WO1998033213A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO1998033213A1
WO1998033213A1 PCT/JP1998/000346 JP9800346W WO9833213A1 WO 1998033213 A1 WO1998033213 A1 WO 1998033213A1 JP 9800346 W JP9800346 W JP 9800346W WO 9833213 A1 WO9833213 A1 WO 9833213A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
manufacturing
inspection
semiconductor device
manufacturing line
Prior art date
Application number
PCT/JP1998/000346
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Ishikawa
Takaaki Kumazawa
Jun Nakazato
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998033213A1 publication Critical patent/WO1998033213A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a manufacturing technique for improving a semiconductor device manufacturing yield, and more particularly to a semiconductor device manufacturing method for efficiently managing a semiconductor device manufacturing line and improving the manufacturing yield.
  • Semiconductor devices are manufactured by forming a pattern by repeating a film forming process, an exposing process, an etching process, and the like, and stacking these in multiple layers.
  • the processing dimensions of patterns formed on semiconductor devices are fine, and products with dimensions already less than 1 m are widely sold.
  • the history refers to the processing unit, processing date and time, processing conditions (set value / actual value), the quality of the lot before and after, the monitoring result of the processed equipment, and the like.
  • An object of the present invention is to improve the manufacturing yield by effectively inspecting a semiconductor device being manufactured. Disclosure of the invention
  • the present invention in order to achieve the above object, necessary inspection information is acquired during a prototype period before mass production of semiconductor devices is started, and semiconductor devices are mass-produced using the inspection information.
  • pre-check the size of fatal defects, the generation area, observation images, and inspection means for each defect generation process In mass production, inspections are performed based on the pre-check items to determine the management criteria for inspection results, inspection process, inspection area, etc. in semiconductor device manufacturing without delay, and improve yield. Do it quickly.
  • a step of manufacturing a semiconductor device on a first manufacturing line a step of inspecting the semiconductor device by an inspection device provided on the first manufacturing line, and an inspection result of the semiconductor device Generating manufacturing line management information from the following; setting an inspection device on a second manufacturing line based on the generated manufacturing line management information; manufacturing a semiconductor device on the second manufacturing line;
  • the above object is achieved by including a step of inspecting a semiconductor device manufactured on the second manufacturing line by an inspection device set based on the manufacturing line management information.
  • inspection standards for mass production for example, locations to be inspected particularly on a wafer can be effectively set without delay, so that stable production at a mass production site can be performed quickly. It can be realized, and the yield can be improved.
  • a step of manufacturing a semiconductor device on a first manufacturing line, and an appearance / foreign matter inspection provided on the first manufacturing line Detecting a defect on a wafer forming the semiconductor device by the device; detecting an electrical characteristic of a chip of the wafer forming the semiconductor device by a probe inspection device provided on the first manufacturing line; A step of determining a chip having a defect from the detection result of the external appearance / foreign matter inspection apparatus; and a step in which electrical characteristics are defective among the chips determined to have the defect based on the detection result of the probe inspection apparatus.
  • the above object is achieved by including a step of manufacturing a semiconductor device at a frequency equal to or higher than the inspection frequency of a completed wafer.
  • a step of manufacturing a semiconductor device on a first manufacturing line a step of detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line; Detecting the electrical characteristics of a chip of a wafer forming the semiconductor device by using a probe inspection device provided in the first manufacturing line; and a detection result of the appearance / foreign matter inspection device and the probe. Calculating the correlation between the number of defects and the yield based on the detection result of the inspection device; and determining the management criteria of the inspection device provided in the second manufacturing line by determining the number of foreign substances whose yield is within a predetermined value.
  • the appearance / foreign matter inspection apparatus determines a size of a defect on a wafer, calculates a correlation between the number of defects and a yield for each predetermined defect size, and provides an inspection apparatus capable of detecting the defect size. It is preferable to set the number of defects for each defect size for setting the yield to be within a predetermined value as a control standard of the set inspection apparatus, which is set in the second production line.
  • the appearance / foreign matter inspection apparatus determines a type of a defect on a wafer, calculates a correlation between the number of defects and a yield for each predetermined defect type, and provides an inspection apparatus capable of detecting the type of the defect. It is preferable to set the number of defects for each type of defect for which the yield is within a predetermined value as a management standard for the set inspection apparatus.
  • the appearance / foreign matter inspection apparatus determines the size of the defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined size, and the defect occurrence density of any one of the defect sizes is equal to or more than a predetermined value. In this case, it is preferable to set an inspection device capable of detecting a defect size that is equal to or larger than the predetermined value in the second production line. Further, the appearance / foreign matter inspection apparatus determines the type of the defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined defect type, and determines whether the defect occurrence density of any of the defect types is a predetermined value. In this case, it is preferable to set an inspection apparatus capable of detecting the type of the defect having the predetermined value or more in the second production line.
  • the above object can be achieved by including steps for manufacturing a conductor device. As a result, all phenomena can be simulated before mass production starts, and by predicting and managing phenomena that become defective due to the attachment of defects, the yield at mass production bases can be improved.
  • the defect attachment positions are made different from each other and simulated, and the inspection area of the inspection apparatus is set so as to inspect the attachment position determined as abnormal.
  • FIG. 1 is a system diagram of the present invention
  • FIG. 2 is an operation form of the present invention
  • FIG. 3 is a diagram showing an example of information obtained from the appearance / foreign matter inspection device
  • FIG. 4 is a diagram showing coordinates on a wafer
  • FIG. FIG. 6 is a diagram showing an example of information obtained from a probe inspection apparatus
  • FIG. 6 is a diagram showing an example of information on a wafer
  • FIG. 7 is a diagram showing an established PF for each process
  • FIG. Fig. 8 shows the established PF for each process
  • Fig. 9 shows the correlation between yield Y and established Y
  • Fig. 10 shows the correlation between yield Y and established Y.
  • FIG. 11 is a flowchart showing an example of an operation mode of the present invention.
  • FIG. 12 is a diagram showing a problem occurrence situation for each process
  • FIG. FIG. 14 is a flowchart showing an example of an operation mode of the present invention.
  • FIG. 14 is a correlation diagram between the yield Y and the number N of defects
  • FIG. FIG. 15 is a flow chart showing an example of an operation mode of the present invention.
  • FIG. 16 is a view showing a defect occurrence region on a wafer.
  • FIG. 17 is a defect chart on a wafer.
  • FIG. 18 is a diagram showing information on the generation area
  • FIG. 18 is a diagram showing an appearance foreign matter inspection device of the present invention
  • FIG. 19 is a diagram showing an example of a display screen of the present invention;
  • FIG. 18 is a diagram showing information on the generation area
  • FIG. 20 is a flowchart showing an example of an operation mode of the present invention
  • FIG. 21 is a diagram showing an example of a simulation result of the present invention
  • FIG. FIG. 23 is a diagram showing information on a simulation result
  • FIG. 23 is a diagram showing information on a simulation result of the present invention
  • FIG. 24 is a system diagram of the present invention
  • FIG. FIG. 4 is a flowchart showing an example of an operation mode of the present invention.
  • FIG. 1 is a system diagram showing the concept of the present invention.
  • Figure 1 consists of the first stage of prototype production, which establishes the optimal manufacturing conditions for the designed device, and the second stage of mass production, which is premised on actual sales as a product.
  • Prototype 1 and mass production 2 may be performed on the same line, or may be performed on different lines. However, there may be some overlap in time. It is natural that the prototype 1 is performed before the mass production 2.
  • Prototype 1 consists of various types of manufacturing equipment 15 that performs processes such as film formation, exposure, and etching on the input wafer, and a quality inspection device 3 (for example, wafers) that inspects the quality of the wafers processed by the manufacturing equipment.
  • a quality inspection device 3 for example, wafers
  • Foreign matter / visual inspection equipment 4 for inspecting defects or foreign matter on the surface
  • probe inspection equipment 5 for inspecting the electrical characteristics of wafers after all wafer processing steps have been completed
  • Check item generation station 9 that collects the appearance inspection 4 results and manufacturing results (probe inspection 5 results) to generate the necessary inspection information, and accumulates the inspection information generated by the check generation item station 9 It consists of database 10.
  • the mass production base 2 includes various manufacturing apparatuses 15 for performing processes such as film formation, exposure, and etching on the input wafers, and a quality inspection apparatus 3 for inspecting the quality of wafers processed by the manufacturing apparatuses (for example, wafers).
  • a quality inspection apparatus 3 for inspecting the quality of wafers processed by the manufacturing apparatuses (for example, wafers).
  • Foreign matter / visual inspection equipment 4) for inspecting the above defects or foreign matter
  • probe inspection equipment 5 for inspecting the electrical characteristics of wafers after all wafer processing steps are completed, and inspection information generated in prototype 1 are stored. It is composed of a database 11 and a guide station 12 for outputting a management standard, a process to be inspected, a place on a wafer to be inspected, and the like from the inspection information stored in the database.
  • the database 10 of the prototype 1 and the database 12 of the mass production base 2 are connected via a communication line 14.
  • the databases provided for the prototype 1 and the mass production base 2 are not necessarily required. There is no problem as long as the guidance station 12 of the mass production base outputs necessary information based on the inspection information generated in the step 9.
  • the databases of the prototype 1 and the mass production base 2 may be integrated, or the information of the prototype 1 may be transferred to the mass production base 2 via a storage medium.
  • Fig. 2 is a flowchart from the acquisition of inspection information (process to be inspected) in prototype 1 to the application of the inspection information to mass production 2.
  • a semiconductor device is manufactured using various manufacturing apparatuses 15 (step 101).
  • the quality inspection device 3 acquires quality information from the wafer being manufactured and transmits it to the check item generation station 9 (step 102).
  • the defect // "on the wafer and / or the number of foreign substances are acquired by using the foreign substance / visual inspection apparatus 4.
  • the inspection results of the foreign matter / visual inspection device 4 are: product type, process name, lot number, wafer number, defect coordinates (x, y), defect type, defect size, observation image, It includes items such as defect occurrence sites.
  • FIG. 3 shows information on the wafer number 1 stored in the lot number L001 of the semiconductor device HM001, and after the processing in the process P1, the defect coordinates (100, 002) are shown. (0 0) indicates that a defect of defect type A and defect size 10 was detected.
  • the type and size of the defect are not necessarily required, and it is sufficient that the presence or absence of a defect can be determined.
  • the defect coordinates are, as shown in FIG.
  • the probe inspection device 5 acquires the electrical characteristics of each chip from the wafer and sends it to the check item generation station 9 (step 103). As shown in FIG. 5, the inspection result of the probe inspection device 5 includes the product name, the slot number, the wafer number, the chip coordinates (m, n), and information on the quality of the corresponding chip.
  • the chip coordinate means the chip position on the wafer.
  • FIG. 5 shows information on the wafer number 1 stored in the lot number L001 of the semiconductor device HM001, and the pass / fail status of each chip after the process P1 is indicated by “1” and “0”. ". For example, for the chip at the chip position (1,3), "1" is displayed, indicating that the chip is defective.
  • the check item generation station 11 uses the inspection result of the foreign matter / visual inspection apparatus 4, information on the chip layout of the wafer stored in advance, and equations (1) and (2) to determine on which chip the defect is located. It is determined whether there is (Step 104).
  • the information on the chip layout of the wafer may include information on the chip horizontal width XW, the chip vertical width YL, the number of horizontal chips, and the number of vertical chips as shown in the product type information table 30 shown in FIG. It should be noted that the present invention is not limited to the equations (1) and (2), but it is only necessary to be able to determine which chip has a defect detected by the foreign matter / appearance detection device 4.
  • the calculated chip coordinates (m ′, n ′) must correspond to the coordinates of the probe inspection device 5.
  • [X] indicates the largest integer not exceeding X.
  • Step 105 the chip coordinates (m ', n') with the defect determined in step 1 ), And the probability PF that a chip having a defect becomes a defective product is calculated by using the determination result of good / bad for each chip (m, n), which is the detection result of the probe inspection device 5, and Equation (3).
  • Step 105 The calculation of the probability PF that a chip having a defect becomes a defective product is performed on wafers inspected in the same process in the same product type.
  • a chip failure rate Daraf 40 per process as shown in FIG. 7 can be created.
  • the horizontal axis 41 indicates the process
  • the vertical axis 42 indicates the probability PF of a defective chip becoming a defective product.
  • the value of PF in process P4 is close to 1.0. This indicates that if a defect occurs, the probability of becoming a defective chip is high. Note that, without preparing the chip failure rate graph 40 for each process shown in FIG. 7, the failure occurrence table 50 shown in FIG. Should be recorded as PF
  • the yield Y is defined by equation (4), and a correlation diagram 70 between the established PF on the same wafer and the yield Y as shown in FIG. 9 is created, and from these plots The linear regression equation 73 is obtained (step 106).
  • the inspection information required at the mass production site 2 in the prototype 1 (PF value of each process shown in Fig. 8, established PF shown in Fig. 10 and yield) (Correlation information with Y).
  • the guidance station 12 determines the inspection process and the inspection conditions based on the already acquired established PF, the established PF and the correlation between the yield Y (step 107).
  • the desired yield is set using FIG. 10, and the corresponding established PF is calculated from the linear regression equation 73, and the established PF is calculated.
  • the manufacturing equipment in the above processes will be managed mainly. Specifically, the inspection frequency of the inspection device or the inspection area is increased for a process having an established PF equal to or higher than a predetermined value.
  • defects can be prevented. Since it is possible to manage a manufacturing apparatus that performs the process, the number of defective chips due to defects can be reduced and the yield can be improved.
