WO1998034009A1 - Installation de pompage d'un effluent biphasique liquide/gaz - Google Patents

Installation de pompage d'un effluent biphasique liquide/gaz Download PDF

Info

Publication number
WO1998034009A1
WO1998034009A1 PCT/FR1998/000157 FR9800157W WO9834009A1 WO 1998034009 A1 WO1998034009 A1 WO 1998034009A1 FR 9800157 W FR9800157 W FR 9800157W WO 9834009 A1 WO9834009 A1 WO 9834009A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
gas
casing
liquid
well
Prior art date
Application number
PCT/FR1998/000157
Other languages
English (en)
Inventor
Jean-Louis Beauquin
Original Assignee
Elf Exploration Production
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Exploration Production filed Critical Elf Exploration Production
Priority to EP98904241A priority Critical patent/EP0892886B1/fr
Priority to AT98904241T priority patent/ATE221613T1/de
Priority to US09/142,167 priority patent/US6250384B1/en
Priority to DE69806865T priority patent/DE69806865T2/de
Priority to BR9805955-6A priority patent/BR9805955A/pt
Priority to CA002251611A priority patent/CA2251611C/fr
Publication of WO1998034009A1 publication Critical patent/WO1998034009A1/fr
Priority to NO19984544A priority patent/NO315288B1/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives

