WO1998034435A1 - Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine - Google Patents

Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine Download PDF

Info

Publication number
WO1998034435A1
WO1998034435A1 PCT/FR1998/000165 FR9800165W WO9834435A1 WO 1998034435 A1 WO1998034435 A1 WO 1998034435A1 FR 9800165 W FR9800165 W FR 9800165W WO 9834435 A1 WO9834435 A1 WO 9834435A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwaves
waveguide
envelope
microwave applicator
reflecting
Prior art date
Application number
PCT/FR1998/000165
Other languages
English (en)
Inventor
Benoît CASAGRANDE
Jean-Pierre Furtlehner
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US09/355,300 priority Critical patent/US6157013A/en
Priority to EP98904246A priority patent/EP1016324B1/fr
Priority to JP53258698A priority patent/JP2001511295A/ja
Priority to DE69813262T priority patent/DE69813262T2/de
Publication of WO1998034435A1 publication Critical patent/WO1998034435A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/701Feed lines using microwave applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Definitions

  • the invention relates to a microwave applicator and to its application to the surface scarification of contaminated concrete.
  • the third relates to a hemispherical application head from which the microwaves exit through slots in an arc. Satisfactory focusing is achieved with these systems, but a different one is desired for the concrete peel technique, since these application heads with a large opening area can be easily damaged by dust and debris detached from the scarified concrete. . It is also noted that the large openings imply a loss of efficiency because the share of microwaves reflected by the concrete towards the outside, and which are therefore lost, is greater.
  • the essential object of the invention is therefore an applicator having a head consisting of an envelope provided with a microwave outlet opening, which makes it possible to focus a microwave beam on a target with good clarity without its structure is complicated n that its opening is important.
  • an applicator comprising a waveguide and a head into which this waveguide ends, the head having an opening directed towards a target of the microwaves and essentially comprising an envelope reflecting the microwaves.
  • Two main variants are proposed, which present the common original element that the envelope is a surface with a truncated elliptical section and has two focal zones, one of which, located outside the opening, is the focal point of the microwaves. The other of the focal zones is a place of dispersion of the microwaves originating in the waveguide towards the surface of the envelope, where the microwaves are reflected to converge towards the focusing zone.
  • the focal dispersion region is occupied by a part reflecting the microwaves and the waveguide is directed towards this part, which may in particular be spherical, cylindrical of revolution or in the form of an angle dihedral. directed to the waveguide.
  • this part may in particular be spherical, cylindrical of revolution or in the form of an angle dihedral. directed to the waveguide.
  • a diffusion piece provided with multiple slots in which the waveguide ends may be provided.
  • the main application envisaged is ⁇ 1 rind of contaminated concrete, but it is not unique and the invention could find use for crushing stones or medicine.
  • FIG. 1 represents a general view of the invention
  • FIG. 2 represents a first design of the applicator
  • FIG. 3 illustrates another view of this design of the applicator
  • FIG. 4 illustrates a second design ⁇ e of the applicator
  • FIG. 5 illustrates a third design of the applicator
  • the apparatus can be mounted on a carriage 1 rolling on the concrete wall 2 to peel; it includes a microwave generator 3, an application head 4, a waveguide 5 connecting the two previous ones, a vacuum cleaner 6, a suction cup 7 surrounding the end of the application head 4, a suction duct 8 opening into the cup 7, and possibly a membrane 9 blocking the opening 10 of the application head 4.
  • the microwaves originating from the transmitter 3 circulate through the waveguide 5 and leave the application head 4 through the opening 10, placed directly on the wall 2 or has very little distance from it in order to limit leaks; the optional membrane 9 serves to protect the interior of the application head 4 from dust and debris produced by the crumbling of the concrete, but it is obviously permeable to microwaves.
  • the dust and debris rise in the cup 7 and are sucked up by the vacuum cleaner 6.
  • the application head 4 is an envelope in the form of a truncated cylinder with elliptical base or ellipsoidal cylm ⁇ re, which comprises two focal areas FI and F2, and that the truncation is such that the second focal zone F2 is situated outside the envelope, under the surface of the concrete wall 2.
  • the waveguide 5, which can be in the form of a metallic sheath with rectangular section, has a plane of symmetry which coincides with the plane joining the focal zones FI and F2 of the ellipsoidal cylinder.
  • the first area FI located in the envelope, is occupied by a reflector 11, here formed by a metallic cylinder of revolution connected to the application head 4.
