WO1998043076A1 - Mineralisolierte zuleitung - Google Patents

Mineralisolierte zuleitung Download PDF

Info

Publication number
WO1998043076A1
WO1998043076A1 PCT/EP1998/001528 EP9801528W WO9843076A1 WO 1998043076 A1 WO1998043076 A1 WO 1998043076A1 EP 9801528 W EP9801528 W EP 9801528W WO 9843076 A1 WO9843076 A1 WO 9843076A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
inner conductor
insulated
supply line
feed line
Prior art date
Application number
PCT/EP1998/001528
Other languages
English (en)
French (fr)
Inventor
Robert Scannell
Annette Kipka
Original Assignee
Heraeus Electro-Nite International N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19808030A external-priority patent/DE19808030A1/de
Application filed by Heraeus Electro-Nite International N.V. filed Critical Heraeus Electro-Nite International N.V.
Priority to US09/194,224 priority Critical patent/US6300571B1/en
Priority to BR9804787A priority patent/BR9804787A/pt
Priority to JP54483498A priority patent/JP2001524252A/ja
Priority to EP98913723A priority patent/EP0902889A1/de
Publication of WO1998043076A1 publication Critical patent/WO1998043076A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Definitions

  • the invention relates to a mineral-insulated feed line for a sensor with a jacket and at least one inner conductor arranged in the jacket, which is connected at one end to a sensor element or its feed line, the jacket containing a mineral powder as insulation material.
  • the invention further relates to the use of such a feed line.
  • DE 43 30 447 A1 describes a mineral-insulated supply line for a temperature sensor.
  • This lead has an inner conductor made of a nickel-chromium alloy.
  • a similar feed line is known from DE 69942, in which the inner conductor has wires made of a noble metal, which are surrounded by a jacket made of a nickel-chromium or nickel-chromium-iron alloy.
  • Similar supply lines are known from DE 40 22 051 A1 and from US-A-4,590,669.
  • These mineral insulated supply lines are used for resistance thermometers or as thermocouple wires. They make use of the property of the measuring element that its electrical resistance or thermal voltage depends on the temperature of the material.
  • At least one inner conductor is formed from a metal from the group consisting of tantalum, titanium, niobium, molybdenum, vanadium, zirconium, rhenium, osmium or from an alloy based on at least one of these metals.
  • a supply line is very resistant to high temperatures and corrosion, so that it can even be expediently designed and suitable as a supply line for a heater, which may be comprised by a gas sensor, and the supply line is directly exposed to the hot exhaust gas and its corrosive effect is.
  • the second inner conductor should preferably be made of a known iron-chromium-nickel alloy. If, for example, tantalum is used as the anode, a different material can also be selected for the cathode.
  • the at least one inner conductor has a coating which is catalytically active for reducing gases, preferably made of a noble metal or a noble metal alloy.
  • This coating can be used to catalyze reducing gases (hot exhaust gases), in particular H 2 .
  • the jacket is closed at both ends and only has bushings for the at least one inner conductor, so that the insulation material is protected.
  • the mineral-insulated feed line can be used for a gas sensor for measuring gaseous components in a gas mixture and in particular for the feed line of a heater of the gas sensor.
  • FIG. 1 shows a partial section through a mineral-insulated supply line
  • FIG. 2 shows an arrangement for a corrosion test
  • FIG. 3 shows another arrangement for a corrosion test.
  • the mineral-insulated supply line 1 has a jacket 2, which is made of a common metal, for. B. Inconel is formed.
  • a plurality of inner conductors 4 are arranged within the jacket 2, embedded in an insulating material 3.
  • Magnesium oxide or aluminum oxide, for example, can be used as the insulating material 3.
  • the inner conductors 4 are formed from tantalum. They have a coating 5 made of platinum or palladium, which is used to catalyze reducing gases.
  • the inner conductor serving as the cathode is made of Inconel and the inner conductor serving as the anode is made of titanium (or tantalum).
  • at least one sensor element is connected to the inner conductor on one side.
  • Such a sensor element for measuring gaseous components of a gas mixture has a heater which is connected to an inner conductor 4 (anode - titanium).
  • the inner conductor 4 is traversed by current during the measurement, a relatively high current flowing through the inner conductor used as the supply line to the heater. Nevertheless, the inner conductors are very stable, they do not corrode and therefore on the one hand represent a reliable connection to the sensor element and on the other hand enable reproducible measurements over long periods of time.
  • the corrosion resistance is shown below using exemplary tests.
  • the test was carried out in an arrangement shown in FIG. 2.
  • anode A material to be tested
  • a wire with a diameter of approximately 1.5 mm was placed in an electrolyte E submerged.
  • the electrolyte E was formed from a synthetic exhaust gas condensate.
  • a platinum wire with a diameter of approximately 1.5 mm is used as the cathode K.
  • Both anode A and cathode K are partially in the electrolyte E.
  • the electrolyte E contains 250 mg of 96% H 2 SO 4 , 250 mg of 37% HCl, 1 g of NaCl, the rest of distilled water per liter.
  • the voltage between anode A and cathode K is 15 volts.
  • the current flowing between anode A and cathode K is measured and represents a measure of the anodic resolution, since a current only flows until the anode A is dissolved.
  • Test results for some anode materials are shown in Table 1, the first three materials corresponding to the prior art and the last two materials (tantalum and titanium) being materials according to the invention.
  • Table 1 shows that the materials tantalum and titanium are much more stable in the environment relevant to the invention than the known materials.
  • a second corrosion test compares different mineral-insulated cables.
  • the mineral-insulated cable M has a diameter of approximately 3.5 mm and contains an anode A with a diameter of approximately 0.5 mm and a cathode K, likewise with a diameter of approximately 0.5 mm. It becomes an electrolyte E with the same composition as in the corrosion test 1 used.
  • the mineral-insulated cable M from the moisture-proof end of which at least the anode A and the cathode K protrude, is located with this end in the electrolyte E.
  • the voltage between the anode A and the cathode K is 15 volts.
  • the current flowing between anode A and cathode K is measured and represents a measure of the anodic decomposition (corrosion).
  • Table 2 shows in the first line a test with materials according to the prior art (Inconel), both as anode A and as cathode K. In the following three lines, experiments with anode materials according to the invention are listed, different materials being used as the cathode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Resistance Heating (AREA)
  • Insulated Conductors (AREA)

