し た 可変容量型油圧ポ ン プ の容量制御装置を 提供する こ と を 目 的と する 。 発明の開示  Therefore, an object of the present invention is to provide a displacement control device for a variable displacement hydraulic pump which can solve the above-mentioned problem. Disclosure of the invention
第 1 の 発 明 は 、 可変容量型油圧ポン プ 1 のポン プ 吐 出圧と 油圧ァ ク チユ エ ータ 3 の負荷圧の 実際の 差圧 に よ っ て 作動し 、 そ の 実際の差圧が設定差圧と な る よ う に 可変容量型油圧ポ ン プ 1 の容量を 制御する L S 弁 8 と 、 前記実際の 差圧と 設定差圧の 差圧の 差及び実際の 差圧の 時間 当 り 変化 に よ っ て 疑似負荷圧を 発生する 手 段と 、 前記負荷圧と 疑似負荷圧と でポ ン プ吐出圧を 減 圧し 、 そ の減圧し た 出力圧を 前記 L S 弁 8 に負荷圧と し て 作用 する 減圧弁 3 1 と を 備え 、 前記手段は、 実際 の 差圧と 設定差圧が 等し い 時に は疑似負荷圧を 負荷圧 と 等し く 、 実際の 差圧が設定差圧よ り も 小さ い 時に は, 実際の 差圧の 変化度合に応じ て 疑似負荷圧を 負荷圧よ り も 低圧と し 、 実際の 差圧が設定差圧よ り も 大き い 時 に は 、 実際の 差圧の 変化度合に応じ て 疑似負荷圧を 負 荷圧よ り も 高圧と し 、 前記減圧弁 3 1 は 、 疑似負荷圧 が負荷圧と 等し い 時に は 出力圧を 負荷圧と し 、 疑似負 荷圧が負荷圧よ り も 低圧の 時に は 出力圧を 負荷圧よ り も 高圧と し 、 疑似負荷圧が負荷圧よ り も 高圧の 時に は 出力圧を 負荷圧よ り も 低圧と する こ と を 特徴と する 可 変容量型油圧ポ ン プの容量制御装置であ る 。 The first invention operates by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual differential pressure is used. LS valve 8 for controlling the capacity of the variable displacement hydraulic pump 1 so that the pressure becomes the set differential pressure, and the difference between the actual differential pressure and the set differential pressure and the time of the actual differential pressure. Means for generating a pseudo load pressure according to the change in pressure, and reducing the pump discharge pressure with the load pressure and the pseudo load pressure, and applying the reduced output pressure to the LS valve 8 as the load pressure. And a pressure reducing valve 31 acting as a pressure difference, wherein when the actual differential pressure and the set differential pressure are equal, the pseudo load pressure is equal to the load pressure, and the actual differential pressure is equal to the set differential pressure. Is smaller than the load pressure, the pseudo load pressure is set lower than the load pressure in accordance with the degree of change in the actual differential pressure. When the pressure is larger than the set differential pressure, the pseudo load pressure is set to be higher than the negative load pressure according to the degree of change of the actual differential pressure, and the pressure reducing valve 31 supplies the pseudo load pressure to the load. When the pressure is equal to the output pressure, the output pressure is the load pressure.When the pseudo load pressure is lower than the load pressure, the output pressure is higher than the load pressure, and the pseudo load pressure is higher than the load pressure. When high pressure, the output pressure is lower than the load pressure. This is a displacement control device for variable displacement hydraulic pumps.
第 1 の発 明 に よ れば、 実際の 差圧と 設定差圧が 等し レヽ 時に は L S 弁 8 にポ ン プ吐出圧と 負荷圧が作用 し て バラ ン ス し 、 可変容量型油圧ポン プ 1 の容量を 設定差 圧と な る よ う に制御する 。  According to the first invention, the pump pressure and the load pressure act on the LS valve 8 at the time of a delay, and the variable pressure hydraulic pump is balanced. The capacity of the pump 1 is controlled so as to become the set differential pressure.
実際の 差圧が 設定差圧よ り も 小さ い 時に は、 L S 弁 8 に負荷圧よ り も 高い圧が 作用 し 、 L S 弁 8 に は実際 の 差圧以上の 差圧が 作用 する の で 、 L S 弁 8 は 、 実際 の 差圧 に 基づく 以上に 可変容量型油圧ポン プ 1 の容量 を 増大制御する 。 そ れによ つ て 、 可変容量型油圧ボ ン プ 1 の 容量が短時間 に増大し て応答性が 向上する 。  When the actual differential pressure is smaller than the set differential pressure, a pressure higher than the load pressure acts on the LS valve 8, and a differential pressure greater than the actual differential pressure acts on the LS valve 8. The LS valve 8 controls to increase the capacity of the variable displacement hydraulic pump 1 more than based on the actual differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 is increased in a short time, and the responsiveness is improved.
実際の 差圧が設定差圧よ り も 大き レ、 時に は、 L S 弁 8 に負荷圧よ り も 低い圧が 作用 し 、 L S 弁 8 に は実際 の 差圧以上の 差圧が 作用 する の で 、 L S 弁 8 は、 実際 の 差圧 に 基づく 以上に 可変容量型油圧ポン プ 1 の容量 を 減少制御する 。 そ れによ つ て 、 可変容量型油圧ボ ン プ 1 の 容量を 短時間 に減少し て応答性が 向上する 。  Since the actual differential pressure is larger than the set differential pressure, sometimes a pressure lower than the load pressure acts on the LS valve 8, and a differential pressure greater than the actual differential pressure acts on the LS valve 8. The LS valve 8 controls the capacity of the variable displacement hydraulic pump 1 to decrease more than based on the actual differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 is reduced in a short time, and the response is improved.
ま た 、 疑似負荷圧は実際の 差圧の 変化度合が 速い 時 に は疑似負荷圧を 負荷圧よ り も よ り 一層低圧、 高圧と する の で 、 可変容量型油圧ポン プ 1 の容量増加、 減少 速度は操作弁 2 の 操作速度に応じ たも の と な る 。 そ れ に よ っ て 、 応答性が よ り 一層 向 上する 。  Further, when the pseudo load pressure has a high degree of change in the actual differential pressure, the pseudo load pressure is set to be lower and higher than the load pressure, so that the capacity of the variable displacement hydraulic pump 1 is increased. The decreasing speed is in accordance with the operating speed of the operating valve 2. Thereby, the responsiveness is further improved.
第 2 の 発 明 は 、 第 1 の 発 明 に お け る 減圧弁 3 1 を、 第 1 受圧室 3 2 と 第 2 受圧室 3 3 の圧力でド レ ーン 位 置に 向 け て 押さ れ、 第 3 受圧室 3 4 の圧力で連通位置 に 向 け て 押さ れる も の と し 、 前記手段を 、 ア キ ユ ーム レ ータ 3 7 と 絞り 3 5 を 備え 、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 にポ ン プ 吐出圧が供給さ れ、 ア キ ユ ーム レ ータ 3 7 の 背圧室 4 1 が 絞り 3 5 を 経て 負荷圧検 出 回路 3 6 に接続し 、 そ の 絞り 3 5 と 背圧室 4 1 と の 間 が 減圧 弁 3 1 の 第 1 受 圧 室 3 2 に 接続し た も の と し、 前記減圧 弁 3 1 の 第 2 受 圧 室 3 3 が 出 力 側 に 接続し、 第 3 受圧室 3 4 が負荷圧検 出 回路 3 6 に接続し て いる 可変容量型油圧ポ ン プの容量制御装置であ る 。 In the second invention, the pressure reducing valve 31 in the first invention is pushed toward the drain position by the pressure of the first pressure receiving chamber 32 and the second pressure receiving chamber 33. , Communicating position by the pressure of the third pressure receiving chamber 34 , The accumulator 37 is provided with an accumulator 37 and a throttle 35, and the accumulator 37 is provided in the accumulator chamber 38 of the accumulator 37. When the discharge pressure is supplied, the back pressure chamber 41 of the accumulator 37 is connected to the load pressure detection circuit 36 via the throttle 35, and the throttle 35 and the back pressure chamber are connected. The first pressure receiving chamber 3 2 of the pressure reducing valve 3 1 is connected to the output side, and the third pressure receiving chamber 3 2 of the pressure reducing valve 3 1 is connected to the output side. The pressure receiving chamber 34 is a displacement control device for the variable displacement hydraulic pump connected to the load pressure detection circuit 36.
第 2 の発 明 によ れば、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧 室 3 8 と 背圧室 4 1 に作用 する ポン プ吐出圧と 負荷圧 の 差圧でピ ス ト ン 3 9 が移動し て 背圧室 4 1 に負荷圧 が 流入、 流 出する 。 そ れに よ つ て 、 絞り 3 5 の 前後 に 差圧が 生じ る の で負荷圧よ り も 低圧 、 高圧の疑似負荷 圧が発生する 。  According to the second invention, the piston 3 is provided by the pressure difference between the pump discharge pressure and the load pressure acting on the accumulator chamber 38 and the back pressure chamber 41 of the accumulator 37. 9 moves and load pressure flows into and out of the back pressure chamber 41. As a result, a differential pressure is generated before and after the throttle 35, so that a pseudo load pressure lower or higher than the load pressure is generated.
ま た 、 背圧室 4 1 に流入、 流 出する 負荷圧の 流速で 絞り 3 5 前後の 差圧が 異な る の で 、 操作弁の操作速度 に応じ て 疑似負荷圧が負荷圧よ り も 低圧、 高圧と な る そ れに よ つ て 、 操作弁を 急操作し た 場合ほ ど 可変容量 型油圧ポ ン プ の容量が速く 増大、 減少する から 、 応答 性が よ り 向 上する 。  Also, since the differential pressure around the throttle 35 differs depending on the flow velocity of the load pressure flowing into and out of the back pressure chamber 41, the pseudo load pressure is lower than the load pressure according to the operating speed of the operating valve. As a result of the high pressure, the capacity of the variable displacement hydraulic pump increases and decreases more quickly when the operating valve is suddenly operated, so that the responsiveness is further improved.
