JPH1116973A - Manufacturing method of semiconductor device and semiconductor device manufactured therethrough - Google Patents

Manufacturing method of semiconductor device and semiconductor device manufactured therethrough

Info

Publication number
JPH1116973A
JPH1116973A JP16991497A JP16991497A JPH1116973A JP H1116973 A JPH1116973 A JP H1116973A JP 16991497 A JP16991497 A JP 16991497A JP 16991497 A JP16991497 A JP 16991497A JP H1116973 A JPH1116973 A JP H1116973A
Authority
JP
Japan
Prior art keywords
inspection
semiconductor device
manufacturing
detected
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16991497A
Other languages
Japanese (ja)
Inventor
Kenichiro Fukuda
健一郎 福田
Yoshimasa Oshima
良正 大島
Hidetoshi Nishiyama
英利 西山
Minoru Noguchi
稔 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16991497A priority Critical patent/JPH1116973A/en
Publication of JPH1116973A publication Critical patent/JPH1116973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly find out processes where lots of defectives occur by a method wherein the process conditions of the processes where lots of defectives occur are controlled. SOLUTION: The type, process name, and lot number of a wafer to be monitored by each inspection equipment are initially set. The wafer is introduced, a foreign objects attached to the wafer are detected by an inspection equipment A after the wafer is subjected to a process N81, and the wafer is subjected to a simplified probe check with an inspection equipment C without delay. Then, after the wafer is subjected to a process M82, the external defects of the wafer are detected, and the wafer is subjected to a simplified probe check with the inspection equipment C at once. With the progress of processes, the calculation of correlations among the check devices is automatically carried out at a regular interval, and when the calculated correlations exceeds the previously set thresholds, the process conditions of the processes are regulated again so as to keep the wafer high in yield. The check of each chip of the wafer by the bit as an object of check is carried out the same as above, and the correlations are compared with each other by the bit, so that data are increased in volume, and the checks are improved in reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェハを高
い歩留りで製造する方法と製造管理システム及び前記方
法で製造された半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor wafer with a high yield, a manufacturing management system, and a semiconductor device manufactured by the method.

【0002】[0002]

【従来の技術】年々微細化及び回路構成が複雑化する半
導体ウェハの製造において、製造開始から短期間でより
高い歩留りをいかに確保するかということが大きな課題
となってきている。
2. Description of the Related Art In the manufacture of semiconductor wafers, which are becoming finer and have a more complicated circuit structure year by year, it has become a major issue how to secure a higher yield in a short period of time after the start of the manufacture.

【0003】歩留りを低下させている要因としては、
(1)異物や外観欠陥(結晶の異常成長や断線,ショー
ト,欠落等を含む)、(2)アライメントずれ,焦点ず
れ,膜厚異常あるいはエッチング異常等に起因するパタ
ーン形成不良(パターン幅不良等)等が存在する。そし
て、半導体ウェハの量産時に、これらの不良が離散的
(半導体ウェハ製造において何枚かに1枚、単発的に不
良が発生する)あるいは連続的(半導体ウェハ製造にお
いて何枚か毎に1回、連続して不良が発生する)に発生
する。
[0003] Factors that reduce the yield are:
(1) Foreign matter and appearance defects (including abnormal crystal growth, disconnection, short-circuit, chipping, etc.), (2) Pattern formation defects (pattern width defects, etc.) due to misalignment, defocus, abnormal film thickness, abnormal etching, etc. ) Etc. exist. In mass production of semiconductor wafers, these defects are discrete.
(One failure occurs once every few wafers in the manufacture of semiconductor wafers) or continuously (one failure occurs once every several wafers in the manufacture of semiconductor wafers).

【0004】従来、これら離散的不良あるいは連続的不
良を回避するためには、製造中の主要工程において検査
を行い、不良を発見し、対策をとるという方法がとられ
ている。
Conventionally, in order to avoid such discrete defects or continuous defects, a method has been adopted in which inspection is performed in a main process during manufacturing, defects are found, and countermeasures are taken.