  • Fig. 11 shows another example of extracting the process to be inspected from the inspection information collected in prototype 1.
  • a semiconductor device is manufactured using various manufacturing apparatuses 15 (step 201).
  • the process and the type of the problem are registered in the check item generation station 9 and the number of occurrences is recorded (step 202).
  • the type of problem refers to a problem due to a device structure or a problem due to a manufacturing apparatus.
  • Fig. 12 shows an example of stored data. (1) This means that the chip width XW and chip height YW are used in the following equations (1) and (2).
  • the chip arrangement is such that the chips are processed for each row. The numbers are different.
  • problems caused by the device structure include, for example, a large difference in level of the underlying layer, which makes it difficult to focus at the time of exposure depending on the location, and that a desired pattern cannot be processed. In such a case, it is necessary to closely observe the deviation from the desired shape and take measures. Therefore, observation using SEM is preferable.
  • the problem caused by the manufacturing apparatus is, for example, that foreign matter is generated from the apparatus and the foreign matter adheres to the wafer and cannot be processed into a desired shape. Unlike problems caused by the device structure, it is not known when a device failure will occur, so it is necessary to increase the inspection frequency and quickly detect that a device failure has occurred.
  • a setting is made so as to focus on the processes in which the number of times of occurrence of the problem is equal to or more than a predetermined number (step 203).
  • step 204 For example, if there are many problems due to the device structure, manage them with a SEM visual inspection device with good inspection sensitivity, and if there are many problems due to the manufacturing equipment, manage them by increasing the inspection frequency (step 204). .
  • the inspection can be effectively performed in a part of the wafer, so that throughput is reduced.
  • the yield can be improved without lowering the yield.
  • steps 301 to 303 are the same as those in FIG.
  • step 304 the check item generation step 9 is based on the inspection result of the foreign matter / visual inspection device 4 and the inspection result of the probe inspection device 5, as shown in FIG. Then, a correlation diagram 60 between the number N of foreign matters and the yield Y is created, and a linear regression equation 73 is obtained from these plots. Note that the yield Y is calculated using the above equation (4).
  • the prototype 1 generates the information (correlation information between the number N of foreign particles and the yield Y shown in Fig. 14) required at the mass production site 2.
  • the inspection conditions are determined based on the correlation between the number N of foreign particles already obtained and the yield Y (Step 305).
  • the desired yield is set using FIG. 14 and the number N of corresponding foreign substances is calculated from the linear regression equation 63.
  • the manufacturing apparatus is managed so as not to generate the above foreign matter. In this case, it is desirable to add the sensitivity of the inspection device used in prototype 1 as information and to perform inspection with the same sensitivity as prototype 1.
  • Fig. 15 is a flowchart from the acquisition of inspection information (inspection area) in prototype 1 to the application of the inspection information to mass production base 2. Steps 401 to 402 are the same as those shown in FIG. 2, and a description thereof will be omitted.
  • the defect position 101 is spotted on the area indicating the wafer from the inspection result during the manufacture of the prototype 1 (detection result of the foreign matter / visual inspection device 4) ( Step 4 0 3).
  • J inspection results for a plurality of wafers performed in the same process may be superimposed.
  • an area in which the position of a defect is spotted on a region indicating a wafer is referred to as a defect map 100.
  • a virtual mesh 102 is drawn on the defect map, and a number (p, q) is assigned to each mesh. Which mesh each defect belongs to is determined in the same manner as in equations (1) and (2) (step 404). Where L is the mesh pitch.
  • a defect map table 110 records a product name, a process name, a defect type, and a defect-prone area.
  • Inspection information is acquired in prototype 1 as described above.
  • an inspection area is set based on the above-described inspection information (step 406). That is, equation (7) , A constant threshold D is set, and an area that satisfies the relationship of equation (7) is checked.
  • a defect map may be created for each defect type.
  • L is arbitrary, but is preferably about 1Z10, which is the chip width XW.
  • D is preferably 2 to 3 times the average defect density per sheet.
  • Equation (7) Since the area (P, q) that satisfies Equation (7) has a high defect generation density, it is necessary to suppress the generation of defects in that area. If this is the case, the occurrence of defects on the entire wafer can be suppressed, and the yield can be improved. In particular, when the prototype 1 and the mass production base 1 are on the same production line, defects caused by the production equipment can be suppressed, and the yield can be greatly improved.
  • the area to be inspected described so far is provided to an inspection apparatus 140 as shown in FIG.
  • the inspection device 140 includes a data interface 144, a control unit 142, an inspection stage 144, a detection unit 144, a man-machine interface 144, and a display unit 146.
  • the control unit 142 calculates the stage control amount and controls the inspection stage 143.
  • the inspection device 140 automatically inspects the area (P, q) to be inspected.
  • the inspection apparatus 140 inspects a predetermined number of points on the wafer in addition to the area (p, q) to be inspected. As a result, the wafer can be inspected uniformly, and a partial area on the wafer can be inspected with emphasis.
  • the display area 1 46 displays the inspection area 1 5 1 and the defect detection position 1 5 2 in the guidance screen 1 50, and detects it during the prototype 1 in the relevant inspection area. It is preferable to display the image 153 of the detected defect and the image 154 of the defect detected in the mass production 2 together. As a result, the defect image detected during prototype production is compared with the defect image detected during mass production, and it is generated in mass production. It can be determined whether the defect was experienced during prototyping.
  • the inspection device 140 has high inspection efficiency because the area to be inspected is previously determined for each product type, process, and defect type.
  • FIG. 20 shows an example in which the process to be inspected at the mass production site 2 is determined based on the inspection result during the production of the prototype 1 during the production.
  • a virtual defect is generated by a cross-sectional shape simulator, and after the defect occurs, a normal manufacturing process is performed to determine whether the device shape is normal.
  • Defects to be generated are handled at various defect sizes and defect locations.
  • Sectional shape simulators that generate virtual defects (foreign matter) are already commercially available and are easy to implement. For example, there is PRA D I S E W O R L D of NTT FANET SYSTEMS CO., LTD.
  • the method of assigning the parameter of the defect size is 1 to 2, the same, 3 to 2, and 2 times the minimum processing line width of each layer.
  • the attachment position is randomly generated in the simulated area. Let S F be the number of occurrences here.
  • a simulated normal shape is prepared in advance without generating a defect, and the connection relation of each part is recorded (step 502). This can be recorded by assigning a serial number to each part and linking the two parts as a set.
  • connection relation of each part is recorded (step 503).
  • the connection with the defect is omitted.
  • Step 5 0 4 comparing the connection relationship at the time of the defect occurrence with the connection relationship of the normal shape, if the connection at the time of the defect occurrence is different from the connection at the normal shape, it is determined that an abnormality has occurred in the shape ( Step 5 0 4).
  • An example of a simulation See Figure 21.
  • a defect 122 is generated on the normal site 1 2 1, and as a result, the site 123 is split into the site 123 and the site 124, and a new site 122 and a new site are generated.
  • Figure 22 shows the connection in this case. In FIG.
  • connection relation at normal time is (121, 123), and the connection relation at the time of defect attachment is (122, 123) and (122, 124).
  • connection relationship shown in FIG. 22 is compared to determine that a shape abnormality has occurred.
  • the abnormality occurrence rate AP is calculated using the equation (8). That is, the abnormality occurrence rate AP is simulated for each layer and each defect size (step 505).
  • a P AF / SF ... Equation (8)
  • the check item generation station 9 records the result as a simulation result table 130 as shown in FIG.
  • the vertical 13 1 is the layer
  • the horizontal 13 2 is the defect size
  • the corresponding AP is recorded in each cell 1 33.
  • Inspection information is acquired in prototype 1 as described above.
  • inspection conditions are set based on the above-described inspection information (step 506).
  • the desired yield Y 0 is set, and there are n layers listed on the vertical axis in FIG. 23, the process having 1-AP less than the n-th root of Y 0 will be emphasized.
  • inspect Specifically, it is managed by an inspection device that can detect the defect size for the relevant process. This means that if the n-th layer AP is written as AP (n), Y 0 is
  • a simulation was performed assuming a failure caused by the device, and a simulation result was obtained in which a foreign substance of, for example, 1 ⁇ size caused a problem in product performance in the contact hole forming process. If so, the result is registered in the pre-check item data base 10.
  • the contents to be registered are the assumed failure (whether due to the device or the device structure), the process name, the size of the foreign material in question, the shape obtained by simulation and the image ID indicating the shape, and Phenomenon, area to be inspected.
  • This data is copied to the pre-check database 11 to generate a pre-check list.
  • the pre-check list specifies the type of inspection based on the assumed failure. Here, a defect due to the device is assumed, so a foreign substance inspection is performed. The phenomenon is a non-opening of the contact hole, and the management size is, for example, 1 ⁇ . It also manages image IDs so that simulation shapes can be searched. If no information is available on the area to be inspected, the entire wafer should be inspected.
  • This pre-checklist at Guidance Station 1 2 1 Based on 3 above, the contents such as inspection type (foreign matter inspection), management standard (foreign matter size 1 ⁇ ⁇ or more), inspection process (for contact hole formation process), and inspection location (for the entire wafer) are specified.
  • the detected means, phenomena, size, image ID, location where they occurred, etc. are registered in the pre-check item database 10. Based on this information, a preliminary checklist 13 is generated. In this case, since the short circuit between wirings was found at the chip position (12, 13) (13, 14) by SEM, the guidance station instructs to inspect the corresponding process and the corresponding location by SEM. .
  • FIG. 25 shows the flow of this processing. Whether this is a simulation or an actual case, if registered as a pre-check item, the subsequent processing is the same.
  • the check item generation station 9 performs the analysis based on the inspection result.However, the check item generation station 9 simply collects the inspection results, and the guidance station 12 performs all the analysis. There is no problem to do. Industrial applicability
  • the inspection standards at the time of mass production can be effectively set, so that stable production at the mass production base can be realized early and the semiconductor It can be used in equipment manufacturing lines to improve yield.

Abstract

A method for manufacturing a semiconductor device aimed at increasing a yield rapidly by determining management criteria for inspection results, inspection processes, inspection regions, etc., without a delay. The influence of defects generated in trial production on a yield is analyzed for each region of generation of defects and for each productive process and the size of a fatal defect, regions of generation of defects, observation images of the defects, and inspection means are put in order as advance checking items for each productive process. In mass production line, semiconductor devices are inspected based on the advance checking items to increase a yield.

Description

明 細 書 半導体装置の製造方法 技術分野  Description Semiconductor device manufacturing method Technical field
本発明は、 半導体装置の製造歩留まりを向上させる製造技術に係り、 特に半導体装置の製造ラインを効率的に管理して製造歩留ま りを向上さ せる半導体装置の製造方法に関する。  The present invention relates to a manufacturing technique for improving a semiconductor device manufacturing yield, and more particularly to a semiconductor device manufacturing method for efficiently managing a semiconductor device manufacturing line and improving the manufacturing yield.
背景技術 Background art
半導体装置は、 成膜工程、 露光工程、 エッチング工程等の繰り返しに よってパターンを形成し、 それらを何層にも積み上げることで製造され ている。 半導体装置に形成されるパターンの加工寸法は微細であって既 に 1 m以下の寸法を有する製品も広く販売されている。  Semiconductor devices are manufactured by forming a pattern by repeating a film forming process, an exposing process, an etching process, and the like, and stacking these in multiple layers. The processing dimensions of patterns formed on semiconductor devices are fine, and products with dimensions already less than 1 m are widely sold.
このような特徴を持つ半導体装置では、 製造途中で異物が混入したり、 製造装置の不調等でパターンに欠けや変形が生じると不良品が発生しや すい。 従って半導体装置の製造分野では、 その製造状況を管理して不良 製品の割合を低下させ、 生産効率を向上させることが収益向上の上で大 変重要となってくる。  In semiconductor devices having such characteristics, defective products are liable to occur if foreign matter is mixed in during the manufacturing process, or if the pattern is chipped or deformed due to a malfunction of the manufacturing device. Therefore, in the field of semiconductor device manufacturing, it is very important to improve the production efficiency by controlling the manufacturing situation and reducing the ratio of defective products, and improving production efficiency.
一般に、 半導体装置の製造途中に不良品が発生した場合、 不良箇所と その箇所を処理した来歴を調べることで問題点を摘出して歩留リ向上を 図っている。 ここでいう来歴とは、 処理号機、 処理日時、 処理条件 (設 定値ゃ実績値) 、 前後のロッ トの品質、 処理した装置のモニタ結果等を いう。  In general, when a defective product occurs during the manufacture of a semiconductor device, problems are identified by examining the defective portion and the history of processing the defective portion to improve the yield. The history here refers to the processing unit, processing date and time, processing conditions (set value / actual value), the quality of the lot before and after, the monitoring result of the processed equipment, and the like.