第 3 の発 明 は 、 可変容量型油圧ポ ン プ 1 のポ ン プ吐 出圧と 油圧ァ ク チユ エ ータ 3 の負荷圧の 実際の差圧に よ っ て 作動し 、 そ の 実際の 差圧が設定差圧と な る よ う に 可変容量型油圧ポ ン プ 1 の容量を 制御する L S 弁 8 と 、 前記実際の 差圧と 設定差圧の 差圧の 差及び実際の 差圧の 時間 当 り 変化に よ っ て 制御圧を 発生する 手段を 備え 、 前記手段は 、 実際の 差圧と 設定差圧が等し い 時 に は制御圧を 負荷圧と 等し く 、 実際の 差圧が設定差圧 よ り も 小さ い 時に は 、 実際の 差圧の 変化度合に応じ て 制御圧を 負荷圧よ り も 低圧と し 、 実際の 差圧が設定差 圧よ り も 大き い 時に は 、 実際の 差圧の 変化度合に応じ て 制 御 圧 を 負 荷圧 よ り も 高圧 と し 、 前記 L S 弁 8 は. 制御圧が負荷圧と 等し い 時に は設定差圧と な る よ う に 容量制御し 、 制御圧が負荷圧よ り も 低圧の 時に は設定 差圧以上と な る よ う に容量増大制御し 、 制御圧が負荷 圧よ り も 高圧の 時に は設定差圧以下と な る よ う に容量 減少制御する こ と を 特徴と する 可変容量型油圧ポ ン プ の容量制御装置であ る 。 The third invention operates by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual pressure difference LS valve 8 that controls the capacity of variable displacement hydraulic pump 1 so that the differential pressure becomes the set differential pressure. And a means for generating a control pressure based on a difference between the actual differential pressure and the set differential pressure and a change in the actual differential pressure per unit time, wherein the means includes an actual differential pressure and a set differential pressure. When the pressures are equal, the control pressure is equal to the load pressure.When the actual differential pressure is smaller than the set differential pressure, the control pressure is set to the load pressure according to the degree of change of the actual differential pressure. When the actual differential pressure is larger than the set differential pressure, the control pressure is set higher than the negative pressure according to the degree of change of the actual differential pressure. When the control pressure is equal to the load pressure, the capacity is controlled so that it becomes the set differential pressure, and when the control pressure is lower than the load pressure, the capacity is increased so that it becomes higher than the set differential pressure. When the control pressure is higher than the load pressure, the capacity is reduced so that it becomes lower than the set differential pressure. DOO Ru displacement controller der of the variable displacement hydraulic port down-flop, wherein.
第 3 の発 明 に よ れば、 実際の差圧と 設定差圧が等し い 時に は L S 弁 8 にポ ン プ吐出圧、 負荷圧と 等し い制 御圧が 作用 し て バラ ン ス し 、 可変容量型油圧ポン プ 1 の容量を 設定差圧と な る よ う に制御する 。  According to the third invention, when the actual differential pressure and the set differential pressure are equal, the control pressure equal to the pump discharge pressure and the load pressure acts on the LS valve 8, and the LS valve 8 balances. Then, the displacement of the variable displacement hydraulic pump 1 is controlled so as to become the set differential pressure.
実際の 差圧が 設定差圧よ り も 小さ い 時に は、 L S 弁 8 に負荷圧よ り も 低い 制御圧が 作用 し 、 L S 弁 8 に は 実 際 の 差圧 以 上 の 差圧 が 作用 する の で 、 L S 弁 8 は、 可変容量型油圧ポ ン プ 1 の容量を 設定差圧以上と な る よ う に 増大制御する 。 そ れによ つ て 、 可変容量型油圧 ポ ン プ 1 の容量が 短時間 に増大し て応答性が 向 上する 実際の 差圧が設定差圧よ り も 大き い 時に は、 L S 弁 8 に負荷圧よ り も 高い制御圧が 作用 し 、 L S 弁 8 に は 実 際 の 差圧 以 上 の 差圧 が 作用 する の で 、 L S 弁 8 は. 可変容量型油圧ポ ン プ 1 の容量を 設定差圧以下と な る よ う に 減少制御する 。 そ れによ つ て 、 可変容量型油圧 ポン プ 1 の容量が 短時間 に減少し て 応答性が 向上する c ま た 、 制御圧は 実際の 差圧の 変化度合が 速い 時に は 負荷圧よ り も よ り 一層低圧、 高圧と する の で 、 可変容 量型油圧ポ ン プ 1 の 容量増加、 減少速度 は操作弁 2 の 操作速度 に応じ たも の と な る 。 そ れによ つ て 、 応答性 が よ り 一層 向 上する 。 When the actual differential pressure is smaller than the set differential pressure, a control pressure lower than the load pressure acts on the LS valve 8, and a differential pressure higher than the actual differential pressure acts on the LS valve 8. Therefore, the LS valve 8 controls to increase the capacity of the variable displacement hydraulic pump 1 so as to be equal to or higher than the set differential pressure. As a result, the capacity of the variable displacement hydraulic pump 1 increases in a short time, and the response improves. When the actual differential pressure is larger than the set differential pressure, the LS valve is used. Since a control pressure higher than the load pressure acts on the LS valve 8 and a differential pressure higher than the actual differential pressure acts on the LS valve 8, the LS valve 8 has the capacity of the variable displacement hydraulic pump 1. Is controlled so as to be equal to or less than the set differential pressure. Their in one Reniyo, displacement of the variable displacement hydraulic pump 1 was c or improved responsiveness decreases in a short time, the control pressure is at the actual fast change degree of the pressure difference Ri by the load pressure Since the pressure is set to be even lower and higher, the speed at which the capacity of the variable displacement hydraulic pump 1 increases and decreases depends on the operation speed of the operation valve 2. Thereby, the responsiveness is further improved.
第 4 の発 明 は 、 第 3 の発明 に おけ る L S 弁 8 を 、 ポ ン プ吐 出圧と 制御圧で容量減方向 に 作動し 、 2 つ の負 荷圧 で 容 量増 方 向 に 作動 する も の と し 、 ア キ ユ ー ム レ ー タ 3 7 と 絞 り 3 5 で 手段 と し 、 こ の ア キ ユ ー ム レ ータ 3 7 の 蓄圧室 3 8 にポン プ吐出圧を 供給し 、 背 圧室 4 1 に絞り 3 5 を 経て 負荷圧を 供給し 、 こ の 絞り 3 5 の 背圧室 4 1 寄り から 制御圧を 検 出する よ う にし た 可変容量型油圧ポ ン プ の容量制御装置であ る 。  The fourth invention is that the LS valve 8 according to the third invention is operated in a capacity decreasing direction by a pump discharge pressure and a control pressure, and is operated in a capacity increasing direction by two load pressures. The pump discharge pressure is supplied to the accumulator chamber 38 of the accumulator 37 by using the accumulator 37 and the throttle 35 as a means. Then, the load pressure is supplied to the back pressure chamber 41 via the throttle 35, and the control pressure is detected from the back pressure chamber 41 closer to the back pressure chamber 41 of the variable pressure hydraulic pump. It is a capacity control device.
第 4 の発明 に よ れば、 ア キ ユ ー'ム レ 一タ 3 7 の 蓄圧 室 3 8 と 背圧室 4 1 に 作用 する ポン プ吐出圧と 負荷圧 の 差圧でピ ス ト ン 3 9 が移動し て 背圧室 4 1 に負荷圧 が 流入、 流 出する 。 そ れによ つ て 、 絞り 3 5 の 前後 に 差圧が 生じ る の で負荷圧よ り も 低圧、 高圧の制御圧が 発生する 。  According to the fourth invention, the piston 3 is provided by the differential pressure between the pump discharge pressure and the load pressure acting on the pressure accumulating chamber 38 and the back pressure chamber 41 of the accumulator 37. 9 moves and load pressure flows into and out of the back pressure chamber 41. As a result, a differential pressure is generated before and after the throttle 35, so that a control pressure lower and higher than the load pressure is generated.
L S 弁 8 はポ ン プ 吐出圧と 一方の負荷圧で設定差圧 と な る よ う に容量制御する と 同 時に 、 制御圧と 他方の 負荷圧で容量制御する 。 こ れに よ つ て 、 制御圧が負荷 圧よ り も 低い 時に は L S 弁 8 は他方の負荷圧で容量増 方 向 に 作動する の で 、 設定差圧以上に容量増大制御し、 可変容量型油圧ポン プ 1 の容量が 短時間 に増大し て応 答性が 向 上する 。 LS valve 8 sets the differential pressure between pump discharge pressure and one load pressure. At the same time, the capacity is controlled by the control pressure and the other load pressure. As a result, when the control pressure is lower than the load pressure, the LS valve 8 operates in the capacity increasing direction at the other load pressure. The capacity of the hydraulic pump 1 increases in a short time, and the response is improved.
ま た 、 制御圧が負荷圧よ り も 高レヽ 時に は L S 弁 8 は 制御圧で容量減方向 に 作動する の で 、 設定差圧以上に 容量減少制御し 、 可変容量型油圧ポ ン プ 1 の容量が 短 時間 に 減少し て応答性が 向上する 。  Also, when the control pressure is higher than the load pressure, the LS valve 8 operates in the direction of decreasing the capacity by the control pressure. The capacity is reduced in a short time and the response is improved.
ま た 、 背圧室 4 1 に 流入、 流出する 負荷圧の流速で 絞り 3 5 前後 の 差圧が 異な る の で、 操作弁の操作速度 に応じ て 制御圧が負荷圧よ り も 低圧、 高圧と な る 。 そ れに よ っ て 、 操作弁を 急操作し た 場合ほ ど 可変容量型 油圧ポ ン プの 容量が 速く 増大、 減少する から 、 応答性 が よ り 向 上する 。 図面の簡単な説明  Also, since the differential pressure across the throttle 35 differs depending on the flow velocity of the load pressure flowing into and out of the back pressure chamber 41, the control pressure is lower and higher than the load pressure according to the operating speed of the operating valve. It becomes. As a result, the capacity of the variable displacement hydraulic pump increases and decreases more quickly when the operating valve is suddenly operated, so that the responsiveness is further improved. BRIEF DESCRIPTION OF THE FIGURES
図 1 は 、 従来例の 油圧回路図であ る 。 FIG. 1 is a hydraulic circuit diagram of a conventional example.