  • the M waves leave the waveguide 5 parallel to the plane of symmetry of the envelope then are reflected by the reflector 11 towards the surface of the application head 4, which in turn reflects them towards the focal zone F2 whatever their initial path and in particular their point of reflection on the reflector 11: the focusing is almost perfect thanks to the geometric properties of the ellipsoidal cylinder and it is spoiled only by the non-zero diameter of the reflector 11, which prohibits reflection to the first focal area FI itself.
  • the second focal zone F2 is actually placed a little deeper in the concrete wall 2 than what is shown, because of the refraction of the waves produced at the separation of air and concrete.
  • the air-concrete interface also produces wave reflections in all directions, towards the waveguide 5 and towards the outside in particular.
  • the former however, have no damaging effect because the reflector 11 stops most of it and therefore protects the waveguide 5; and the seconds are reduced due to the tight appearance of the opening 10.
  • the advantage of a cylinder-shaped envelope with an elliptical base is that it can be given a substantially greater width in the direction transverse to its movement 1, in order to spread the overlap over a greater width of the concrete and scarify it along wider strips.
  • the FIG. 3 shows that the focal zones FI and F2 are linear and assume the appearance of segments parallel to the axis of the reflector 11 in an ellipsoidal cylinder, and that the focal zone F2 represents the width of band heated on the concrete.
  • the rectangular waveguide 5 has its section whose long side is parallel to the transverse direction to emit the waves over a greater width.
  • the cylindrical reflector 11 has the disadvantage of returning part of the radiation, which is practically coincident with the major axis of the ellipse, towards the waveguide 5, which can damage the emitter 3, we can advise to replace it by the dihedral 14 of FIG. 4, composed of two flat facets 15 joining by an angle 16 directed towards the waveguide 5 and opening towards the opening 10.
  • the drawback of the dihedral 14 is however that it focuses the radiation less well towards the second focus F2.
  • waveguide 5 coaxial with the application head 4 is replaced by a waveguide 20 coaxial with the first focal zone and situated in its extension.
  • the waveguide 20 extends inside the envelope in the form of a tube 17 pierces fine radiating slots 18 extending along its length and distributed over a large part of its surface, except towards the opening 10.
  • the waves exit from the tube 17 in all directions coming from the first focal point FI. As in previous achievements, they are reflected against the internal surface of the application head 4 towards the second focal zone F2. As the wave path remains the same as above from the first focal area FI, the operation of the device remains the same.
  • the ellipsoid of the application head 4 can have a more or less significant transverse dimension: the preceding figures have illustrated the case of application heads 4 wide, with reflector 11, 14 or 17 elongated transversely and with focal zones FI and F2 linear; application heads with symmetry of revolution can also be chosen, the focal zones then being replaced by point focal points; the reflecting piece will be a sphere or a cone which will replace the cylinder 11 or the dihedral 14, and it will be connected to the application head 4 by suspension rods; the representations of FIGS. 2 and 4 then remain valid, all the sections of the application head then having a truncated elliptical section.
  • Figures 6 and 7 finally illustrate alternative embodiments of Figures 2 and 4, which are distinguished in that the waveguide 5, instead of flush with the internal surface of the envelope of the application head 4 , comprises an extension 19 which sinks into the chamber surrounded by the application head 4 towards the focal zone FI; the extension stops at a distance advantageously close to a quarter of the wavelength of the microwaves. It has been found that this arrangement gives good focusing results thanks to the longer guiding of the microwaves. It has also been found that it is advantageous for the reflector 11 or 14 to have a overall dimensions roughly equal to a quarter of the wavelength. These values are however approximate and result from empirical tests, so that other good solutions, even better solutions, must exist in particular cases depending in particular on the shape of the reflector.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

Les micro-ondes originaires d'un guide (5) sont focalisées vers une zone (F2) située sous la surface d'une paroi de béton (2) afin d'y vaporiser l'eau libre contenue jusqu'à la rupture du béton. L'applicateur est original en ce qu'il comporte une enveloppe cylindrique (4) à base elliptique et une pièce (11) disposée à une zone focale (F1) de l'enveloppe, qui diffuse les ondes incidentes vers la paroi de l'enveloppe où elle sont réfléchies vers la zone de focalisation (F2) à l'emplacement du second foyer de l'ellipse. Une application principale sera le démantèlement d'installations nucléaires.