不良品の不良箇所を調べる方法には、 特開昭 6 1— 2 4 3 3 7 8号公 報にあるように、 いわゆるフェイルビッ ト解析という方法がある。 これ は、 動作しないビッ トの位置を見ることで、 チップ内のどこに不具合が あるかを解析するものであり、 これにより不良セルの配列から、 何層に も積み重ねられた層のどこに不具合があるかを算出することができる。 しかしながら、 フェイルビッ ト解析は半導体装置のウェハ処理工程が 終わり、 電気的な特性が計測可能になって初めて実行し得るものである。 そのためフェイルビッ ト解析では、 製造途中で製品不良が発生していて も、 ウェハ処理工程が終了するまで不良の発生を検知できないという不 都合がある。 , As a method of examining a defective part of a defective product, there is a method called a so-called fail bit analysis as disclosed in Japanese Patent Application Laid-Open No. Sho 61-243,378. this Is to analyze the location of the defect in the chip by looking at the position of the bit that does not work, and from the array of defective cells, it is possible to determine where in the stack of layers the defect is Can be calculated. However, fail-bit analysis can be performed only after the semiconductor device wafer processing step is completed and electrical characteristics can be measured. Therefore, the fail bit analysis has a disadvantage that even if a product defect occurs during the manufacturing process, the defect cannot be detected until the wafer processing process is completed. ,
そこで、 製造途中に検査工程を入れて異物やパターンの外観上の欠陥 を検出して、 その発生の様子を解析して早期に対策を打つことが有効と なる。 この方法に関しては特開平 3— 4 4 0 5 4号公報に詳しい記載が ある。 これは、 異物外観検査の結果から、 異物や外観不良が多く発生し た工程やその発生パターンの特徴を把握して、 歩留ま りを向上させてい る。  Therefore, it is effective to insert an inspection process during manufacturing to detect foreign matter and defects in the appearance of patterns, analyze the state of occurrence, and take early measures. This method is described in detail in JP-A-3-44054. This is to improve the yield by grasping the characteristics of the process in which many foreign particles and appearance defects occur and the pattern of their occurrence from the result of the foreign particle appearance inspection.
しかし、 上記従来技術は、 異物外観検査等をどの工程で実施するか、 ウェハ上のどのエリアを検査するか、 どのく らいの精度 (感度) で検査 · するか、 どのような基準 (管理基準) で管理するかを決定する必要があ る。 そして、 所定の検査条件を設定して半導体装置の量産を開始した後、 適宜、 その検査条件等を変更しながら最適な検査条件を決めていくので、 その解析に必要なデータがたまる迄、 効率の良い検査はできない。  However, in the above-mentioned conventional technology, in what process the foreign matter appearance inspection and the like are performed, which area on the wafer is inspected, with what accuracy (sensitivity) the inspection is performed, what kind of standard (management standard) ) Needs to be determined. After setting the predetermined inspection conditions and starting mass production of the semiconductor devices, the optimum inspection conditions are determined while changing the inspection conditions as needed, so that the efficiency required until the data necessary for the analysis is collected. Good inspection is not possible.
最近では、 新規な半導体装置を早期にしかも低コス卜で製造すること が要求されておリ、 これまで以上に検査基準を早期に確立しなければな らない。 検査基準の確立が遅れれば、 それだけ製造歩留まりに影響を与 え、 コストアップにつながってしまう。 一般に、 半導体デバイスを製造 する期間は通常数十日かかるから、 上記従来技術では、 生産を開始して から検査の基準が確立するまで相当の日数が必要となってしまう。 本発明の目的は、 製造途中の半導体装置を効果的に検査して製造歩留 まりを向上させることにある。 発明の開示 Recently, it has been required to manufacture new semiconductor devices at an early stage and at a low cost, and inspection standards must be established earlier than ever. Delays in establishing inspection standards will affect production yields and increase costs. In general, the period for manufacturing a semiconductor device usually takes several tens of days. Therefore, according to the above-mentioned conventional technology, it takes a considerable number of days from the start of production to the establishment of an inspection standard. An object of the present invention is to improve the manufacturing yield by effectively inspecting a semiconductor device being manufactured. Disclosure of the invention
本発明は、 上記目的を達成するために、 半導体装置の量産を始める前 の試作期間において必要な検査情報を取得し、 該検査情報を用いて半導 体装置を量産する。 つまり、 試作において発生した欠陥の発生領域や発 生工程別の歩留まりへの影響度等を解析して、 例えば欠陥の発生工程別 に致命欠陥のサイズ、 発生領域、 観察画像、 検査手段を事前チェック項 目としてまとめ、 量産においては該事前チェック項目にもとづいて、 検 査を行うことで、 半導体デバイスの製造において、 検査結果の管理基準、 検査工程、 検査領域等を遅滞なく決定し、 歩留まり向上を迅速に行う。 具体的には、 第一の製造ラインで半導体装置を製造するステップと、 該第一の製造ラインに設けられた検査装置によリ該半導体装置を検査す るステップと、 該半導体装置の検査結果から製造ライン管理情報を生成 するステップと、 該生成した製造ライン管理情報に基づいて第二の製造 ラインに検査装置を設定するステップと、 該第二の製造ラインで半導体 装置を製造するステップと、 該製造ライン管理情報に基づいて設定した 検査装置により該第二の製造ラインで製造される半導体装置を検査する ステップとを含むことで上記目的を達成する。  According to the present invention, in order to achieve the above object, necessary inspection information is acquired during a prototype period before mass production of semiconductor devices is started, and semiconductor devices are mass-produced using the inspection information. In other words, by analyzing the area where defects occurred in the prototype and the impact on the yield for each generation process, for example, pre-check the size of fatal defects, the generation area, observation images, and inspection means for each defect generation process In mass production, inspections are performed based on the pre-check items to determine the management criteria for inspection results, inspection process, inspection area, etc. in semiconductor device manufacturing without delay, and improve yield. Do it quickly. Specifically, a step of manufacturing a semiconductor device on a first manufacturing line, a step of inspecting the semiconductor device by an inspection device provided on the first manufacturing line, and an inspection result of the semiconductor device Generating manufacturing line management information from the following; setting an inspection device on a second manufacturing line based on the generated manufacturing line management information; manufacturing a semiconductor device on the second manufacturing line; The above object is achieved by including a step of inspecting a semiconductor device manufactured on the second manufacturing line by an inspection device set based on the manufacturing line management information.
これにより、 試作期間で取得した検査情報に基づいて、 量産時の検査 の基準、 例えばウェハ上で特に検査すべき場所を遅滞なく効果的に設定 できるので、 量産拠点での安定した製造が早期に実現でき、 歩留ま りを 向上させることができる。  As a result, based on the inspection information obtained during the prototyping period, inspection standards for mass production, for example, locations to be inspected particularly on a wafer can be effectively set without delay, so that stable production at a mass production site can be performed quickly. It can be realized, and the yield can be improved.
本発明を更に具体的に説明すると、 第一の製造ラインで半導体装置を 製造するステップと、 該第一の製造ラインに設けられた外観 ·異物検査 装置により該半導体装置を形成するウェハ上の欠陥を検出するステップ と、 該第一の製造ラインに設けられたプローブ検査装置により該半導体 装置を形成するウェハのチップの電気的特性を検出するステップと、 該 外観 ·異物検査装置の検出結果から欠陥を有するチップを判別するステ ップと、 該プローブ検査装置の検出結果から、 該欠陥を有すると判別さ れたチップの中で電気的特性が不良となる割合を算出するステップと、 第二の製造ラインにおいて、 該割合が所定値以上となる工程の処理が終 了したウェハの検査頻度を、 該割合が所定値未満となる工程の処理が終 了したウェハの検査頻度以上に設定して半導体装置を製造するステップ とを含むことで上記目的を達成する。 The present invention will be described more specifically. A step of manufacturing a semiconductor device on a first manufacturing line, and an appearance / foreign matter inspection provided on the first manufacturing line Detecting a defect on a wafer forming the semiconductor device by the device; detecting an electrical characteristic of a chip of the wafer forming the semiconductor device by a probe inspection device provided on the first manufacturing line; A step of determining a chip having a defect from the detection result of the external appearance / foreign matter inspection apparatus; and a step in which electrical characteristics are defective among the chips determined to have the defect based on the detection result of the probe inspection apparatus. Calculating the rate at which the ratio becomes less than a predetermined value, and calculating the inspection frequency of the wafer on which the processing of the step at which the rate becomes a predetermined value or more is completed in the second manufacturing line. The above object is achieved by including a step of manufacturing a semiconductor device at a frequency equal to or higher than the inspection frequency of a completed wafer.
これにより、 欠陥により不良品を発生する可能性の高い工程が量産開 始前から判断でき、 該当する工程で処理したウェハを比較的多めに抜き 取り検査するので、 欠陥が生ずることでの不良品の発生を抑制して歩留 まりを向上させることができる。  As a result, it is possible to judge a process that is likely to cause a defective product due to a defect before mass production starts, and a relatively large number of wafers processed in the relevant process are sampled and inspected. The generation can be suppressed and the yield can be improved.
同様に、 第一の製造ラインで半導体装置を製造するステップと、 該第 一の製造ラインに設けられた外観 ·異物検査装置によリ該半導体装置を 形成するウェハ上の欠陥を検出するステップと、 該第一の製造ラインに 設けられたプローブ検査装置によリ該半導体装置を形成するウェハのチ ップの電気的特性を検出するステップと、 該外観 ·異物検査装置の検出 結果と該プローブ検査装置の検出結果とから、 欠陥数と歩留ま りとの相 関を算出するステップと、 第二の製造ラインの備える検査装置の管理基 準を、 該歩留まりが所定値以内となる異物数に設定するステップと、 該 第二の製造ラインで半導体装置を製造するステップと、 該管理基準を設 定した検査装置によリ該第二の製造ラインで製造される半導体装置を管 理するステップとを備えれば、 量産開始前から検査装置で管理すべき効 果的な異物数を設定できるので歩留まリを向上させることができる。 この場合、 前記外観 ·異物検査装置はウェハ上の欠陥のサイズを判別 し、 所定の欠陥サイズ別に前記欠陥数と歩留ま りとの相関を算出し、 該 欠陥サイズを検出できる検査装置を前記第二の製造ラインに設定し、 該 設定された検査装置の管理基準として該歩留まリが所定値以内となる欠 陥サイズ別の欠陥数を設定することが好ましい Similarly, a step of manufacturing a semiconductor device on a first manufacturing line; a step of detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line; Detecting the electrical characteristics of a chip of a wafer forming the semiconductor device by using a probe inspection device provided in the first manufacturing line; and a detection result of the appearance / foreign matter inspection device and the probe. Calculating the correlation between the number of defects and the yield based on the detection result of the inspection device; and determining the management criteria of the inspection device provided in the second manufacturing line by determining the number of foreign substances whose yield is within a predetermined value. Setting a semiconductor device on the second manufacturing line; and managing the semiconductor device manufactured on the second manufacturing line by an inspection device that has set the management standard. If Sonaere and can improve walking Tomah Li can be set to effective number of foreign matters to be managed by the inspection apparatus before starting mass production. In this case, the appearance / foreign matter inspection apparatus determines a size of a defect on a wafer, calculates a correlation between the number of defects and a yield for each predetermined defect size, and provides an inspection apparatus capable of detecting the defect size. It is preferable to set the number of defects for each defect size for setting the yield to be within a predetermined value as a control standard of the set inspection apparatus, which is set in the second production line.
また、 前記外観 ·異物検査装置はウェハ上の欠陥の種類を判別し、 所 定の欠陥種類別に前記欠陥数と歩留まりとの相関を算出し、 該欠陥の種 類を検出できる検査装置を前記第二の製造ラインに設定し、 該設定され た検査装置の管理基準として該歩留まりが所定値以内となる欠陥種類別 の欠陥数を設定することが好ましい。  Also, the appearance / foreign matter inspection apparatus determines a type of a defect on a wafer, calculates a correlation between the number of defects and a yield for each predetermined defect type, and provides an inspection apparatus capable of detecting the type of the defect. It is preferable to set the number of defects for each type of defect for which the yield is within a predetermined value as a management standard for the set inspection apparatus.
また、 同様に第一の製造ラインで半導体装置を製造するステップと、 該第一の製造ラインに設けられた外観 ·異物検査装置によリ該半導体装 置を形成するウェハ上の欠陥を検出するステップと、 該外観 ·異物検査 装置の検出結果からウェハ上の欠陥発生密度を算出するステップと、 第 二の製造ラインの備える検査装置が該欠陥発生密度が所定値以上の領域 を検査するように設定するステップと、 該第二の製造ラインで半導体装 置を製造するステップと、 該第二の製造ラインの備える検査装置が該設- 定された半導体装置の領域を検査するステップとを備えれば、 量産開始 前から検査装置で検査すべきウェハ上の領域を設定できるので、 欠陥の 発生しやすい領域を効果的に管理することができ、 スループッ トを低下 させずに歩留まリを向上させることができる。  Similarly, a step of manufacturing a semiconductor device on the first manufacturing line, and detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line. Calculating the defect occurrence density on the wafer from the detection result of the appearance / foreign matter inspection device, so that the inspection device provided in the second manufacturing line inspects an area where the defect occurrence density is equal to or more than a predetermined value. Setting, manufacturing a semiconductor device on the second manufacturing line, and inspecting an area of the set semiconductor device with an inspection device provided on the second manufacturing line. For example, since the area on the wafer to be inspected by the inspection apparatus can be set before mass production starts, the area where defects are likely to occur can be effectively managed, and the yield can be reduced without lowering the throughput. It is possible to improve the.
この場合、 前記外観 ·異物検査装置はウェハ上の欠陥のサイズを判別 し、 前記ウェハ上の欠陥発生密度を所定のサイズ別に算出し、 いずれか の欠陥サイズの欠陥発生密度が所定値以上である場合、 該所定値以上と なった欠陥サイズを検出できる検査装置を前記第二の製造ラインに設定 することが好ましい。 また、 前記外観 ·異物検査装置はウェハ上の欠陥の種類を判別し、 前 記ウェハ上の欠陥発生密度を所定の欠陥の種類別に算出し、 いずれかの 欠陥の種類の欠陥発生密度が所定値以上である場合、 該所定値以上とな つた欠陥の種類を検出できる検査装置を前記第二の製造ラインに設定す ることが好ましい。 In this case, the appearance / foreign matter inspection apparatus determines the size of the defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined size, and the defect occurrence density of any one of the defect sizes is equal to or more than a predetermined value. In this case, it is preferable to set an inspection device capable of detecting a defect size that is equal to or larger than the predetermined value in the second production line. Further, the appearance / foreign matter inspection apparatus determines the type of the defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined defect type, and determines whether the defect occurrence density of any of the defect types is a predetermined value. In this case, it is preferable to set an inspection apparatus capable of detecting the type of the defect having the predetermined value or more in the second production line.