図 2 は 、 本発 明 の 第 1 の 実施の形態を 示す油圧回路図 であ る 。 FIG. 2 is a hydraulic circuit diagram showing the first embodiment of the present invention.
図 3 は 、 本発 明 の 第 2 の 実施の形態を 示す油圧回路図 であ る 。 発明を実施するための最良の形態 図 2 に示すよ う に 、 可変油圧ポン プ 1 の 吐出路 1 a と L S 弁 8 の 第 2 受圧部 1 3 を 接続する 回路 3 0 に 減 圧弁 3 1 を 設け る 。 こ の 減圧弁 3 1 は第 1 · 第 2 受圧 室 3 2 , 3 3 の圧力 でド レ ー ン 位置 a に 向 け て 押さ れ、 第 3 受圧室 3 4 の圧力 で連通位置 b に 向 け て 押さ れる c 前記第 1 受圧室 3 2 は絞り 3 5 を 経て 負荷圧検 出 回 路 3 6 に接続し 、 第 2 受圧室 3 3 は減圧弁 3 1 の 出 力 側 に接続し 、 第 3 受圧室 3 4 は負荷圧検 出 回路 3 6 に 接続し て レ、 る 。 FIG. 3 is a hydraulic circuit diagram showing a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 2, a pressure reducing valve 31 is provided in a circuit 30 connecting the discharge passage 1 a of the variable hydraulic pump 1 and the second pressure receiving portion 13 of the LS valve 8. The pressure reducing valve 31 is pushed toward the drain position a by the pressure of the first and second pressure receiving chambers 32 and 33, and is moved toward the communication position b by the pressure of the third pressure receiving chamber 34. c the pressed Te first pressure receiving chamber 3 2 is connected to the circuitry 3 6 out load pressure via a diaphragm 35, a second pressure receiving chamber 3 3 is connected to the output side of the pressure reducing valve 3 1, 3 The pressure receiving chamber 34 is connected to a load pressure detection circuit 36.
前記第 1 受圧室 3 2 と 第 2 受圧室 3 3 の受圧面積は 等し く 、 第 3 受圧室 3 4 の 受圧面積は 2 倍と な っ て い る 。 こ のよ う であ る 力 ら 、 減圧弁 3 1 は P l = 2 X P 3 一 P 2で ノ ラ ン ス する 。 但し 、 P 1 は 出 力圧、 P 2は第 1 受圧 室 3 2 の 圧力 、 P 3 は第 3 受圧室 3 4 の圧力 で あ る 。  The pressure receiving area of the first pressure receiving chamber 32 and the pressure receiving area of the second pressure receiving chamber 33 are equal, and the pressure receiving area of the third pressure receiving chamber 34 is doubled. Due to such a force, the pressure reducing valve 31 is non-linear at Pl = 2XP31-P2. Here, P 1 is the output pressure, P 2 is the pressure in the first pressure receiving chamber 32, and P 3 is the pressure in the third pressure receiving chamber 34.
前記減圧弁 3 1 の 入力側はア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 に接続し 、 こ の ア キ ュ ー ム レ ータ 3 7 は ピ ス ト ン 3 9 を ばね 4 0 と 背圧室 ( ばね室) 4 1 の圧力 で蓄圧室容量減方向 に 押すも の であ る 。 そ の背圧室 4 1 は前記絞り 3 5 を 経て 負荷圧検 出 回路 3 6 に接続し て レヽ る 。  The input side of the pressure reducing valve 31 is connected to a pressure accumulating chamber 38 of an accumulator 37, and the accumulator 37 has a piston 39 connected to a spring 4. The pressure of 0 and the back pressure chamber (spring chamber) 4 1 is pushed in the direction of decreasing the pressure in the accumulator chamber. The back pressure chamber 41 is connected to a load pressure detection circuit 36 via the restrictor 35, and is connected.
次に 作動を 説 明 する 。  Next, the operation will be described.
( 操作弁 2 を 開 口 面積小の位置に保持し た 定常状態 の 時) 。  (In the steady state, when the control valve 2 is held at a position with a small opening area).
実際の 差圧が 設定差圧と 等し く 可変油圧ポン プ 1 は 操作弁 2 の 開 口 面積に 見合う 小さ な 容量 ( ポン プ吐出 流量が 少な い状態) と な る 。 The actual differential pressure is equal to the set differential pressure. The capacity is small (the pump discharge flow rate is small) corresponding to the opening area of the control valve 2.
こ の 時、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 にポン プ吐出圧 P 0が 作用 し 、 背圧室 4 1 に負荷圧 P L Sが 作 用 し 、 そ の ピ ス ト ン 3 9 はポ ン プ吐 出圧 P Oと 負荷圧 P L Sの 差圧と ばね 4 0 の力 がノく ラ ン ス し た位置で静止 し て レ、 る 。  At this time, the pump discharge pressure P 0 acts on the accumulator chamber 38 of the accumulator 37, the load pressure PLS acts on the back pressure chamber 41, and the piston Numeral 39 denotes a position where the differential pressure between the pump discharge pressure PO and the load pressure PLS and the force of the spring 40 are no longer in balance, and then stop.
減圧弁 3 1 の 第 1 受圧室 3 2 に は負荷圧検 出 回路 3 6 で検 出し た 実際の負荷圧 P L Sが作用 し 、 減圧弁 3 1 の 第 3 受圧室 3 4 にも 実際の負荷圧 P L Sが作用する の で 、 減圧弁 3 1 の 出 力 圧 は 実際 の 負 荷圧 P L Sと な る c こ れに よ つ て 、 L S 弁 8 はポ ン プ吐出圧 P Oと 実際 の負荷圧 P L Sの差圧が設定差圧と な る 状態でバラ ン ス し 、 可変油圧ポ ン プ 1 の 吐出流量 ( 容量) は操作弁要 求流量と な っ て レ、 る 。 The actual load pressure PLS detected by the load pressure detection circuit 36 acts on the first pressure receiving chamber 32 of the pressure reducing valve 31, and the actual load pressure PLS also acts on the third pressure receiving chamber 34 of the pressure reducing valve 31. PLS is than to act, the output pressure of the pressure reducing valve 3 1 is One by the being this c actual ing negative Ni圧PLS, LS valve 8 of the actual load pressure PLS and Po emissions flop discharge pressure PO The differential pressure balances with the set differential pressure, and the discharge flow rate (capacity) of the variable hydraulic pump 1 becomes the required flow rate of the operation valve.
( 操作弁 2 を 開 口 面積小 の位置か ら 開 口 面積大方 向 に操作し た 時。 )  (When the control valve 2 is operated from the position of the small opening area to the large opening area.)
前述と 同様に操作弁要求流量が増加し て ポン プ吐出 圧 P Oが 低下する の で 、 実際の 差圧が 設定差圧よ り 低 減する 。  As described above, since the required flow rate of the operating valve increases and the pump discharge pressure P O decreases, the actual differential pressure decreases below the set differential pressure.
こ の 時、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 の圧力 が低下し 、 ピ ス ト ン 3 9 が ばね 4 0 で蓄圧室容積減方 向 に 摺動し て 背圧室 4 1 の容積が増大する から 、 実際 の負荷圧 P L Sは絞り 3 5 を 経て 背圧室 4 1 に流入する c こ れによ つ て 減圧弁 3 1 の 第 1 受圧部 3 2 に作用 す る 圧力 は、 実際の負荷圧 P L Sよ り も 絞り 3 5 の流通抵 抗に 見合う 圧力低下だ け 低圧と な る 。 At this time, the pressure in the accumulator chamber 38 of the accumulator 37 decreases, and the piston 39 slides with the spring 40 in the direction of decreasing the volume of the accumulator chamber, causing the back pressure chamber to slide. since 4 1 volume is increased, the actual load pressure PLS is acting on c this Reniyo one with decompression valve 3 1 of the first pressure receiving portion 3 2 which flows into the back pressure chamber 4 1 through the aperture 35 The pressure is lower than the actual load pressure PLS by the pressure drop corresponding to the flow resistance of the throttle 35.
こ の た め に 、 減圧弁 3 1 の 出 力圧は実際の負荷圧 P L Sよ り も 前述の圧力低下に見合う 圧力 Δ Ρ だけ 高く な り 、 L S 弁 8 の第 2 受圧部 1 3 に は ( P LS + Δ Ρ ) の 圧力 が 作用 する 。 よ っ て 、 L S 弁 8 の 第 1 受圧部 1 2 と 第 2 受圧部 1 3 の 差圧 は P O — ( P L S + Δ P ) と な っ て 、 実際の負荷圧 p L Sと ポン プ吐出圧 P 0と の 差 圧 ( P O— P L S ) よ り も 小さ く な る 。  For this reason, the output pressure of the pressure reducing valve 31 becomes higher than the actual load pressure PLS by the pressure ΔΡ corresponding to the above-mentioned pressure drop, and the second pressure receiving portion 13 of the LS valve 8 has ( P LS + Δ Ρ) acts. Therefore, the differential pressure between the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 becomes PO— (PLS + ΔP), and the actual load pressure p LS and the pump discharge pressure P It is smaller than the differential pressure (PO-PLS) from 0.
し た が っ て 、 L S 弁 8 を ド レ ー ン 位置 B に押す力 が 実際の 差圧 に基づく 力 よ り も 大き く 、 サーボ ピ ス ト ン 5 の 大径受圧室 7 と 第 1 回路 9 と の 開 口 面積が 大き い か ら 、 容量制御部材 4 の傾転速度が速く な つ て 、 可変 油圧ポ ン プ 1 の容量は速く 増加する 。  Therefore, the force that pushes the LS valve 8 to the drain position B is larger than the force based on the actual differential pressure, and the large-diameter pressure receiving chamber 7 of the servo piston 5 and the first circuit 9 Since the opening area is large, the displacement speed of the displacement control member 4 increases, and the displacement of the variable hydraulic pump 1 increases rapidly.
( 可変油圧ポ ン プ 1 の容量が増加し て ポン プ吐出流 量が操作弁要求流量に 近づいた 時。 )  (When the capacity of the variable hydraulic pump 1 increases and the pump discharge flow rate approaches the required flow rate of the operation valve.)