Definitions

  • the present invention relates to an installation for pumping a two-phase liquid / gas effluent and, more particularly to such an installation intended for pumping hydrocarbons from an oil well.
  • the natural flow of hydrocarbons from the bottom to the surface is insufficient to allow or maintain commercial production. This is due either to the viscosity and the weight of the effluents, or to a too low natural pressure at the bottom of the well, compared to the factors which oppose their elevation towards the surface.
  • an artificial effluent lifting system, or activation system of the well For example, one can mount a pump at the lower end of a production tube located in the well, or one can provide a gas injection installation at the bottom of the well. This last type of installation, more commonly called "gas lift", is used to lighten the hydrocarbon column located in the well in order to facilitate its ascent to the surface.
  • a gas injection installation at the bottom of a well is generally reliable, but has the drawback of requiring, on an isolated site, a source of gas under pressure, for example a compressor and its associated piping.
  • this separation of gas upstream of the pump requires a gas discharge channel different from that taken by the liquid passing through the pump.
  • a common way of ensuring this function is to allow the gas to “ventilate” - that is to say to travel - through the annular space which exists between the internal wall of the casing of the well and the external wall of the casing which serves to flow of the pumped liquid.
  • this method has several major drawbacks which have the consequence of making the operation of the well more expensive or even dangerous: in particular the loss of natural elevation energy; chemical and / or mechanical attack on materials in contact with the gas; and significant and uncontrollable heat exchanges between the effluents and the periphery of the well, which can cause costly flow problems.
  • document FR-A-2,723,143 describes an installation for an oil well comprising a pump disposed at the lower end of a first casing, a second casing being intended to receive gas, where appropriate. derived from 1 effluent and separated upstream of the pump, and to lead it to the surface independently of the liquid phase
  • the pump is provided with a shirt, which stretches to a level below the era petroleum rock layer.
  • the present invention therefore has for its object an installation for pumping a two-phase liquid / gas effluent which is simple, robust and reliable in construction and which is not subject to the drawbacks mentioned above.
  • the present invention provides a pumping installation intended to be mounted in a well extending from the surface to a layer of petroleum rock, comprising a casing at the lower end of which is mounted a pump, a joint, mounted in the well around the casing and delimiting a chamber at the lower end of the well, in which the pump is arranged, characterized in that the installation further comprises a hydro-ejector in the casing comprising a zone depression opening in the upper end of the chamber.
  • FIG. 1 is a view in longitudinal section of an installation according to a first embodiment of the invention.
  • FIG. 2a and 2c are schematic views of three operating modes of one invention.
  • an oil well 10 extends between the surface (not shown) and a layer of oil rock 12.
  • the well is provided with perforations 14, opening in the oil rock, which allow the flow of the hydrocarbon effluent towards the interior of the well 10.
  • the well 10 includes a casing 16 which makes it tight with respect to the rock layers traversed by the well.
  • a casing 18 extends between the surface and a point located a few meters above the layer of rock 12.
  • the casing 18 comprises at its lower end a pump 20 provided with inlets 22 for the effluent to be sent to the surface.
  • the pump 20 is centrifugal rotary and its motor is supplied from the surface by an electric cable (not shown).
  • the pump 20 may advantageously include a special baffle or dynamic separator of the centrifugal or vortex type in order to better guarantee the separation upstream of the pump (not shown.
  • the packer 28 defines an annular chamber 33 delimited by the internal wall of the casing 16 and the external wall of the casing 18 between the seal 28 and the surface.
  • the packer 28 prohibits effluents and in particular gas from entering the chamber 33. They can only cross the upper part of the well by borrowing the casing 18.
  • the chamber 33 and all the accessories it contains such as the cable power supply to the pump 20 are therefore protected from mechanical and chemical attack and remains available for other functions such as for example the reception of a heat-insulating substance in order to ensure the thermal insulation of the casing 18.
  • the casing 18 comprises a liquid-gas hydro-ejector 32, or venturi, intended to create in its interior a vacuum zone 34 by venturi effect.
  • the liquid-gas hydro-ejector 32 has orifices 36 connecting the vacuum zone 34 and the gas pocket 30.
  • the pump 20 When starting the pumping installation described above, the pump 20 is set in motion, sucking liquid effluent through the inlets 22 and discharging it, in the direction of the arrow 38, towards the ace.
  • the passage of the effluent through the liquid-gas hydro-ejector 32 creates a depression in its interior due to its converging geometry, depression which causes the suction through the orifices 36 of the gas from the gas pocket 30 in the direction of the arrows 40.
  • the gas In the interior of the hydro-ejector, the gas is then entrained by the liquid effluent coming from the pump 20 to which it mixes and re-combines, thus reducing the column of effluent contained in the casing 18, thus facilitating its ascent to the surface.
  • FIG. 2a schematically represents the normal configuration of the flows, corresponding to that described above with reference to FIG. 1.
  • the operating modes of the invention represented in FIGS. 2B and 2C include additional characteristics allowing the installation of react better in transient or transient degraded situations, and make it more efficient and effective.
  • FIG. 2A shows, schematically, the characteristics of the installation of FIG. 1.
  • the mixture of the recombined liquid with the gas is sent to the surface by the casing 18 in the direction of the arrow 50.
  • FIG. 2B schematically represents the situation where, in an installation according to the invention, the pump 20 sucks effluent having a high proportion of gas or contains large bubbles of gas in its impellers.
  • Centrifugal pumps do not tolerate gas bubbles which are not suitable for discharging such effluents. It is therefore advisable to facilitate the evacuation of these bubbles towards the outlet of the pump before continuing to send the effluent to the surface.
  • the presence of large gas bubbles in the interior of the pump 20 can occur despite the separation of the gas upstream before the entry of the fluids into the pump 20, due for example to a degassing complementary to inside the pump 20, or else during a transient operating phase such as restarting the installation.
  • the invention proposes to relieve the backflow of the pump 20 with, on the one hand, a check valve return 52 in the casing 18 between the pump 20 and the hydro-ejector 32 for prohibit the return of effluents to the pump 20 and support the weight of the hydrostatic column, and, on the other hand, a lateral opening 54 located under this valve and allowing the lateral evacuation of the effluents consisting essentially of gas towards the annular chamber 31
  • This valve 52 and the lateral opening 54 are preferably systems which can be put in place and removed from the cable well by an operation commonly called "ire-line" in order to make their maintenance inexpensive.
  • lateral opening 54 must close as soon as a certain flow rate of liquid effluent and a higher pressure are again reached when the pump 20 is discharged.
  • the operation of this lateral opening 54 can be either controlled from the surface to using an electric or hydraulic control line according to parameters available on the surface, or else being automatically controlled locally with for example the discharge pressure of the pump 20, there is the pressure difference due to the friction of the effluent between the inlet and the outlet of the lateral opening 54.
  • This principle is used in safety valves called “storm-choke”.
  • FIG. 2C schematically represents an installation intended to alleviate the problems which may arise when the level 24 of the liquid exceeds that of the hydro-ejector 32.
  • the first is based on the fact that the hydro-ejector 32 is more or less able to make this selection naturally by “hydraulic blocking”. This is the phenomenon that plays when, in liquid-liquid jet-pumping, the jet does a "gas-lock", that is to say, no longer manages to entrain liquid. This condition is obtained for a sufficiently high entraining liquid flow rate.
  • the second consists in using a float intended to block the lateral gas inlet of the hydro-ejector 32 when liquid from the chamber 31 raises it.
  • this float would be a system which could be drawn up by cable and which could, for example, be installed in a “side-pocket”, through which all the gas from the pocket 30 before entering the hydro-ejector 32.
  • the third, also recovered by cable, would be the equivalent of the float but with a different technology, for example, flapping or other "storm choke” closing the passage of liquids.
  • liquid-gas hydro-ejector 32 and the accessories corresponding to the functions shown in FIGS. 2B and 2C as well as the movable element of the pump are advantageously arranged in order to allow their ascent to the surface by cable during maintenance interventions. impose themselves.
  • the liquid-gas hydro-ejector can be mounted in the casing at a point above the joint, the vacuum zone communicating with the chamber by a conduit which crosses the joint.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Nozzles (AREA)

Abstract

Installation de pompage destinée à être montée dans un puits pétrolier (10) s'étendant de la surface jusqu'à une couche de roche pétrolifère, comprenant un tubage (18) à l'extrémité inférieure duquel est montée une pompe (20), un joint (28; 42), monté dans le puits autour du tubage (18) et délimitant une chambre (31) à l'extrémité inférieure du puits, dans laquelle est disposée la pompe. Selon l'invention l'installation comprend, de plus, un hydro-éjecteur (32), dans le tubage (18), comprenant une zone de dépression (34) s'ouvrant dans l'extrémité supérieure de la chambre (31).