Description

APPLICATEUR DE MICRO-ONDES, ET SON APPLICATION À LA SCARIFICATION SUPERFICIELLE DU BÉTON CONTAMINÉ
DESCRIPTION
L' invention ressortit à un applicateur de micro-ondes et à son application à la scarification superficielle du béton contaminé.
Le démantèlement d' installations nucléaires usagées impose la destruction du matériel contaminé et en particulier sa division en morceaux qui sont ensuite jetés dans des fûts de bitume qu'on entrepose dans αes installations spécialisées. Les parois de béton qui doivent subir ce traitement de morcellement posent cependant un problème particulier à cause de leur épaisseur : comme la contamination est absorbée dans les couches superficielles du béton, le coeur reste sain et n'est ainsi justifiable d'aucun traitement particulier .
L' intérêt de ne pas accroître excessivement le volume de matériaux à entreposer a donc conduit les industriels a séparer la couche contaminée du reste αes parois de béton, par des techniques qu'on désigne sous le nom d' écroûte et qui consistent à réaliser une scarification superficielle des parois de béton qu laisse le coeur sain en place mais détache la couche contaminée. On a utilisé un certain nombre d'outils purement mécaniques pour réaliser cela, parmi lesquels les bouchardes, les marteaux-piqueurs et les lances a eau sous pression, ainsi que l'application de microondes. Cette nouvelle technique exploite la présence d'eau dans le béton, que chauffent les micro-ondes pour produire son ébullition et des explosions dans _.a matière solide, qui finissent par produire la scarification souhaitée.
L'exploitation correcte du procédé repose cependant sur un choix approprié de certains paramètres tels que la puissance des micro-ondes, leur fréquence, leur superficie d'application et leur direction. Dans un appareil décrit dans l'article « Microwave System for removal of concrète surface layers » par P. Corleto et collaborateurs et publié par l'Agence italienne pour les nouvelles technologies, l'énergie et l'environnement (ENEA) , on utilise plusieurs magnétrons de forte puissance pour émettre des micro-onαes distribuées sur une surface importante. On chauffe ainsi un volume de béton important, d'autant plus que les micro-ondes, dont la fréquence est relativement basse, 2450 Mhz dans la réalisation proposée, pénètrent plus profondément dans le béton. Cet appareil semble efficace, mais on suppose que d'autres façons de procéder seraient tout aussi convenables en permettant par exemple d' écroûter une même surface de béton en employant une puissance bien moindre, afin d'empêcner les ondes de diverger, entraînant ainsi une diminution de la puissance volumique déposée dans le béton et, en définitive, une moindre efficacité du procède. L'invention a été conçue en tenant compte de ces considérations et sa caractéristique essentielle consiste en ce que les micro-ondes sont focalisées en une zone a peu près ponctuelle, ou à peu près filiforme, dans laquelle l' échauffement produit se concentre, ce qui détermine la profondeur de béton écroûté une fois que la zone de focalisation a été stabilisée . Les appareils connus pour écroûter le béton finissent en un applicateur comprenant une tête par laquelle les micro-ondes quittent un guide d'ondes. Cette tête d'application, posée sur la paroi de béton ou placée à peu de distance d'elle, doit donc être conçue ici pour créer la focalisation souhaitée. Bien que la focalisation d'ondes ne semble pas avoir été proposée dans la technique qui nous occupe, on connaît des applicateurs développés en médecine pour focaliser des micro-ondes et créer une hyperthermie locale dans le corps d'un patient, par exemple pour détruire une tumeur au point focal. Trois appareils différents sont décrits dans les articles « A direct-contact microwave lens applicator with a microcomputer-controlled heating System for local hyperthermia » par Nikawa et d'autres (IEEE transactions on microwave theory and techniques, vol. MTT-34, n°5, mai 1986), « An electric field converging applicator with heating pattern controller for microwave hyperthermia », encore par Nikawa et d'autres (même source) et « Microwave applicator using two slots on sphère » par Krairiksh et d'autres, édité par IEEE et donné à l'occasion de la conférence « Asia- Pacific Microwave » en 1992 à Adélaïde. Un de ces appareils comprend une lentille convergente à la sortie du guide d'ondes. Un autre comprend un guide d'ondes présentant un élargissement final et divisé à cet endroit par des plaques parallèles qui sont exposées à un faisceau de micro-ondes rendu divergent en entrant dans l'élargissement. Des réflexions d'ondes produites sur les plaques parallèles rendent le faisceau convergent et focalisé à la sortie de l'applicateur. Enfin, le troisième porte sur une tête d'application hémisphérique d'où les micro-ondes sortent par des fentes en arc de cercle. Une focalisation satisfaisante est obtenue avec ces systèmes, mais on en souhaite un autre pour la technique d' écroûte de béton, car ces têtes d'applications de grande superficie d'ouverture peuvent être facilement endommagées par les poussières et les débris détachés du béton scarifié. On constate aussi que les ouvertures importantes impliquent une perte de rendement car la part des micro-ondes réfléchies par le béton vers l'extérieur, et qui sont donc perdues, est plus grande.