ポ ン プ 吐 出圧 P Oが 上昇し 、 実際の 差圧は設定 L S 差圧よ り 少し 小さ い。  The pump discharge pressure P O increases, and the actual differential pressure is slightly smaller than the set L S differential pressure.
こ の 時、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 の圧力 ( ポ ン プ 吐出圧 P O ) が 上昇し 、 ピ ス ト ン 3 9 が 押さ れ ばね 4 0 は一旦伸 びた 状態か ら 縮む方向へ動く た め ア キ ュ ー ム レ ータ 3 7 の 背圧室 4 1 内の圧油 は 、 負荷 圧検 出 回路 3 6 へ逆流する が絞り 3 5 があ る た め 、 ァ キ ュ ーム レ ータ 3 7 の 背圧室 4 1 の圧力 は 、 実際の L S 圧 ( P L S ) よ り 高く な る が 、 差圧変化が小さ いこ と に よ り 圧力及 び動き の 変化は少な い。 よ っ て ア キ ム レ ー タ 3 7 の 背圧 室 4 1 の 圧 力 は 、 実 際 の L S 圧 ( P L S ) と ほ ぼ等し レ、力、 、 少し 高い状態と なる 。 At this time, the pressure in the accumulator chamber 38 of the accumulator 37 increases (pump discharge pressure PO), the piston 39 is pushed, and the spring 40 once expands. The oil in the back pressure chamber 41 of the accumulator 37 flows back to the load pressure detection circuit 36 because it moves in the direction of contraction from the state, but there is a restriction 35. The pressure in the back pressure chamber 41 of the accumulator 37 is higher than the actual LS pressure (PLS), but the change in differential pressure is small. Changes in pressure and movement are less. Therefore, the pressure in the back pressure chamber 41 of the accumulator 37 is almost equal to the actual LS pressure (PLS), and the pressure is slightly higher.
減 圧 弁 3 1 の 第 1 受 圧 部 3 2 に 作 用 し て レ、 る ァ キ ュ ーム レ ータ 3 7 の 背圧室 4 1 内 の圧力 が 実際の負 荷圧 ( P L S ) よ り 少し 高レ、力 同等のた め 、 減圧弁 3 1 の 出力圧 ( P 1 ) は実際の 負荷圧 ( P L S ) よ り 少し 高 い かほ ぼ等し い。  Acting on the first pressure receiving part 32 of the pressure reducing valve 31, the pressure in the back pressure chamber 41 of the accumulator 37 is equal to the actual load pressure (PLS). The output pressure (P1) of the pressure reducing valve 31 is slightly higher or almost equal to the actual load pressure (PLS) because the pressure is slightly higher and the force is equivalent.
よ っ て 、 L S 弁 8 の 第 1 受圧部 1 2 と 第 2 受圧部 1 3 に 作用 する 圧力 の 差圧 は 、 実際の ポ ン プ吐出圧 P O と 実際の負荷圧 P L Sの 差圧よ り 少し 高いか、 ほ ぼ等し レヽ 。  Therefore, the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is slightly smaller than the differential pressure between the actual pump discharge pressure PO and the actual load pressure PLS. High or almost equal.
こ れ に よ つ て 、 L S 弁 8 が 作動し 、 容量制御部材 4 の傾転角 を 下げる ( ポ ン プ吐出量を 減少し ブレ ーキ を 力 け る ) 、 も し く は L S 弁 8 の 開 口 カ 閉 じ る 方 向 で ( ポン プ吐出 量を 増やす) ブレ ーキ を かけ る 。  As a result, the LS valve 8 is operated, and the tilt angle of the displacement control member 4 is reduced (the pump discharge amount is reduced to increase the brake force), or the LS valve 8 is operated. Brake in the direction of opening and closing (increase the pump discharge amount).
( 可変油圧ポ ン プ 1 の容量が設定差圧に 見合う 値よ り も 大き く な つ て 、 ポ ン プ吐出流量が操作弁要求流量 以上ま で行き 過ぎ た 時。 )  (When the capacity of the variable hydraulic pump 1 has become larger than the value corresponding to the set differential pressure, and the pump discharge flow rate has exceeded the required flow rate of the operation valve.)
ポ ン プ 吐 出圧 P 0が 上昇し 、 実際の 差圧は設定差圧 よ り 大き い 。  The pump discharge pressure P 0 increases, and the actual differential pressure is larger than the set differential pressure.
こ の 時、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 内の圧 力 が 上昇し 、 ピ ス ト ン 3 9 は設定差圧に相 当 する 位置 で静止し て いる 以上に移動し て 、 ばね 4 0 が縮め ら れ る 。 ばね 4 0 が縮む方向 へ動く た め 、 ア キ ム レ ー タ 3 7 の 背圧室 4 1 内 の圧油 は負荷圧検 出 回路 3 6 へ 逆流する が 、 絞り 3 5 が あ る た め ア キ ュ ー ム レ ータ 3 7 の背圧室 4 1 内の圧力 は実際の負荷圧 P L Sよ り 高く な る 。 At this time, the pressure in the accumulator chamber 38 of the accumulator 37 increases, and the piston 39 moves at a position corresponding to the set differential pressure more than it is stationary. Then, the spring 40 is contracted. Since the spring 40 moves in the contracting direction, The pressure oil in the back pressure chamber 41 of the heater 37 flows back to the load pressure detection circuit 36. However, since there is a throttle 35, the back pressure chamber 41 of the accumulator 37 The pressure inside is higher than the actual load pressure PLS.
よ っ て 、 減圧弁 3 1 の 第 1 受圧部 3 2 に 作用 し て い る ア キ一ム レ ータ 3 7 の 背圧室 4 1 内 の圧力 が 実際の 負 荷圧 P L Sよ り も 高 い の で 、 減圧弁 3 1 の 出 力 圧 は. 実際の負荷圧 P L Sよ り も 低く な る 。  Therefore, the pressure in the back pressure chamber 41 of the accumulator 37 acting on the first pressure receiving portion 32 of the pressure reducing valve 31 is higher than the actual load pressure PLS. Therefore, the output pressure of the pressure reducing valve 31 becomes lower than the actual load pressure PLS.
こ れに よ つ て 、 L S 弁 8 の 第 1 受圧部 1 2 と 第 2 受 圧部 1 3 に 作用 し て い る 圧力 の差圧は 、 ポン プ吐出圧 P Oと 実際の負荷圧 P L Sの 差圧よ り も 大き レヽカゝら 、 L S 弁 8 は供給位置 A に 作動し て 可変油圧ポン プ 1 の容 量を 減少し て 吐出流量を 減じ る 。 よ っ て 、 ポン プ吐出 流量が操作弁要求流量と 合致する 。  As a result, the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is equal to the difference between the pump discharge pressure PO and the actual load pressure PLS. When the pressure is greater than the pressure, the LS valve 8 is operated to the supply position A to reduce the capacity of the variable hydraulic pump 1 and reduce the discharge flow rate. Therefore, the pump discharge flow rate matches the required flow rate of the operation valve.
( 操作弁 2 を 開 口 面積大から 開 口 面積小方向 に操作 し た 時。 )  (When the control valve 2 is operated from the large opening area to the small opening area.)
前述の よ う に 、 ポ ン プ 吐出圧 P Oが 上昇し 、 実際の 差圧は設定差圧よ り 大き い ( ポン プ吐出流量が操作弁 要求流量よ り も 多い 。 ) 。  As described above, the pump discharge pressure P O increases, and the actual differential pressure is larger than the set differential pressure (the pump discharge flow rate is higher than the required flow rate of the operation valve).
こ の 時、 ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 4 1 内 の圧 力 が 上昇し 、 ピ ス ト ン 3 9 は設定差圧 に相 当 する 位置 で静止し て いる 以上 に移動し て ばね 4 0 が縮め ら れる ( こ れに よ り ア キ ュ ー ム レ ータ 3 7 の 背圧室 4 1 内 の圧 油 は 、 負荷圧検 出 回路 3 6 へ逆流する が 、 絞り があ る た め ア キ ュ ー ム レ ータ 3 7 の背圧室 4 1 の圧力 は実際 の負荷圧 P L Sよ り 高く な る 。 At this time, the pressure in the pressure accumulating chamber 41 of the accumulator 37 increases, and the piston 39 moves at a position corresponding to the set differential pressure more than it is stationary. As a result, the spring 40 is contracted. ( This causes the pressure oil in the back pressure chamber 41 of the accumulator 37 to flow back to the load pressure detection circuit 36, The pressure in the back pressure chamber 41 of the accumulator 37 is actually Load pressure PLS.
よ っ て 、 減圧弁 3 1 の 第 1 受圧室 3 2 に 作用する 圧 力 が 実際の負荷圧 P L Sよ り も 絞り 3 5 の流通抵抗に 見 合う 圧力 上昇だ け 高く な り 、 そ の減圧弁 3 1 の 出力圧 は実際の負荷圧 P L Sよ り も 圧力上昇に見合う 圧力厶 P だ け 低く な る 。  Therefore, the pressure acting on the first pressure receiving chamber 32 of the pressure reducing valve 31 becomes higher than the actual load pressure PLS only by a pressure increase corresponding to the flow resistance of the throttle 35, and the pressure reducing valve becomes higher. The output pressure of 31 is lower than the actual load pressure PLS only by the pressure P corresponding to the pressure rise.
こ の た め に 、 L S 弁 8 の 第 2 受 圧 部 1 3 に は ( P L S - Δ P ) の圧力 が 作用する 。 よ っ て L S 弁 8 の第 1 受圧部 1 2 と 第 2 受圧部 1 3 に 作用 する 圧力 の差圧 は P O - ( P L S - Δ Ρ ) と な っ て 、 ポ ン プ 吐 出圧 P O と 実際の負荷圧の 差圧 ( P O — P L S ) よ り も 大き く な る 。  For this reason, the pressure (PLS−ΔP) acts on the second pressure receiving portion 13 of the LS valve 8. Accordingly, the differential pressure between the pressure acting on the first pressure receiving portion 12 and the second pressure receiving portion 13 of the LS valve 8 is PO-(PLS-ΔΡ), and the difference between the pump discharge pressure PO and the actual Load pressure differential pressure (PO—PLS).