Abstract

Die Erfindung betrifft eine mineralisolierte Zuleitung für einen Sensor mit einem Mantel und mindestens einem in dem Mantel angeordneten Innenleiter, der an seinem einen Ende mit einem Sensorelement verbunden ist, wobei der Mantel als Isolationsmaterial ein mineralisches Pulver enthält. Um eine hochtemperatur- und korrosionsfeste Zuleitung für Gassensoren zu erhalten, ist mindestens ein Innenleiter aus einem Metall aus der Gruppe Tantal, Titan, Niob, Molybdän, Vanadium, Zirkon, Rhenium, Osmium oder aus einer Legierung auf der Basis mindestens eines dieser Metalle gebildet.

Description

Mineralisolierte Zuleitung
Die Erfindung betrifft eine mineralisolierte Zuleitung für einen Sensor mit einem Mantel und mindestens einem in dem Mantel angeordneten Innenleiter, der an seinem einen Ende mit einem Sensorelement oder dessen Zuleitung verbunden ist, wobei der Mantel als Isolationsmaterial ein mineralisches Pulver enthält. Die Erfindung betrifft weiterhin die Verwendung einer solchen Zuleitung.
Derartige Zuleitungen sind aus dem Stand der Technik vielfältig bekannt. Beispielsweise in DE 43 30 447 A1 ist eine mineralisolierte Zuleitung für einen Temperatursensor beschrieben. Diese Zuleitung weist einen Innenleiter aus einer Nickel-Chrom-Legierung auf. Aus DE 69942 ist eine ähnliche Zuleitung bekannt, bei der der Innenleiter Drähte aus einem Edelmetall aufweist, die von einem Mantel aus einer Nickel-Chrom- bzw. Nickel-Chrom-Eisen-Legierung umgeben sind. Ähnliche Zuleitungen sind aus DE 40 22 051 A1 und aus US-A-4,590,669 bekannt.
Diese mineralisolierten Zuleitungen werden bzw. für Widerstandsthermometer bzw. als Thermoelementdrähte benutzt. Sie machen sich die Eigenschaft des Meßelements zu nutze, daß dessen elektrischer Widerstand bzw. Thermospannung von der Temperatur des Materials abhängt.
Für die Messung von Temperaturen werden die beschriebenen Leiter praktisch stromlos betrieben. Es sind jedoch zunehmend Anwendungsmöglichkeiten von mineralisolierten Zuleitungen auch für andere Sensoren, beispielsweise für Gassensoren denkbar. Derartige Sensoren weisen Sensorelemente auf mit Zu- und Ableitungen für Strom; diese Sensoren werden nicht stromlos, sondern stromdurchflossen betrieben. Aus WO 95/18965 ist eine mineralisolierte Zuleitung
ORIGINAL IJNTERLAGEN bekannt, bei der der Innenleiter stromdurchflossen arbeitet. Dies bringt jedoch bei Verwendung der bekannten Zuleitungen Probleme mit sich, da diese, insbesondere bei höheren Temperaturen, wie sie in Verbrennungsabgasen herrschen, im stromdurchflossenen Zustand sehr leicht korrodieren. Diese bekannten Materialien sind darüberhinaus relativ schlecht präzise verformbar, da eine unerwünschte Federwirkung auftritt. Die Materialien selbst weisen eine geringe Leitfähigkeit auf, so daß sie sich durch den Stromfluß zusätzlich erwärmen. Dies ist ebenfalls unerwünscht oder nachteilig.