また、 本発明の他の態様によれば、 半導体装置の製造途中の各工程の 形状に対して所定のサイズの欠陥を付着させてその後の製造プロセスを シミュレーションするステップと、 該欠陥を付着させてシミユレ一卜し た形状を構成する各部位の連結関係を記憶するステップと、 該記憶した 各部位の連結関係と、 欠陥を発生させずにシミ ュレートさせた形状の構 成する各部位の連結関係とを比較して、 連結関係が不一致のものを異常 と判断するステップと、 該シミュレーションにより異常と判断されたェ 程に対して、 該所定のサイズの欠陥を検出できる検査装置を設定して半 導体装置を製造するステツプとを含むことで上記目的を達成できる。 これにより、 量産が開始する前にあらゆる現象がシミュレーションで きるので、 欠陥の付着によリ不良となる現象を予測して管理することで 量産拠点での歩留まリを向上させることができる。  According to another aspect of the present invention, a step of attaching a defect of a predetermined size to the shape of each step in the process of manufacturing a semiconductor device and simulating a subsequent manufacturing process; and attaching the defect. A step of storing a connection relation of each part constituting the simulated shape; a connection relation of each of the stored parts; and a connection relation of each part constituting the simulated shape without generating a defect. A step of judging an object having an inconsistent connection relationship as abnormal; and setting an inspection apparatus capable of detecting a defect of a predetermined size for a step judged as abnormal by the simulation, and The above object can be achieved by including steps for manufacturing a conductor device. As a result, all phenomena can be simulated before mass production starts, and by predicting and managing phenomena that become defective due to the attachment of defects, the yield at mass production bases can be improved.
この場合、 前記欠陥の付着位置を異ならせてそれぞれをシミユレーシ ヨンし、 異常と判断された付着位置を検査するように前記検査装置の検 査領域を設定することが好ま しい。  In this case, it is preferable that the defect attachment positions are made different from each other and simulated, and the inspection area of the inspection apparatus is set so as to inspect the attachment position determined as abnormal.
また、 前記欠陥のサイズを異ならせてそれぞれをシミユレーションし、 異常と判断された工程に対して、 該欠陥のサイズを検出できる検査装置 を設定することが好ましい。 図面の簡単な説明  In addition, it is preferable to simulate the defects with different sizes, and to set an inspection apparatus capable of detecting the size of the defects in a process determined as abnormal. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のシステム図であり、 第 2図は、 本発明の運用形態 の一例を示すフローチャート図であり、 第 3図は、 外観 ·異物検査装置 からの取得情報の一例を示す図であり、 第 4図は、 ウェハ上の座標を表 す図であり、 第 5図は、 プローブ検査装置からの取得情報の一例を示す 図であり、 第 6図は、 ウェハに関する情報の一例を示す図であり、 第 7 図は、 工程別の確立 P Fを示す図であり、 第 8図は、 工程別の確立 P F を示す図であり、 第 9図は、 歩留まり Yと確立 Yとの相関図であり、 第 1 0図は、 歩留まリ Yと確立 Yとの相関を表す図であり、 第 1 1図は、 本発明の運用形態の一例を示すフローチャート図であり、 第 1 2図は、 工程別の問題発生状況を表す図でぁリ、 第 1 3図は、 本発明の運用形態 の一例を示すフローチヤ一ト図であり、 第 1 4図は、 歩留ま り Yと欠陥 数 Nとの相関図であり、 第 1 5図は、 本発明の運用形態の一例を示すフ 口一チャート図であり、 第 1 6図は、 ウェハ上の欠陥発生領域を示す図 であり、 第 1 7図は、 ウェハ上の欠陥発生領域に関する情報を示す図で あり、 第 1 8図は、 本発明の外観♦異物検査装置を表す図であり、 第 1 9図は、 本発明の表示画面の一例を示す図であり、 第 2 0図は、 本発明 の運用形態の一例を示すフローチヤ一ト図であリ、 第 2 1図は、 本発明 のシミュレーション結果の一例を示す図であり、 第 2 2図は、 本発明の シミユレーション結果に関する情報を示す図であり、 第 2 3図は、 本発 明のシミュレーション結果に関する情報を示す図であり、 第 2 4図は、 本発明のシステム図であり、 第 2 5図は、 本発明の運用形態の一例を示 すフローチャート図である。 FIG. 1 is a system diagram of the present invention, and FIG. 2 is an operation form of the present invention. FIG. 3 is a diagram showing an example of information obtained from the appearance / foreign matter inspection device, FIG. 4 is a diagram showing coordinates on a wafer, and FIG. FIG. 6 is a diagram showing an example of information obtained from a probe inspection apparatus, FIG. 6 is a diagram showing an example of information on a wafer, FIG. 7 is a diagram showing an established PF for each process, and FIG. Fig. 8 shows the established PF for each process, Fig. 9 shows the correlation between yield Y and established Y, and Fig. 10 shows the correlation between yield Y and established Y. FIG. 11 is a flowchart showing an example of an operation mode of the present invention. FIG. 12 is a diagram showing a problem occurrence situation for each process, and FIG. FIG. 14 is a flowchart showing an example of an operation mode of the present invention. FIG. 14 is a correlation diagram between the yield Y and the number N of defects, and FIG. FIG. 15 is a flow chart showing an example of an operation mode of the present invention. FIG. 16 is a view showing a defect occurrence region on a wafer. FIG. 17 is a defect chart on a wafer. FIG. 18 is a diagram showing information on the generation area, FIG. 18 is a diagram showing an appearance foreign matter inspection device of the present invention, and FIG. 19 is a diagram showing an example of a display screen of the present invention; FIG. 20 is a flowchart showing an example of an operation mode of the present invention, FIG. 21 is a diagram showing an example of a simulation result of the present invention, and FIG. FIG. 23 is a diagram showing information on a simulation result, FIG. 23 is a diagram showing information on a simulation result of the present invention, FIG. 24 is a system diagram of the present invention, and FIG. FIG. 4 is a flowchart showing an example of an operation mode of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよリ詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図は本発明の概念を表したシステム図である。 第 1図は、 設計したデバイスの最適製造条件を確立する試作 1の段階 と、 実際に製品として販売することを前提とする量産 2の段階から構成 されている。 なお、 試作 1、 量産 2は同一のラインで行われることもあ れば、 異なるラインで行われることもある。 ただ、 多少の時間的重なり が生じることもある力^ 試作 1が量産 2の前に行われるのは、 当然であ る。 FIG. 1 is a system diagram showing the concept of the present invention. Figure 1 consists of the first stage of prototype production, which establishes the optimal manufacturing conditions for the designed device, and the second stage of mass production, which is premised on actual sales as a product. Prototype 1 and mass production 2 may be performed on the same line, or may be performed on different lines. However, there may be some overlap in time. It is natural that the prototype 1 is performed before the mass production 2.
試作 1は、 投入されたウェハに成膜、 露光、 エッチング等の処理を行 う各種製造装置 1 5と、 該製造装置で処理されたウェハの品質を検査す る品質検査装置 3 (例えば、 ウェハ上の欠陥もしくは異物を検査する異 物 ·外観検査装置 4 ) と、 全てのウェハ処理工程が終了したウェハの電 気的特性を検査するプローブ検査装置 5と、 品質検査装置 3の結果 (異 物 ·外観検査 4の結果) と製造結果 (プローブ検査 5の結果) を収集し て必要な検査情報を生成するチェック項目生成ステーション 9と、 チェ ック生成項目ステーション 9で生成した検査情報を蓄積するデータべ一 ス 1 0とから構成される。  Prototype 1 consists of various types of manufacturing equipment 15 that performs processes such as film formation, exposure, and etching on the input wafer, and a quality inspection device 3 (for example, wafers) that inspects the quality of the wafers processed by the manufacturing equipment. Foreign matter / visual inspection equipment 4) for inspecting defects or foreign matter on the surface, probe inspection equipment 5 for inspecting the electrical characteristics of wafers after all wafer processing steps have been completed, and results of quality inspection equipment 3 (foreign matter) Check item generation station 9 that collects the appearance inspection 4 results and manufacturing results (probe inspection 5 results) to generate the necessary inspection information, and accumulates the inspection information generated by the check generation item station 9 It consists of database 10.
量産拠点 2は、 投入されたウェハに成膜、 露光、 エッチング等の処理 を行う各種製造装置 1 5と、 該製造装置で処理されたウェハの品質を検 査する品質検査装置 3 (例えば、 ウェハ上の欠陥もしくは異物を検査す る異物 ·外観検査装置 4 ) と、 全てのウェハ処理工程が終了したウェハ の電気的特性を検査するプローブ検査装置 5と、 試作 1で生成した検査 情報を記憶するデータベース 1 1と、 該データベースに記憶された検査 情報から管理基準、 検査すべき工程、 検査すべきウェハ上の場所等を出 力するガイ ドステーション 1 2とから構成される。  The mass production base 2 includes various manufacturing apparatuses 15 for performing processes such as film formation, exposure, and etching on the input wafers, and a quality inspection apparatus 3 for inspecting the quality of wafers processed by the manufacturing apparatuses (for example, wafers). Foreign matter / visual inspection equipment 4) for inspecting the above defects or foreign matter, probe inspection equipment 5 for inspecting the electrical characteristics of wafers after all wafer processing steps are completed, and inspection information generated in prototype 1 are stored. It is composed of a database 11 and a guide station 12 for outputting a management standard, a process to be inspected, a place on a wafer to be inspected, and the like from the inspection information stored in the database.
試作 1のデータベース 1 0と量産拠点 2のデータベース 1 2とは通信 回線 1 4を介して接続されている。 なお、 試作 1 と量産拠点 2の備える 各データベースは必ずしも必要ではなく、 試作 1のチェック項目生成ス テ一シヨン 9で生成された検査情報に基づいて量産拠点のガイダンスス テーシヨン 1 2が必要な情報を出力する形態であれば問題はない。 例え ば試作 1 と量産拠点 2の備える各データベースを統合したり、 試作 1の 情報を記憶媒体を介して量産拠点 2へ移行させても良い。 The database 10 of the prototype 1 and the database 12 of the mass production base 2 are connected via a communication line 14. The databases provided for the prototype 1 and the mass production base 2 are not necessarily required. There is no problem as long as the guidance station 12 of the mass production base outputs necessary information based on the inspection information generated in the step 9. For example, the databases of the prototype 1 and the mass production base 2 may be integrated, or the information of the prototype 1 may be transferred to the mass production base 2 via a storage medium.
次に、 試作 1にて取得した検査情報 (検査すべき工程) に基づいて量 産拠点 2を管理する例を説明する。  Next, an example of managing the mass production site 2 based on the inspection information (process to be inspected) acquired in the prototype 1 will be described.
第 2図は、 試作 1 にて検査情報 (検査すべき工程) を取得し、 量産 2 にその検査情報を適用するまでのフローチヤ一トである。  Fig. 2 is a flowchart from the acquisition of inspection information (process to be inspected) in prototype 1 to the application of the inspection information to mass production 2.
まず、 試作 1において各種製造装置 1 5を用いて半導体装置を製造す る (ステップ 1 0 1 ) 。  First, in prototype 1, a semiconductor device is manufactured using various manufacturing apparatuses 15 (step 101).
品質検査装置 3は、 製造途中のウェハから品質情報を取得し、 チエツ ク項目生成ステーション 9へ送信する (ステップ 1 0 2 ) 。 なお本実施 例では、 異物 ·外観検査装置 4を用いてウェハ上の欠陥もしくは/"およ び異物数を取得する。  The quality inspection device 3 acquires quality information from the wafer being manufactured and transmits it to the check item generation station 9 (step 102). In the present embodiment, the defect // "on the wafer and / or the number of foreign substances are acquired by using the foreign substance / visual inspection apparatus 4.