し た が っ て 、 L S 弁 8 を 供給位置 A に 押す力 が 実際 の 差圧 に基づく 力 よ り も 大き く 、 サーボ ピ ス ト ン 5 の 大径受圧室 7 と 第 2 回路 1 1 の 開 口 面積が 大き いか ら、 容量制御部材 4 の傾転速度が速く な っ て 、 可変油圧ポ ン プ 1 の 容量は速く 減少する 。  Accordingly, the force for pushing the LS valve 8 to the supply position A is larger than the force based on the actual differential pressure, and the large-diameter pressure receiving chamber 7 of the servo piston 5 and the opening of the second circuit 11 are opened. Since the opening area is large, the displacement speed of the displacement control member 4 increases, and the displacement of the variable hydraulic pump 1 decreases rapidly.
以上の 動作を 要約すれば、 ア キ ュ ーム レ ータ 3 7 と 絞り 3 5 はポン プ吐出圧 P Oと 負荷圧 P L Sの 実際の 差 圧と 設定差圧と の 差圧の 差及び実際の 差圧の 時間 当 り 変 化 に よ っ て 疑似負 荷圧 を 発 生する 手段 を 形成する c 具体的 に は 、 実際の 差圧と 設定差圧が 等し い 時に は、 ア キ ュ ー ム レ ータ 3 7 の ピ ス ン 3 9 が静定し て 絞り 3 5 に圧油 が 流れな い こ と で疑似負荷圧が負荷圧と 等し く な る 。 実 際 の 差圧 が 設 定差圧 よ り も 小 さ い 時 に は、 ばね 4 0 が 伸 びて ピ ス ト ン 3 9 を 押し て 背圧室 4 1 に 負荷圧が 流入し 、 絞り 3 5 の 前後 に 差圧が 生じ て 疑似 負荷圧が負荷圧よ り も 低圧と な る 。 実際の 差圧が設定 差圧よ り も 大き レ、 時に は 、 ピ ス ト ン 3 9 力 S ばね 4 0 を 縮め る 方 向 に移動し 背圧室 4 1 の負荷圧を 流出し 、 絞 り 3 5 の 前後 に 差圧が 生じ て 疑似負荷圧が負荷圧よ り も 高圧と な る 。 To summarize the above operation, the accumulator 37 and the throttle 35 have the difference between the actual pressure difference between the pump discharge pressure PO and the load pressure PLS, and the actual pressure difference between the pump pressure PLS and the load pressure PLS. the c concrete to form the means that occurs a pseudo-negative Ni圧in time Tsu by to the person Ri changes in differential pressure, is sometimes not equal the set differential pressure and the actual differential pressure, a queue-time The pseudo load pressure becomes equal to the load pressure because the pin 39 of the rater 37 is settled and the pressurized oil does not flow to the throttle 35. If the actual differential pressure is lower than the set differential pressure, The spring 40 expands and pushes the piston 39 to apply a load pressure to the back pressure chamber 41, and a differential pressure is generated before and after the throttle 35 so that the pseudo load pressure is lower than the load pressure. Become . The actual differential pressure is larger than the set differential pressure, and sometimes, the piston 39 moves in the direction to contract the S-spring 40, causing the load pressure in the back pressure chamber 41 to flow out and restricting. A differential pressure is generated around 35, and the pseudo load pressure becomes higher than the load pressure.
前記ア キ ュ ー ム レ ータ 3 7 の 背圧室 4 1 に負荷圧が 流 入 、 流 出 する 速度 は ポ ン プ 吐 出 圧 の 圧 力 変化速度、 つま り 実際の負荷圧の 時間 当 り 変化が 大き け れば速く 、 小さ け れば遅い から 、 前述の 疑似負荷圧は実際の負荷 圧 の 時間 当 り 変化 ( 換言すれば操作弁 2 の 操作速度) が 速け ればよ り 低圧、 高圧と な る 。  The speed at which the load pressure flows into and out of the back pressure chamber 41 of the accumulator 37 is determined by the pressure change rate of the pump discharge pressure, that is, the time corresponding to the actual load pressure time. The larger the change, the faster the change, and the smaller the change, the slower. Therefore, the above-mentioned pseudo load pressure changes per unit time of the actual load pressure (in other words, the lower the operating speed of the operating valve 2), the lower the pressure. , High pressure.
前記減圧弁 3 1 は負荷圧と 疑似負荷圧と でポン プ吐 出圧を 減圧し て 出力圧を 負荷圧よ り も 高圧、 低圧と す る も の であ る 。 具体的 に は疑似差圧と 負荷圧が等し い 時に は 出力圧が負荷圧と 等し く 、 疑似差圧が負荷圧よ り も 低圧 で あ れ ば 出 力 圧 が 負 荷圧 よ り も 高圧 と な り 、 疑似差圧が負荷圧よ り も 高圧であ れば出力圧が負荷圧 よ り も 低圧と な る 。  The pressure reducing valve 31 reduces the pump discharge pressure with the load pressure and the pseudo load pressure to make the output pressure higher and lower than the load pressure. Specifically, when the pseudo differential pressure is equal to the load pressure, the output pressure is equal to the load pressure, and when the pseudo differential pressure is lower than the load pressure, the output pressure is lower than the negative pressure. If the pseudo differential pressure is higher than the load pressure, the output pressure will be lower than the load pressure.
L S 弁 8 はポ ン プ吐出圧と 減圧弁 3 1 の 出力圧の 差 圧で連通位置 A 、 ド レ ー ン 位置 B と な る の で 、 前述の よ う に 実際の差圧が設定差圧よ り も 小さ い 時に は L S 弁 8 に 作用 する ポ ン プ 吐出圧と 減圧弁 3 1 の 出力圧の 差圧は 、 ポン プ吐出圧と 負荷圧と の 差圧よ り も 大き く な る 。 こ れによ つ て 、 L S 弁 8 を ド レ ーン 位置 B に 押 す力 が 大き く な っ て サ ーボ ピ ス ト ン 5 の 大径室 7 にポ ン プ 吐 出圧が速く 供給さ れ、 可変油圧ポ ン プ 1 の容量 は短時間 に増大する 。 Since the LS valve 8 becomes the communication position A and the drain position B based on the differential pressure between the pump discharge pressure and the output pressure of the pressure reducing valve 31, the actual differential pressure becomes the set differential pressure as described above. When the pressure is smaller than the above, the differential pressure between the pump discharge pressure acting on the LS valve 8 and the output pressure of the pressure reducing valve 31 is larger than the differential pressure between the pump discharge pressure and the load pressure. Become . As a result, the force for pushing the LS valve 8 to the drain position B increases, and the pump discharge pressure is quickly supplied to the large-diameter chamber 7 of the servo piston 5. As a result, the capacity of the variable hydraulic pump 1 increases in a short time.
可変 油圧ポン プ 1 の容量が増大し て 吐出流量が 操作 弁要求流量に近づく に つれて 実際の 差圧と 設定差圧と の 差圧の 差が小さ く な る が 、 前述の よ う に L S 弁 8 に 作用 する 差圧は 実際の 差圧の 差よ り も 大き いか ら L S 弁 8 を ド レ ー ン 位置 B に押す力 が 大き い。 こ れに よ つ て サ ーボ ピ ス ト ン 5 の 大径室 7 にポン プ吐出圧が 多量 に供給さ れ続け る か ら 、 可変油圧ポ ン プ 1 の 吐出流量 の増加 の漸近が抑制 さ れる 。 すな わち 目 標と する 吐 出 流量への接近速度変化の低下を 防止する 。  As the capacity of the variable hydraulic pump 1 increases and the discharge flow rate approaches the required flow rate of the control valve, the difference between the actual differential pressure and the set differential pressure becomes smaller. Since the differential pressure acting on the valve 8 is larger than the actual differential pressure difference, the force for pushing the LS valve 8 to the drain position B is large. As a result, a large amount of pump discharge pressure is continuously supplied to the large-diameter chamber 7 of the servo piston 5, so that the asymptotic increase in the discharge flow rate of the variable hydraulic pump 1 is suppressed. Be done. That is, it prevents a decrease in the change in the approach speed to the target discharge flow rate.
ま た 、 前述の よ う に 実際の 差圧が設定差圧よ り も 大 き い 時に は L S 弁 8 に 作用する ポン プ吐出圧と 減圧弁 3 1 の 出 力圧の 差圧は 、 ポン プ吐出圧と 負荷圧と の 差 圧よ り も 大き く な る 。 こ れに よ つ て 、 L S 弁 8 を 連通 位置 A に 押す力 が 大き く な っ て サーボ ピ ス ト ン 5 の 大 径室の圧油 がタ ン ク に 流出し 、 可変油圧ポン プ 1 の 容 量は短時間 に減少する 。  Further, as described above, when the actual differential pressure is larger than the set differential pressure, the differential pressure between the pump discharge pressure acting on the LS valve 8 and the output pressure of the pressure reducing valve 31 becomes the pump pressure. It becomes larger than the differential pressure between the discharge pressure and the load pressure. As a result, the force for pushing the LS valve 8 to the communication position A increases, and the hydraulic oil in the large-diameter chamber of the servo piston 5 flows out to the tank, and the pressure of the variable hydraulic pump 1 increases. The capacity decreases in a short time.
可変油圧ポン プ 1 の容量が減少し て 吐出流量が操作 弁要求流量に近づく に つれて 実際の 差圧と 設定差圧と の 差圧の 差が小さ く な る が 、 前述の よ う に L S 弁 8 に 作用 する 差圧は 実際の 差圧の 差よ り も 大き いから L S 弁 8 を 連通位置 A に 押 す力 が 大 き い 。 こ れ に よ つ て サ ーボ ピ ス ト ン 5 の 大径室 7 の圧油 が 多量にタ ン ク に 流 出 し 続け る か ら 、 可変油圧ポ ン プ 1 の 吐出流量の 減 少の 漸近が抑制 さ れる 。 すな わち 目 標と する 吐出流量 への 接近速度変化の 低下を 防止する 。 As the capacity of the variable hydraulic pump 1 decreases and the discharge flow rate approaches the required flow rate of the control valve, the difference between the actual differential pressure and the set differential pressure becomes smaller. Since the differential pressure acting on the valve 8 is larger than the actual differential pressure difference, the force for pushing the LS valve 8 to the communication position A is large. By this Since a large amount of pressure oil in the large-diameter chamber 7 of the servo piston 5 continues to flow out to the tank, the decrease in the discharge flow rate of the variable hydraulic pump 1 is suppressed. That is, it prevents the change in the approach speed to the target discharge flow rate.