L'objet essentiel de l'invention est αonc un applicateur ayant une tête constituée d'une enveloppe munie d'une ouverture de sortie des microondes, qui permette de focaliser un faisceau de micro- ondes sur une cible avec une bonne netteté sans que sa structure soit compliquée n que son ouverture soit importante .
Et comme l'application principalement envisagée d' écroûte de béton nécessite un traitement de grande ampleur, portant sur des parois étendues et impliquant une dépense importante d'énergie, on souhaite aussi limiter les fuites αe micro-ondes a _a sortie de l'applicateur et surtout les réflexions de micro-ondes en retour dans le guide d'ondes, vers l'appareil producteur de micro-ondes, qui pourrait facilement être endommagé.
Ces différents problèmes sont résolus avec un applicateur comprenant un guide d'ondes et une tête dans laquelle aboutit ce guide d'onαes, la tête ayant une ouverture dirigée vers une cible des micro-ondes et comprenant essentiellement une enveloppe réfléchissant les micro-ondes. Deux variantes principales sont proposées, et qui présentent l'élément original commun que l'enveloppe est une surface à section elliptique tronquée et présente deux zones focales dont l'une, située hors de l'ouverture, est le lieu de focalisation des micro-ondes. L'autre des zones focales est un lieu de dispersion des micro-ondes originaires du guide d'ondes vers la surface de l'enveloppe, où les microondes se réfléchissent pour converger vers la zone de focalisation. Dans l'une des variantes, la zone focale de dispersion est occupée par une pièce réfléchissant les micro-ondes et le guide d'ondes est dirigé vers cette pièce, qui peut être notamment sphéπque, cylindrique de révolution ou en forme de dièdre a angle dirigé vers le guide d'ondes. Dans l'autre réalisation, il n'y a pas de réflexion à la zone focale interne, mais une diffusion des micro-ondes, qui sortent du guide d'ondes à cet endroit. Une pièce de diffusion munie de fentes multiples dans laquelle finit le guide d'ondes peut être prévue.
L'application principale envisagée est αonc 1' écroûte des bétons contamines, mais elle n'est pas unique et l'invention pourrait trouver emploi pour e broyage des pierres ou la médecine.
L'invention va maintenant être décrite a l'aide des figures suivantes, qui donnent quelques exemples de sa mise en oeuvre :
• la figure 1 représente une vue générale de l' invention,
• la figure 2 représente une première conception αe l' applicateur, • la figure 3 illustre une autre vue de cette conception de l'applicateur,
• la figure 4 illustre une deuxième conception αe l' applicateur, • la figure 5 illustre une troisième conception de l' applicateur,
• et les figures 6 et 7 illustrent des variantes de réalisation des figures 2 et 4. L'appareillage peut être monté sur un chariot 1 roulant sur la paroi de béton 2 à écroûter ; il comprend un générateur de micro-ondes 3, une tête d'application 4, un guide d'ondes 5 reliant les deux précédents, un aspirateur 6, une coupelle d'aspiration 7 entourant l'extrémité de la tête d'application 4, un conduit d'aspiration 8 débouchant dans la coupelle 7, et éventuellement une membrane 9 bouchant l'ouverture 10 de la tête d'application 4. Les micro-ondes originaires de l'émetteur 3 circulent par le guide d'ondes 5 et quittent la tête d'application 4 par l'ouverture 10, posée directement sur la paroi 2 ou a très peu de distance d'elle afin de limiter les fuites ; la membrane 9 facultative sert à protéger l'intérieur de la tête d'application 4 des poussières et des débris produits par l'effritement du béton, mais elle est évidemment perméable aux micro-ondes. Les poussières et débris s'élèvent dans la coupelle 7 et sont aspirés par l'aspirateur 6.
Si on se reporte aux figures 2 et 3, on voit que la tête d'application 4 est une enveloppe en forme de cylindre tronqué à base elliptique ou cylmαre ellipsoïdal, qui comprend deux zones focales FI et F2, et que la troncature est telle que la seconde zone focale F2 est située hors de l'enveloppe, sous la surface de la paroi de béton 2. Le guide d'ondes 5, qui peut être forme d'une gaine métallique à section rectangulaire, présente un plan de symétrie qui coïncide avec le plan joignant les zones focales FI et F2 du cylindre ellipsoïdal. La première zone FI, située dans l'enveloppe, est occupée par un réflecteur 11, ici formé par un cylindre métallique de révolution relié à la tête d'application 4. Les ondes M, dont le trajet de l'une d'elles est représenté par des flèches, sortent du guide d'ondes 5 parallèlement