Description

INSTALLATION DE POMPAGE D'UN EFFLUENT BIPHASIQUE LIQUIDE/GAZ
La présente invention se rapporte à une installation de pompage d'un effluent biphasique liquide/gaz et, plus particulièrement à une telle installation destinée au pompage d'hydrocarbures provenant d'un puits pétrolier.
Dans certains puits pétroliers, l'écoulement naturel des hydrocarbures du fond à la surface s'avère insuffisant pour permettre ou maintenir une production commerciale. Ceci est dû soit à la viscosité et du poids des effluents, soit à une trop faible pression naturelle au fond du puits, en regard des facteurs qui s'opposent à leur élévation vers la surface. Afin de permettre la mise en production du puits à une échelle commerciale il convient d'utiliser un système d'élévation artificielle de l' effluent, ou système d'activation du puits. Par exemple, on peut monter une pompe à l'extrémité inférieure d'un tube de production situé dans le puits, ou on peut prévoir une installation d'injection de gaz au fond du puits. Ce dernier type d'installation, plus communément appelée "gas lift", sert à alléger la colonne d'hydrocarbures située dans le puits afin de faciliter sa remontée vers la surface.
Une installation d'injection de gaz en fond de puits est généralement fiable, mais présente l'inconvénient de nécessiter, sur un chantier isolé, une source de gaz sous pression, par exemple un compresseur et ses tuyauteries associées .
L'utilisation d'une pompe, disposée à l'extrémité inférieure d'un tubage par lequel remonte 1* effluent biphasique liquide/gaz à la surface, présente des inconvénients lorsque cet effluent renferme une proportion importante de gaz . Les bulles contenues dans 1 ' effluent sont compressibles, une fraction de l'énergie de la pompe servant à comprimer le gaz et non pas à envoyer le fluide vers la surface. Ce phénomène peut même conduire à ce que le débit de fluide pompé devienne nul (situation communément appelée « cavitation » ou « gas-lock ») . Les pompes centrifuges sont particulièrement sujettes au gas-lock, en particulier dans les puits du fait de leur implantation au pied d'une colonne de fluide qui, du fait de son poids propre, oppose à leur refoulement, même à débit nul, une contre-pression hydrostatique. De plus, à l'occasion d'arrêts des écoulements, gaz et liquides finissent de se séparer par gravité au fond du puits, ce qui, dans certains cas engendre de graves dysfonctionnements de la pompe lors de son redémarrage si le gaz accumulé vient à pénétrer dans la pompe, ou encore si, dû à ce régime transitoire, une importante bulle de gaz a pu se former à 1 ' intérieur de la pompe .
Il convient, donc, de séparer l'essentiel du gaz de la phase liquide de l' effluent avant que ce liquide ne soit aspiré par la pompe. Ainsi toute l'énergie de la pompe peut être consacrée à l'envoi du liquide vers la surface et les risques de cavitation sont réduits .
Mais cette séparation de gaz en amont de la pompe nécessite un canal d'évacuation du gaz différent de celui emprunté par le liquide traversant la pompe. Une manière courante d'assurer cette fonction est de laisser le gaz se « ventiler » - c'est à dire cheminer - par l'espace annulaire qui existe entre la paroi interne du cuvelage du puits et la paroi externe du tubage qui sert à l'écoulement du liquide pompé. Cette méthode présente cependant plusieurs inconvénients majeurs qui ont pour conséquence de rendre l'exploitation du puits plus coûteuse voire dangereuse : notamment la perte d'énergie naturelle d'élévation ; l'agression chimique et/ou mécanique des matériels en contact avec le gaz ; et des échanges thermiques importants et incontrôlables entre les effluents et le pourtour du puits pouvant engendrer des problèmes d'écoulement coûteux.
Pour pallier partiellement ces inconvénients, le document FR-A-2.723.143 décrit une installation pour puits pétrolier comportant une pompe disposée à l'extrémité inférieure d'un premier tubage, un deuxième tubage étant destiné à recevoir, le cas échéant, du gaz provenant de 1' effluent et séparé en amont de la pompe, et de le conduire jusqu'à la surface indépendamment de la phase liquide Selon ce document afin de favoriser la séparation du gaz de 1' effluent en fond de puits, la pompe est munie d'une chemise, qui s'étend jusqu'à un niveau en dessous de la couche de roche pétroli ère. Ainsi, l' effluent pénétrant dans le puits est contraint à descendre avant d'être aspiré par la pompe, ce qui a pour effet de garantir une excellente séparation du gaz destiné à emprunter le tubage indépendant.
L'installation décrite dans le document FR-A- 2.723.143, bien qu'elle permette à la pompe de recevoir un effluent ayant une faible teneur en gaz, présente cependant des inconvénients en ce qu'elle nécessite un deuxième tubage sur toute la longueur de puits, ce qui engendre d'importantes contraintes dimensionnelles et économiques de l'ouvrage. De plus, la colonne d' effluent liquide remontée à la surface par la pompe est lourde puisqu'elle est substantiellement exempte de gaz, ce qui nécessite une pompe de puissance plus importante.
La présente invention a donc, pour objet, une installation de pompage d'un effluent biphasique liquide/gaz qui est de construction simple , robuste et fiable, et qui n'est pas sujette aux inconvénients cités ci-avant.
Pour atteindre cet objectif, la présente invention propose une installation de pompage destinée à être montée dans un puits s ' étendant de la surface jusqu'à une couche de roche pétrolifère, comprenant un tubage à l'extrémité inférieure duquel est montée une pompe, un joint, monté dans le puits autour du tubage et délimitant une chambre à l'extrémité inférieure du puits, dans laquelle est disposée la pompe, caractérisée en ce que l'installation comprend, de plus, un hydro-éjecteur dans le tubage comprenant une zone de dépression s ' ouvrant dans l'extrémité supérieure de la chambre .