異物 ·外観検査装置 4の検査結果は、 第 3図に示すように、 品種名、 工程名、 ロッ ト番号、 ウェハ番号、 欠陥座標 ( x, y ) 、 欠陥種類、 欠 陥サイズ、 観察画像、 欠陥発生部位等の項目を含むものである。 第 3図 では、 半導体装置 H M 0 0 1のロッ ト番号 L 0 0 1 に収納されるウェハ 番号 1 に関する情報を示しており、 工程 P 1の処理後、 欠陥座標 ( 1 0 0 0 , 2 0 0 0 ) に欠陥種類 A、 欠陥サイズ 1 0の欠陥が検出されたこ とを示している。 但し、 欠陥種類や欠陥サイズは必ずしも必要ではなく、 欠陥の有無が判断できればよい。 ここで欠陥座標とは、 第 4図に示すよ うにウェハ 2 0の平坦な部分 (オリフラ 2 1 と称する) に対して平行 ( X軸 2 2 ) 、 垂直 (Y軸 2 3 ) に設定したものである。 但し、 これは、 一例であって、 他の座標系でもよいし、 ウェハ自体にオリフラがなく と も、 整合のとれた座標系で記述してあれば良い。 一方、 プローブ検査装置 5はウェハから各チップの電気的特性を取得 し、 チェック項目生成ステーション 9へ送信する (ステップ 1 03 ) 。 プローブ検査装置 5の検査結果は、 第 5図に示すように、 品種名、 口 ッ ト番号、 ウェハ番号、 チップ座標 (m, n ) と該当チップの良否の情 報を含むものである。 ここで、 チップ座標とは、 ウェハ上のチップ位置 を意味する。 第 5図では、 半導体装置 HM 00 1のロッ ト番号 L 00 1 に収納されるウェハ番号 1に関する情報を示しておリ、 工程 P 1の処理 後の各チップの良否を 「 1」 と 「 0」 で示している。 例えば、 チップ位 置 ( 1, 3 ) のチップは、 「 1」 が表示されており、 チップが不良であ ることを示している。 As shown in Fig. 3, the inspection results of the foreign matter / visual inspection device 4 are: product type, process name, lot number, wafer number, defect coordinates (x, y), defect type, defect size, observation image, It includes items such as defect occurrence sites. FIG. 3 shows information on the wafer number 1 stored in the lot number L001 of the semiconductor device HM001, and after the processing in the process P1, the defect coordinates (100, 002) are shown. (0 0) indicates that a defect of defect type A and defect size 10 was detected. However, the type and size of the defect are not necessarily required, and it is sufficient that the presence or absence of a defect can be determined. Here, the defect coordinates are, as shown in FIG. 4, set parallel (X-axis 22) and perpendicular (Y-axis 23) with respect to the flat part (referred to as orientation flat 21) of wafer 20. It is. However, this is only an example, and other coordinate systems may be used, and even if there is no orientation flat on the wafer itself, it is sufficient if the coordinate system is described in a coordinated manner. On the other hand, the probe inspection device 5 acquires the electrical characteristics of each chip from the wafer and sends it to the check item generation station 9 (step 103). As shown in FIG. 5, the inspection result of the probe inspection device 5 includes the product name, the slot number, the wafer number, the chip coordinates (m, n), and information on the quality of the corresponding chip. Here, the chip coordinate means the chip position on the wafer. FIG. 5 shows information on the wafer number 1 stored in the lot number L001 of the semiconductor device HM001, and the pass / fail status of each chip after the process P1 is indicated by “1” and “0”. ". For example, for the chip at the chip position (1,3), "1" is displayed, indicating that the chip is defective.
次にチヱック項目生成ステーション 1 1は、 異物 ·外観検査装置 4の 検査結果、 予め記憶したウェハのチップレイアウ トに関する情報、 式 ( 1 ) 及び式 ( 2 ) を用いて、 欠陥がどのチップ上にあるかを判定する (ステップ 1 04) 。 ウェハのチップレイァゥ 卜に関する情報は、 第 6 図に示す品種情報表 3 0のような、 チップ横幅 XW、 チップ縦幅 YL、 横チップ数、 縦チップ数の情報を含むものであれば良い。 なお、 式 ( 1 ) 、 式 ( 2 ) に限らず、 異物 ·外観検出装置 4の検出した欠陥が、 どのチ ップに存在するかが判断できればよい。 また、 算出するチップ座標 (m' , n ' ) は、 プローブ検査装置 5の有する座標と対応させなければなら ない。  Next, the check item generation station 11 uses the inspection result of the foreign matter / visual inspection apparatus 4, information on the chip layout of the wafer stored in advance, and equations (1) and (2) to determine on which chip the defect is located. It is determined whether there is (Step 104). The information on the chip layout of the wafer may include information on the chip horizontal width XW, the chip vertical width YL, the number of horizontal chips, and the number of vertical chips as shown in the product type information table 30 shown in FIG. It should be noted that the present invention is not limited to the equations (1) and (2), but it is only necessary to be able to determine which chip has a defect detected by the foreign matter / appearance detection device 4. The calculated chip coordinates (m ′, n ′) must correspond to the coordinates of the probe inspection device 5.
m' = [x/XW] + 1 … 式 ( 1 ) n' = [y/YL] + 1 … 式 ( 2 ) m '= [x / XW] + 1 ... Equation (1) n' = [y / YL] + 1 ... Equation (2)
( m ' , n ' ) : チップ座標 (m ', n'): chip coordinates
(x , y ) :欠陥座標  (x, y): defect coordinates
[ X ] は Xを超えない最大の整数を示す。  [X] indicates the largest integer not exceeding X.
次に、 ステップ 1 ◦ 4で判定した欠陥を有するチップ座標 (m' , n ' ) 、 プローブ検査装置 5の検出結果であるチップ (m, n ) 毎の良 *不 良の判定結果、 及び式 ( 3 ) を用いて、 欠陥を有するチップが不良品に なる確率 P Fを計算する (ステップ 1 0 5 ) 。 この欠陥を有するチップ が不良品となる確率 P Fの計算は、 同一品種で同一の工程で検査したゥ ェハに対して行う。 Next, the chip coordinates (m ', n') with the defect determined in step 1 ), And the probability PF that a chip having a defect becomes a defective product is calculated by using the determination result of good / bad for each chip (m, n), which is the detection result of the probe inspection device 5, and Equation (3). (Step 105). The calculation of the probability PF that a chip having a defect becomes a defective product is performed on wafers inspected in the same process in the same product type.
P F = (欠陥発生チップの中の不良チップ数) / (欠陥発生チ ップ数)  P F = (number of defective chips in defective chips) / (number of defective chips)
… 式 ( 3 ) これにより、 第 7図に示すような工程別チップ不良率ダラフ 4 0が作 成できる。 ここで横軸 4 1は工程を示し、 縦軸 4 2は欠陥を有するチッ プが不良品になる確率 P Fを示す。 本事例では工程 P 4で P Fの値が 1 . 0に近い。 これは欠陥が発生すれば不良チップになる確率が高いことを 示している。 なお、 第 7図に示す工程別チップ不良率グラフ 4 0を作成 せずに、 第 8図に示す不良発生率表 5 0として品種名、 工程名と各工程 ごとの欠陥を有するチップが不良品になる確率 P Fとして記録すれば良 い  Formula (3) By this, a chip failure rate Daraf 40 per process as shown in FIG. 7 can be created. Here, the horizontal axis 41 indicates the process, and the vertical axis 42 indicates the probability PF of a defective chip becoming a defective product. In this case, the value of PF in process P4 is close to 1.0. This indicates that if a defect occurs, the probability of becoming a defective chip is high. Note that, without preparing the chip failure rate graph 40 for each process shown in FIG. 7, the failure occurrence table 50 shown in FIG. Should be recorded as PF
次に、 歩留まり Yを式 ( 4 ) で定義して、 第 9図に示すような、 同一 ウェハ上の確立 P Fと歩留ま り Yの相関図 7 0を作成し、 これらのプロ ッ トからその 1次回帰式 7 3を求める (ステップ 1 0 6 ) 。  Next, the yield Y is defined by equation (4), and a correlation diagram 70 between the established PF on the same wafer and the yield Y as shown in FIG. 9 is created, and from these plots The linear regression equation 73 is obtained (step 106).
Y = (良品チップ数) / (対象チップ数) … 式 ( 4 ) チェック項目生成ステ一シヨン 9では、 確立 P Fと歩留ま り Υに関す る情報を第 1 0図に示すような解析結果表 9 0として記録する。 この解 析結果表 9 0には、 品種名、 工程名にロッ ト番号、 ウェハ番号と P F、 Yが含まれている。  Y = (number of good chips) / (number of target chips) ... Equation (4) In the check item generation step 9, the information on the established PF and yield Υ is analyzed as shown in Fig. 10 Record as Table 90. In this analysis result table 90, the product name, the process name, the lot number, the wafer number, and PF and Y are included.
以上のようにして試作 1 において量産拠点 2で必要となる検査情報 (第 8図に示す各工程の P F値と、 第 1 0図に示す確立 P Fと歩留まり Yとの相関情報) を生成する。 As described above, the inspection information required at the mass production site 2 in the prototype 1 (PF value of each process shown in Fig. 8, established PF shown in Fig. 10 and yield) (Correlation information with Y).
次に量産拠点 2では、 既に取得された確立 P F、 確立 P Fと歩留まり Yとの相関に基づいて、 ガイダンスステーショ ン 1 2が検査工程とその 検査条件を決定する (ステップ 1 0 7 ) 。 つま り、 量産拠点 2のガイダ ンスステーション 1 2では、 第 1 0図を用いて所望の歩留ま りを設定し、 それに対応する確立 P Fを 1次回帰式 7 3から算出し、 その確立 P F以 上の工程の製造装置を重点的に管理する。 具体的には、 所定値以上の確 立 P Fを有する工程に対して、 検査装置の検査頻度もしくは および検 査領域を増やすようにする。  Next, at the mass production site 2, the guidance station 12 determines the inspection process and the inspection conditions based on the already acquired established PF, the established PF and the correlation between the yield Y (step 107). In other words, at the guidance station 12 of the mass production base 2, the desired yield is set using FIG. 10, and the corresponding established PF is calculated from the linear regression equation 73, and the established PF is calculated. The manufacturing equipment in the above processes will be managed mainly. Specifically, the inspection frequency of the inspection device or the inspection area is increased for a process having an established PF equal to or higher than a predetermined value.
このよう に欠陥により不良チップとなる影響が大きい工程 (確立 P F の大きな工程) を検査装置の検査頻度もしくは/および検査領域を増や して重点的に検査することで、 欠陥が生じないように該工程を処理する 製造装置を管理できるので、 欠陥による不良チップ数を低減して歩留ま リを向上することができる。  By increasing the inspection frequency and / or the inspection area of the inspection equipment and inspecting processes that have a large effect of causing a defective chip due to defects (processes with a large established PF), defects can be prevented. Since it is possible to manage a manufacturing apparatus that performs the process, the number of defective chips due to defects can be reduced and the yield can be improved.
次に、 試作 1で収集した検査情報から検査すべき工程を抽出する'他の 例を第 1 1図に示す。  Next, Fig. 11 shows another example of extracting the process to be inspected from the inspection information collected in prototype 1.
まず、 試作 1 にて各種製造装置 1 5を用いて半導体装置を製造する (ステップ 2 0 1 ) 。  First, in prototype 1, a semiconductor device is manufactured using various manufacturing apparatuses 15 (step 201).
次に製造途中で問題が生じた場合に、 問題の生じた工程と問題の種類 をチェック項目生成ステーション 9へ登録して、 それぞれの発生回数を 記録する (ステップ 2 0 2 ) 。 ここで問題の種類とは、 デバイス構造に 起因した問題や製造装置に起因した問題等である。 蓄積するデータ例を 第 1 2図に示す。 ( 1 ) これは、 チップ横幅 XW、 チップ縦幅 Y Wは下 記の式 ( 1 ) 、 式 ( 2 ) で用いるし、 第 4図に示すようなウェハを示す 図を描画する際に、 縦チップ数、 横チップ数が必要になる。 また、 多く の場合、 第 4図に示すがごとくチップの配列は、 各行毎に加工するチッ プ数は異なる。 したがって、 縦チップ数、 横チップ数の中にく く られる 領域の中で、 実際に加工されない領域を指定すればなおよい。 デバイス 構造に起因した問題とは、 例えば、 下地の段差が大きく、 場所によって 露光の際に焦点が合わなくなリ、 所望のパターンの加工ができないこと などがある。 こう した場合、 所望形状からどのようにずれているか、 詳 しく観察して対策を打つ。 そのために、 S E Mを用いた観察が好適であ る。 製造装置に起因した問題とは、 例えば、 装置から異物が発生して、 該異物がウェハに付着し所望の形状に加工ができないことなどがある。 デバイス構造に起因する問題とは違い、 装置の不具合はいつ発生するか 分からないので、 検査頻度を上げて、 装置異常が発生したことを迅速に 察知する必要がある。 Next, if a problem occurs during manufacturing, the process and the type of the problem are registered in the check item generation station 9 and the number of occurrences is recorded (step 202). Here, the type of problem refers to a problem due to a device structure or a problem due to a manufacturing apparatus. Fig. 12 shows an example of stored data. (1) This means that the chip width XW and chip height YW are used in the following equations (1) and (2). When drawing a diagram showing a wafer as shown in FIG. Number and the number of horizontal chips are required. In many cases, as shown in Fig. 4, the chip arrangement is such that the chips are processed for each row. The numbers are different. Therefore, it is better to specify an area that is not actually processed in the area enclosed by the number of vertical chips and the number of horizontal chips. Problems caused by the device structure include, for example, a large difference in level of the underlying layer, which makes it difficult to focus at the time of exposure depending on the location, and that a desired pattern cannot be processed. In such a case, it is necessary to closely observe the deviation from the desired shape and take measures. Therefore, observation using SEM is preferable. The problem caused by the manufacturing apparatus is, for example, that foreign matter is generated from the apparatus and the foreign matter adheres to the wafer and cannot be processed into a desired shape. Unlike problems caused by the device structure, it is not known when a device failure will occur, so it is necessary to increase the inspection frequency and quickly detect that a device failure has occurred.
次に量産拠点 2のガイダンスステーシヨン 1 2では、 蓄積されたデ一 タに基づいて問題の生じた回数が所定回数以上の工程について重点的に 検査するように設定する (ステップ 2 0 3 ) 。  Next, in the guidance station 12 of the mass production base 2, based on the accumulated data, a setting is made so as to focus on the processes in which the number of times of occurrence of the problem is equal to or more than a predetermined number (step 203).