au plan de symétrie de l'enveloppe puis sont réfléchies par le réflecteur 11 vers la surface de la tête d'application 4, qui les réfléchit à son tour vers la zone focale F2 quel que soit leur trajet initial et en particulier leur point de réflexion sur le réflecteur 11 : la focalisation est presque parfaite grâce aux propriétés géométriques du cylindre ellipsoïdal et elle n'est gâtée que par le diamètre non nul du réflecteur 11, qui interdit la réflexion à la première zone focale FI elle-même. La seconde zone focale F2 est en réalité placée un peu plus profondément dans la paroi de béton 2 que ce qui est représenté, à cause de la réfraction des ondes produite à la séparation de l'air et du béton. L'interface air-béton produit aussi des réflexions d'ondes dans toutes les directions, vers le guiαe d'ondes 5 et vers l'extérieur en particulier. Les premières n'ont cependant pas d'effet dommageable car le réflecteur 11 en arrête la plus grande partie et protège donc le guide d'ondes 5 ; et les secondes sont réduites à cause de l'aspect resserré de l'ouverture 10.
L'intérêt d'une enveloppe en forme de cylindre à base elliptique est qu'on peut lui donner une largeur sensiblement plus grande dans la direction transversale à son déplacement 1, afin d'étaler 1' écnauffement sur une plus grande largeur du béton et de scarifier celui-ci le long de bandes plus larges. La figure 3 montre que les zones focales FI et F2 sont linéaires et prennent l'aspect de segments parallèles à l'axe du réflecteur 11 en cylindre ellipsoïdal, et que la zone focale F2 représente la largeur de bande échauffée sur le béton. Le guide d'ondes rectangulaire 5 a sa section dont le grand côté est parallèle à la direction transversale pour émettre les ondes sur une plus grande largeur.
Comme le réflecteur cylindrique 11 présente cependant l'inconvénient de renvoyer une partie du rayonnement, qui est pratiquement confondue avec le grand axe de l'ellipse, vers le guide d'ondes 5, ce qui peut endommager l'émetteur 3, on peut conseiller de le remplacer par le dièdre 14 de la figure 4, compose de deux facettes plates 15 se joignant par un angle 16 dirigé vers le guide d'ondes 5 et s' ouvrant vers l'ouverture 10. On supprime ainsi les portions réflectrices normales au guide d'ondes 5 et les réflexions dangereuses pour l'émetteur 3. L'inconvénient du dièdre 14 est cependant qu'il focalise moins bien le rayonnement vers le second foyer F2.
Une autre conception peut encore être proposée, dans laquelle le guide d'ondes 5 coaxial a la tête d'application 4 est remplacé par un guide d'ondes 20 coaxial à la première zone focale et situé dans son prolongement. Le guide d'ondes 20 s'étend à l'intérieur de l'enveloppe sous l'aspect d'un tube 17 perce de fines fentes rayonnantes 18 s' allongeant selon sa longueur et réparties sur une grande partie αe sa surface, sauf vers l'ouverture 10. Les ondes sortent du tube 17 dans toutes les directions provenant du premier foyer FI. Comme dans les réalisations précédentes, elles se réfléchissent contre la surface interne de la tête d'application 4 vers la seconde zone focale F2. Comme le trajet des ondes reste le même que précédemment à partir de la première zone focale FI, le fonctionnement de l'appareil reste le même.
L' ellipsoïde de la tête d' application 4 peut avoir une dimension transversale plus ou moins importante : les figures précédentes ont illustré le cas de têtes d'application 4 larges, à réflecteur 11, 14 ou 17 allongé transversalement et a zones focales FI et F2 linéaires ; des têtes d'application à symétrie de révolution peuvent aussi être choisies, les zones focales étant alors remplacées par des foyers ponctuels ; la pièce réflectrice sera une sphère ou un cône qui remplacera le cylindre 11 ou le dièdre 14, et elle sera reliée à la tête d'application 4 par des tiges de suspension ; les représentations des figures 2 et 4 restent alors valables, toutes les sections de la tête d'application ayant alors une section elliptique tronquée.
Les figures 6 et 7 illustrent enfin des variantes de réalisation des figures 2 et 4, qui se distinguent en ce que le guide d'ondes 5, au lieu d'affleurer à la surface interne de l'enveloppe de la tête d'application 4, comprend un prolongement 19 qui s'enfonce dans la chambre entourée par la tête d'application 4 vers la zone focale FI ; le prolongement s'arrête à une distance avantageusement voisine du quart de la longueur d'onde des micro-ondes. II a été constaté que cette disposition donnait de bons résultats de focalisation grâce au guidage plus long des micro-ondes. Il a aussi été constaté qu'il était avantageux que le réflecteur 11 ou 14 aie un encombrement à peu près égal au quart de la longueur d'onde. Ces valeurs sont cependant approximatives et résultent d'essais empiriques, de sorte que d'autres bonnes solutions, voire de meilleures solutions, doivent exister dans des cas particuliers en fonction notamment de la forme du réflecteur.