D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement à la lecture de la description ci-après, faite en référence aux dessins et schémas annexés sur lesquels :
- la figure 1 est une vue en coupe longitudinale d'une installation selon un premier mode de réalisation de l'invention, et
- les figures 2a et 2c sont des vues schématiques de trois modes de fonctionnement de 1 ' invention .
Comme représentée sur la figure 1, un puits pétrolier 10 s'étend entre la surface (non-représentée) et une couche de roche pétrolifère 12. Le puits est muni de perforations 14, s ' ouvrant dans la roche pétrolifère, qui permettent l'écoulement de l' effluent hydrocarbures vers l'intérieur du puits 10. Le puits 10 comprend un cuvelage 16 qui le rend étanche par rapport aux couches de roche traversées par le puits. A l'intérieur du puits un tubage 18 s ' étend entre la surface et un point se trouvant à quelques mètres au-dessus de la couche de roche 12. Le tubage 18 comporte à son extrémité inférieure une pompe 20 munie d'entrées 22 pour l' effluent à envoyer à la surface. Dans l'exemple représenté , la pompe 20 est rotative centrifuge et son moteur est alimenté à partir de la surface par un câble électrique (non représenté) . Avant d'être aspiré par la pompe 20, l' effluent provenant de la couche de roche 12, qui remplit le puits jusqu'à un niveau 24, se déplace dans le sens des flèches 26. Pendant ce déplacement, le gaz contenu dans l' effluent se libère et remonte dans le puits jusqu'au niveau d'un joint 28,- plus communément appelé "packer", formant ainsi une poche de gaz 30 entre le niveau 24 de 1 ' effluent liquide et le joint 28, dans une chambre 31 définie dans le puits 10 en dessous du packer 28. La pompe 20 peut avantageusement comprendre un séparateur spécial à chicane ou dynamique de type centrifuge ou vortex afin de mieux garantir la séparation en amont de la pompe ( non représentée. Sans un tel séparateur, la séparation se fait habituellement par gravité dans la chambre 31 où se trouvent, à une vitesse relativement faible compte tenu de la section de leur passage, les effluents bruts sortant des perforations . Le packer 28 définit une chambre annulaire 33 délimitée par la paroi interne du cuvelage 16 et la paroi externe du tubage 18 entre le joint 28 et la surface. Le packer 28 interdit aux effluents et notamment au gaz de pénétrer la chambre 33. Ils ne peuvent traverser la partie supérieure du puits qu'en empruntant le tubage 18. La chambre 33 et tous les accessoires qu'elle contient tel que le cable d'alimentation de la pompe 20 sont donc préservés des agressions mécaniques et chimiques et reste disponible pour d'autres fonctions telle que par exemple l'accueil d'une substance calorifuge afin d'assurer l'isolation thermique du tubage 18.
Au niveau de la poche de gaz 30, le tubage 18 comporte un hydro-éjecteur liquide-gaz 32, ou venturi, destiné à créer dans son intérieur une zone de dépression 34 par effet venturi. L ' hydro-éjecteur liquide-gaz 32 comporte des orifices 36 mettant en communication la zone de dépression 34 et la poche de gaz 30.
Lors de la mise en marche de l'installation de pompage décrite ci-avant, la pompe 20 est mise en mouvement, aspirant de l' effluent liquide par les entrées 22 et le refoulant, dans le sens de la flèche 38, vers la sur ace. Le passage de l' effluent à travers 1 ' hydro-éjecteur liquide-gaz 32 crée une dépression dans son intérieur du fait de sa géométrie en forme de convergeant, dépression qui provoque l'aspiration par les orifices 36 du gaz de la poche de gaz 30 dans le sens des flèches 40. Dans l'intérieur de l' hydro- éjecteur, le gaz est alors entraîné par l' effluent liquide provenant de la pompe 20 auquel il se mélange et se re- combine, allégeant ainsi la colonne d' effluent contenue dans le tubage 18, facilitant ainsi sa remontée vers la surface.
Comme la poche de gaz 30 est toujours en communication avec le tubage 18 par les orifices 36 ; 44, la formation d'une poche de gaz s ' étendant jusqu'à la pompe 20 est évitée, même lors d'un arrêt prolongé de l'installation. Ceci a pour résultat d'éviter que la pompe ne redémarre lorsqu'elle est entourée de gaz. La figure 2a représente schématiquement la configuration normale des écoulements, correspondant à celle décrite ci-avant en référence à la figure 1. Les modes de fonctionnement de 1 ' invention représentés sur les figures 2B et 2C comportent des caractéristiques complémentaires permettant à l'installation de mieux réagir dans des situations dégradées transitoires ou passagères, et de la rendre plus efficace et performante.
La figure 2A reprend, de manière schématique les caractéristiques de l'installation de la figure 1. Le liquide refoulé par la pompe 20 dans le sens de la flèche 38, aspire du gaz dans 1 ' hydroéjecteur 32 dans le sens de la flèche 40. Le mélange du liquide recombiné avec le gaz est envoyé vers la surface par le tubage 18 dans le sens de la flèche 50.
La figure 2B représente schématiquement la situation où, dans une installation selon l'invention, la pompe 20 aspire de 1 ' effluent ayant une forte proportion de gaz ou contient d'importantes bulles de gaz dans ses impulseurs. Les pompes centrifuges tolèrent mal les bulles de gaz n'étant pas adaptées à refouler de tels effluents. Il est donc judicieux de faciliter l'évacuation de ces bulles vers la sortie de la pompe avant de continuer à envoyer 1' effluent vers la surface.