次 に 本発 明 の 第 2 の 実施の形態を 説明する 。  Next, a second embodiment of the present invention will be described.
図 3 に示すよ う に 、 L S 弁 8 に第 3 受圧部 5 0 と 第 4 受圧部 5 1 を 設け る 。 負荷圧検 出 回路 3 6 を 絞り 3 5 を 絞っ て ア キ ュ ー ム レ ータ 3 7 の 背圧室 4 1 に連通 し 、 回路 3 0 を ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 に ¾通する 。  As shown in FIG. 3, the LS valve 8 is provided with a third pressure receiving portion 50 and a fourth pressure receiving portion 51. The load pressure detection circuit 36 is squeezed and the squeeze 3 5 is squeezed to communicate with the back pressure chamber 41 of the accumulator 37, and the circuit 30 is stored in the accumulator 37. Access to rooms 3-8.
絞り 3 5 よ り も 背圧室 4 1 寄り を 第 3 受圧部 5 0 に 接続し 、 第 4 受圧部 5 1 を 負荷圧検 出 回路 3 6 に接続 する 。  The third pressure receiving portion 50 is connected to the back pressure chamber 41 closer to the throttle 35 than to the throttle 35, and the fourth pressure receiving portion 51 is connected to the load pressure detection circuit 36.
次 に 作動を 説明 する 。  Next, the operation will be described.
L S 弁 8 は 、 第 1 受圧部 1 2 に 作用 する ポン プ吐出 圧 P Oと 第 2 受圧部 1 3 に 作用 する 負荷圧 P L Sと の 差 圧及 び、 第 3 受圧部 5 0 に 作用 する 制御圧と 第 4 受圧 部 5 1 に 作用 する 負荷圧と の 差圧 によ っ て 連通位置 A 、 ド レ ー ン 位置 B に押さ れる 。  The LS valve 8 has a differential pressure between a pump discharge pressure PO acting on the first pressure receiving portion 12 and a load pressure PLS acting on the second pressure receiving portion 13, and a control pressure acting on the third pressure receiving portion 50. It is pushed to the communication position A and the drain position B by the pressure difference between the pressure and the load pressure acting on the fourth pressure receiving portion 51.
ア キ ュ ー ム レ ータ 3 7 の ピ ス ト ン 3 9 は ポ ン プ 吐 出 圧と 負荷圧と の 実際の 差圧が設定差圧と 等し い 時に は 静定し 、 絞り 3 5 に負荷圧が 流れな い。 こ れによ つ て L S 弁 8 の 第 3 受圧部 5 0 に作用 する 制御圧は負荷圧 と 等し い。  The piston 39 of the accumulator 37 is settled when the actual differential pressure between the pump discharge pressure and the load pressure is equal to the set differential pressure. Load pressure does not flow to Thereby, the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 is equal to the load pressure.
ア キ ュ ー ム レ ー タ 3 7 の ピ ス ト ン 3 9 は ポ ン プ 吐 出 圧と 負荷圧と の 実際の 差圧が設定差圧よ り も 小さ い 時 に は ばね 4 0 で移動し 、 背圧室 4 1 に負荷圧が 流入す る 。 こ れによ つ て 、 絞り 3 5 の 前後 に 差圧が生じ て L S 弁 8 の 第 3 受圧部 5 0 に 作用 する 制御圧は負荷圧よ り も 低圧と な る 。 The piston 39 of the accumulator 37 is pump discharge. When the actual pressure difference between the pressure and the load pressure is smaller than the set pressure difference, the spring moves by the spring 40 and the load pressure flows into the back pressure chamber 41. As a result, a differential pressure is generated before and after the throttle 35, and the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 becomes lower than the load pressure.
ア キ ュ ー ム レ ータ 3 7 の ピ ス ト ン 3 9 はポン プ吐出 圧と 負荷圧の 実際の 差圧が 設定差圧よ り も 大き い 時に はポ ン プ 吐出圧で ばね 4 0 に抗し て 押さ れ、 背圧室 4 1 内 の 負荷圧が流 出する 。 こ れによ つ て 絞り 3 5 の 前 後 に 差圧が 生じ て L S 弁 8 の 第 3 受圧部 5 0 に 作用 す る 制御圧は負荷圧よ り も 高圧と な る 。  The piston 39 of the accumulator 37 has a spring 40 at the pump discharge pressure when the actual differential pressure between the pump discharge pressure and the load pressure is larger than the set differential pressure. , And the load pressure in the back pressure chamber 41 flows out. As a result, a differential pressure is generated before and after the restrictor 35, and the control pressure acting on the third pressure receiving portion 50 of the LS valve 8 becomes higher than the load pressure.
つま り 、 ア キ ュ ー ム レ ータ 3 7 と 絞り 3 5 はポ ン プ 吐出圧と 負荷圧の 実際の差圧と 設定差圧の 差圧の 差に 応じ て 負荷圧を 減圧、 加圧し て 制御圧と する 手段を 形 成し て いる 。  In other words, the accumulator 37 and the throttle 35 reduce and increase the load pressure according to the difference between the actual differential pressure between the pump discharge pressure and the load pressure and the differential pressure between the set differential pressure. Thus, a means for controlling the pressure is formed.
可変油圧ポン プ 1 の 吐出流量と 操作弁 2 の要求流量 が 等し く 実際の 差圧と 設定差圧が等し い 時に は 、 前述 の よ う に し S 弁 8 の 第 3 受圧部 5 0 に 作用する 制御圧 は負荷圧と な り 、 L S 弁 8 の 第 4 受圧部 5 1 に は負荷 圧力 S 作用 し て レ、 る 力ゝ ら 、 L S 弁 8 は第 1 受圧部 1 2 に 作用 する ポ ン プ吐出圧と 第 2 受圧部 1 3 に 作用 する 負 荷圧に 対応し た位置でバ ラ ン ス し 、 可変油圧ポ ン プ 1 はそ の容量を 維持する 。  When the discharge flow rate of the variable hydraulic pump 1 is equal to the required flow rate of the operation valve 2 and the actual differential pressure is equal to the set differential pressure, the third pressure receiving section 50 of the S valve 8 is operated as described above. The control pressure acting on the LS valve 8 becomes the load pressure, the load pressure S acts on the fourth pressure receiving portion 51 of the LS valve 8, and the LS valve 8 acts on the first pressure receiving portion 12. Balancing at a position corresponding to the pump discharge pressure and the load pressure acting on the second pressure receiving portion 13, the variable hydraulic pump 1 maintains its capacity.
レ ノく一 1 7 を 操作し て 操作弁 2 の 開 口 面積を 大き く し 、 操作弁要求流量が 可変油圧ポン プ 1 の 吐出流量よ り も 増加し た 時に は 、 前述のよ う にポ ン プ 吐出圧が低 下し 、 ポ ン プ 吐出圧と 負荷圧の 実際の 差圧が小さ く な る 。 Operate the valve 17 to increase the opening area of the control valve 2 so that the required flow rate of the control valve is less than the discharge flow rate of the variable hydraulic pump 1. When the pressure increases, the pump discharge pressure decreases as described above, and the actual differential pressure between the pump discharge pressure and the load pressure decreases.
こ れ に よ つ て 、 前述の よ う にア キ ュ ー ム レ ータ 3 7 が 作動し て L S 弁 8 の 第 3 受圧部 5 0 に は負荷圧よ り も 低圧が 作用 する 力ゝ ら 、 L S 弁 8 は第 4 受圧部 5 1 に 作用 する 負荷圧 に よ っ て ド レ ーン 位置 B に 向 け て 押さ れる 。  As a result, as described above, the accumulator 37 is actuated, and the third pressure receiving portion 50 of the LS valve 8 is actuated by a pressure lower than the load pressure. The LS valve 8 is pushed toward the drain position B by the load pressure acting on the fourth pressure receiving portion 51.
一方、 L S 弁 8 は第 1 受圧部 1 2 に 作用 する ポ ン プ 吐 出 圧 と 第 2 受 圧 部 1 3 に 作用 する 負 荷圧 の 差圧 に よ っ て ド レ ー ン 位置 B に 向 け て 押さ れる 。 つま り 、 L S 弁 8 は設定差圧を 高く し た 場合と 同様と な る 。  On the other hand, the LS valve 8 moves toward the drain position B due to the differential pressure between the pump discharge pressure acting on the first pressure receiving part 12 and the negative pressure acting on the second pressure receiving part 13. It is pushed. In other words, the L S valve 8 is the same as when the set differential pressure is increased.
し た が っ て 、 L S 弁 8 によ っ て 第 1 回路 9 と サ ーボ ピ ス ト ン 5 の 大径室 7 を 連通する 開 口 面積が通常の L S 弁よ り も 大き く な り 、 そ の大径室 7 内 の圧油が 多量 にタ ン ク に 流出する か ら 、 可変油圧ポン プ 1 の容量が 速く 増大する 。  Therefore, the opening area for communicating the first circuit 9 with the large-diameter chamber 7 of the servopiston 5 by the LS valve 8 is larger than that of a normal LS valve. Since a large amount of pressure oil in the large-diameter chamber 7 flows out to the tank, the capacity of the variable hydraulic pump 1 increases quickly.