Aufgabe der vorliegenden Erfindung ist es daher, eine mineralisolierte Zuleitung bereitzustellen, deren Innenleiter auch im stromdurchflossenen Zustand als hochtemperatur- und korrosionsfeste Anschlußmaterialien für Sensoren, insbesondere für Gassensoren geeignet sind.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß mindestens ein Innenleiter aus einem Metall aus der Gruppe Tantal, Titan, Niob, Molybdän, Vanadium, Zirkon, Rhenium, Osmium oder aus einer Legierung auf der Basis mindestens eines dieser Metalle gebildet ist. Eine solche Zuleitung ist sehr beständig gegen hohe Temperaturen und Korrosion, so daß sie zweckmäßigerweise sogar als Zuleitung eines Heizers, der gegebenenfalls von einem Gassensor umfaßt wird, ausgebildet sein kann und geeignet ist, und wobei die Zuleitung direkt dem heißen Abgas und dessen korrosiver Wirkung ausgesetzt ist. Überraschenderweise hat sich nämlich gezeigt, daß derartige Innenleiter auch in stromdurchflossenem Zustand sehr beständig sind. Wenn eine solche Heizerzuleitung (als Anode) aus Titan gebildet ist, wie dies aus Kostengründen oder aus Gründen der Hochtemperaturbeständigkeit bevorzugt sein kann, sollte der zweite Innenleiter (Katode) vorzugsweise aus einer bekannten Eisen-Chrom-Nickel-Legierung gebildet sein. Bei Verwendung von beispielsweise Tantal als Anode kann für die Katode auch ein anderes Material gewählt werden.
Für bestimmte Anwendungen ist es vorteilhaft, daß der mindestens eine Innenleiter einen für reduzierende Gase katalytisch wirksamen Überzug vorzugsweise aus einem Edelmetall oder einer Edelmetall-Legierung aufweist. Dieser Überzug kann der Katalyse von reduzierenden Gasen (heißen Abgasen) insbesondere H2, dienen. Vorteilhaft ist es weiterhin, daß der Mantel an seinen beiden Enden geschlossen ist und lediglich Durchführungen für den mindestens einen Innenleiter aufweist, so daß das Isolationsmaterial geschützt ist. Erfindungsgemäß kann die mineralisolierte Zuleitung für einen Gassensor zur Messung gasförmiger Bestandteile in einem Gasgemisch und insbesondere für die Zuleitung eines Heizers des Gassensors verwendet werden.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung erläutert. In der Zeichnung zeigt
Figur 1 einen teilweisen Schnitt durch eine mineralisolierte Zuleitung, Figur 2 eine Anordnung für einen Korrosionstest und Figur 3 eine weitere Anordnung für einen Korrosionstest.
In Figur 1 ist lediglich die mineralisolierte Zuleitung 1 dargestellt; die durch die mineralisolierte Zuleitung 1 verbundenen Bauelemente, also Auswerteelektronik und Sensorelement sind der Übersichtlichkeit halber nicht dargestellt. Sie sind dem Fachmann jedoch hinreichend bekannt.
Die mineralisolierte Zuleitung 1 weist einen Mantel 2 auf, der aus einem üblichen Metall, z. B. In- conel gebildet ist. Innerhalb des Mantels 2 sind, in ein Isoliermaterial 3 eingebettet, mehrere Innenleiter 4 angeordnet. Als Isoliermaterial 3 kann beispielsweise Magnesiumoxid oder Aluminiumoxid verwendet werden. Die Innenleiter 4 sind aus Tantal gebildet. Sie weisen einen Überzug 5 aus Platin oder Palladium auf, der der Katalyse von reduzierenden Gasen dient. In einem weiteren Beispiel ist der als Katode dienende Innenleiter aus Inconel und der als Anode dienende Innenleiter aus Titan (oder aus Tantal) gebildet. An die Innenleiter ist auf der einen Seite, wie bereits dargestellt, mindestens ein Sensorelement angeschlossen. Ein solches Sensorelement zur Messung von gasförmigen Bestandteilen eines Gasgemisches weist einen Heizer auf, der an einen Innenleiter 4 (Anode - Titan) angeschlossen ist. Die Innenleiter 4 werden während der Messung stromdurchflossen, wobei durch den als Zuleitung des Heizers verwendeten Innenleiter ein relativ hoher Strom fließt. Trotzdem sind die Innenleiter sehr beständig, sie korrodieren nicht und stellen daher zum einen eine zuverlässige Verbindung mit dem Sensorelement dar und ermöglichen zum anderen reproduzierbare Messungen über große Zeiträume hinweg.
Im folgenden wird die Korrosionsfestigkeit anhand von beispielhaften Tests gezeigt.
Korrosionstest 1 :
Der Test wurde in einer in Figur 2 dargestellten Anordnung durchgeführt. Als Anode A (zu prüfendes Material) wurde ein Draht mit einem Durchmesser von etwa 1 ,5 mm in einen Elekrolyt E getaucht. Der Elektrolyt E wurde aus einem synthetischen Abgaskondensat gebildet. Als Katode K wird ein Platindraht mit einem Durchmesser von etwa 1 ,5 mm verwendet. Sowohl Anode A als auch Katode K befinden sich teilweise im Elektrolyten E. Der Elektrolyt E enthält pro Liter 250 mg 96%ige H2S04, 250 mg 37%iger HCI, 1 g NaCI, Rest destilliertes Wasser. Die Spannung zwischen Anode A und Katode K beträgt 15 Volt. Der zwischen Anode A und Katode K fließende Strom wird gemessen und stellt ein Maß für die anodische Auflösung dar, da ein Strom nur bis zur Auflösung der Anode A fließt. In Tabelle 1 sind Versuchsergebnisse für einige Anodenmaterialien dargestellt, wobei die ersten drei Materialien dem Stand der Technik entsprechen und die letzten beiden Materialien (Tantal und Titan) erfindungsgemäße Materialien sind.
Tabelle 1
Figure imgf000006_0001
Zeit bis zur Auflösung der Anode (I = 0)
Tabelle 1 ist zu entnehmen, daß die Materialien Tantal und Titan in der für die Erfindung relevanten Umgebung wesentlich beständiger sind als die bekannten Materialien.
Korrosionstest 2:
In einem zweiten Korrosionstest wird im Gegensatz zu dem ersten Korrosionstest eine Gegenüberstellung verschiedener mineralisolierter Kabel vorgenommen. Das mineralisolierte Kabel M weist einen Durchmesser von etwa 3,5 mm auf und enthält eine Anode A mit einem Durchmesser von etwa 0,5 mm und eine Katode K, ebenfalls mit einem Durchmesser von etwa 0,5 mm. Es wird ein Elektrolyt E mit einer gleichen Zusammensetzung wie im Korrosionstest 1 verwendet. Das mineralisolierte Kabel M, aus dessen feuchtigkeitsdicht verschlossenem Ende mindestens die Anode A und die Katode K herausragen, befindet sich mit diesem Ende im Elektrolyten E. Die Spannung zwischen Anode A und Katode K beträgt wie in dem ersten Korrosions- test 15 Volt. Der zwischen Anode A und Katode K fließende Strom wird gemessen und stellt ein Maß für die anodische Zersetzung (Korrosion) dar. Tabelle 2 zeigt in der ersten Zeile einen Test mit Materialien gemäß dem Stand der Technik (Inconel), sowohl als Anode A als auch als Katode K. In den folgenden drei Zeilen sind Versuche mit erfindungsgemäßen Anodenmaterialien aufgeführt, wobei als Katode unterschiedliche Materialien verwendet wurden.
Tabelle 2
Figure imgf000007_0001
* Zeit bis zur Auflösung der Anode (I = 0)
Es ist der Tabelle 2 entnehmbar, daß mineralisolierte Kabel M, bei denen die Anode A aus einem erfindungsgemäßen Material gebildet ist, eine wesentlich längere Lebensdauer und damit höhere Korrosionsfestigkeiten aufweisen, als aus dem Stand der Technik bekannte Materialien. Dabei scheint die Lebensdauer der Anode A nicht oder nicht wesentlich von dem als Katode K verwendeten Material abhängig zu sein.