例えば、 デバイス構造に起因した問題が多い場合は、 検査感度の良い S E M外観検査装置により管理し、 製造装置に起因した問題が多い場合 は、 検査頻度を多く して管理する (ステップ 2 0 4 ) 。  For example, if there are many problems due to the device structure, manage them with a SEM visual inspection device with good inspection sensitivity, and if there are many problems due to the manufacturing equipment, manage them by increasing the inspection frequency (step 204). .
このように量産開始時から問題の生じやすい工程をしかも問題の種類 に応じた最適な検査装置を用いて管理すれば、 試作 1で生じた同様の問 題を早期に発見でき歩留ま リを向上させることができる。  In this way, if processes that are likely to cause problems from the start of mass production are managed using the most appropriate inspection equipment according to the type of problem, the same problem that occurred in prototype 1 can be discovered early, and the yield can be reduced. Can be improved.
また、 これらの情報に検査すべきウェハ上の領域 (問題の生じた領域) や、 検査装置に必要な検査感度を関連づけておけば、 ウェハ上の一部の 領域で効果的に検査できるのでスループッ トを低下させずに歩留ま リを 向上させることができる。  In addition, by associating this information with the area on the wafer to be inspected (the area where the problem occurred) and the inspection sensitivity required for the inspection equipment, the inspection can be effectively performed in a part of the wafer, so that throughput is reduced. The yield can be improved without lowering the yield.
次に、 試作 1 にて検査情報 (検査すべき条件) を取得し、 量産 2にそ の検査情報を適用する例を第 1 3図を用いて説明する。 第 1 3図において、 ステップ 3 0 1からステップ 3 0 3は、 第 2図と 同様なので説明を省略する。 Next, an example of acquiring inspection information (conditions to be inspected) in prototype 1 and applying the inspection information to mass production 2 will be described with reference to FIG. In FIG. 13, steps 301 to 303 are the same as those in FIG.
第 1 3図では、 ステップ 3 0 4において、 チェック項目生成ステ一シ ヨン 9が、 異物 ·外観検査装置 4の検査結果とプローブ検査装置 5の検 査結果から、 第 1 4図に示すような、 異物数 Nと歩留ま り Yの相関図 6 0を作成し、 これらのプロッ トから 1次回帰式 7 3を求める。 なお歩留 まり Yは前述の式 ( 4 ) を用いて算出する。  In FIG. 13, in step 304, the check item generation step 9 is based on the inspection result of the foreign matter / visual inspection device 4 and the inspection result of the probe inspection device 5, as shown in FIG. Then, a correlation diagram 60 between the number N of foreign matters and the yield Y is created, and a linear regression equation 73 is obtained from these plots. Note that the yield Y is calculated using the above equation (4).
以上のようにして試作 1では、 量産拠点 2で必要となる情報 (第 1 4 図に示す異物数 Nと歩留まり Yとの相関情報) を生成する。  As described above, the prototype 1 generates the information (correlation information between the number N of foreign particles and the yield Y shown in Fig. 14) required at the mass production site 2.
次に量産拠点 2のガイダンスステーション 1 2では、 既に取得された 異物数 Nと歩留まり Yとの相関に基づいて検査条件を決定する (ステツ プ 3 0 5 ) 。  Next, at the guidance station 12 of the mass production base 2, the inspection conditions are determined based on the correlation between the number N of foreign particles already obtained and the yield Y (Step 305).
つまリ、 量産拠点 2では、 第 1 4図を用いて所望の歩留ま リを設定し、 それに対応する異物数 Nを 1次回帰式 6 3から算出し、 該当する工程で は異物数 N以上の異物を発生しないように製造装置を管理する。 この場 合、 試作 1で用いた検査装置の感度を情報として付加して、 試作 1 と同 様の感度で検査することが望ましい。  In other words, at the mass production base 2, the desired yield is set using FIG. 14 and the number N of corresponding foreign substances is calculated from the linear regression equation 63. The manufacturing apparatus is managed so as not to generate the above foreign matter. In this case, it is desirable to add the sensitivity of the inspection device used in prototype 1 as information and to perform inspection with the same sensitivity as prototype 1.
このように各工程で管理すべき条件 (管理基準) 力 、 量産開始前から 分かれば、 早期に安定した量産を行うことができ、 歩留まりを向上させ ることができる。  If the conditions (management standards) to be controlled in each process and the power before mass production are known, stable mass production can be performed at an early stage and the yield can be improved.
例えば、 異物 ·外観検査装置 4で、 成膜時にパターン加工寸法程度の 異物が発生しているならば、 該成膜装置の管理を厳しくする。 また、 ゲ —トの加工精度が悪く、 所望の形状にならないために、 所望の卜ランジ スタ特性が得られない場合、 ゲート加工後の形状を管理する必要がある。 この場合、 加工寸法の 1 1 0程度のずれでも、 特性に大きく影響する 場合がある。 次に、 試作 1 にて検査情報 (検査すべき領域) を取得し、 量産 2にそ の検査情報を適用する例を説明する。 For example, if foreign matter having a size of about a pattern processing dimension is generated at the time of film formation by the foreign matter / visual inspection apparatus 4, the management of the film forming apparatus is strict. In addition, when the gate processing accuracy is poor and the desired shape is not obtained, and the desired transistor characteristics cannot be obtained, it is necessary to control the shape after the gate processing. In this case, even a difference of about 110 in the processing dimension may greatly affect the characteristics. Next, an example of acquiring inspection information (area to be inspected) in prototype 1 and applying the inspection information to mass production 2 will be described.
第 1 5図は、 試作 1にて検査情報 (検査領域) を取得し、 量産拠点 2 にその検査情報を適用するまでのフローチャートである。 なお、 ステツ プ 4 0 1からステップ 4 0 2までは、 第 2図と同様なので説明を省略す る。  Fig. 15 is a flowchart from the acquisition of inspection information (inspection area) in prototype 1 to the application of the inspection information to mass production base 2. Steps 401 to 402 are the same as those shown in FIG. 2, and a description thereof will be omitted.
第 1 5図では、 第 1 6図に示すように試作 1 における製造途中の検査 結果 (異物 ·外観検査装置 4の検出結果) から、 ウェハを示す領域上に 欠陥位置 1 0 1 を打点する (ステップ 4 0 3 ) 。 この際、 同一工程で行 つた複数のウェハに対する検査結果を J枚重ね合わせてもよい。 第 1 6 図のごとくウェハを示す領域上に欠陥の位置を打点したものを欠陥マツ プ 1 0 0と称する。 欠陥マップ上に仮想のメッシュ 1 0 2をきリ、 各メ ッシュに番号 ( p, q ) をつける。 各欠陥がどのメッシュに属するかは 式 ( 1 ) 、 式 ( 2 ) と同様な形で求められる (ステップ 4 0 4 ) 。 ここ で Lはメッシュピッチである。  In FIG. 15, as shown in FIG. 16, the defect position 101 is spotted on the area indicating the wafer from the inspection result during the manufacture of the prototype 1 (detection result of the foreign matter / visual inspection device 4) ( Step 4 0 3). At this time, J inspection results for a plurality of wafers performed in the same process may be superimposed. As shown in FIG. 16, an area in which the position of a defect is spotted on a region indicating a wafer is referred to as a defect map 100. A virtual mesh 102 is drawn on the defect map, and a number (p, q) is assigned to each mesh. Which mesh each defect belongs to is determined in the same manner as in equations (1) and (2) (step 404). Where L is the mesh pitch.
p = [ x / L ] + 1 … 式 ( 5 ) q = [ y / L ] + 1 … 式 ( 6 ) この式 ( 5 ) 、 式 ( 6 ) の結果から各メッシュ内の欠陥数 N ( p, q ) を求める (ステップ 4 0 5 ) 。 このときは第 1 6図中に示すように、 ェ 程名 1 0 3と欠陥種類 1 0 4を一緒に示すと良い。 チェック項目生成ス テーシヨン 9は、 この結果を第 1 7図に示すような形式で記録する。 第 1 7図では、 欠陥マップ表 1 1 0として品種名、 工程名、 欠陥種類、 欠 陥多発領域を記録している。  p = [x / L] + 1 ... Equation (5) q = [y / L] + 1 ... Equation (6) From the results of Equations (5) and (6), the number of defects N (p , Q) (step 4 05). In this case, as shown in FIG. 16, the process name 103 and the defect type 104 may be indicated together. Check item generation station 9 records this result in the format shown in Fig. 17. In FIG. 17, a defect map table 110 records a product name, a process name, a defect type, and a defect-prone area.
以上のようにして試作 1 において検査情報を取得する。  Inspection information is acquired in prototype 1 as described above.
次に量産拠点 2のガイダンスステーション 1 2では、 前述の検査情報 に基づいて検査領域を設定する (ステップ 4 0 6 ) 。 つまり、 式 ( 7 ) において一定のしきい値 Dを設定し、 式 ( 7 ) の関係を満たす領域を検 査するようにする。 ここで、 欠陥種類毎に欠陥マップを作成してもよい。 Lは任意であるが、 チップ幅 XWの 1 Z 1 0程度が好ましい。 Dは、 1 枚当たりの平均欠陥密度の 2から 3倍が好ましい。 Next, at the guidance station 12 of the mass production base 2, an inspection area is set based on the above-described inspection information (step 406). That is, equation (7) , A constant threshold D is set, and an area that satisfies the relationship of equation (7) is checked. Here, a defect map may be created for each defect type. L is arbitrary, but is preferably about 1Z10, which is the chip width XW. D is preferably 2 to 3 times the average defect density per sheet.
N ( p , q ) / ( L X L x J ) >D … 式 ( 7 ) 式 ( 7 ) を満足する領域 ( P, q) は欠陥発生密度が高いので、 その 領域での欠陥の発生を抑制すれば、 ウェハ全体での欠陥の発生を抑制で き、 歩留まりを向上させることができる。 特に試作 1と量産拠点 1とが 同一の製造ラインの場合には、 製造装置に起因する欠陥を抑制すること ができ、 歩留ま りを大幅に向上させることができる。  N (p, q) / (LXL x J)> D ... Equation (7) Since the area (P, q) that satisfies Equation (7) has a high defect generation density, it is necessary to suppress the generation of defects in that area. If this is the case, the occurrence of defects on the entire wafer can be suppressed, and the yield can be improved. In particular, when the prototype 1 and the mass production base 1 are on the same production line, defects caused by the production equipment can be suppressed, and the yield can be greatly improved.
これまで説明してきた検査すべき領域は、 第 1 8図に示すような検査 装置 1 4 0に与えられる。 検査装置 1 40はデータインターフェイス 1 4 1、 制御部 1 42、 検査ステージ 1 43、 検出部 1 44、 マンマシン インターフェイス 1 4 5、 表示部 1 46から構成される。 データインタ 一フェイス 1 4 1で受けた前述の検査すべき領域 ( p、 q) を基に制御 部 1 4 2でステージ制御量を計算して、 検査ステージ 1 43を制御する。 これにより検査装置 1 40は、 自動的に検査すべき領域 (P、 q) を検 査する。 また、 検査装置 1 40は、 検査すべき領域 ( p、 q ) の他に、 ウェハ上の決まった何点かを検査することが好ましい。 これにより、 ゥ ェハ上を均一に検査し、 かつウェハ上の一部の領域を重点的に検査する ことができる。  The area to be inspected described so far is provided to an inspection apparatus 140 as shown in FIG. The inspection device 140 includes a data interface 144, a control unit 142, an inspection stage 144, a detection unit 144, a man-machine interface 144, and a display unit 146. Based on the area (p, q) to be inspected received by the data interface 141, the control unit 142 calculates the stage control amount and controls the inspection stage 143. As a result, the inspection device 140 automatically inspects the area (P, q) to be inspected. Further, it is preferable that the inspection apparatus 140 inspects a predetermined number of points on the wafer in addition to the area (p, q) to be inspected. As a result, the wafer can be inspected uniformly, and a partial area on the wafer can be inspected with emphasis.
表示部 1 4 6では第 1 9図に示すように、 ガイダンス画面 1 5 0中に 検査領域 1 5 1と欠陥検出位置 1 5 2を表示し、 該当検査領域の中で試 作 1中で検出された欠陥の画像 1 5 3と量産 2で検出された欠陥の画像 1 54を併せて表示することが好ましい。 これにより試作中に検出した 欠陥の画像と量産で検出した欠陥の画像を比較し、 量産で発生している 欠陥が試作中に経験したものかどうか判定することができる。 As shown in Fig. 19, the display area 1 46 displays the inspection area 1 5 1 and the defect detection position 1 5 2 in the guidance screen 1 50, and detects it during the prototype 1 in the relevant inspection area. It is preferable to display the image 153 of the detected defect and the image 154 of the defect detected in the mass production 2 together. As a result, the defect image detected during prototype production is compared with the defect image detected during mass production, and it is generated in mass production. It can be determined whether the defect was experienced during prototyping.
このように検査装置 1 4 0は品種、 工程、 欠陥種類毎にあらかじめ検 査すべき領域がわかつているので検査効率がよい。  As described above, the inspection device 140 has high inspection efficiency because the area to be inspected is previously determined for each product type, process, and defect type.
次に試作 1での製造途中の検査結果に基づかずに、 量産拠点 2での検 査すべき工程を決定する例を第 2 0図に示す。  Next, FIG. 20 shows an example in which the process to be inspected at the mass production site 2 is determined based on the inspection result during the production of the prototype 1 during the production.