Claims

REVENDICATIONS
1. Applicateur de micro-ondes comprenant un guide d'ondes (5) et une tête (4) dans laquelle aboutit le guide d'ondes, la tête ayant une ouverture (10) dirigée vers une cible (2) des micro-ondes et comprenant essentiellement une enveloppe réfléchissant les micro-ondes, caractérisé en ce que l'enveloppe est à section elliptique tronquée ayant deux zones focales, l'une des zones focales (FI), vers laquelle le guide d'ondes est dirigé, étant occupée par une pièce (11) réfléchissant les micro-ondes et l'autre des zones focales (F2) étant située hors de l'ouverture.
2. Applicateur de micro-ondes comprenant un guide d'ondes (20) et une tête (4) dans laquelle aboutit le guide d'ondes, la tête ayant une ouverture (10) dirigée vers une cible (2) des micro-ondes et comprenant essentiellement une enveloppe réfléchissant les micro-ondes, caractérisé en ce que l'enveloppe est à section elliptique tronquée à deux zones focales, l'une des zones focales (FI), a laquelle aboutit le guide d'ondes, étant occupée par une pièce (17) diffusant les micro-ondes et l'autre des zones focales (F2) étant située hors de l'ouverture (10).
3. Applicateur de micro-ondes suivant la revendication 1, caractérise en ce que la pièce réfléchissant les micro-ondes est spheπque.
4. Applicateur de micro-ondes suivant la revendication 1, caractérise en ce que la pièce réfléchissant les micro-ondes est cylindrique de révolution (11).
5. Applicateur de micrc-ondes suivant la revendication 1, caractérise en ce que la pièce réfléchissant les micro-ondes est un dièdre (14) à angle dirigé vers le guide d'ondes.
6. Applicateur de micro-ondes suivant la revendication 1, caractérisé en ce que la pièce réfléchissant les micro-ondes est un cône.
7. Applicateur de micro-ondes suivant la revendication 1, caractérisé en ce que le guide d'ondes (5) affleure à une surface interne de l'enveloppe réfléchissant les micro-ondes.
8. Application de micro-ondes suivant la revendication 1, caractérisé en ce que le guide d'ondes (5) comprend un prolongement (19) dans l'enveloppe réfléchissant les micro-ondes et qui s'arrête à une distance voisine d'un quart de longueur d'onde des micro-ondes de la zone focale (FI) occupée par la pièce réfléchissant les micro-ondes.
9. Applicateur de micro-ondes suivant la revendication 2, caractérisé en ce que la pièce diffusant les micro-ondes est une pièce entaillée par des fentes (18) et dans laquelle finit le guide d'ondes (15) .
10 Application de l'applicateur de microondes suivant la revendication 1 à la scarification superficielle du béton contaminé.
PCT/FR1998/000165 1997-01-31 1998-01-29 Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine WO1998034435A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/355,300 US6157013A (en) 1997-01-31 1998-01-29 Microwave applicator and method for the surface scarification of contaminated concrete
EP98904246A EP1016324B1 (fr) 1997-01-31 1998-01-29 Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine
JP53258698A JP2001511295A (ja) 1997-01-31 1998-01-29 汚染コンクリートの表面を削るためのマイクロ波アプリケータとその適用
DE69813262T DE69813262T2 (de) 1997-01-31 1998-01-29 Mikrowellenapplicator und seine verwendung zum ehtfernen von verseuchten oberfläche von beton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/01102 1997-01-31
FR9701102A FR2759239B1 (fr) 1997-01-31 1997-01-31 Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine

Publications (1)

Publication Number Publication Date
WO1998034435A1 true WO1998034435A1 (fr) 1998-08-06

Family

ID=9503192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000165 WO1998034435A1 (fr) 1997-01-31 1998-01-29 Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine

Country Status (6)

Country Link
US (1) US6157013A (fr)
EP (1) EP1016324B1 (fr)
JP (1) JP2001511295A (fr)
DE (1) DE69813262T2 (fr)
FR (1) FR2759239B1 (fr)
WO (1) WO1998034435A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043508A1 (fr) * 1999-12-07 2001-06-14 Industrial Microwave Systems, Inc. Reacteur cylindrique a region focale etendue
JP2002535155A (ja) * 1999-01-19 2002-10-22 ラモート ユニバーシティ オーソリティ フォー アプライド リサーチ アンド インダストリアル デベロップメント リミテッド マイクロ波放射を用いて固体不導電性材料を穴あけし、切断し、釘付けし、接合する方法および装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746425B1 (en) * 1996-06-14 2004-06-08 Futuremed Interventional Medical balloon
FR2812166B1 (fr) 2000-07-21 2002-12-13 Commissariat Energie Atomique Applicateur de micro-ondes focalisant
JP4280166B2 (ja) * 2002-03-06 2009-06-17 新日本製鐵株式会社 汚染土壌の無害化処理方法及びアプリケーター
JP5359364B2 (ja) * 2009-02-25 2013-12-04 セイコーエプソン株式会社 光源装置およびプロジェクタ
DE102009010665A1 (de) 2009-02-27 2010-09-16 Beiersdorf Ag Verwendung von geladenen Tensiden zur Verminderung der Textilverfleckung durch Antitranspirantien
WO2021084748A1 (fr) * 2019-11-01 2021-05-06 株式会社アシックス Procédé de fabrication d'un élément de chaussure, et matrice de moulage
FR3104383B1 (fr) 2019-12-11 2021-12-03 Commissariat Energie Atomique Procédé et appareil de désherbage par rayonnement électromagnétique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032595A (ja) * 1989-05-30 1991-01-08 Science & Tech Agency マイクロ波照射による放射能汚染コンクリート表層部の剥離除去装置
US5003144A (en) * 1990-04-09 1991-03-26 The United States Of America As Represented By The Secretary Of The Interior Microwave assisted hard rock cutting
JPH03148592A (ja) * 1989-11-06 1991-06-25 Mitsubishi Electric Corp イメージ加熱装置
EP0438179A1 (fr) * 1990-01-19 1991-07-24 Mitsubishi Denki Kabushiki Kaisha Appareil pour chauffer une image utilisant une lampe à décharge de plasma par micro-ondes
US5283010A (en) * 1990-03-14 1994-02-01 United Kingdom Atomic Energy Authority Tritium removal
WO1995000681A1 (fr) * 1993-06-28 1995-01-05 Abb Atom Ab Procede de deocontamination
JPH08304597A (ja) * 1995-05-12 1996-11-22 Mitsubishi Electric Corp 放射能汚染コンクリート表層部の除去装置及び除去方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL248916A (fr) * 1959-05-01
US5507927A (en) * 1989-09-07 1996-04-16 Emery Microwave Management Inc. Method and apparatus for the controlled reduction of organic material
US5449889A (en) * 1992-10-30 1995-09-12 E. I. Du Pont De Nemours And Company Apparatus, system and method for dielectrically heating a medium using microwave energy
US6013330A (en) * 1997-02-27 2000-01-11 Acushnet Company Process of forming a print