En effet, la présence d'-importantes bulles de gaz dans l'intérieur de la pompe 20 peut survenir en dépit de la séparation du gaz en amont avant l'entrée des fluides dans la pompe 20, due par exemple à un dégazage complémentaire à l'intérieur même de la pompe 20, ou bien lors d'une phase transitoire de fonctionnement telle qu'un redémarrage de l'installation. Pour éviter qu'une telle situation se prolonge et devienne stationnaire au détriment du matériel qui surchaufferait et de la production du puits qui serait nulle, l'invention propose de soulager le refoulement de la pompe 20 avec, d'une part, un clapet anti-retour 52 dans le tubage 18 entre la pompe 20 et 1 ' hydro-éjecteur 32 pour interdire le retour des effluents vers la pompe 20 et en supporter le poids de colonne hydrostatique, et, d'autre part, une ouverture latérale 54 située sous ce clapet et permettant l'évacuation latérale des effluents constitués essentiellement de gaz vers la chambre annulaire 31. Ce clapet 52 et l'ouverture latérale 54 sont prëférablement des systèmes pouvant être mis en place et retirés du puits au câble par une opération communément appelée « ire-line » afin de rendre leur maintenance peu onéreuse. On peut par exemple utiliser des équipements logés dans des « poches » latérales du type de celles couramment utilisées pour les vannes d'injection de gaz pour l'allégement de la colonne d' effluent et communément appelés « side-pocket ». L'ouverture latérale 54 doit se refermer dès qu'un certain débit d' effluent liquide et une pression plus élevée, seront de nouveau atteint au refoulement de la pompe 20. La manoeuvre de cette ouverture latérale 54 pourra être soit pilotée depuis la surface à l'aide d'une ligne de commande électrique ou hydraulique en fonction de paramètres disponibles en surface, ou bien être automatique pilotée localement avec par exemple la pression de refoulement de la pompe 20, on la différence de pression due aux frictions de 1' effluent entre l'entrée et la sortie de l'ouverture latérale 54. Ce principe est utilisé dans des vannes de sécurité appelée « storm-choke » .
Comme représenté sur la figure 2B, lorsque la pompe n'envoie plus d' effluent liquide vers la surface, la colonne de liquide présente dans le tubage 18, en aval de 1 ' hydroéjecteur 32 s'écoule, sous l'effet de son propre poids, et jusqu'à l'équilibre, à travers les orifices 36 aménagés dans 1 ' hydroéjecteur vers la chambre 31. Une fois que le tubage s'est vidé jusqu'à l'équilibre, le gaz présent dans la chambre 31 peut remonter vers la surface en pénétrant dans le tubage 18 par les orifices 36. Ainsi, même si le niveau 24 de l' effluent liquide est descendu en dessous du niveau de la pompe 20, cette purge du gaz dans la chambre 31 permet au niveau du liquide 24 de remonter au delà de celui de la pompe 20. Une fois que la pompe se trouve, de nouveau, immergée dans de 1 ' effluent liquide ayant une faible proportion de gaz, l'envoi de l' effluent vers la surface peut recommencer.
La figure 2C représente schématiquement une installation destinée à pallier les problèmes qui peuvent survenir lorsque le niveau 24 du liquide dépasse celui de 1 ' hydroéjecteur 32.
Une telle situation se produit si 1 ' hydro-éjecteur a une capacité d'aspiration de gaz supérieure au débit de gaz libéré par la séparation située en amont de l'entrée de la pompe 20. C'est même la situation la plus probable dans la configuration normale de l'installation selon l'invention. Or même si 1 ' hydro-éjecteur est capable de fonctionner en liquide-liquide comme c'est le cas général en « jet- pumping », il est plutôt préférable d'éviter l'entraînement effectif de liquide en provenance de la chambre 31 par les effluents liquides s 'écoulant dans le sens de la flèche 38. Car un tel entraînement réduirait la performance et/ou l'efficacité du système. Pour éviter cet entraînement de liquides, et rendre l'entraînement sélectif vis-à-vis du gaz et du liquide de la chambre 31 plusieurs solutions sont proposées ci-après : la première s'appuie sur le fait que 1 ' hydro-éjecteur 32 est plus ou- moins capable d'effectuer cette sélection naturellement par « blocage hydraulique » . C'est le phénomène qui joue lorsque qu'en jet-pumping liquide-liquide, le jet fait du « gas-lock », c'est à dire n'arrive plus à entraîner de liquide. Cette condition est obtenue pour un débit de liquide entraînant suffisamment élevé. La deuxième consiste à utiliser un flotteur destiné à obturer l'entrée de gaz latérale de 1 ' hydro-éjecteur 32 lorsque du liquide de la chambre 31 le soulève. Ce flotteur serait là encore un système qui pourrait se repêcher au câble et qui pourrait par exemple s ' implanter dans un « side-pocket », par lequel passerait tout le gaz de la poche 30 avant de pénétrer dans 1 ' hydro-éjecteur 32. La troisième, également repêcher au câble, serait l'équivalent du flotteur mais avec une technologie différente, par exemple, battant ou autre « storm choke » fermant au passage de liquides. On peut également prévoir un orifice de petit diamètre ou « duse » résistant peu à l'écoulement des gaz et beaucoup à celui de liquides, provoquant même le dégazage de ces derniers.
L ' hydro-éjecteur liquide-gaz 32, et les accessoires correspondants aux fonctions représentées sur les figures 2B et 2C ainsi que l'élément mobile de la pompe sont avantageusement aménagés afin de permettre leur remontée à la surface par câble lorsque des interventions de maintenance s ' imposent .
L' hydro-éjecteur liquide-gaz peut-être monté dans le tubage en un point au dessus du joint , la zone de dépression communicant avec la chambre par un conduit qui traverse le joint.

Claims

REVENDICATIONS 1/ Installation de pompage destinée à être montée dans un puits (10) s ' étendant de la surface jusqu'à une couche de roche pétrolifère, comprenant un tubage (18) à l'extrémité inférieure duquel est montée une pompe (20), un joint (28 ; 42) , monté dans le puits autour du tubage (18) et délimitant une chambre (31) à l'extrémité inférieure du puits, dans laquelle est disposée la pompe caractérisée en ce que l'installation comprend, de plus, un hydro-éjecteur (32) , dans le tubage (18) , comprenant une zone de dépression (34) s ' ouvrant dans l'extrémité supérieure de la chambre (31) .
2/ Installation selon la revendication 1, caractérisée en ce que 1 ' hydro-éjecteur liquide-gaz (32) est monté dans le tubage (18) immédiatement en dessous du joint
(28), la zone de dépression (34) communicant avec la chambre
(31) par des orifices (36) ménagés dans 1 ' hydro-éjecteur liquide-gaz .
3/ Installation selon la revendication 1, caractérisée en ce que 1 ' hydro-éjecteur liquide-gaz (32) est monté dans le tubage (18) en un point au dessus du joint
(42) , la zone de dépression (34) communicant avec la chambre (31) par un conduit (46) qui traverse le joint (42) .
4/ Installation selon l'une des revendications 1 à 3 caractérisée en ce que la pompe comprend, de plus, un séparateur centrifuge qui communique avec la zone de dépression (34) de 1 ' hydro-éjecteur liquide-gaz (32).
5/ Installation selon l'une des revendacations 1 à 4 caractérisée en ce qu'elle comprend de plus un clapet antiretour (52) monté dans le tubage (18) entre le pompe (20) et 1 ' hydro-éjecteur (32), et une ouverture latérale (54) dans le tubage (18) entre la pompe (20) et ce clapet anti-retour (52) .
PCT/FR1998/000157 1997-01-31 1998-01-28 Installation de pompage d'un effluent biphasique liquide/gaz WO1998034009A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP98904241A EP0892886B1 (fr) 1997-01-31 1998-01-28 Installation de pompage d'un effluent biphasique liquide/gaz
AT98904241T ATE221613T1 (de) 1997-01-31 1998-01-28 Pumpanlage für einen zweiphasigen flüssigkeits- /gasausfluss
US09/142,167 US6250384B1 (en) 1997-01-31 1998-01-28 Installation for pumping a liquid/gas two-phase effluent
DE69806865T DE69806865T2 (de) 1997-01-31 1998-01-28 Pumpanlage für einen zweiphasigen flüssigkeits-/gasausfluss
BR9805955-6A BR9805955A (pt) 1997-01-31 1998-01-28 Instalação de bombeamento de um efluente bifásico líquido/gás
CA002251611A CA2251611C (fr) 1997-01-31 1998-01-28 Installation de pompage d'un effluent biphasique liquide/gaz
NO19984544A NO315288B1 (no) 1997-01-31 1998-09-29 Installasjon for pumping av en to-fase utströmming av v¶ske/gass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9701113A FR2759113B1 (fr) 1997-01-31 1997-01-31 Installation de pompage d'un effluent biphasique liquide/gaz
FR97/01113 1997-01-31