まず、 試作 1で各ホトマスクに対応する層の形成が終わった所で、 断 面形状シミュレータにより仮想の欠陥を発生させ、 欠陥発生後に正常の 製造プロセスを行つたデバイス形状が正常かどうかを判断する (ステツ プ 5 0 1 ) 。 発生させる欠陥は、 様々な欠陥サイズ、 欠陥付着位置のも のを取り扱う。 仮想の欠陥 (異物) を発生させる断面形状シミュレータ はすでに商用になっているものがあり、 実現は容易である。 例えば、 N T Tファネッ トシステムズ (株) の P R A D I S E W O R L Dがある。 欠陥サイズのパラメータの振り方は、 各層の最小加工線幅に対して 1 2、 同じ、 3ノ 2、 2倍とふる。 付着位置はシミュレートさせる領域 中でランダムに発生させる。 ここで発生させた件数を S Fとする。  First, after the layers corresponding to each photomask have been formed in prototype 1, a virtual defect is generated by a cross-sectional shape simulator, and after the defect occurs, a normal manufacturing process is performed to determine whether the device shape is normal. (Step 501). Defects to be generated are handled at various defect sizes and defect locations. Sectional shape simulators that generate virtual defects (foreign matter) are already commercially available and are easy to implement. For example, there is PRA D I S E W O R L D of NTT FANET SYSTEMS CO., LTD. The method of assigning the parameter of the defect size is 1 to 2, the same, 3 to 2, and 2 times the minimum processing line width of each layer. The attachment position is randomly generated in the simulated area. Let S F be the number of occurrences here.
次にデバィス形状の正常 Z異常の判定する方法について述べる。  Next, a method of determining the normal Z abnormality of the device shape will be described.
あらかじめ欠陥を発生させずにシミュレートした正常な形状を準備し、 その各部位の連結関係を記録する (ステップ 5 0 2 ) 。 これは各部位に 通し番号を振り、 連結は二つの部位の数字を組にして表記することで記 録することができる。  A simulated normal shape is prepared in advance without generating a defect, and the connection relation of each part is recorded (step 502). This can be recorded by assigning a serial number to each part and linking the two parts as a set.
これに対して、 欠陥を発生させてシミュレートさせた後に、 各部位の 連結関係を記録する (ステップ 5 0 3 ) 。 ここでは、 欠陥との連結は省 略する。  On the other hand, after a defect is generated and simulated, the connection relation of each part is recorded (step 503). Here, the connection with the defect is omitted.
次に、 欠陥発生時の連結関係と正常な形状の連結関係と比較して、 欠 陥発生時の形状と正常な形状の連結が異なっているならば、 形状に異常 が発生したと判断する (ステップ 5 0 4 ) 。 シミュレーションの一例を 第 2 1図に示す。 第 2 1図では正常な場合の部位 1 2 1上に欠陥 1 22 を発生させ、 その影響で部位 1 2 3が部位 1 2 3と部位 1 24に分裂し、 新たに部位 1 2 1と部位 1 24の連結が生成した例である。 この場合の 連結関係を第 22図に示す。 第 2 2図では正常時の連結関係は ( 1 2 1, 1 23 ) となり、 欠陥付着時の連結関係は ( 1 2 1, 1 23 ) と ( 1 2 1 , 1 24 ) となる。 チェック項目生成ステ一ション 9では第 22図に 示す連結関係を比較して形状の異常が発生していることを判断する。 Next, comparing the connection relationship at the time of the defect occurrence with the connection relationship of the normal shape, if the connection at the time of the defect occurrence is different from the connection at the normal shape, it is determined that an abnormality has occurred in the shape ( Step 5 0 4). An example of a simulation See Figure 21. In Fig. 21, a defect 122 is generated on the normal site 1 2 1, and as a result, the site 123 is split into the site 123 and the site 124, and a new site 122 and a new site are generated. Here is an example where 1 24 concatenations are generated. Figure 22 shows the connection in this case. In FIG. 22, the connection relation at normal time is (121, 123), and the connection relation at the time of defect attachment is (122, 123) and (122, 124). At check item generation station 9, the connection relationship shown in FIG. 22 is compared to determine that a shape abnormality has occurred.
このようにして形状の異常が発生した件数 A Fを判定し、 式 ( 8 ) を 用いて異常発生率 APを算出する。 つまり、 各層 ,各欠陥サイズごとに 異常発生率 A Pをシミュレートする (ステップ 50 5 ) 。  In this way, the number of occurrences AF of the shape abnormality is determined, and the abnormality occurrence rate AP is calculated using the equation (8). That is, the abnormality occurrence rate AP is simulated for each layer and each defect size (step 505).
A P = AF/ S F … 式 ( 8 ) チェック項目生成ステーシヨン 9は、 その結果を第 23図に示すよう なシミュレ一ション結果表 1 30として記録する。 第 2 3図では、 縦 1 3 1に層、 横 1 3 2に欠陥サイズをとリ、 各升目 1 3 3には該当する A Pを記録している。  A P = AF / SF ... Equation (8) The check item generation station 9 records the result as a simulation result table 130 as shown in FIG. In FIG. 23, the vertical 13 1 is the layer, the horizontal 13 2 is the defect size, and the corresponding AP is recorded in each cell 1 33.
以上のようにして試作 1において検査情報を取得する。  Inspection information is acquired in prototype 1 as described above.
次に量産拠点 2のガイダンスステーション 1 2では、 前述の検査情報 に基づいて検査条件を設定する (ステップ 50 6 ) 。 つまり、 所望の歩 留ま り Y 0を設定し、 第 2 3図において縦軸に列挙した層が n層ある場 合、 Y 0の n乗根未満の 1—APを有する工程を重点的に検査する。 具 体的には、 該当する工程に対して欠陥サイズを検出できる検査装置によ り管理する。 これは、 第 n層の APを AP ( n ) と書くと Y 0は、  Next, at the guidance station 12 of the mass production base 2, inspection conditions are set based on the above-described inspection information (step 506). In other words, if the desired yield Y 0 is set, and there are n layers listed on the vertical axis in FIG. 23, the process having 1-AP less than the n-th root of Y 0 will be emphasized. inspect. Specifically, it is managed by an inspection device that can detect the defect size for the relevant process. This means that if the n-th layer AP is written as AP (n), Y 0 is
Y 0 = ( 1 - AP ( 1 ) ) ( 1 - AP ( 2 ) ) · · ·  Y 0 = (1-AP (1)) (1-AP (2))
( 1一 AP ( n) )  (1-AP (n))
… 式 ( 9 ) と書け、 Y 0の n乗根と 1— AP ( i ) (但し iは 1から nまでの数) を比して、 1— A P ( i ) の方が小さいということは、 他に比して、 不 良の発生する可能性が高いことを示す。 そこで、 シミュレーション等で 製品の性能に問題を起こすと考えられるサイズ以上の異物を管理しなけ ればならない。 … Write equation (9), and the nth root of Y 0 and 1—AP (i) (where i is a number from 1 to n) The fact that 1-AP (i) is smaller than that indicates that there is a higher probability that a defect will occur. Therefore, it is necessary to manage foreign substances larger than the size that would cause a problem in the performance of the product by simulation or the like.
これにより、 各層でどの程度の大きさの欠陥を管理すべきかを把握で きるので、 早期に安定した量産を行うことができ、 歩留まりを向上させ ることができる。 また、 シミュレーションにより量産拠点で起こりうる 様々な問題を事前に検討できるので、 予期せぬ突発的な問題を未然に防 止することができる。  As a result, it is possible to grasp how large a defect should be managed in each layer, so that stable mass production can be performed early and the yield can be improved. In addition, since various problems that may occur at the mass production base can be considered in advance by simulation, unexpected unexpected problems can be prevented.
最後に、 より具体的な例を以下に示す。  Finally, a more specific example is shown below.
例えば第 2 1図において、 装置起因の不良を想定し、 シミュレ一ショ ンを行ない、 コンタク トホール形成工程において例えば 1 μ πιのサイズ の異物が製品の性能に問題を起こすというシミユレ一ション結果がでた ならば、 その結果を事前チェック項目データペース 1 0に登録する。 登 録する内容は、 想定した不良 (装置起因かデバイス構造起因か) と、 ェ 程名と、 問題となる異物サイズ、 さらにシミュレーションによって得ら れた形状及びその形状を示す画像 I D、 及び発生した現象、 検査すべき 領域等である。 しかし、 シミュレーションによる場合、 ウェハ上の検査 すべき領域については知見が得られないことが多い。 このデータを事前 チェックデータベース 1 1 に複写し、 事前チェックリストを生成する。 事前チェックリス卜では想定した不良によって、 検査の種類を規定する。 ここでは装置起因の不良を想定しているので、 異物検査を行う。 現象は コンタク 卜ホールの非開口で管理サイズは例えば 1 μ πιとする。 また、 シミュレーション形状を検索できる様に画像 I Dを管理する。 また、 検 査すべき領域については知見が得られない場合、 ウェハ全面を検査すベ きである。 ガイダンスステーション 1 2ではこの事前チェックリスト 1 3に基づいて検査の種類 (異物検査) 、 管理基準 (異物サイズ 1 ^ πι以 上) 、 検査工程 (コンタク トホール形成工程) 、 検査箇所 (ウェハ全面) といった内容を指示する。 For example, in Fig. 21, a simulation was performed assuming a failure caused by the device, and a simulation result was obtained in which a foreign substance of, for example, 1 μπι size caused a problem in product performance in the contact hole forming process. If so, the result is registered in the pre-check item data base 10. The contents to be registered are the assumed failure (whether due to the device or the device structure), the process name, the size of the foreign material in question, the shape obtained by simulation and the image ID indicating the shape, and Phenomenon, area to be inspected. However, in the case of simulation, it is often not possible to obtain information on a region to be inspected on a wafer. This data is copied to the pre-check database 11 to generate a pre-check list. The pre-check list specifies the type of inspection based on the assumed failure. Here, a defect due to the device is assumed, so a foreign substance inspection is performed. The phenomenon is a non-opening of the contact hole, and the management size is, for example, 1 μπι. It also manages image IDs so that simulation shapes can be searched. If no information is available on the area to be inspected, the entire wafer should be inspected. This pre-checklist at Guidance Station 1 2 1 Based on 3 above, the contents such as inspection type (foreign matter inspection), management standard (foreign matter size 1 ^ πι or more), inspection process (for contact hole formation process), and inspection location (for the entire wafer) are specified.
また、 実際に発生した事例に基づく場合、 検出した手段、 現象、 サイ ズ、 画像 I D、 発生した場所等を事前チェック項目データベース 1 0に 登録する。 これらの情報に基づき、 事前チェックリスト 1 3を生成する。 ここでは、 配線間ショートが S E Mによりチップ位置 ( 1 2, 1 3 ) ( 1 3, 1 4 ) に見つかっているので, 該当工程, 該当個所を S E Mで 検査する様ガイダンスステ一ションは指示を出す。  In addition, based on the actual cases, the detected means, phenomena, size, image ID, location where they occurred, etc. are registered in the pre-check item database 10. Based on this information, a preliminary checklist 13 is generated. In this case, since the short circuit between wirings was found at the chip position (12, 13) (13, 14) by SEM, the guidance station instructs to inspect the corresponding process and the corresponding location by SEM. .
この処理の流れを第 2 5図に示す。 これはシミュレーショ ンであれ、 実際の事例であれ、 事前チェック項目として登録されたならば、 後の処 理は同じである。  FIG. 25 shows the flow of this processing. Whether this is a simulation or an actual case, if registered as a pre-check item, the subsequent processing is the same.
これまで説明してきた例では、 チェック項目生成ステーション 9が検 査結果に基づいた解析を行っていたが、 チェック項目生成ステーション 9を単に検査結果を収集するだけにし、 ガイダンスステーション 1 2が 全ての解析を行っても問題はない。 産業上の利用可能性  In the example described so far, the check item generation station 9 performs the analysis based on the inspection result.However, the check item generation station 9 simply collects the inspection results, and the guidance station 12 performs all the analysis. There is no problem to do. Industrial applicability
以上のように、 本発明によれば、 試作期間で取得した検査情報に基づ いて、 量産時の検査基準を効果的に設定できるので、 量産拠点での安定 した製造が早期に実現でき、 半導体装置の製造ラインに利用して歩留ま リを向上させることができるものである。  As described above, according to the present invention, based on the inspection information acquired during the trial production period, the inspection standards at the time of mass production can be effectively set, so that stable production at the mass production base can be realized early and the semiconductor It can be used in equipment manufacturing lines to improve yield.

Claims

請 求 の 範 囲 . 第一の製造ラインで半導体装置を製造するステップと、  The scope of the claim; manufacturing the semiconductor device on the first manufacturing line;
該第一の製造ラインに設けられた検査装置にょリ該半導体装置を検 査するステップと、  Inspecting the semiconductor device with an inspection device provided on the first manufacturing line;
該半導体装置の検査結果から製造ライン管理情報を生成するステツ プと、  Generating production line management information from the inspection result of the semiconductor device;
該生成した製造ライン管理情報に基づいて第二の製造ラインに検査 装置を設定するステップと、  Setting an inspection device in a second production line based on the generated production line management information;
該第二の製造ラインで半導体装置を製造するステップと、 該製造ライン管理情報に基づいて設定した検査装置によリ該第二の 製造ラインで製造される半導体装置を検査するステップとからなるこ とを特徴とする半導体装置の製造方法。  Manufacturing a semiconductor device on the second manufacturing line; and inspecting the semiconductor device manufactured on the second manufacturing line by an inspection device set based on the manufacturing line management information. And a method of manufacturing a semiconductor device.