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032595A (ja) * 1989-05-30 1991-01-08 Science & Tech Agency マイクロ波照射による放射能汚染コンクリート表層部の剥離除去装置
JPH03148592A (ja) * 1989-11-06 1991-06-25 Mitsubishi Electric Corp イメージ加熱装置
EP0438179A1 (fr) * 1990-01-19 1991-07-24 Mitsubishi Denki Kabushiki Kaisha Appareil pour chauffer une image utilisant une lampe à décharge de plasma par micro-ondes
US5283010A (en) * 1990-03-14 1994-02-01 United Kingdom Atomic Energy Authority Tritium removal
US5003144A (en) * 1990-04-09 1991-03-26 The United States Of America As Represented By The Secretary Of The Interior Microwave assisted hard rock cutting
WO1995000681A1 (fr) * 1993-06-28 1995-01-05 Abb Atom Ab Procede de deocontamination
JPH08304597A (ja) * 1995-05-12 1996-11-22 Mitsubishi Electric Corp 放射能汚染コンクリート表層部の除去装置及び除去方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 107 (P - 1179) 14 March 1991 (1991-03-14) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 374 (M - 1160) 20 September 1991 (1991-09-20) *
PATENT ABSTRACTS OF JAPAN vol. 097, no. 003 31 March 1997 (1997-03-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535155A (ja) * 1999-01-19 2002-10-22 ラモート ユニバーシティ オーソリティ フォー アプライド リサーチ アンド インダストリアル デベロップメント リミテッド マイクロ波放射を用いて固体不導電性材料を穴あけし、切断し、釘付けし、接合する方法および装置
WO2001043508A1 (fr) * 1999-12-07 2001-06-14 Industrial Microwave Systems, Inc. Reacteur cylindrique a region focale etendue
US6797929B2 (en) 1999-12-07 2004-09-28 Industrial Microwave Systems, L.L.C. Cylindrical reactor with an extended focal region

Also Published As

Publication number Publication date
US6157013A (en) 2000-12-05
EP1016324B1 (fr) 2003-04-09
EP1016324A1 (fr) 2000-07-05
DE69813262D1 (de) 2003-05-15
FR2759239A1 (fr) 1998-08-07
FR2759239B1 (fr) 1999-03-05
DE69813262T2 (de) 2004-02-05
JP2001511295A (ja) 2001-08-07

Similar Documents

Publication Publication Date Title
EP1016324B1 (fr) Applicateur de micro-ondes, et son application a la scarification superficielle du beton contamine
EP2691154B1 (fr) Sonde de therapie pour le traitement de tissus par l'intermediaire d'ondes ultrasonores focalisees croisees
CA2293544C (fr) Applicateur intratissulaire ultrasonore pour l'hyperthermie
EP1858591B1 (fr) Sonde therapeutique endo-cavitaire comportant un transducteur d'imagerie integre au sein du transducteur ultrasonore de therapie
EP2035091B1 (fr) Appareil de therapie a fonctionnement sequentiel
EP0648515B1 (fr) Antenne pour le chauffage de tissus par micro-ondes et sonde comportant une ou plusieurs de ces antennes
FR2962533A1 (fr) Couches de transfert thermique et d'adaptation acoustique pour transducteur ultrasonore
EP0995345B1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
WO2017178641A1 (fr) Sonde d'ablation thermique ultrasonore
EP1241923B1 (fr) Four de chauffage par micro-ondes
FR2504313A1 (fr) Lampe reflectrice electrique
EP1206901B1 (fr) Applicateur de micro-ondes focalisant
FR2486710A1 (fr) Tubes a ondes progressives du type a cavites couplees, comprenant une extremite non reflechissante
EP2469656A1 (fr) Antenne de forte puissance large bande
WO1984001307A1 (fr) Procede et appareil de dessiccation d'un melange liquide ou pateux
FR2805995A1 (fr) Procede et installation de desinfection d'elements en bois en contact avec des denrees alimentaires
FR2571264A1 (fr) Dispositif emetteur de rayons laser pour utilisation medicale
FR2760589A1 (fr) Four a micro-ondes pour guider l'onde electromagnetique
FR2540297A1 (fr) Antenne micro-onde a deux reflecteurs
EP0022282B1 (fr) Dispositifs rayonnants produisant des ondes hyperfréquences polarisées circulairement et leur utilisation dans le domaine des applicateurs à micro-ondes
FR2606937A1 (fr) Ligne a retard a couplage par cavites pour tube a onde progressive
FR2884350A1 (fr) Source de photons comprenant une source rce equipee de miroirs
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
FR2739982A1 (fr) Dispositif pour la conformation avec homogeneisation de la repartition spatiale transverse d'intensite, d'un faisceau laser
FR2688342A1 (fr) Tube electronique hyperfrequence.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998904246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09355300

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 532586

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998904246

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998904246

Country of ref document: EP