可変油圧ポ ン プ 1 の 吐出流量が操作弁要求流量に 近 づいた 時に は 、 実際の 差圧は設定差圧よ り も 少し 小さ い 。 ア キ ュ ー ム レ ータ 3 7 の ピ ス ト ン 3 9 は ばね 4 0 を 縮め る 方 向 に若干移動し て 前述の 静定し た位置に 近 づく 。 背圧室 4 1 の 負荷圧は流出し 、 絞り 3 5 前後 に 差圧が 生じ る が 、 そ の 流出する 流量が少な いから 絞り 3 5 前後の 差圧が 小さ い こ と によ り 圧力及び動き の 変 化は少な い。 よ っ て 、 制御圧は負荷圧よ り 少し 高いか 、 同等の た め し S 弁 8 の 第 3 受圧部 5 0 の圧力 は負荷圧よ り 少し 高い か 、 同等な る 。 こ れによ つ て 、 L S 弁 8 は連通位 置 A に 向 け て 押さ れて 可変油圧ポン プ 1 の 容量を 減少 ( 容量増力 Bの ブ レ ーキ を かけ る ) する 。 When the discharge flow rate of the variable hydraulic pump 1 approaches the required flow rate of the operation valve, the actual differential pressure is slightly smaller than the set differential pressure. The piston 39 of the accumulator 37 slightly moves in the direction of contracting the spring 40, and approaches the above-mentioned settled position. The load pressure in the back pressure chamber 41 flows out, and a differential pressure is generated around the throttle 35.However, since the outflow is small, the pressure difference around the throttle 35 is small. There is little change in movement. Therefore, the control pressure is slightly higher than the load pressure, or equivalently, the pressure of the third pressure receiving portion 50 of the S valve 8 is slightly higher than or equal to the load pressure. As a result, the LS valve 8 is pushed toward the communicating position A to reduce the capacity of the variable hydraulic pump 1 (brake the capacity boost B).
レ バ ー 1 7 を 操作し て 操作弁 2 の 開 口 面積を 小さ く し 、 操作弁要求流量が 可変油圧ポ ン プ 1 の 吐出流量よ り も 減少し た 時に は 、 前述のよ う にポ ン プ吐出圧が 昇 圧し 、 ポ ン プ吐出圧と 負荷圧の 実際の 差圧が 大き く な る 。  When the opening area of the control valve 2 is reduced by operating the lever 17 and the required flow rate of the control valve is lower than the discharge flow rate of the variable hydraulic pump 1, as described above, The pump discharge pressure increases, and the actual pressure difference between the pump discharge pressure and the load pressure increases.
こ れに よ つ て 、 前述の よ う にア キ ュ ー ム レ ータ 3 7 が 作動し て L S 弁 8 の 第 3 受圧部 5 0 に は負荷圧よ り も 高圧が 作用 する 力ゝ ら 、 L S 弁 8 は第 4 受圧部 5 1 に 作用 する 負荷圧と の 差圧 に よ っ て 連通位置 A に 向 け て 押さ れる 。  As a result, the accumulator 37 is actuated as described above, and the third pressure receiving portion 50 of the LS valve 8 receives a force higher than the load pressure on the third pressure receiving portion 50. The LS valve 8 is pushed toward the communication position A by the pressure difference between the LS valve 8 and the load pressure acting on the fourth pressure receiving portion 51.
一方、 L S 弁 8 は第 1 受圧部 1 2 に 作用 する ポ ン プ 吐 出 圧 と 第 2 受 圧 部 1 3 に 作用 する 負 荷圧 の 差圧 に よ っ て 連通位置 A に 向 け て 押さ れる 。 つま り 、 L S 弁 8 は設定差圧を 低く し た 場合と 同様と な る 。  On the other hand, the LS valve 8 is pushed toward the communication position A by the differential pressure between the pump discharge pressure acting on the first pressure receiving part 12 and the negative load pressure acting on the second pressure receiving part 13. Is That is, the L S valve 8 is the same as when the set differential pressure is reduced.
し た が っ て 、 L S 弁 8 によ っ て 第 2 回路 1 1 と サ ー ボ ピ ス ト ン 5 の 大径室 7 を 連通する 開 口 面積が通常の L S 弁よ り も 大き く な り 、 そ の 大径室 7 内 にポン プ吐 出圧が 多量に流 出する か ら 、 可変油圧ポ ン プ 1 の容量 が 速く 減少する 。  Therefore, the opening area for communicating the second circuit 11 with the large-diameter chamber 7 of the servopiston 5 by the LS valve 8 is larger than that of a normal LS valve. However, since a large amount of the pump discharge pressure flows into the large-diameter chamber 7, the capacity of the variable hydraulic pump 1 decreases quickly.
可変油圧ポ ン プ 1 の 吐出流量が操作弁要求流量に近 づい た 時に は 、 実際の 差圧は設定差圧よ り も 少し 大き レヽ 。 ア キ ュ ー ム レ ータ 3 7 の ピ ス ト ン 3 9 は ばね 4 0 で若干移動し て 前述の 静定し た位置に近づく 。 背圧室The discharge flow rate of the variable hydraulic pump 1 is close to the required flow rate of the operation valve. The actual differential pressure is slightly larger than the set differential pressure. The piston 39 of the accumulator 37 is slightly moved by the spring 40 to approach the above-mentioned settled position. Back pressure chamber
4 1 内負荷圧が 流入し 、 絞り 3 5 前後 に差圧が 生じ る が 、 そ の 流入する 流量が 少な いから 絞り 3 5 前後 の 差 圧 が 小 さ レ、 こ と に よ り 圧 力 及 び動 き の 変 化 は 少 な い c よ っ て 、 制御圧は負 荷圧よ り 少し 低いか 、 同等の た め し S 弁 8 の 第 3 受圧部 5 0 の圧力 は負荷圧よ り 少し 低レヽ 力、 、 同等な る 。 こ れに よ つ て 、 L S 弁 8 はド レ ー ン 位置 C に 向 け て 押さ れて 可変油圧ポ ン プ 1 の容量を 増力 Π ( 容量減少の ブ レ ーキ を 力、 け る ) する 。 4 1 The internal load pressure flows in, and a differential pressure is generated around the throttle 35.However, since the flow rate is small, the differential pressure around the throttle 35 is small. changes in-out fine movement is Tsu by less Do have c, control or pressure is slightly lower Ri by load pressure, a third pressure receiving portion 5 0 S valve 8 because equivalent was of little Ri by the load pressure Low power, equivalent. As a result, the LS valve 8 is pushed toward the drain position C to increase the capacity of the variable hydraulic pump 1 Π (force the brake for decreasing the capacity). .

Claims

請求の範囲 The scope of the claims
1 . 可変容量型油圧ポ ン プ 1 の ポ ン プ吐出圧と 油 圧ァ ク チユ エ ータ 3 の 負荷圧の 実際の 差圧によ っ て 作 動し 、 そ の 実際の 差圧が設定差圧と な る よ う に 可変容 量型油圧ポ ン プ 1 の容量を 制御する L S 弁 8 と 、 前記 実際の 差圧と 設定差圧の 差圧の 差及 び実際の 差圧の 時 間当り 変化によって疑似負荷圧を発生する手段と 、 1. Operated by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual differential pressure is set. An LS valve 8 for controlling the capacity of the variable displacement hydraulic pump 1 so as to be a differential pressure, a difference between the actual differential pressure and the set differential pressure, and a time of the actual differential pressure. Means for generating a pseudo load pressure by a hit change;
前記負荷圧と 疑似負荷圧と でポン プ吐出圧を 減圧し、 そ の減圧し た 出力圧を 前記 L S 弁 8 に負荷圧と し て 作 用 する 減圧弁 3 1 と を 備え 、 前記手段は 、 実際の 差圧 と 設定差圧が等し い 時に は疑似負荷圧を 負荷圧と 等し く 、 実際の 差圧が設定差圧よ り も 小さ い 時に は 、 実際 の 差圧の 変化度合に応じ て 疑似負荷圧を 負荷圧よ り も 低圧と し 、 実際の 差圧が設定差圧よ り も 大き い 時に は、 実際の 差圧の 変化度合に応じ て 疑似負荷圧を 負荷圧よ り も 高圧と し 、 前記減圧弁 3 1 は 、 疑似負荷圧が負荷 圧と 等し い 時に は 出力圧を 負荷圧と し 、 疑似負荷圧が 負荷圧よ り も 低圧の 時に は 出力圧を 負荷圧よ り も 高圧 と し 、 疑似負荷圧が負荷圧よ り も 高圧の 時に は 出力圧 を 負荷圧よ り も 低圧と する こ と を 特徴と する 可変容量 型油圧ポ ン プの容量制御装置。  A pressure reducing valve 31 for reducing the pump discharge pressure with the load pressure and the pseudo load pressure and operating the reduced pressure as the load pressure on the LS valve 8. When the actual differential pressure is equal to the set differential pressure, the pseudo load pressure is equal to the load pressure, and when the actual differential pressure is smaller than the set differential pressure, it depends on the degree of change of the actual differential pressure. The pseudo load pressure is lower than the load pressure, and when the actual differential pressure is higher than the set differential pressure, the pseudo load pressure is higher than the load pressure according to the degree of change in the actual differential pressure. The pressure reducing valve 31 sets the output pressure to the load pressure when the pseudo load pressure is equal to the load pressure, and sets the output pressure to the load pressure when the pseudo load pressure is lower than the load pressure. When the pseudo load pressure is higher than the load pressure, the output pressure is lower than the load pressure. Variable displacement hydraulic port down-flop of the displacement control device comprising a call to.
2 . 減圧弁 3 1 を 、 第 1 受圧室 3 2 と 第 2 受圧室 3 3 の圧力 で ド レ ー ン 位置に 向 け て 押さ れ、 第 3 受圧 室 3 4 の圧力で連通位置に向けて押されるものとし、 前記手段を 、 ア キ ュ ー ム レ ータ 3 7 と 絞り 3 5 を 備え. ア キ ュ ー ム レ ータ 3 7 の 蓄圧室 3 8 にポン プ吐出圧が 供給さ れ、 ア キ ュ ー ム レ ータ 3 7 の 背圧室 4 1 が 絞り 3 5 を 経て 負荷圧検 出 回路 3 6 に接続し 、 そ の 絞り 3 5 と 背圧室 4 1 と の 間 が 減圧弁 3 1 の 第 1 受圧室 3 2 に接続し たも の と し 、 前記減圧弁 3 1 の 第 2 受圧室 32. The pressure reducing valve 31 is pushed toward the drain position by the pressure of the first pressure receiving chamber 32 and the second pressure receiving chamber 33, and is directed to the communicating position by the pressure of the third pressure receiving chamber 34. Shall be pushed, The above means is provided with an accumulator 37 and a throttle 35. A pump discharge pressure is supplied to a pressure accumulating chamber 38 of the accumulator 37, and the accumulator is operated. The back pressure chamber 41 of the muffler 37 is connected to the load pressure detection circuit 36 via the throttle 35, and the space between the throttle 35 and the back pressure chamber 41 is the first pressure reducing valve 31. 1 The second pressure receiving chamber 3 of the pressure reducing valve 3 1 is connected to the pressure receiving chamber 3 2.