. 第一の製造ラインで半導体装置を製造するステップと、 . Manufacturing a semiconductor device on a first manufacturing line;
該第一の製造ラインに設けられた外観 ·異物検査装置により該半導 体装置を形成するウェハ上の欠陥を検出するステツプと、  A step of detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line;
該第一の製造ラインに設けられたプローブ検査装置により該半導体 装置を形成するウェハのチップの電気的特性を検出するステップと、 該外観 ·異物検査装置の検出結果から欠陥を有するチップを判別す るステップと、  A step of detecting electrical characteristics of chips on a wafer forming the semiconductor device by a probe inspection device provided on the first manufacturing line; and determining a chip having a defect from the detection result of the appearance / foreign matter inspection device. Steps
該プローブ検査装置の検出結果から、 該欠陥を有すると判別された チップの中で電気的特性が不良となる割合を算出するステップと、 第二の製造ラインにおいて、 該割合が所定値以上となる工程の処理 が終了したウェハの検査頻度を、 該割合が所定値未満となる工程の処 理が終了したウェハの検査頻度以上に設定して半導体装置を製造する ステップとからなることを特徴とする半導体装置の製造方法。 Calculating, from the detection result of the probe inspection device, a ratio of the electrical characteristics of the chip determined to have the defect to be defective; and the ratio is equal to or more than a predetermined value in the second manufacturing line. Manufacturing the semiconductor device by setting the inspection frequency of the wafers for which the processing of the process has been completed to be equal to or higher than the inspection frequency of the wafers for which the processing of the process for which the ratio is less than the predetermined value has been completed. A method for manufacturing a semiconductor device.
. 第一の製造ラインで半導体装置を製造するステップと、 . Manufacturing a semiconductor device on a first manufacturing line;
該第一の製造ラインに設けられた外観 ·異物検査装置によリ該半導 体装置を形成するウェハ上の欠陥を検出するステップと、  A step of detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line;
該第一の製造ラインに設けられたプローブ検査装置により該半導体 装置を形成するウェハのチップの電気的特性を検出するステップと、 該外観 ·異物検査装置の検出結果と該プローブ検査装置の検出結果 とから、 欠陥数と歩留まりとの相関を算出するステップと、  Detecting electrical characteristics of chips on a wafer forming the semiconductor device by a probe inspection device provided on the first manufacturing line; detecting results of the appearance / foreign matter inspection device and detection results of the probe inspection device; Calculating the correlation between the number of defects and the yield from:
第二の製造ラインの備える検査装置の管理基準を、 該歩留まリが所 定値以内となる異物数に設定するステップと、  Setting a management criterion of the inspection device provided in the second production line to the number of foreign substances whose yield is within a predetermined value;
該第二の製造ラインで半導体装置を製造するステップと、 該管理基準を設定した検査装置によリ該第二の製造ラインで製造さ れる半導体装置を管理するステツプとからなることを特徴とする半導 体装置の製造方法。  Manufacturing a semiconductor device on the second manufacturing line, and managing the semiconductor device manufactured on the second manufacturing line by an inspection device that has set the management standard. A method for manufacturing a semiconductor device.
. 前記外観 ·異物検査装置はウェハ上の欠陥のサイズを判別し、 所定の欠陥サイズ別に前記欠陥数と歩留ま リとの相関を算出し、 該欠陥サイズを検出できる検査装置を前記第二の製造ラインに設定 し、 該設定された検査装置の管理基準として該歩留まりが所定値以内 となる欠陥サイズ別の欠陥数を設定することを特徴とする請求の範囲 3項記載の半導体装置の製造方法。  The appearance / foreign matter inspection apparatus determines a size of a defect on a wafer, calculates a correlation between the number of defects and a yield rate for each predetermined defect size, and provides an inspection apparatus capable of detecting the defect size to the second type. 4. The manufacturing method of a semiconductor device according to claim 3, wherein the number of defects for each defect size whose yield is within a predetermined value is set as a management criterion of the set inspection apparatus. Method.
5 . 前記外観 ·異物検査装置はウェハ上の欠陥の種類を判別し、 5. The appearance and foreign matter inspection device determines the type of defect on the wafer,
所定の欠陥種類別に前記欠陥数と歩留まりとの相関を算出し、 該欠陥の種類を検出できる検査装置を前記第二の製造ラインに設定 し、 該設定された検査装置の管理基準として該歩留まりが所定値以内 となる欠陥種類別の欠陥数を設定することを特徴とする請求の範囲 3 項または 4項記載の半導体装置の製造方法。  A correlation between the number of defects and the yield is calculated for each predetermined defect type, an inspection device capable of detecting the type of the defect is set in the second manufacturing line, and the yield is set as a management standard of the set inspection device. 5. The method for manufacturing a semiconductor device according to claim 3, wherein the number of defects is set for each defect type within a predetermined value.
6 . 第一の製造ラインで半導体装置を製造するステップと、 該第一の製造ラインに設けられた外観 ·異物検査装置により該半導 体装置を形成するウェハ上の欠陥を検出するステップと、 6. manufacturing semiconductor devices on a first manufacturing line; A step of detecting a defect on a wafer forming the semiconductor device by an appearance / foreign matter inspection device provided on the first manufacturing line;
該外観 ·異物検査装置の検出結果からウェハ上の欠陥発生密度を算 出するステップと、  Calculating the defect occurrence density on the wafer from the detection result of the appearance / foreign matter inspection device;
第二の製造ラインの備える検査装置が該欠陥発生密度が所定値以上 の領域を検査するように設定するステップと、  Setting an inspection apparatus provided in the second manufacturing line to inspect an area where the defect occurrence density is equal to or more than a predetermined value;
該第二の製造ラインで半導体装置を製造するステップと、 該第二の製造ラインの備える検査装置が該設定された半導体装置の 領域を検査するステップとからなることを特徴とする半導体装置の製 造方法。  A step of manufacturing a semiconductor device on the second manufacturing line, and a step of inspecting an area of the set semiconductor device by an inspection device provided in the second manufacturing line. Construction method.
. 前記外観 ·異物検査装置はウェハ上の欠陥のサイズを判別し、 前記ウェハ上の欠陥発生密度を所定のサイズ別に算出し、 いずれかの欠陥サイズの欠陥発生密度が所定値以上である場合、 該 所定値以上となった欠陥サイズを検出できる検査装置を前記第二の製 造ラインに設定することを特徴とする請求の範囲 6項記載の半導体装 置の製造方法。 The appearance / foreign matter inspection device determines the size of the defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined size, and when the defect occurrence density of any of the defect sizes is equal to or more than a predetermined value, 7. The method for manufacturing a semiconductor device according to claim 6, wherein an inspection device capable of detecting a defect size equal to or larger than the predetermined value is set in the second manufacturing line.
. 前記外観 ·異物検査装置はウェハ上の欠陥の種類を判別し、 前記ウェハ上の欠陥発生密度を所定の欠陥の種類別に算出し、 いずれかの欠陥の種類の欠陥発生密度が所定値以上である場合、 該 所定値以上となった欠陥の種類を検出できる検査装置を前記第二の製 造ラインに設定することを特徴とする請求の範囲 6項または 7項記載 の半導体装置の製造方法。 The appearance / foreign matter inspection device determines the type of defect on the wafer, calculates the defect occurrence density on the wafer for each predetermined defect type, and when the defect occurrence density of one of the defect types is equal to or higher than a predetermined value. 8. The method according to claim 6, wherein an inspection device capable of detecting the type of the defect having the predetermined value or more is set in the second manufacturing line.
. 半導体装置の製造途中の各工程の形状に対して所定のサイズの欠陥 を付着させてその後の製造プロセスをシミユレーシヨンするステップ と、 Attaching a defect of a predetermined size to the shape of each step in the process of manufacturing the semiconductor device and simulating the subsequent manufacturing process;
該欠陥を付着させてシミュレートした形状を構成する各部位の連結 関係を記憶するステップと、 Connection of each part constituting the simulated shape by attaching the defect Memorizing the relationship;
該記憶した各部位の連結関係と、 欠陥を発生させずにシミュレート させた形状の構成する各部位の連結関係とを比較して、 連結関係が不 一致のものを異常と判断するステップと、  Comparing the stored connection relation of each part with the connection relation of each part constituting the simulated shape without generating a defect, and judging that the connection relation does not match is abnormal;
該シミユレーシヨンにより異常と判断された工程に対して、 該所定 のサイズの欠陥を検出できる検査装置を設定して半導体装置を製造す るステップとからなることを特徴とする半導体装置の製造方法。  A method of manufacturing a semiconductor device by setting an inspection device capable of detecting a defect of a predetermined size for a process determined to be abnormal by the simulation.
0 . 前記欠陥の付着位置を異ならせてそれぞれをシミユレーションし、 異常と判断された付着位置を検査するように前記検査装置の検査領域 を設定することを特徴とする請求の範囲 9項記載の半導体装置の製造 方法。 10. The inspection area of the inspection apparatus according to claim 9, wherein the defect attachment positions are made different and simulated, and an inspection area of the inspection device is set so as to inspect the attachment position determined to be abnormal. Semiconductor device manufacturing method.
1 . 前記欠陥のサイズを異ならせてそれぞれをシミュレーションし、 異常と判断された工程に対して、 該欠陥のサイズを検出できる検査装 置を設定することを特徴とする請求の範囲 9項又は 1 0項記載の半導 体装置の製造方法。  10. The inspection apparatus according to claim 9 or 1, wherein the defect is simulated with different sizes, and an inspection apparatus capable of detecting the size of the defect is set for a process determined to be abnormal. 9. The method for manufacturing a semiconductor device according to item 0.
PCT/JP1998/000346 1997-01-29 1998-01-28 Method for manufacturing semiconductor device WO1998033213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/15002 1997-01-29
JP1500297A JPH10214870A (en) 1997-01-29 1997-01-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
WO1998033213A1 true WO1998033213A1 (en) 1998-07-30

Family

ID=11876705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000346 WO1998033213A1 (en) 1997-01-29 1998-01-28 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JPH10214870A (en)
WO (1) WO1998033213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992499B2 (en) 2003-06-04 2006-01-31 Kabushiki Kaisha Toshiba Test method and test apparatus for semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319737B1 (en) * 1999-08-10 2001-11-20 Advanced Micro Devices, Inc. Method and apparatus for characterizing a semiconductor device
JP2003100599A (en) * 2001-09-25 2003-04-04 Nikon Corp Method for adjusting aligner and exposure system
JP2005191366A (en) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor manufacturing system
JP5140905B2 (en) * 2005-02-01 2013-02-13 富士通セミコンダクター株式会社 Semiconductor device test system and test method
US10935962B2 (en) * 2015-11-30 2021-03-02 National Cheng Kung University System and method for identifying root causes of yield loss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593371A (en) * 1982-06-30 1984-01-10 Nec Corp Testing method of semiconductor device
JPH03226681A (en) * 1990-01-31 1991-10-07 Mitsubishi Electric Corp Method for testing semiconductor device
JPH0574878A (en) * 1991-09-13 1993-03-26 Nec Yamagata Ltd Test method of wafer
JPH0927531A (en) * 1995-07-13 1997-01-28 Hitachi Ltd Statistical analysis method of yield and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593371A (en) * 1982-06-30 1984-01-10 Nec Corp Testing method of semiconductor device
JPH03226681A (en) * 1990-01-31 1991-10-07 Mitsubishi Electric Corp Method for testing semiconductor device
JPH0574878A (en) * 1991-09-13 1993-03-26 Nec Yamagata Ltd Test method of wafer
JPH0927531A (en) * 1995-07-13 1997-01-28 Hitachi Ltd Statistical analysis method of yield and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992499B2 (en) 2003-06-04 2006-01-31 Kabushiki Kaisha Toshiba Test method and test apparatus for semiconductor device

Also Published As

Publication number Publication date
JPH10214870A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP4014379B2 (en) Defect review apparatus and method
US8161428B2 (en) Method of predicting reliability of semiconductor device, reliability prediction system using the same and storage medium storing program causing computer to execute the same
US7760929B2 (en) Grouping systematic defects with feedback from electrical inspection
US7975245B2 (en) Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects
US6757621B2 (en) Process management system
US9335277B2 (en) Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method
EP1149385B1 (en) Ic test software system for mapping logical functional test data of logic integrated circuits to physical representation
US6334097B1 (en) Method of determining lethality of defects in circuit pattern inspection method of selecting defects to be reviewed and inspection system of circuit patterns involved with the methods
US6456951B1 (en) Method and apparatus for processing inspection data
JP4357134B2 (en) Inspection system, inspection apparatus, semiconductor device manufacturing method, and inspection program
KR20030051064A (en) Method for measuring fail probability by only defect, method for measuring defect limited yield using classification the extracted defect pattern's parameter, and system for measuring fail probability by only defect and the defect limited yield
WO1998033213A1 (en) Method for manufacturing semiconductor device
JP4080087B2 (en) Analysis method, analysis system, and analysis apparatus
WO2001054186A1 (en) Failure analysis method using emission microscope and system thereof and production method for semiconductor device
JP2005236094A (en) Method for manufacturing semiconductor device, method and system for failure analysis
US7079966B2 (en) Method of qualifying a process tool with wafer defect maps
JP3750220B2 (en) Manufacturing method of semiconductor device
US7137085B1 (en) Wafer level global bitmap characterization in integrated circuit technology development
JP2003315415A (en) Semiconductor-device analytical system
US7634127B1 (en) Efficient storage of fail data to aid in fault isolation
JPH1174326A (en) Semiconductor section observing device
JPH11176899A (en) Method and system for alarming defect
US7263451B1 (en) Method and apparatus for correlating semiconductor process data with known prior process data
JPH1116973A (en) Manufacturing method of semiconductor device and semiconductor device manufactured therethrough
US7197435B1 (en) Method and apparatus for using clustering method to analyze semiconductor devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase