WO1998038130A1 - Gestion de la production de carbure de fer - Google Patents

Gestion de la production de carbure de fer Download PDF

Info

Publication number
WO1998038130A1
WO1998038130A1 PCT/JP1998/000793 JP9800793W WO9838130A1 WO 1998038130 A1 WO1998038130 A1 WO 1998038130A1 JP 9800793 W JP9800793 W JP 9800793W WO 9838130 A1 WO9838130 A1 WO 9838130A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reaction operation
reactor
rate
iron
Prior art date
Application number
PCT/JP1998/000793
Other languages
English (en)
French (fr)
Inventor
Junya Nakatani
Yoshio Uchiyama
Eiji Inoue
Torakatsu Miyashita
Teruyuki Nakazawa
Akio Nio
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Mitsubishi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha, Mitsubishi Corporation filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to EP98905668A priority Critical patent/EP1004544A4/en
Priority to BR9812415-3A priority patent/BR9812415A/pt
Priority to CN98801621A priority patent/CN1242755A/zh
Priority to US09/367,025 priority patent/US6270741B1/en
Priority to CA002269913A priority patent/CA2269913A1/en
Priority to AU61171/98A priority patent/AU722716B2/en
Publication of WO1998038130A1 publication Critical patent/WO1998038130A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention steel mainly composed of iron card by de (F e 3 C), for steel material, for example, proper operating conditions in the production of suitable iron card by de steelmaking raw material used in the electric furnace or the like It is about the setting method.
  • steel production consists of converting iron ore to pig iron using a blast furnace, and then converting pig iron to steel using an open hearth furnace or a converter.
  • Such traditional manufacturing methods require large amounts of energy, equipment, and cost, and so are required for small-scale steelmaking.
  • direct steelmaking converts iron ore to raw material for steelmaking furnaces.
  • a method comprising a step of converting the raw material of the steelmaking furnace into steel by an electric furnace or the like is employed.
  • there is a direct reduction method that converts iron ore to reduced iron.However, the reduced iron produced by this method has strong reaction activity and generates heat by reacting with oxygen in the atmosphere.
  • iron and steel raw materials mainly composed of iron anchors are not only easy to transport and store, but also carbon combined with iron atoms can be used as a fuel source for pig iron or steelmaking furnaces. Reaction in furnace There is also an advantage that it becomes a source of fine air bubbles that promotes. For these reasons, raw materials for iron and steel making, mainly composed of ican carbide, have received particular attention in recent years.
  • a method for producing such an anchor binder is to form a powder of iron ore and fill it into a fluidized-bed reactor or the like, and mix the powder with a mixed gas of a reducing gas (hydrogen gas) and a carbon gas (for example, methane gas). by reacting at a temperature, the iron oxide in the iron ore (to Matthew preparative (F e 2 O 3), Magunetai bets (F e 3 ⁇ 4), Usutai bets (F e O)) a single operation (one Reduction and carbonization by simultaneously introducing reduction and carbonization gas into two reactors).
  • a mixed gas of a reducing gas hydrogen gas
  • a carbon gas for example, methane gas
  • the present inventor has proposed an eye anchor that can perform various actions for each operation, thereby increasing the flexibility as a process, and consequently shortening the reaction time and reducing the amount of reaction gas used.
  • a patent application was filed for a new technology for a method and equipment for manufacturing a byte (Japanese Patent Application No. 8-30985). This discovery states that "a part of the reduction reaction of hematite-based iron ore is A second reaction operation for carrying out the remaining reduction reaction and carbonization reaction after the first reaction operation to be carried out, and It solves all the disadvantages of the manufacturing method, and is a revolutionary method for manufacturing eye anchors.
  • reaction parameters such as reaction gas composition, reaction temperature, and reaction pressure
  • reaction parameters are involved in the formation of eye anchors
  • small changes in these reaction parameters can lead to undesirable products (eg, (A low conversion to iron anchors) may be obtained. If the reaction parameters are out of the range, free carbon may be generated.
  • Moessbauer analyzers have the disadvantage of requiring more time to measure (1 to 4 hours) when trying to increase accuracy. Therefore, there is a problem that an appropriate action cannot be taken according to the situation in the reactor that changes every moment.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for producing an iron force single byte by a two-stage reaction operation, in which a target composition having a desired composition is obtained.
  • An object of the present invention is to provide an operation management method of a manufacturing process for obtaining a carbide product.
  • the present invention provides a method for controlling a process for producing an anchor carbide by performing a first reaction operation for partially reducing various iron-containing raw materials for iron making, followed by a second reaction operation for performing the remaining reduction and carbonization.
  • a first reaction operation for partially reducing various iron-containing raw materials for iron making
  • a second reaction operation for performing the remaining reduction and carbonization.
  • the reduction rate of the first reaction operation is lowered, the generation time of the eye anchor in the second reaction operation is prolonged.
  • the reduction rate of the first reaction operation is increased, the iron anchoring time is reduced.
  • the generation time of the carbide is reduced.
  • the second parameter can be adjusted.
  • IC after reaction operation Conversion rate can be controlled.
  • a method of measuring the reduction rate of a solid sample a method of analyzing the composition of the solid is reliable, but since measurement such as X-ray diffraction takes a long time, the relationship between the magnetic permeability and the reduction rate must be estimated. It is preferable to obtain the reduction rate simply and quickly by measuring the magnetic permeability based on this relationship.
  • the present invention provides a method of collecting a solid sample from the middle of the reactor in the first reaction operation to the final section instead of collecting a solid sample at the outlet of the reactor in the first reaction operation, By adjusting a parameter that can change the reduction rate of the first reaction operation according to the correlation between the reduction rate after the first reaction operation and the reduction rate after the second reaction operation, the IC conversion rate after the second reaction operation It is characterized by adjustment.
  • a solid sample is collected from the middle to the final compartment of the reactor in the first reaction operation, and By measuring the reduction rate, it is possible to detect early changes in the conditions of the iron-containing raw material input (for example, changes in the preheating temperature due to fluctuations in the water content in the iron ore), and the reduction rate of the solid sample and the reduction after the first reaction operation.
  • the reduction rate after the first reaction operation is changed by appropriately adjusting the operating conditions (reaction temperature, reaction pressure, fluidized bed height, etc.) of the reactor in the first reaction operation according to the correlation with the rate By doing so, the IC conversion rate after the second reaction operation can be controlled.
  • the present invention provides a method for collecting a solid sample from the middle to the final section of the reactor in the second reaction operation instead of collecting a solid sample at the outlet of the reactor in the first reaction operation, and converting the solid sample into an IC.
  • the parameter that can change the IC conversion rate after the second reaction operation in accordance with the correlation between the conversion rate and the IC conversion rate after the second reaction operation It is characterized by adjusting the IC conversion rate.
  • the inside of the reactor for the second reaction If it is divided into compartments, as described above, if a solid sample is collected from the middle of the reactor in the second reaction operation to the final compartment and its IC conversion is measured, (E.g., changes in preheating temperature due to fluctuations in water in iron ore) can be detected at an early stage, and correspond to the correlation between the IC conversion rate of the solid sample and the IC conversion rate after the second reaction operation.
  • the IC conversion rate after the second reaction operation can be controlled by appropriately adjusting the operating conditions (reaction temperature, reaction pressure, fluidized bed height, etc.) of the reactor in the second reaction operation .