Publications (1)

Publication Number Publication Date
WO1998034009A1 true WO1998034009A1 (fr) 1998-08-06

Family

ID=9503202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000157 WO1998034009A1 (fr) 1997-01-31 1998-01-28 Installation de pompage d'un effluent biphasique liquide/gaz

Country Status (11)

Country Link
US (1) US6250384B1 (fr)
EP (1) EP0892886B1 (fr)
AT (1) ATE221613T1 (fr)
BR (1) BR9805955A (fr)
CA (1) CA2251611C (fr)
DE (1) DE69806865T2 (fr)
FR (1) FR2759113B1 (fr)
NO (1) NO315288B1 (fr)
OA (1) OA10890A (fr)
RU (1) RU2201535C2 (fr)
WO (1) WO1998034009A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497287B1 (en) 1999-06-07 2002-12-24 The Board Of Regents, The University Of Texas System Production system and method for producing fluids from a well
NL1021004C2 (nl) * 2002-07-04 2004-01-06 Rasenberg Milieutechniek B V Inrichting en werkwijze voor het verwijderen van vluchtige verontreinigingen uit grondwater.
AU2001226584B2 (en) * 2000-10-05 2006-01-12 Petroleo Brasileiro S.A. - Petrobras Method and device to stabilise the production of oil wells

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092727A1 (fr) * 2000-05-31 2001-12-06 Zinoviy Dmitrievich Khomynets Procede d'utilisation d'une unite de pompage pour puits destinee a l'exploration des puits et dispositif de mise en oeuvre correspondant
US6817409B2 (en) * 2001-06-13 2004-11-16 Weatherford/Lamb, Inc. Double-acting reciprocating downhole pump
US6926504B2 (en) * 2001-06-26 2005-08-09 Total Fiza Elf Submersible electric pump
US6761215B2 (en) * 2002-09-06 2004-07-13 James Eric Morrison Downhole separator and method
US7195072B2 (en) * 2003-10-14 2007-03-27 Weatherford/Lamb, Inc. Installation of downhole electrical power cable and safety valve assembly
BRPI0703726B1 (pt) * 2007-10-10 2018-06-12 Petróleo Brasileiro S.A. - Petrobras Módulo de bombeio e sistema para bombeio submarino de produção de hidrocarbonetos com alta fração de gás associado
CN101939505A (zh) * 2008-02-06 2011-01-05 斯塔特石油公开有限公司 气液分离器
US9016387B2 (en) * 2011-04-12 2015-04-28 Halliburton Energy Services, Inc. Pressure equalization apparatus and associated systems and methods
RU2536521C1 (ru) * 2013-10-02 2014-12-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Установка для эксплуатации водозаборных скважин
RU2605571C1 (ru) * 2015-10-06 2016-12-20 Олег Марсович Гарипов Способ интенсификации добычи нефти гарипова и установка для его осуществления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584134A1 (fr) * 1985-06-26 1987-01-02 Inst Francais Du Petrole Procede et equipement pour l'exploitation de gisements d'hydrocarbures comportant une phase gazeuse separee de la phase liquide
US4790376A (en) * 1986-11-28 1988-12-13 Texas Independent Tools & Unlimited Services, Inc. Downhole jet pump
WO1992008037A1 (fr) * 1990-11-03 1992-05-14 Peco Machine Shop & Inspection Services Ltd. Systeme de pompe a jet au fond du puits utilisant un gaz comme fluide de commande
WO1995007414A1 (fr) * 1993-09-06 1995-03-16 B.H.R. Group Limited Systeme de pompage de liquides au moyen d'une pompe a ejecteur
EP0694676A1 (fr) * 1994-07-29 1996-01-31 Elf Aquitaine Production Installation pour puits pétrolier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1757267A (en) * 1926-12-23 1930-05-06 Kellogg M W Co Gas-oil separator
US2030159A (en) * 1934-10-01 1936-02-11 Bernard H Scott Automatic control system for atomizing and lifting oil with gas
US2080622A (en) * 1935-03-23 1937-05-18 Mcmahon William Frederick Apparatus for entraining oil and gas from oil wells
US2872985A (en) * 1956-12-26 1959-02-10 Phillips Petroleum Co Cyclone gas anchor
US3746089A (en) * 1971-07-19 1973-07-17 Dresser Ind Apparatus for producing multiple zone oil and gas wells
US4481020A (en) * 1982-06-10 1984-11-06 Trw Inc. Liquid-gas separator apparatus
US4632184A (en) * 1985-10-21 1986-12-30 Otis Engineering Corporation Submersible pump safety systems
US4676308A (en) * 1985-11-22 1987-06-30 Chevron Research Company Down-hole gas anchor device
US5259450A (en) * 1992-09-17 1993-11-09 Qed Environmental Systems, Inc. Vented packer for sampling well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584134A1 (fr) * 1985-06-26 1987-01-02 Inst Francais Du Petrole Procede et equipement pour l'exploitation de gisements d'hydrocarbures comportant une phase gazeuse separee de la phase liquide
US4790376A (en) * 1986-11-28 1988-12-13 Texas Independent Tools & Unlimited Services, Inc. Downhole jet pump
WO1992008037A1 (fr) * 1990-11-03 1992-05-14 Peco Machine Shop & Inspection Services Ltd. Systeme de pompe a jet au fond du puits utilisant un gaz comme fluide de commande
WO1995007414A1 (fr) * 1993-09-06 1995-03-16 B.H.R. Group Limited Systeme de pompage de liquides au moyen d'une pompe a ejecteur
EP0694676A1 (fr) * 1994-07-29 1996-01-31 Elf Aquitaine Production Installation pour puits pétrolier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497287B1 (en) 1999-06-07 2002-12-24 The Board Of Regents, The University Of Texas System Production system and method for producing fluids from a well
AU2001226584B2 (en) * 2000-10-05 2006-01-12 Petroleo Brasileiro S.A. - Petrobras Method and device to stabilise the production of oil wells
NL1021004C2 (nl) * 2002-07-04 2004-01-06 Rasenberg Milieutechniek B V Inrichting en werkwijze voor het verwijderen van vluchtige verontreinigingen uit grondwater.

Also Published As

Publication number Publication date
US6250384B1 (en) 2001-06-26
OA10890A (en) 2003-02-18
DE69806865T2 (de) 2003-03-13
NO315288B1 (no) 2003-08-11
EP0892886B1 (fr) 2002-07-31
CA2251611C (fr) 2005-09-13
BR9805955A (pt) 1999-08-31
NO984544D0 (no) 1998-09-29
RU2201535C2 (ru) 2003-03-27
FR2759113B1 (fr) 1999-03-19
DE69806865D1 (de) 2002-09-05
ATE221613T1 (de) 2002-08-15
EP0892886A1 (fr) 1999-01-27
FR2759113A1 (fr) 1998-08-07
NO984544L (no) 1998-09-29
CA2251611A1 (fr) 1998-08-06

Similar Documents

Publication Publication Date Title
EP0892886B1 (fr) Installation de pompage d'un effluent biphasique liquide/gaz
EP1656517B2 (fr) Methode d'evacuation des gaz de permeation d'une conduite tubulaire flexible et conduite adaptee a sa mise en oeuvre
EP0818603B1 (fr) Procédé et installation de pompage d'un effluent pétrolier
CA2159097C (fr) Systeme de regulation d'air pour reservoir hydropneumatique
US8196657B2 (en) Electrical submersible pump assembly
EP3194713B1 (fr) Système et procédé d'extraction de gaz d'un puits
FR2748533A1 (fr) Systeme de pompage polyphasique et centrifuge
BRPI0906126A2 (pt) bomba injetora com uma bomba centrìfuga
WO2012120211A1 (fr) Séparateur à écoulement cyclonique
EP0420751B1 (fr) Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé
EP0230918B1 (fr) Dispositif pour drainer des sols en profondeur
EP0694676A1 (fr) Installation pour puits pétrolier
FR2809179A1 (fr) Dispositif d'amorcage automatique de cannes de prelevement de fluides
FR2647829A1 (fr) Dispositif pour equiper l'extremite d'exutoire d'un tuyau de siphonnage de drain
EP0895020B1 (fr) Dispositif d'introduction d'air pour un réservoir hydropneumatique
CA2971753C (fr) Dispositif d'evacuation de liquides accumules dans un puits
FR2663373A1 (fr) Procede et dispositif pour etablir une depression dans une zone de terrain permeable isolee de l'atmosphere par une membrane etanche.
JP4240301B2 (ja) ターボ型ポンプ
EP0852684B1 (fr) Reservoir hydropneumatique anti-belier avec dispositif d'admission et de regulation d'air, procede d'admission d'air
FR2601084A1 (fr) Pompe centrifuge pour le refoulement de fluides contenant des gaz
FR1465797A (fr) Installation de pompage par puits d'épuisement d'une nappe aquifère
JP2022082907A (ja) サイフォン排水設備
CA1278927C (fr) Dispositif pour drainer des sols en profondeur
US1047258A (en) Pumping apparatus.
FR2545548A1 (fr) Dispositif d'amorcage pour pompe centrifuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2251611

Country of ref document: CA

Ref country code: CA

Ref document number: 2251611

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998904241

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998904241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09142167

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1998904241

Country of ref document: EP