Claims

Patentansprüche
1. Mineralisolierte Zuleitung für einen Sensor mit einem Mantel und mindestens einem in dem Mantel angeordneten Innenleiter, der an seinem einen Ende mit einem Sensorelement oder dessen Zuleitung verbunden ist, wobei der Mantel als Isolationsmaterial ein mineralisches Pulver enthält, dadurch gekennzeichnet, daß mindestens ein Innenleiter (4) aus einem Metall aus der Gruppe Tantal, Titan, Niob, Molybdän, Vanadium, Zirkon, Rhenium, Osmium oder aus einer Legierung auf der Basis mindestens eines dieser Metalle gebildet ist.
2. Mineralisolierte Zuleitung nach Anspruch 1 , dadurch gekennzeichnet, daß der mindestens eine Innenleiter (4) einen für reduzierende Gase katalytisch wirksamen Überzug (5), vorzugsweise aus einem Edelmetall oder einer Edelmetall-Legierung aufweist.
3. Mineralisolierte Zuleitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Mantel (2) an seinen beiden Enden geschlossen ist und lediglich Durchführungen für den mindestens einen Innenleiter (4) aufweist.
4. Mineralisolierte Zuleitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der aus einem Metall aus der Gruppe Tantal, Titan, Niob, Molybdän, Vanadium, Zirkon, Rhenium, Osmium oder einer Legierung auf der Basis mindestens eines dieser Metalle gebildete Innenleiter (4) als Zuleitung für einen Heizer ausgebildet ist.
5. Verwendung einer mineralisolierten Zuleitung nach einem der Ansprüche 1 bis 4 für einen Gassensor zur Messung gasförmiger Bestandteile in einem Gasgemisch.
6. Verwendung nach Anspruch 5 als Zuleitung eines Heizers des Gassensors.
PCT/EP1998/001528 1997-03-21 1998-03-17 Mineralisolierte zuleitung WO1998043076A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/194,224 US6300571B1 (en) 1997-03-21 1998-03-17 Mineral-insulated supply line
BR9804787A BR9804787A (pt) 1997-03-21 1998-03-17 Conduto isolado com mineral
JP54483498A JP2001524252A (ja) 1997-03-21 1998-03-17 鉱物絶縁導線
EP98913723A EP0902889A1 (de) 1997-03-21 1998-03-17 Mineralisolierte zuleitung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19712026 1997-03-21
DE19712026.1 1997-03-21
DE19808030.1 1998-02-26
DE19808030A DE19808030A1 (de) 1997-03-21 1998-02-26 Mineralisolierte Zuleitung

Publications (1)

Publication Number Publication Date
WO1998043076A1 true WO1998043076A1 (de) 1998-10-01

Family

ID=26035123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001528 WO1998043076A1 (de) 1997-03-21 1998-03-17 Mineralisolierte zuleitung

Country Status (6)

Country Link
US (1) US6300571B1 (de)
EP (1) EP0902889A1 (de)
JP (1) JP2001524252A (de)
KR (1) KR20000015858A (de)
BR (1) BR9804787A (de)
WO (1) WO1998043076A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831269B1 (fr) * 2001-10-23 2004-01-02 Thales Sa Ensemble de capteur fonctionnant a haute temperature et procede de montage
US8187006B2 (en) * 2009-02-02 2012-05-29 Apex Technologies, Inc Flexible magnetic interconnects
US20110224907A1 (en) * 2010-03-11 2011-09-15 Petrospec Engineering Ltd. Mineral insulated cable for downhole sensors
FR2972289B1 (fr) * 2011-03-01 2013-03-01 Schneider Electric Ind Sas Conducteur de courant
FR3107141B1 (fr) 2020-02-07 2022-06-03 Thermocoax Cie « Câble blindé à isolant minéral pour ultra haute températures, élément chauffant et câble de transmission, application et procédé de fabrication »

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582830A1 (de) * 1992-07-31 1994-02-16 Hoechst Aktiengesellschaft Planarer Sensor aus Keramikmaterial zum Nachweis von brennbaren Gasen
WO1995005685A1 (en) * 1993-08-18 1995-02-23 Forskningscenter Risø A method of producing calcium doped lanthanum chromite
WO1995018965A1 (de) * 1994-01-05 1995-07-13 Roth-Technik Gmbh & Co. Messfühler

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928071A (en) * 1974-10-04 1975-12-23 Gen Electric Hermetically sealed primary battery
US4267029A (en) * 1980-01-07 1981-05-12 Pennwalt Corporation Anode for high resistivity cathodic protection systems
US4373375A (en) * 1980-12-19 1983-02-15 General Electric Company Hydrogen sensor
DE3300694A1 (de) * 1983-01-11 1984-08-09 Siemens AG, 1000 Berlin und 8000 München Bipolare elektrode fuer medizinische anwendungen
FR2555352B1 (fr) * 1983-11-21 1987-02-20 Thermocoax Cie Cable blinde a isolant mineral et procede de fabrication permettant d'obtenir un tel cable
FR2575321B1 (fr) * 1984-12-21 1988-01-15 Thermocoax Cie Cable blinde a isolant mineral
US5336851A (en) * 1989-12-27 1994-08-09 Sumitomo Electric Industries, Ltd. Insulated electrical conductor wire having a high operating temperature
EP0510258B1 (de) * 1991-04-26 1995-06-14 Sumitomo Electric Industries, Limited Verfahren zur Herstellung einer Isolierung
US5156688A (en) * 1991-06-05 1992-10-20 Xerox Corporation Thermoelectric device
JPH06996A (ja) * 1992-06-19 1994-01-11 Hitachi Koki Co Ltd 液滴吐出器
US5340455A (en) * 1993-01-22 1994-08-23 Corrpro Companies, Inc. Cathodic protection system for above-ground storage tank bottoms and method of installing
DE4338539A1 (de) * 1993-11-11 1995-05-18 Hoechst Ceram Tec Ag Verfahren zum Herstellen von keramischen Heizelementen
US5536478A (en) * 1994-12-01 1996-07-16 Corning Incorporated Electrical leads for a fluid heaters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582830A1 (de) * 1992-07-31 1994-02-16 Hoechst Aktiengesellschaft Planarer Sensor aus Keramikmaterial zum Nachweis von brennbaren Gasen
WO1995005685A1 (en) * 1993-08-18 1995-02-23 Forskningscenter Risø A method of producing calcium doped lanthanum chromite
WO1995018965A1 (de) * 1994-01-05 1995-07-13 Roth-Technik Gmbh & Co. Messfühler

Also Published As

Publication number Publication date
EP0902889A1 (de) 1999-03-24
US6300571B1 (en) 2001-10-09
JP2001524252A (ja) 2001-11-27
KR20000015858A (ko) 2000-03-15
BR9804787A (pt) 1999-08-17

Similar Documents

Publication Publication Date Title
EP0168589B1 (de) Sauerstoffmessfühler
DE2909452C2 (de) Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen
DE3907312A1 (de) Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
DE69011746T2 (de) Referenz-Elektrodensonde.
DE2711880A1 (de) Messfuehler zum messen der sauerstoffkonzentration
DE69006901T2 (de) Testelektrode.
DE102015103033A1 (de) Gassensorelement, dessen Herstellungsverfahren und Gassensor mit dem Gassensorelement
DE10109828A1 (de) Elekrische Temperaturmessvorrichtung
DE112016001591B4 (de) Temperatursensor
EP0774650A1 (de) Temperatur-Sensor
DE3120159A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen
DE60114305T2 (de) Dichtungsanordnung für Gassensor
EP0902889A1 (de) Mineralisolierte zuleitung
DE10158527B4 (de) Temperaturfühler
DE102008025478A1 (de) Vorrichtung zum Messen des Flüssigkeitsstandes
DE69201177T2 (de) Widerstandselement mit Anschlussdraht bestehend aus einer Drahtrute und einer bedeckenden Legierungschicht.
DE102009005924A1 (de) Kompensiertes Thermoelementensystem
DE19808030A1 (de) Mineralisolierte Zuleitung
DE112007003363T5 (de) Abgassensor
DE3887027T2 (de) Sensor zur Messung durch elektrische Beheizung.
DE3706079A1 (de) Messdetektor fuer sauerstoff
DE102012101004A1 (de) Elektrode zur Verwendung in elektrochemischen Messsystemen
DE102017208568A1 (de) Verfahren zur Bestimmung der Temperatur eines Abgassensors
DE10149628B4 (de) Temperatursensor
DE2338169A1 (de) Elektrischer temperaturfuehler, insbesondere zur messung von abgastemperaturen in kraftfahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998913723

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 544834

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980709408

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998913723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194224

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019980709408

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998913723

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980709408

Country of ref document: KR