  • the reaction does not proceed uniformly in the section before the middle of the reactor (the part near the inlet of the reactor), the composition of the collected solid sample fluctuates greatly, making it suitable as a solid sample collection position. Not. Therefore, it is preferable that the solid sample is collected from the middle of the reactor to the last section as described above.
  • the present invention collects an exhaust gas sample for each section from the beginning to the last section of the reactor in the first reaction operation, and discharges the exhaust gas.
  • the inside of the reactor in the first reaction operation is divided into multiple compartments, it is preferable to measure the gas composition in each reaction compartment to know the change in the reaction in each compartment.
  • To measure the composition of the exhaust gas in each reaction zone Since the degree of progress of the solid reaction can be accurately estimated and abnormalities inside the reactor can be detected at an early stage, the correlation between the above exhaust gas composition and the reduction rate after the first reaction operation can be handled. Then, by appropriately adjusting the gas composition of the reaction furnace in the first reaction operation and changing the reduction rate after the first reaction operation, the IC conversion rate after the second reaction operation can be controlled.
  • the present invention collects an exhaust gas sample for each section from the beginning to the final section of the reactor of the second reaction operation, By adjusting the gas composition of the reactor in the second reaction operation according to the correlation between the gas composition of the exhaust gas and the IC conversion rate after the second reaction operation, I c It is characterized by adjusting the conversion rate.
  • the degree of progress of the solid reaction can be accurately estimated by measuring the gas composition of each reaction compartment, and Since an abnormality in the furnace interior can be detected early, the gas composition of the reactor in the second reaction operation is appropriately adjusted according to the correlation between the above exhaust gas composition and the IC conversion rate after the second reaction operation. By adjusting, the IC conversion rate after the second reaction operation can be controlled.
  • the present invention in the production of iron carbide by a fluidized bed reactor, a two-stage reaction operation of performing a remaining reduction reaction and a carbonization reaction after a partial reduction reaction under an appropriate operating condition.
  • the eye anchored product having the target composition can be efficiently produced.
  • FIG. 1 is a schematic configuration diagram showing an example of an experimental apparatus for performing the iron carbide manufacturing method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of an iron carbide single-piece manufacturing apparatus for performing the iron carbide manufacturing method of the present invention.
  • FIG. 3 is an enlarged view showing a gas sampling section of a fluidized bed reactor.
  • an example of an experimental apparatus for carrying out the iron carbide production method of the present invention includes a fluidized bed reactor 1 and peripheral devices.
  • the fluidized bed reactor 1 was substantially cylindrical, and an external electric heater 2 was provided so that a predetermined temperature could be set.
  • the main part of the fluidized bed reactor 1 was a 50 A pipe.
  • a temperature detection sensor at the top of the tower 3a, 3b, 3c, 3d, 3e, 3f
  • the vicinity of the upper part of the fluidized bed reactor 1 and the hopper 4 are connected via a line 7 through a mouth hopper 6 provided with valves 5 at the front and rear, and the powdery feed (hematite (F e 2 ⁇ : Iron ore raw material whose main component is i )) can flow into fluidized bed reactor 1 under pressure did.
  • a pipe 9 provided with a cooler 8 was connected near the bottom of the fluidized bed reactor 1 so that the feed (raw material) inside the reactor 1 could be cooled and taken out.
  • the bottom of the fluidized bed reactor 1 and the gas holder 10 are connected via pipes 11 and 12, and the reaction gas adjusted to a predetermined composition in the gas holder 1 Enabled to flow into 1.
  • a saturator 13 was provided between the pipes 11 and 12 to saturate the moisture of the reaction gas.
  • pipes 14, 15, and 16 were connected in series near the upper part of the fluidized bed reactor 1, and the exhaust gas after the reaction was led to an incinerator (not shown).
  • the dust contained in the exhaust gas was removed by the dust collector 17 provided between the pipes 14 and 15 and the filter 18 provided in the pipe 15.
  • the exhaust gas was cooled by a gas cooler 19 provided in the pipeline 15, and the condensed water could be separated by a drain separator 19a.
  • the feed was partially reduced in the first reaction operation, and the remaining reduction and carbonization was performed in the second reaction operation.
  • the time required to achieve a rate of 93% or more is about 6.25 hours.
  • the feed (raw material) having the composition shown in Table 1 was subjected to the first reaction operation mainly using hydrogen at a pressure of 3 to 4 kgf / cm 2 G and a temperature of 590 to 65 ° C.
  • the second reaction operation is performed using a mixed gas of a reducing gas mainly composed of hydrogen and methane and a carbonized gas, 6.25 hours after the start of the reaction, It is expected that an eye anchor product with 93.2% conversion to eye anchor will be obtained.
  • batch reaction data On the other hand, for a specific fluidized bed reactor, the supply amount of raw materials, the composition of raw materials, the composition of reaction gas, the flow rate of reaction gas, the reaction pressure, and the reaction temperature
  • the residence time distribution in each section in the reactor becomes a constant value, and by repeating a number of experiments, the specific operating conditions of a specific fluidized bed are obtained. It is possible to grasp the transfer state in advance.
  • This distribution of residence time means that in a multi-zone fluidized bed reactor, the raw material in each zone is composed of combinations of different furnace times, but this combination will be constant once the above operating conditions are determined For example, 25% of raw materials in a certain section have a furnace time of 1 to 1.5 hours, and 50% have a furnace time of 1.5 to 2 hours. %, If the furnace time is “2 to 2.5 hours”, it is 25%, and this combination is called the residence time distribution. Therefore, if batch reaction data similar to the above is obtained by conducting experiments in advance on various types of iron ore raw materials, the residence time distribution in a specific fluidized bed reactor and the integral sum of the batch reaction data can be calculated. An iron ore raw material of a certain composition is charged into a fluidized bed reactor with a known transfer condition.
  • the composition of the delivery product can be predicted. Therefore, by selecting operating conditions for the first reaction operation and the second reaction operation so that the predicted composition of the output product falls within the range of the target product composition, an eye anchor product having the target quality can be obtained. It becomes possible to obtain.
  • the quality can be controlled. It is a state value that can be detected in a sufficiently short time with respect to the response time as an effective condition for controlling the quality of the operating conditions, and has a large sensitivity (gain) for correcting the operating condition.
  • the following is an example of the method reached by the inventors while considering the use of a state value with good convergence.
  • a method for estimating the reduction ratio by measuring the magnetic permeability is preferred because it is simple and quick. That is, if the relationship between the composition of the iron carbide product and the magnetic permeability is determined in advance, an effective measure can be taken by using this relationship as a test curve.
  • the reaction from the reactor outlet of the first reaction operation or the intermediate position of the reactor of the first reaction operation to the outlet (to control the degree of partial reduction of the exit product at the reactor outlet of the first reaction operation) Measure the permeability of the solid sample in the compartment or (for controlling the product quality (IC conversion) after the second reaction operation) the reactor outlet of the second reaction operation or the reactor of the second reaction operation Measure the magnetic permeability of the solid sample in the reaction zone from the middle position to the outlet of the sample. If the magnetic permeability is outside the preferred range on the calibration curve, change the reaction gas composition or reaction temperature as follows. By doing so, it is possible to obtain an eye anchor product having a target composition.
  • the composition ratio of hydrogen can be changed by adding methane to the reducing gas in the first reaction operation, the reduction rate in the first reaction operation and the reaction time until reaching a predetermined reduction rate are controlled. Control becomes possible.
  • the composition ratio of hydrogen and methane can be changed by adding hydrogen or methane to the reduction and carbonization gas in the second reaction operation, the carbonization rate in the second reaction operation (eye anchor by (Conversion rate to carbon) and the reaction time until the carbonization rate reaches a predetermined value.
  • the carbonization rate in the second reaction operation eye anchor by (Conversion rate to carbon
  • the reaction time until the carbonization rate reaches a predetermined value if a sample is obtained from the middle position of the reactor in each reaction operation, the amount of change in magnetic permeability is large, and the operation state can be clearly understood.
  • early detection of the quality of the reactor outlet can be expected to enhance the effect of quality control.
  • the carbonization rate of the final product and the form and amount of the residual iron oxide can be controlled.
  • the reaction temperature of the first reaction operation is preferably from 550 to 75 ° C. If the reaction temperature is lower than 550 ° C, the reaction rate is low and the reaction time becomes longer. Meanwhile, in the reduction reaction of hematite, sintering occurs in the range of about 600 ° C. to about 700 ° C., and the reaction time may be prolonged. For this reason, conventionally, the reaction is carried out at about 590 ° C. which is lower than this temperature range.However, the present invention divides the reduction reaction into two steps and does not increase the reduction rate in the first reaction operation so much. Even if the value is increased, sintering does not occur, and no adverse effect such as a reduction in the reaction rate occurs.
  • the reaction temperature is reduced in terms of shortening the reaction operation time. Slightly higher, approx. C is preferable.
  • parts other than the eye anchor in the product eye anchor are the cheapest. It may be desirable to have a constant F e 3 ⁇ 4.
  • the reaction is carried out at a temperature of about 575 ° C or less where there is no slightly unstable FeO, for example, at a temperature of about 550 to 570 ° C in the second reaction operation, and the residual iron content Can be reduced to F e : l ⁇ 4 only.
  • the amount of H 20 in the reaction gas increases as the reduction reaction and the carbonization reaction progress. Therefore, if the change in the amount of H 2 ⁇ in the reaction gas is known, it is possible to detect the degree of progress of the reaction, and the amount of H 2 O in the reaction gas can be determined by, for example, online gas chromatography. By measuring the reaction, the degree of progress of the reaction can be detected based on the H 2 O value, and the various actions described above can be taken to control the progress of the reaction.
  • the reaction may proceed faster than Table 1 or may be slower than Table 1.
  • the term “if the reaction is fast” means that the composition after 1.25 hours in Table 1 is set as the initial value and the reaction for 2 hours is completed in 1 hour.
  • “Case” means the case where it takes 1 hour to react for 0.5 hour, with the composition after 1.25 hours in Table 1 as the initial value.
  • this Table 2 can also be used to detect the degree of progress of the reaction.
  • FIG. 2 is a schematic configuration diagram of an iron carbide manufacturing apparatus suitable for carrying out the method of the present invention.
  • This apparatus is composed of a first reaction operation part 20 for performing a partial reduction reaction of the iron-containing raw material for iron making, and a second reaction operation part 40 for performing the remaining reduction reaction and carbonization reaction.
  • the first reaction operation part 20 is composed of lines 21 and 22, compressor 23, line 24, heat exchanger 25, line 26, heater 27, line 28, and fluidized bed.
  • the reactor 29, the line 30, the heat exchanger 25, the line 31, the scrubber 32, and the line 33 form a loop.
  • reaction gas is supplied via 28, and from the top gas outlet of the fluidized bed reactor 29, the pipe 30, the heat exchanger 25, the pipe 31, the scrubber 32, the pipe 33, and the pipe
  • a loop is formed in which the first reaction gas circulates in the order of the passage 21 and the pipe 22 in order.
  • a pressure drop occurs while the gas circulates in each of these devices, but the pressure is increased to an appropriate level by the compressor 23, so that the reaction gas can circulate in the loop.
  • the reaction gas flowing into the fluidized bed reactor 29 exchanges heat with the gas after the reaction flowing out of the reactor 29 by the heat exchanger 25, and furthermore, the heater 27 And the temperature is raised to an appropriate reaction temperature.
  • the scrubber 32 is composed of a hollow main body 34, a pipe 35 for injecting water into the gas, and a pipe 36 for discharging water in the main body 34, and flows out of the reactor 29.
  • the gas is cooled and the water vapor in the gas is condensed and removed.
  • a gas having a predetermined composition is supplied to the circulation path by a pipe 37 connected to a connecting portion between the pipes 21 and 22.
  • a predetermined amount of gas can be discharged from the circulation path by the pipe 38 connected to the connection between the pipe and the pipe 21.
  • the flow of the feed (raw material) to the reactor is such that powdered iron ore is fed to the fluidized bed reactor 29 of the first reaction operation part 20 via the pipeline 60 from the top thereof in a steady state.
  • the fine iron ore after the partial reduction reaction is completed is fed to the fluidized bed reactor 29 from the lower part of the fluidized bed reactor 29 via the pipe 61 in turn, and the fluidized bed reactor 49 of the second reaction operation part 40 Continuously supplied to The remaining reduction reaction and carbonization reaction are performed in the fluidized bed reactor 49, and the converted eye anchor hydride is continuously taken out through the pipeline 62.
  • the first reaction operation is performed using a reducing gas mainly composed of hydrogen since only the reduction reaction needs to be considered. For this reason, the hydrogen concentration is high, the reaction speed of the reduction reaction is increased, and the reaction time can be reduced as compared with the conventional technology.
  • the second reaction operation the reduction reaction and the carbonization reaction must be considered, and the second reaction operation is performed using a mixed gas of hydrogen and methane.
  • the reduction reaction partially proceeds in the first reaction operation, the carbonization reaction can be emphasized. Therefore, by increasing the methane concentration, the reaction speed of the carbonization reaction can be increased and the reaction time can be shortened.
  • a certain amount of methane is added to the reducing gas mainly composed of hydrogen in the first reaction operation to lower the hydrogen concentration, thereby controlling the reduction reaction rate.
  • the second reaction operation By adjusting the methane concentration of the reaction gas, the reaction speed of carbonization can be controlled, and the reaction time during which the amount of free carbon deposited is small and a predetermined carbonization ratio is obtained can be controlled.
  • FIG. 3 is an enlarged view of the gas sampling section of the fluidized bed reactor.
  • the suction section 71 is connected to the side wall 72 of the fluidized bed reactor by the fluidized bed reactor. It is installed diagonally below the top 74 of the container wall 73.
  • the slope (angle ⁇ ) of the suction pipe 75 inserted into the suction section 71 be sufficiently larger than the angle of repose of the feed (raw material).
  • the intake air volume is small and the flow velocity does not involve fine powder of 10 ⁇ m or more.
  • the distance L between the valve 76 attached to the suction pipe 75 and the suction section 71 be relatively long so that the temperature of the valve 76 is reduced by heat radiation therebetween.
  • a glass wool finoletor 78 is installed in the dust separator 77 provided on the rear surface of the valve 76 to remove dust.
  • a valve 79 is attached to the bottom of the dust separator 77, and a dust pot 80 is provided. Further, it is preferable to extract about 10 Oml.Zmin. Of gas from the valve 81 provided at the top of the dust separator 77. In order to prevent the generation of drain, it is preferable to put the dust separator 77 and its attached valve in a constant temperature box.
  • the gas sampling device configured as described above, (in order to control the degree of partial reduction of the product at the outlet of the reactor at the first reaction operation), the gas was supplied from the inlet to the outlet of the reactor at the first reaction operation.
  • An exhaust gas sample is taken from each section from the inlet to the final section of the outlet, and the composition of these gases is measured by gas chromatography, etc. If the composition is out of the preferred range, control the product quality (IC conversion rate) by changing the gas composition of the first and second reaction operations as described above. Can be.
  • the present invention is configured as described above, it is suitable as a device for obtaining an eye anchor product having a target composition when manufacturing an eye anchor by a two-stage reaction operation. are doing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Description

明 細 書 アイアンカーバイ ド製造プロセスの運転管理方法 〔技術分野〕
本発明は、 アイアンカーバイ ド (F e 3 C ) を主成分とする 製鉄、 製鋼用の原料、 例えば電気炉等に用いる製鋼原料に好適 なアイアンカーバイ ドを製造する際の適正操業条件の設定方法 に関するものである。
〔背景技術〕
一般的に鋼の製造は、 高炉により鉄鉱石を銑鉄に転化し、 そ の後、 平炉または転炉などによ り銑鉄を鋼に転化する工程から なる。 このよ うな伝統的な製法は、 必要なエネルギー、 設備規 模およびコス ト等が大きなものになるため、 小規模の製鋼には- 従来、 直接製鋼によ り鉄鉱石を製鋼炉原料に転化し、 この製鋼 炉原料を電気炉等によ り鋼に転化する工程からなる方法が採用 されている。 かかる直接製鋼には、 鉄鉱石を還元鉄に転化する 直接還元法があるが、 この方法で製造される還元鉄は反応活性 が強く、 大気中の酸素と反応して発熱するため、 輸送、 貯蔵に は不活性ガスによるシール等の手当が必要となる。 このため、 反応活性が低く、 容易に輸送、 貯蔵が可能で、 比較的高パーセ ンテージの鉄 (F e ) を含有するアイアンカーバイ ド ( F e 3 C ) 力 近年、 電気炉等による製鋼原料と して使用されつつあ る。
さらに、 アイアンカーバイ ドを主成分とする鉄鋼原料は、 輸 送 · 貯蔵が容易であるばかりでなく、 鉄原子と化合している炭 素が製銑あるいは製鋼炉の燃料源となる他、 製鋼炉内では反応 を促進する微細な気泡の発生源となる利点もある。 このよ うな こ とから、 アイカンカーバイ ドを主成分とする製鉄、 製鋼用原 料は近年特に注目 されている。
かかるアイアンカーバイ ドを製造する方法は、 従来、 鉄鉱石 を粉体にして流動層式反応器等に充填し、 還元ガス (水素ガス) と炭化ガス (例えばメ タンガスなど) の混合ガスと所定温度で 反応させることで、 鉄鉱石内の鉄酸化物 (へマタイ ト ( F e 2 O 3) 、 マグネタイ ト ( F e 34) 、 ウスタイ ト (F e O) ) を単一操作 (一つの反応器内に還元および炭化ガスを同時に導 入して行う操作をいう) で還元および炭化させるものである。 この種の先行技術と しては、 例えば、 特表平 6 — 5 0 1 9 8 3 号公報に記載のものがある。
このアイアンカーバイ ドを製造するプロセスは、 以下の総括 反応式で表すことができる。
3 F e 203 + 5 H 2+ 2 C H4→ 2 F e 3C + 9 H20
ところが、 この単一操作は、 還元反応と炭化反応の双方を併 せて考慮しなければならず、 各反応に適した反応ガス組成や反 応ガス温度を採用することができないので、 結果と して反応時 間 (アイアンカーバイ ドに転化するに要する時間) が長く なり、 従来の方法に比して一定量の製鋼原料を得るのに長時間必要に なる。 このため、 単位時間当たりの生産量を増加させるために は設備規模を拡大する必要があるという欠点がある。
そこで、 本発明者は、 各操作ごとに各種のアクショ ンが可能 で、 プロセスと してのフレキシビリティを増し、 その結果反応 時間の短縮化と反応ガス使用量の低減を図ることができるアイ アンカーバイ ドの製造方法及び製造装置についての新規な技術 に関する特許出願をした (特願平 8 — 3 0 9 8 5号) 。 この発 明は、 『へマタイ トを主成分とする鉄鉱石の還元反応の一部を 行う第一反応操作の後に、 残りの還元反応と炭化反応を行う第 二反応操作を進めることを特徴とするアイアンカーバイ ドの製 造方法』 に関するものであり、 従来公知のアイアンカーバイ ド の製造方法に見られる不都合な点をすベて解決したものであつ て画期的なアイアンカーバイ ドの製造方法である。
しかし、 かかる 2段の反応操作でアイアンカーバイ ドを製造 した場合にも、 必ずしも目標とする組成のアイアンカーバイ ド 製品が得られないことがある。
というのは、 アイアンカーバイ ドの生成には、 反応ガス組成、 反応温度、 反応圧力などの多く の反応パラメーターが関与して おり、 これらの反応パラメーターの小さな変化によって好ま し く ない製品 (例えば、 アイアンカーバイ ドへの転化率が低いも の) が得られることがある。 また、 反応パラメーターが一定範 囲から外れると、 フリーカーボンが発生することもある。
そこで、 アイアンカーバイ ド製品の組成を一定範囲にコン ト ロールするために、 得られた製品の組成が許容できるものであ るかどうかをメスバウアー分析法によってチェック しながら、 も しその組成が許容範囲になければ、 反応パラメーターを変化 させることを特徴とするアイアンカーバイ ド製品の品質制御方 法が提案されている。 (例えば、 米国特許 5 0 7 3 1 9 4、 P C T / U S 9 1 / 0 5 1 8 8参照) 。
しかし、 メスバウアー分析機器は精度を上げよ う とすると、 測定に時間がかかる ( 1〜4時間) という欠点がある。 従って、 時々刻々 と変化する反応器内の状況に応じた適切なアクショ ン がとれないという問題がある。
本発明は従来の技術の有するこのよ うな問題点に鑑みてなさ れたものであって、 その目的は、 2段の反応操作でアイアン力 一バイ ドを製造する方法において、 目標とする組成のアイアン カーバイ ド製品を得るための製造プロセスの運転管理方法を提 供することにある。
〔発明の開示〕
上記目的を達成するために本発明は、 第一反応操作後の還元 率と第二反応操作後のアイアンカーバイ ド化率 (以下 「 I C化 率」 という) とのあいだには相関関係があるとの知見に基づい て、 第一反応操作後の還元率を変化させることによ り第二反応 操作後の I C化率を調節することを特徴と している。
すなわち、 本発明は、 各種製鉄用含鉄原料を一部還元する第 一反応操作の後に残りの還元と炭化を行う第二反応操作を進め ることによってアイアンカーバイ ドを製造するプロセスを制御 する方法であって、 第一反応操作の反応炉出口の固体サンプル を採取してその固体サンプルの還元率を測定し、 第一反応操作 の還元率を変化させることのできるパラメータを調節すること によ り、 第二反応操作後の I C化率を調節することを特徴と し ている。
一般的に、 第一反応操作の還元率を低くすれば第二反応操作 におけるアイアンカーバイ ドの生成時間が長く なり、 一方、 第 一反応操作の還元率を高くすれば第二反応操作におけるアイァ ンカーバイ ドの生成時間が短く なる。 すなわち、 所定の製鉄用 含鉄原料を 2段の反応操作で還元 · 炭化する場合、 反応時間を 一定とすると、 第一反応操作の還元率を低くすれば第二反応操 作後の I C化率が低く なり、 一方、 第一反応操作の還元率を高 くすれば第二反応操作後の I C化率が高く なる。 従って、 上記 したよ うに、 第一反応操作の還元率を変化させることのできる パラメーター、 すなわち、 反応温度、 反応圧力、 ガス組成、 流 動層の層高などを調節することによ り、 第二反応操作後の I C 化率を制御することができる。 固体サンプルの還元率の測定方 法と しては、 固体の組成を分析する方法が確実であるが、 X線 回析等は測定に時間がかかるので、 透磁率と還元率の関係を予 め求めておき、 この関係に基づいて透磁率を測定することによ り簡便且つ迅速に還元率を求める方法が好ま しい。
また、 本発明は、 第一反応操作の反応炉出口の固体サンプル を採取する代わり に第一反応操作の反応炉の中間から最終区画 までの間において固体サンプルを採取し、 その固体サンプルの 還元率と第一反応操作後の還元率との相関関係に対応して第一 反応操作の還元率を変化させることのできるパラメーターを調 節することによ り、 第二反応操作後の I C化率を調節すること を特徴と している。 第一反応操作の反応炉の内部が多区画に仕 切られている場合には、 上記したよ うに、 第一反応操作の反応 炉の中間から最終区画までの間において固体サンプルを採取し てその還元率を測定すれば、 投入含鉄原料の条件変化 (例えば、 鉄鉱石中の水分の変動による予熱温度の変化) を早期に検知で き、 上記固体サンプルの還元率と第一反応操作後の還元率との 相関関係に対応して第一反応操作の反応炉の運転条件 (反応温 度、 反応圧力、 流動層の層高など) を適宜調整して第一反応操 作後の還元率を変化させることによ り、 第二反応操作後の I C 化率を制御することができる。
また、 本発明は、 第一反応操作の反応炉出口の固体サンプル を採取する代わり に第二反応操作の反応炉の中間から最終区画 までの間において固体サンプルを採取し、 その固体サンプルの I C化率と第二反応操作後の I C化率との相関関係に対応して 第二反応操作後の I C化率を変化させるこ とのできるパラメ一 ターを調節することにより、 第二反応操作後の I C化率を調節 することを特徴と している。 第二反応操作の反応炉の内部が多 区画に仕切られている場合には、 上記したよ うに、 第二反応操 作の反応炉の中間から最終区画までの間において固体サンプル を採取してその I C化率を測定すれば、 投入含鉄原料の条件変 化 (例えば、 鉄鉱石中の水分の変動による予熱温度の変化) を 早期に検知でき、 上記固体サンプルの I C化率と第二反応操作 後の I C化率との相関関係に対応して第二反応操作の反応炉の 運転条件 (反応温度、 反応圧力、 流動層の層高など) を適宜調 整することによ り、 第二反応操作後の I C化率を制御すること ができる。
なお、 反応炉の中間より前の区画 (反応炉の入口に近い部分) では反応が一様に進行しないため、 採取した固体サンプルの組 成の変動が大きく、 固体サンプルの採取位置と して適当でない。 そこで、 固体サンプルの採取位置と しては、 上記したよ うに、 反応炉の中間から最終区画までの間において採取するのが好ま しい。
さらに、 固体サンプルの還元率を測定する代わり に、 反応炉 の出口で混合後の出口ガス組成を測定して入口ガス組成と比較 することによ り固体の反応がどの程度進行しているかを判断す ることも可能である。 そこで、 本発明は、 第一反応操作の反応 炉出口の固体サンプルを採取する代わり に第一反応操作の反応 炉の最初から最終区画までの間における区画毎の排気ガスサン プルを採取し、 その排気ガスのガス組成と第一反応操作後の還 元率との相関関係に対応して第一反応操作の反応炉のガス組成 を調節することによ り、 第二反応操作後の I C化率を調節する ことを特徴と している。 第一反応操作の反応炉の内部が多区画 に仕切られている場合には、 各反応区画のガス組成を測定する ことによ り各区画の反応の変化を知る方法が好ましいので、 上 記したよ うに、 各反応区画の排気ガスの組成を測定することに よ り固体の反応の進行程度を精度よく推測し、 反応炉内部の異 常を早期に検知することができるので、 上記排気ガスの組成と 第一反応操作後の還元率との相関関係に対応して第一反応操作 の反応炉のガス組成を適宜調整して第一反応操作後の還元率を 変化させることによ り、 第二反応操作後の I C化率を制御する ことができる。
そして、 本発明は、 第一反応操作の反応炉出口の固体サンプ ルを採取する代わり に第二反応操作の反応炉の最初から最終区 画までの間における区画毎の排気ガスサンプルを採取し、 その 排気ガスのガス組成と第二反応操作後の I C化率との相関関係 に対応して第二反応操作の反応炉のガス組成を調節することに よ り、 第二反応操作後の I c化率を調節することを特徴と して いる。 第二反応操作の反応炉の内部が多区画に仕切られている 場合には、 上記したよ うに、 各反応区画のガス組成を測定する ことにより固体の反応の進行程度を精度よく推測し、 反応炉内 部の異常を早期に検知することができるので、 上記排気ガスの 組成と第二反応操作後の I C化率との相関関係に対応して第二 反応操作の反応炉のガス組成を適宜調整することによ り、 第二 反応操作後の I C化率を制御することができる。
以上のよ うに本発明によれば、 流動層式反応器によるアイァ ンカーバイ ドの製造において、 部分的な還元反応のあとに、 残 りの還元反応と炭化反応を行う 2段反応操作を適正操業条件の 下で行う ことができるので、 目標とする組成のアイアンカーバ ィ ド製品を効率的に製造することができる。
また、 本発明によれば、 製品組成が目標製品組成の範囲を外 れている場合、 流動層式反応器内の状況に対応して適正な操業 条件を選択する方法であるから、 流動層式反応器の操業管理が 容易となる。 さらに、 本発明によれば、 流動層式反応器のみならず、 矩形 (十字流) 移動床式反応器に適用しても、 同上効果が期待でき る。 〔図面の簡単な説明〕
第 1図は、 本発明の鉄カーバイ ドの製造方法を実施する実験 装置の一例を示す概略構成図である。
第 2図は、 本発明の鉄カーバイ ドの製造方法を実施する鉄力 一バイ ドの製造装置の実施例を示す概略構成図である。
第 3図は、 流動層式反応器のガスサンプリ ング部を拡大して 示す図である。
〔発明を実施するための最良の形態〕
以下に本発明の実施例を図面を参照しながら説明する。
( 1 ) 実験装置
本発明の鉄カーバイ ドの製造方法を実施するための実験装置 の一例は第 1図に示すよ うに、 流動層式反応器 1 とその周辺機 器からなる。 この流動層式反応器 1 は略円筒状であり、 外部に 電気ヒータ 2を設けて所定の温度に設定可能にした。 なお、 当 該流動層式反応器 1 の主要部分は 5 0 Aのパイプを用いた。 ま た、 反応器 1 内の温度を検知するため、 底部からそれぞれ 1 2 7 mm、 1 8 7 mm, 4 4 2 mm , 6 9 7 mm , 1 7 0 7 mm, および塔 頂部に温度検知センサ 3 a、 3 b、 3 c、 3 d、 3 e、 3 f を
H けた。
流動層式反応器 1 の上部近傍とホッパー 4 とは、 前後に弁 5 を配した口 ックホッパー 6 を介して管路 7で接続し、 ホッパー 4内の粉状のフィー ド (へマタイ ト (F e 2〇:i ) を主成分とす る鉄鉱石原料) を加圧状態の流動層式反応器 1 内へ流入可能に した。 一方、 流動層式反応器 1 の底部近傍には冷却器 8 を付設 した管路 9を接続し、 反応器 1 の内部のフィー ド (原料) を冷 却して取り出し可能にした。
また、 流動層式反応器 1 の底部とガスホルダー 1 0 とは管路 1 1、 1 2を介して接続し、 ガスホルダー 1 ◦内の所定の組成 に調整した反応ガスを流動層式反応器 1 に流入可能にした。 な お、 この管路 1 1、 1 2の間にはサチユ レータ 1 3を設け、 反 応ガスの水分を飽和させた。
一方、 流動層式反応器 1 の上部近傍には、 直列に管路 1 4、 1 5、 1 6を接続し、 反応後の排気ガスを図示していない焼却 器に導いた。 また、 管路 1 4、 1 5間に設けた集塵器 1 7、 お よび管路 1 5のフィルター 1 8によ り、 排ガスに含まれるフィ ー ドの粉塵を取り除いた。 また、 管路 1 5に設けたガスクーラ 一 1 9によ り排ガスを冷却し、 凝縮した水を ドレンセパレータ 1 9 aで分離可能にした。
( 2 ) 実験条件および結果
水素を主とする還元ガスと接触反応させる操作 (第一反応操 作) を行い、 その後に水素およびメタンを主とする還元ガスと 炭化ガスの混合ガス と接触反応させる操作 (第二反応操作) を 行う ことによ り、 へマタイ ト ( F e 23) を主に含む鉄鉱石を 鉄カーバイ ドに転化させる実験、 すなわち、 部分的な還元反応 と、 残りの還元反応および炭化反応とに分けた本発明に係る実 験を行った。 鉄鉱石の組成は、 F e 2〇 3 : 9 7. 3重量。 /。、 F e 〇 : 1. 4重量%、 F e : 1. 3重量。 /。であり、 その粒径は 1. Omm以下であり、 流動層式反応器 1 に 3. 5 2 kg充填した。 また、 流動層式反応器 1内の圧力は 3〜 4 kgfZcm2G (Gはゲ 一ジ圧を示す) 、 温度は 5 9 0〜 6 5 0 °Cである。 フィード ( 原料鉄鉱石) および反応ガスの組成の変化は以下の表 1 に示す 通りである。 なお、 表 1 において、 反応ガス組成の変化を示す (出側一入側) とは、 オンライ ンガスク ロマ トグラフィーによ り測定した 「 (その期間中における流動層式反応器 1の出側の 平均値) (その期間中における流動層式反応器 1 の入側の平 均値) 」 を示す。 また、 表 1 において、 初期とは第一反応操作 を意味し、 中期と後期は第二反応操作を意味する。
【表 1】 初期 中期 後期
O 0. 5 h r 1 . 2 5 h r 2. 25 h r 5. 25 h r 6. 2 5 h r r e aリ 3 0. 2 1 . 4 0. 6 0. 0 0. 0 料
r ejリ u . O 59. 2 1 8. 8 1 3. 0 5. 8 5. 1 製
□ F e 0 1 . 4 2 9. 5 34. フ 1 9. 6 2. 6 1 . フ 組
成 F e 1 . 3 1 1 . 1 45. 1 22. 6 0. 0 0. 0
0. 0 0. 0 0. 0 44. 2 91 . 6 93. 2
(出側一入側) (出側一入側) (出側一入側)
Figure imgf000013_0001
応 C H4 + 1 . 8 - 0. 3 - 3. 1
ス Hi - 9. 9 -4. 3 + 2. 9
成 Ha.O + 9. 1 + 4. 3 + 3. 0
A
(出側一入側) (出側一入側) (出側一入側)
90 Nm3ノ h r 反
J'、 CH4 + 1. 1 一 4. 8 - 2. 0
ス Hi - 1 1 . 5 - 1 . 8 + 1 . 1
成 H O + 1 0. 9 + 6. フ + 3. 1
B 表 1 に明らかなよ うに、 第一反応操作において、 フィー ドは 一部還元され、 第二反応操作において残りの還元と炭化が行わ れており、 アイアンカーバイ ドの製品と して適当な転化率 9 3 %以上になるまでの必要な時間は約 6 . 2 5時間である。 すな わち、 表 1 に示す組成のフィー ド (原料) を、 圧力 = 3〜 4 kgf / cm 2 G、 温度 = 5 9 0〜 6 5 0 °Cで、 第一反応操作を水素を 主とする還元ガスによ り行い、 第二反応操作を水素およびメ タ ンを主とする還元ガスと炭化ガスの混合ガスによ り行った場合、 反応開始よ り 6 . 2 5時間後において、 アイアンカーバイ ドへ の転化率が 9 3 . 2 %のアイアンカーバイ ド製品を得ることが できると予測される。 (以下 「バッチ反応データ」 という) 一方、 特定の流動層式反応器について、 原料の供給量と、 原 料の組成と、 反応ガスの組成と、 反応ガスの流量と、 反応圧力 と、 反応温度等の操業条件が所定の値に設定された場合、 反応 器内の各区画における滞留時間分布は一定値となり、 多数の実 験を重ねることによ り、 特定の流動層の所定の操業条件下にお ける移送状態を予め把握することができる。 この滞留時間分布 とは、 多区画からなる流動層式反応炉において、 各区画におけ る原料は在炉時間の異なるものの組み合わせから構成されるが、 この組み合わせは上記操業条件が決まれば一定となるものであ つて、 例えば、 ある区画における原料が、 在炉時間が 「 1 〜 1 . 5時間」 のものが 2 5 %、 在炉時間が 「 1 . 5〜 2時間」 のも のが 5 0 %、 在炉時間が 「 2〜 2 . 5時間」 のものが 2 5 %で あるとすれば、 この組み合わせを滞留時間分布という。 従って、 多種類の鉄鉱石原料について予め実験を行って上記と同様のバ ツチ反応データを得ておけば、 特定の流動層式反応器における 滞留時間分布と このバッチ反応データの積分和と して、 移送状 態が既知の流動層式反応器に、 ある組成の鉄鉱石原料を装入し た場合、 出側製品の組成を予測することができる。 そこで、 出 側製品の予測組成が目標製品組成の範囲に含まれるよ うに第一 反応操作と第二反応操作の操業条件を選択することによ り、 目 標の品質のアイアンカーバイ ド製品を得ることが可能になる。
すなわち、 目標とする品質の範囲を変更しょ う とするとき、 あるいは、 その範囲から偏倚したとき、 上記操業条件 (原料の 供給量と、 原料の組成と、 反応ガスの組成と、 反応ガスの流量 と、 反応圧力と、 反応温度等) を修正することによ り、 品質の 制御が可能になる。 操業条件のう ち品質の制御に有効なものと して、 応答時間に対して十分短い時間で検出できる状態値であ つて、 操業条件の状態値の修正に大きな感度 (ゲイン) を有す るもので、 収斂性のよい状態値を採用することなどを考慮しつ つ、 発明者等が到達した方法の例を以下に示す。
固体サンプルの還元率の測定方法と しては透磁率を測定する ことによ り還元率を推定する方法が簡便且つ迅速であって好ま しい。 すなわち、 鉄カーバイ ド製品の組成と透磁率との関係を 予め求めておけば、 この関係を検定曲線と して利用して、 効果 的な対策をとることができる。 例えば、 (第一反応操作の反応 炉出口における出側製品の部分還元度合を制御するために) 、 第一反応操作の反応炉出口または第一反応操作の反応炉の中間 位置から出口に至る反応区画における固体サンプルの透磁率を 測定するか、 あるいは (第二反応操作後の製品の品質 ( I C化 率) を制御するために) 第二反応操作の反応炉出口または第二 反応操作の反応炉の中間位置から出口に至る反応区画における 固体サンプルの透磁率を測定し、 この透磁率が検定曲線上の好 ま しい範囲を外れている場合、 反応ガス組成または反応温度を それぞれ以下のよ うに変更させることによ り、 目標とする組成 のアイアンカーバイ ド製品を得ることができる。 すなわち、 第一反応操作の還元ガスにメ タンを加えることに よ り水素の組成比率を変化可能にすることから、 第一反応操作 における還元率および所定の還元率になるまでの反応時間の制 御が可能になる。 また、 第二反応操作における還元および炭化 ガスに水素またはメ タンを加えることによ り、 水素とメ タンの 組成比率を変化可能にすることから、 第二反応操作における炭 化率 (アイアンカーバイ ドへの転化率) および所定の炭化率に なるまでの反応時間の制御が可能になる。 この場合、 各反応操 作の反応炉の中間位置からサンプルを得れば、 透磁率の変化量 が多く、 明確に操業状態を把握することができる。 また、 反応 炉出口の品質を早く検知することで、 品質制御の効果が高まる ことが期待できる。 さらに、 以上のよ うな反応操作によ り、 最 終製品の炭化率、 残存酸化鉄の形態と量の制御が可能になる。
また、 第一反応操作の反応温度は、 5 5 0〜 7 5 0 °Cとする のが好ましい。 5 5 0 °C未満では反応速度が低く、 反応時間が 長く なるため、 一方、 7 5 0 °Cを超える場合、 反応器の耐熱構 造上問題が生じるからである。 ところで、 へマタイ トの還元反 応は、 約 6 0 0 °Cから約 7 0 0 °Cの範囲でシンタ リ ングが発生 し、 反応時間が長く なる恐れがある。 そのため、 従来はかかる 温度範囲以下の約 5 9 0 °Cで反応させているが、 本発明は還元 反応を 2工程に分け、 第一反応操作における還元率をあま り高 く しないため、 反応温度を高く してもシンタ リ ングが発生せず、 反応速度の低下等の弊害が生じない。
また、 第二反応操作は、 残り の還元と炭化を同時に推進する もので、 還元のみの場合よ り もシンタ リ ングが発生しにくいの で、 反応操作時間の短縮を図る点からは反応温度をやや高めと し、 約 6 1 0〜 7 5 0。Cとするのが好ま しレ、。 一方、 製品アイ アンカーバイ ド中のアイアンカーバイ ド以外の部分は、 最も安 定な F e 3〇 4にすることが望まれることがある。 その場合、 や や不安定な F e Oが存在しない約 5 7 5 °C以下、 例えば、 第二 反応操作の温度を 5 5 0〜 5 7 0 °C程度にして反応を行い、 残 留鉄分を F e :l4のみにすることも可能である。
また、 上記した総括反応式に示すよ うに、 還元反応および炭 化反応が進行すれば、 反応ガス中の H 2 0 の量が増加するもの と思われる。 そこで、 反応ガス中の H 2〇 の量の変化を知れば、 反応の進行程度を検知することが可能であり、 反応ガス中の H 2 O量を、 例えば、 オンライ ンガスク ロマ トグラフィー法によ り 測定すれば、 その H 2 O 値によ り反応の進行程度を検知し、 反 応の進行をコン トロールするために上記した様々なァクショ ン をとることができる。
ところが、 鉄鉱石の種類によっては、 以下の表 2に示すよ う に、 表 1 よ り反応が速く進んだり、 逆に遅く なる場合がある。 表 2において、 「反応が速い場合」 とは、 表 1 の 1 . 2 5時間 後の組成を初期値と して、 2時間分の反応を 1時間で済ませた 場合をいい、 「反応が遅い場合」 とは、 同じく表 1 の 1 . 2 5 時間後の組成を初期値と して、 0 . 5時間分の反応に 1 時間を 要した場合をいう。
【表 2】
反応が速い場合 反応が遅い場合 反応初期 反応初期 原 1. 4— 0. 0 1. 4→ 1. 0 料
F e304 1 8. 8→ 1 0. 3 1 8. 8→ 1 4. 9 製
F e O 34. フ一 1 0. 6 34. フ一 26. 3 組
成 F e 45. 1 -→ 0. 0 45. 1→ 35. 7
F e3C 0. 0—79. 1 0. 0— 22. 1
(出側一入側) (出側一入側)
268 Nm5/h r 反
応 CH+ —4. 8 —3. 6 ガ
ス Hi ― 0. 3 一 0. 2 組
成 H^O + 5. 0 + 3. 8
C
(出側一入側) (出側一入側)
90 Nm3/h r 反
応 CH4 -8. 1 -4. 9 ガ
ス Hi + 0. 6 + 0. 2 組
成 Hj.O + 9. 1 + 5. 1
D この表 2についても、 表 1 と同様に、 反応の進行程度の検知 に利用することができる。
( 3 ) 製造装置の概要
第 2図は、 本発明の方法を実施するに好適な鉄カーバイ ドの 製造装置の概略構成図である。 この装置は、 製鉄用含鉄原料の 部分的な還元反応を行う第一反応操作部分 2 0 と、 残りの還元 反応および炭化反応を行う第二反応操作部分 4 0 とから構成さ れる。 第一反応操作部分 2 0は、 管路 2 1 、 2 2、 圧縮機 2 3、 管路 2 4、 熱交換器 2 5、 管路 2 6、 加熱器 2 7、 管路 2 8、 流動層式反応器 2 9、 管路 3 0、 熱交換器 2 5、 管路 3 1、 ス クラバ 3 2、 および管路 3 3がループを形成している。 すなわ ち、 流動層式反応器 2 9の底部ガス入口に、 管路 2 2、 圧縮機 2 3、 管路 2 4、 熱交換器 2 5、 管路 2 6、 加熱器 2 7、 管路 2 8を経て反応ガスが供給され、 流動層式反応器 2 9の頂部ガ ス出口から、 管路 3 0、 熱交換器 2 5、 管路 3 1、 スクラバ 3 2、 管路 3 3、 管路 2 1、 管路 2 2へ順に流れて第一反応ガス が循環するループが形成されている。 これらの各装置をガスが 循環するあいだに圧力低下を生じるが、 圧縮機 2 3によ り適当 な大きさの圧力に昇圧されるので、 反応ガスはループ内を循環 することが可能である。 また、 流動層式反応器 2 9に流入する 反応ガスは、 熱交換器 2 5によ り、 反応器 2 9から流出する反 応終了後のガスと熱交換し、 さ らに加熱器 2 7によ り加熱され、 適当な反応温度に昇温される。 また、 スクラバ 3 2は、 中空の 本体 3 4、 ガス中に水を噴射する管路 3 5、 および本体 3 4内 の水を排出する管路 3 6 よ り構成され、 反応器 2 9から流出し たガスを冷却し、 ガス中の水蒸気を凝縮させて除去するもので ある。 さらに、 管路 2 1 と 2 2 との連結部分に連結した管路 3 7によ り循環経路に所定の組成のガスを補給し、 また管路 3 3 と管路 2 1 との連結部分に連結した管路 3 8によ り循環経路か ら所定量のガスを排出する こ とができる。 この補給ガスおよび 排出ガスを調整することによ り、 反応器 2 9に流入する反応ガ スの組成を一定にし、 反応によ りガス組成が変化し反応速度が 低下することを防止することができる。
なお、 第二反応操作部分 4 0の反応ガスの流れも、 上記した 第一反応操作部分 2 0 と同様であるため、 共通する箇所に第一 反応操作部分 2 0の各番号に 2 0を加えた番号を付加して説明 を省略する。
また、 反応器へのフィー ド (原料) の流れは、 粉状にした鉄 鉱石を管路 6 0を介して第一反応操作部分 2 0の流動層式反応 器 2 9にその上部から定常的に供給し、 部分的な還元反応が完 了した粉状鉄鉱石は流動層式反応器 2 9の下部から管路 6 1 を 経て順次第二反応操作部分 4 0の流動層式反応器 4 9に連続的 に供給する。 この流動層式反応器 4 9で残りの還元反応と炭化 反応を行い、 転化したアイアンカーバイ ドが管路 6 2を通って 連続的に取り出される。
各操作で用いる反応ガスの組成については、 第一反応操作は 還元反応のみを考慮すればよいことから、 水素を主とする還元 ガスで行う。 このため水素濃度が大きく、 還元反応の反応速度 を速く し、 従来技術よ り も反応時間を短縮できる。 また、 第二 反応操作は還元反応および炭化反応を考慮しなければならず、 水素とメ タンの混合ガスで行う。 しかし、 第一反応操作で還元 反応が部分的に進行しているため、 炭化反応を重視することが できる。 従って、 メ タンの濃度を上げて炭化反応の反応速度を 上昇させ反応時間を短縮できる。 また、 第一反応操作の水素を 主とする還元ガスにメ タンを一定量付加して水素濃度を下げ、 還元の反応速度を制御することができる。 一方、 第二反応操作 の反応ガスのメ タン濃度を調整することで炭化の反応速度を制 御し、 遊離炭素の析出が少なく、 所定の炭化率となる反応時間 を制御することができる。
第 3図は、 流動層式反応器のガスサンプリ ング部を拡大して 示す図であり、 第 3図において、 吸入部 7 1 を流動層式反応器 の側壁 7 2に対して、 流動層式反応器の区画壁 7 3の頂部 7 4 よ り下位の位置に斜めになるよ うに取り付ける。 吸入部 7 1 内 に挿入する吸入管 7 5 の勾配 (角度 Θ ) はフィ ー ド (原料) の 安息角よ り十分大きくするのが好ま しい。 そして、 吸入風量は 少なめと し、 1 0 μ以上の微粉を伴わない流速とするのが好ま しい。 また、 吸入管 7 5に取り付けるバルブ 7 6 と吸入部 7 1 との間の距離 Lは比較的長く して、 その間の放熱によ りバルブ 7 6の温度を下げるよ うにするのが好ましい。 バルブ 7 6の後 面に設けるダス トセノ レータ 7 7内にはグラスウールのフィノレ ター 7 8を取りつけてダス トを除去する。 また、 ダス トセパレ ータ 7 7の底部にはバルブ 7 9を取りつけ、 ダス トポッ ト 8 0 を設ける。 また、 ダス トセパレータ 7 7の頂部に設けたバルブ 8 1 より 1 0 O m l . Z m i n. 程度のガスを取り出すのが好ま しい。 ドレンの発生を防止するため、 ダス トセパレータ 7 7及びその 付属バルブ等は恒温箱に入れるのが好ましい。
以上のよ うに構成されるガスサンプリ ング装置を用いて、 ( 第一反応操作の反応炉出口における出側製品の部分還元度合を 制御するために) 、 第一反応操作の反応炉の入口から出口の最 終区画までの各区画毎の排気ガスサンプルを採取するか、 ある いは、 (第二反応操作後の製品の品質 ( I C化率) を制御する ために) 、 第二反応操作の反応炉の入口から出口の最終区画ま での各区画毎の排気ガスサンプルを採取し、 これらガス組成を ガスク ロマ トグラフィ一法等で測定することによ り、 このガス 組成が好ま しい範囲を外れている場合は、 上記のよ うにして第 一反応操作と第二反応操作のガス組成を変更することによ り、 製品の品質 ( I C化率) を制御することができる。
〔産業上の利用の可能性〕
本発明は以上説明したよ うに構成されているので、 2段の反 応操作でアイアンカーバイ ドを製造する場合において、 目標と する組成のアイアンカーバイ ド製品を得るための装置と して適 している。

Claims

求 の 範 囲 . 各種製鉄用含鉄原料を一部還元する第一反応操作の後に残 り の還元と炭化を行う第二反応操作を進めることによってァ イアンカーバイ ドを製造するプロセスを制御する方法であつ て、 第一反応操作の反応炉出口の固体サンプルを採取してそ の固体サンプルの還元率を測定し、 第一反応操作の還元率を 変化させるこ とのできるパラメータを調節することによ り、 第二反応操作後のアイアンカーバイ ド化率を調節することを 特徴とするアイアンカーバイ ド製造プロセスの運転管理方法 ( . 第一反応操作の反応炉出口の固体サンプルを採取する代わ り に第一反応操作の反応炉の中間から最終区画までの間にお いて固体サンプルを採取し、 その固体サンプルの還元率と第 一反応操作後の還元率との相関関係に対応して第一反応操作 の還元率を変化させるこ とのできるパラメーターを調節する ことによ り、 第二反応操作後のアイアンカーバイ ド化率を調 節することを特徴とする請求の範囲第 1項記載のアイアンカ 一バイ ド製造プロセスの運転管理方法。
. 第一反応操作の反応炉出口の固体サンプルを採取する代わ り に第二反応操作の反応炉の中間から最終区画までの間にお いて固体サンプルを採取し、 その固体サンプルのアイアンカ 一バイ ド化率と第二反応操作後のアイアンカーバイ ド化率と の相関関係に対応して第二反応操作後のアイアンカーバイ ド 化率を変化させることのできるパラメーターを調節すること によ り、 第二反応操作後のアイアンカーバイ ド化率を調節す ることを特徴とする請求の範囲第 1項記載のアイアンカーバ ィ ド製造プロセスの運転管理方法。
. 第一反応操作の反応炉出口の固体サンプルを採取する代わ り に第一反応操作の反応炉の最初から最終区画までの間にお ける区画毎の排気ガスサンプルを採取し、 その排気ガスのガ ス組成と第一反応操作後の還元率との相関関係に対応して第 一反応操作の反応炉のガス組成を調節することによ り、 第二 反応操作後のアイアンカーバイ ド化率を調節することを特徴 とする請求の範囲第 1項記載のアイアンカーバイ ド製造プロ セスの運転管理方法。
. 第一反応操作の反応炉出口の固体サンプルを採取する代わ り に第二反応操作の反応炉の最初から最終区画までの間にお ける区画毎の排気ガスサンプルを採取し、 その排気ガスのガ ス組成と第二反応操作後のアイアンカーバイ ド化率との相関 関係に対応して第二反応操作の反応炉のガス組成を調節する ことによ り、 第二反応操作後のアイアンカーバイ ド化率を調 節することを特徴とする請求の範囲第 1項記載のアイアン力 ド製造プロセスの運転管理方法。
PCT/JP1998/000793 1997-02-28 1998-02-25 Gestion de la production de carbure de fer WO1998038130A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98905668A EP1004544A4 (en) 1997-02-28 1998-02-25 PROCEDURE FOR THE PRODUCTION OF IRON CARBIDE
BR9812415-3A BR9812415A (pt) 1997-02-28 1998-02-25 Método para o controle de uma operação de processo de produção de carboneto de ferro
CN98801621A CN1242755A (zh) 1997-02-28 1998-02-25 碳化铁生产工艺的操作控制方法
US09/367,025 US6270741B1 (en) 1997-02-28 1998-02-25 Operation management method of iron carbide production process
CA002269913A CA2269913A1 (en) 1997-02-28 1998-02-25 Operation management method of iron carbide production process
AU61171/98A AU722716B2 (en) 1997-02-28 1998-02-25 Method for managing an operation of iron carbide producing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP04551597A JP3157478B2 (ja) 1997-02-28 1997-02-28 アイアンカーバイド製造プロセスの運転管理方法
JP9/45515 1997-02-28

Publications (1)

Publication Number Publication Date
WO1998038130A1 true WO1998038130A1 (fr) 1998-09-03

Family

ID=12721563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000793 WO1998038130A1 (fr) 1997-02-28 1998-02-25 Gestion de la production de carbure de fer

Country Status (9)

Country Link
US (1) US6270741B1 (ja)
EP (1) EP1004544A4 (ja)
JP (1) JP3157478B2 (ja)
CN (1) CN1242755A (ja)
AU (1) AU722716B2 (ja)
BR (1) BR9812415A (ja)
CA (1) CA2269913A1 (ja)
WO (1) WO1998038130A1 (ja)
ZA (1) ZA981523B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285257B2 (en) * 2004-04-27 2007-10-23 Honeywell International Inc. Method of removing tar-forming gases from CVD/CVI furnace effluent
WO2006015321A2 (en) * 2004-07-30 2006-02-09 Univ Boise State TRANSITION METAL DOPED OXIDE SEMICONDUCTOR HAVING AMBIENT TEMPERATURE FERROMAGNETISM AND METHOD OF DETECTING GAS BY DETECTING CHANGES IN MAGNETIC PROPERTIES
WO2008153603A1 (en) * 2006-12-22 2008-12-18 Boise State University Magnetic gas sensor and methods using antiferromagnetic hematite nanoparticles
US9455503B2 (en) 2012-02-07 2016-09-27 3M Innovative Properties Company Electrical connector contact terminal
JP2015506575A (ja) 2012-02-07 2015-03-02 スリーエム イノベイティブ プロパティズ カンパニー 電気コネクタのラッチ
CN104412458A (zh) 2012-02-07 2015-03-11 3M创新有限公司 电连接器应变消除件
CN104205507B (zh) 2012-02-07 2017-06-13 3M创新有限公司 板安装电连接器
EP3757233A1 (de) * 2019-06-27 2020-12-30 Primetals Technologies Austria GmbH Verfahren zur messung einer magnetischen eigenschaft von eisenschwamm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073194A (en) * 1990-08-01 1991-12-17 Iron Carbide Holdings, Limited Process for controlling the product quality in the conversion of reactor feed into iron carbide
JPH0948604A (ja) * 1995-05-31 1997-02-18 Kawasaki Heavy Ind Ltd 鉄カーバイドの製造方法及び製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE745320A (fr) * 1970-01-30 1970-07-30 Centre Rech Metallurgique Procede de controle de l'agglomeration de minerais de fer,
JPS57181334A (en) * 1981-04-28 1982-11-08 Sumitomo Metal Ind Ltd Quality controlling method for sintered ore
EP0541711B1 (en) 1990-08-01 1999-01-27 Iron Carbide Holdings Limited Method for controlling the conversion of iron-containing reactor feed into iron carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073194A (en) * 1990-08-01 1991-12-17 Iron Carbide Holdings, Limited Process for controlling the product quality in the conversion of reactor feed into iron carbide
JPH0948604A (ja) * 1995-05-31 1997-02-18 Kawasaki Heavy Ind Ltd 鉄カーバイドの製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1004544A4 *

Also Published As

Publication number Publication date
ZA981523B (en) 1998-08-28
JP3157478B2 (ja) 2001-04-16
AU6117198A (en) 1998-09-18
CA2269913A1 (en) 1998-09-03
JPH10237523A (ja) 1998-09-08
EP1004544A1 (en) 2000-05-31
EP1004544A4 (en) 2000-08-16
US6270741B1 (en) 2001-08-07
CN1242755A (zh) 2000-01-26
BR9812415A (pt) 2000-09-05
AU722716B2 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
Dutta et al. Study of nonisothermal reduction of iron ore-coal/char composite pellet
JP2727436B2 (ja) 鉄カーバイドの製造方法及び製造装置
CN102559981B (zh) 气基熔融还原炼铁方法和装置
Halder et al. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants
WO1998038130A1 (fr) Gestion de la production de carbure de fer
CN1776421A (zh) 难选氧化铁矿石闪速磁化焙烧反应速度的测试装置
CN100515929C (zh) 硫铁矿制酸工艺中的烧渣处理方法
US4304597A (en) System for control of sinter formation in iron oxide reducing kilns
JP2948772B2 (ja) 鉄カーバイドの製造方法
CN109852424A (zh) 一种煤气化炼铁方法和煤气化炼铁气化炉
CN114741859A (zh) 一种模拟高炉料柱透液性的装置及方法
JP4153797B2 (ja) 循環ガス中への不純物ガス成分の蓄積を防止する方法
MXPA99006921A (en) Operation management method of iron carbide production process
JP6350430B2 (ja) 炭化水素の二酸化炭素改質方法、炭化水素の二酸化炭素改質装置ならびに一酸化炭素および水素の製造方法
JP7315125B1 (ja) 粉鉄鉱石の還元方法
JPH11171526A (ja) 反応ガス組成の制御方法
US4356031A (en) Apparatus and method for controlling the recycle char circuit in a direct reduction process
Lillkaas Hydrogen reduction of iron oxides: Experimental study
Lu et al. Carbonising mechanism and carbon distribution behaviour during direct reduction in shaft furnace
Dotson et al. Rate of Steam-Carbon Reaction by a Falling-Particle Method
JP2837284B2 (ja) 含クロム溶銑の製造方法及び同装置
JPS5943963B2 (ja) 浮遊式還元プロセスの制御方法
CN109517979A (zh) 一种降低铁矿烧结碳素消耗及排放的配矿方法
JPS6014806B2 (ja) 浮遊式還元プロセスの制御方法
MXPA99007479A (en) Production method of iron carbide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801621.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN MX RU TT US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 61171/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2269913

Country of ref document: CA

Ref document number: 2269913

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/006921

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09367025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998905668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998905668

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 61171/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998905668

Country of ref document: EP