3 が 出力側 に接続し 、 第 3 受圧室 3 4 が負荷圧検 出 回 路 3 6 に接続し て い る 請求項 1 記載の 可変容量型油圧 ポ ン プ の容量制御装置。 The displacement control device for a variable displacement hydraulic pump according to claim 1, wherein 3 is connected to the output side, and the third pressure receiving chamber 34 is connected to a load pressure detection circuit 36.
3 . 可変容量型油圧ポ ン プ 1 のポ ン プ吐出圧と 油 圧ァ ク チユ エ ータ 3 の 負荷圧の 実際の 差圧によ っ て 作 動し 、 そ の 実際の 差圧が設定差圧と な る よ う に 可変容 量型油圧ポ ン プ 1 の 容量を 制御する L S 弁 8 と 、 前記 実際の 差圧と 設定差圧の 差圧の 差及 び実際の差圧の 時 間 当 り 変化によ っ て 制御圧を 発生する 手段を 備え 、 前 記手段は 、 実際の 差圧と 設定差圧が 等し い 時に は前記 制御圧を 負荷圧と 等し く 、 実際の 差圧が設定差圧よ り も 小さ い 時に は 、 実際の 差圧の 変化度合に応じ て 前記 制御圧を 負荷圧よ り も 低圧と し 、 実際の差圧が設定差 圧よ り も 大き い 時に は 、 実際の 差圧の 変化度合に応じ て 前記制御圧を 負荷圧よ り も 高圧と し 、 前記 L S 弁 8 は 、 前記制御圧が負荷圧と 等し い 時に は設定差圧と な る よ う に容量制御し 、 前記制御圧が負荷圧よ り も 低圧 の 時 に は 設 定差圧 以 上 と な る よ う に 容 量増 大制御 し、 前記制御圧が負荷圧よ り も 高圧の 時に は設定差圧以下 と な る よ う に容量減少制御する こ と を 特徴と する 可変 容量型油圧ポ ン プ の容量制御装置。 3. Operated by the actual differential pressure between the pump discharge pressure of the variable displacement hydraulic pump 1 and the load pressure of the hydraulic actuator 3, and the actual differential pressure is set. An LS valve 8 for controlling the capacity of the variable displacement hydraulic pump 1 so as to be a differential pressure, a difference between the actual differential pressure and the set differential pressure, and a time for the actual differential pressure. Means for generating a control pressure according to the change is provided. When the actual differential pressure and the set differential pressure are equal, the control means sets the control pressure equal to the load pressure and sets the actual differential pressure to When the differential pressure is smaller than the set differential pressure, the control pressure is set lower than the load pressure according to the degree of change of the actual differential pressure, and when the actual differential pressure is larger than the set differential pressure. The control pressure is set higher than the load pressure in accordance with the degree of change in the actual differential pressure, and the LS valve 8 controls the control pressure to be equal to the load pressure. When the pressures are equal, the capacity is controlled so as to be the set differential pressure, and when the control pressure is lower than the load pressure, the capacity is increased so as to be higher than the set differential pressure. When the control pressure is higher than the load pressure, it is lower than the set differential pressure. A displacement control device for a variable displacement hydraulic pump, characterized in that the displacement is controlled so that the displacement becomes as follows.
4 . L S 弁 8 を 、 ポ ン プ吐出圧と 前記制御圧で容 量減方 向 に 作動し 、 負荷圧で容量増方向 に 作動する も の と し 、 ア キ ュ ー ム レ ータ 3 7 と 絞り 3 5 で前記制御 圧を 発生する 手段と し 、 こ のア キ ュ ーム レ ータ 3 7 の 蓄圧室 3 8 にポン プ吐出圧を 供給し 、 背圧室 4 1 に絞 り 3 5 を 経て負荷圧を 供給し 、 こ の 絞り 3 5 の 背圧室 4 1 寄り か ら 前記制御圧を 検 出する よ う に し た 請求項 3 記載の 可変容量型油圧ポ ン プの容量制御装置。  4. The LS valve 8 is operated in the direction of decreasing the capacity by the pump discharge pressure and the control pressure, and is operated in the direction of increasing the capacity by the load pressure. And a throttle 35 as means for generating the control pressure. A pump discharge pressure is supplied to a pressure accumulating chamber 38 of the accumulator 37, and a throttle 3 is supplied to the back pressure chamber 41. 5. The capacity control of the variable displacement hydraulic pump according to claim 3, wherein the control pressure is supplied from a position near the back pressure chamber 41 of the throttle 3 5 by supplying the load pressure via the pressure pump 5. apparatus.
PCT/JP1998/001556 1997-04-11 1998-04-03 Capacity control apparatus for variable displacement hydraulic pump WO1998046883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09357597A JP3685287B2 (en) 1997-04-11 1997-04-11 Capacity controller for variable displacement hydraulic pump
JP9/93575 1997-04-11

Publications (1)

Publication Number Publication Date
WO1998046883A1 true WO1998046883A1 (en) 1998-10-22

Family

ID=14086072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001556 WO1998046883A1 (en) 1997-04-11 1998-04-03 Capacity control apparatus for variable displacement hydraulic pump

Country Status (2)

Country Link
JP (1) JP3685287B2 (en)
WO (1) WO1998046883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1225281A1 (en) * 2001-01-23 2002-07-24 Brueninghaus Hydromatik Gmbh Hydraulic control, in particular for controlling the turning mechanism of an excavator
WO2006066548A1 (en) * 2004-12-21 2006-06-29 Bosch Rexroth Ag Hydraulic control system
EP2278168A3 (en) * 2009-07-20 2013-11-06 J.C.Bamford Excavators Limited Hydraulic system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142844B2 (en) * 2000-09-18 2008-09-03 株式会社小松製作所 Hydraulic system
JP4948031B2 (en) * 2006-05-10 2012-06-06 住友建機株式会社 Hydraulic pump control device for construction machinery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813202A (en) * 1981-07-14 1983-01-25 Daikin Ind Ltd Flowrate controlling device with compensation of pressure
JPH0276904A (en) * 1988-06-29 1990-03-16 Hitachi Constr Mach Co Ltd Hydraulic drive device
JPH0462379U (en) * 1990-10-05 1992-05-28
JPH0518365A (en) * 1991-07-05 1993-01-26 Komatsu Ltd Capacity controller for variable capacity type hydraulic pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69023116T2 (en) * 1989-07-27 1996-03-28 Hitachi Construction Machinery Co., Ltd., Tokio/Tokyo ARRANGEMENT FOR CONTROLLING A HYDRAULIC PUMP.
JPH03125002A (en) * 1989-10-09 1991-05-28 Hitachi Constr Mach Co Ltd Hydraulic driving system
JP3003958B2 (en) * 1991-03-15 2000-01-31 株式会社小松製作所 Load sensing hydraulic circuit
JP2651079B2 (en) * 1991-07-24 1997-09-10 日立建機株式会社 Hydraulic construction machinery
JPH05172111A (en) * 1991-12-24 1993-07-09 Komatsu Ltd Variable hydraulic pump capacity control device for pressure-compensating hydraulic circuit
JP3765317B2 (en) * 1993-03-26 2006-04-12 株式会社小松製作所 Control device for hydraulic drive machine
JPH07197907A (en) * 1993-12-29 1995-08-01 Hitachi Constr Mach Co Ltd Hydraulic construction machine
JP3483932B2 (en) * 1994-04-28 2004-01-06 東芝機械株式会社 Hydraulic working circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813202A (en) * 1981-07-14 1983-01-25 Daikin Ind Ltd Flowrate controlling device with compensation of pressure
JPH0276904A (en) * 1988-06-29 1990-03-16 Hitachi Constr Mach Co Ltd Hydraulic drive device
JPH0462379U (en) * 1990-10-05 1992-05-28
JPH0518365A (en) * 1991-07-05 1993-01-26 Komatsu Ltd Capacity controller for variable capacity type hydraulic pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1225281A1 (en) * 2001-01-23 2002-07-24 Brueninghaus Hydromatik Gmbh Hydraulic control, in particular for controlling the turning mechanism of an excavator
WO2006066548A1 (en) * 2004-12-21 2006-06-29 Bosch Rexroth Ag Hydraulic control system
US7946114B2 (en) 2004-12-21 2011-05-24 Bosch Rexroth Ag Hydraulic control system
EP2278168A3 (en) * 2009-07-20 2013-11-06 J.C.Bamford Excavators Limited Hydraulic system
US8701396B2 (en) 2009-07-20 2014-04-22 J.C. Bamford Excavators Limited Hydraulic system

Also Published As

Publication number Publication date
JPH10281102A (en) 1998-10-20
JP3685287B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US9932957B2 (en) Switchable hydrostatic adjusting device
WO1994021925A1 (en) Hydraulic drive for hydraulic work machine
JPS61132787A (en) Control valve device for variable delivery pump
EP0477370B2 (en) Hydraulic valve apparatus
WO1998046883A1 (en) Capacity control apparatus for variable displacement hydraulic pump
JPH0639951B2 (en) Hydraulic circuit control method
JPS6214718B2 (en)
JP3562657B2 (en) Capacity control device for variable displacement hydraulic pump
JPH0841933A (en) Hydraulic controller for excavator
JP3891616B2 (en) Input torque control circuit for variable displacement pump
JPH0453441Y2 (en)
JPH0310801B2 (en)
JP3240265B2 (en) Hydraulic control method of mold clamping device
JP3148722B2 (en) Hydraulic drive
JPH08100805A (en) Pressure control valve
JP2001003905A (en) Control device for fluid pressure actuator
EP4214428B1 (en) Hydraulic valve block and hydraulic unit for closed circuit applications
US5140815A (en) Valve apparatus
JP3415512B2 (en) Valve device
JP4671408B2 (en) Hydraulic circuit with unload valve
JPH11117906A (en) Hydraulic driving device
JP3596299B2 (en) Flow control device in power steering device
JPS5849722B2 (en) fluid equipment
JPH0518365A (en) Capacity controller for variable capacity type hydraulic pump
JPS6380083A (en) Capacity controller for variable capacity type liquid pressure pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09402439

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642