【0005】異物検査を例にとると、特開昭55-149829
号公報,特開昭59-65428号公報等に、半導体ウェハ等の
パターンが形成された電子部品上に存在する微小異物の
検出方法が数多く開示されている。そして、これらの検
出方法を採用した様々な検査装置が開発され製造ライン
で用いられており、異物・外観解析システム AS−2
000(平成6年11月発行 日立電子エンジニアリン
グ株式会社 製品カタログ)等により検査データの解析
ができる。
[0005] For example, foreign matter inspection is disclosed in Japanese Patent Application Laid-Open No. 55-149829.
And Japanese Patent Application Laid-Open No. 59-65428 disclose a number of methods for detecting minute foreign matter present on an electronic component on which a pattern such as a semiconductor wafer is formed. Various inspection apparatuses employing these detection methods have been developed and used in production lines.
000 (Hitachi Electronics Engineering Co., Ltd. product catalog issued in November 1994) can analyze inspection data.

【0006】[0006]

【発明が解決しようとする課題】そこで、ウェハ上の異
物検査や外観欠陥検査とプローブ検査を例にとり、本発
明が解決しようとしている課題を説明する。
Therefore, the problems to be solved by the present invention will be described by taking, as an example, the inspection of foreign substances on wafers, the inspection of appearance defects, and the inspection of probes.

【0007】同一のウェハを異物検査装置,外観欠陥検
査装置,プローブ検査装置で検査し、検出された異物や
外観欠陥の座標とチップ単位のプローブ検査結果(完全
良品,救済良品,不良品)を元に不良分布マップを作成
すると、各々図2の101a、図3の101b、図4の101cのよ
うになる。3つの不良分布マップの突き合わせ(重ね合
わせ)チェックを行うと、異物検査装置,外観欠陥検査
装置の両方で検出した異物や外観欠陥の不良102a,102
b、その装置のみでしか検出できなかった異物や外観欠
陥の不良103a,103b、その装置で検出できなかった異物
や外観欠陥の不良104a,104bを知ることができる。
The same wafer is inspected by a foreign substance inspection apparatus, an external defect inspection apparatus, and a probe inspection apparatus, and the coordinates of the detected foreign substance and external defect and the probe inspection result (perfect non-defective product, remedy non-defective product, defective product) in chip units are obtained. When the defect distribution map is created based on the original data, the result is as shown by 101a in FIG. 2, 101b in FIG. 3, and 101c in FIG. When the three defect distribution maps are compared (superimposed) and checked, the defect 102a, 102 of the foreign matter and the appearance defect detected by both the foreign matter inspection device and the appearance defect inspection device.
b. It is possible to know the defects 103a and 103b of foreign matters and appearance defects that could only be detected by the apparatus alone, and the defects 104a and 104b of foreign matters and appearance defects that could not be detected by the apparatus.

【0008】そこで、異物検査装置とプローブ検査装置
及び外観欠陥検査装置とプローブ検査装置各々の検出結
果の不良分布マップの突き合わせチェック後のデータを
元に、ベン図を作成すると、図5,図6のようになる。
ここで、各検査装置の検出方式が異なると、図2,図3
の104a,104bに示すように、特に検出感度ぎりぎりの微
小な異物や外観欠陥の不良の検出率に違いが生じる。そ
の結果、せっかく検査装置を導入して検査を行っていて
も、場合によっては、プローブ検査不良となる致命的な
不良の発生を見逃し、大量不良発生を許すこともある。
従って、いかにして早くプローブ検査不良に結びつく異
物や外観欠陥の不良が多く発生する工程を探し出して対
策を行うかということが、高い歩留りを早く実現する上
で重要な課題となっている。
Therefore, when a Venn diagram is created based on the data obtained after checking the defect distribution maps of the detection results of the foreign matter inspection device and the probe inspection device, and the appearance defect inspection device and the probe inspection device, FIG. Become like
Here, if the detection method of each inspection device is different, FIGS.
As shown in 104a and 104b, there is a difference in the detection rate of a minute foreign matter or a defect of an appearance defect, which is just before the detection sensitivity. As a result, even if the inspection is performed by introducing the inspection apparatus, in some cases, the occurrence of a fatal defect that becomes a probe inspection defect may be overlooked, and a large number of defects may be allowed.
Therefore, it is an important issue how to quickly find a process in which many defects such as foreign matter and appearance defects that lead to a probe inspection failure occur and take countermeasures, in order to quickly achieve a high yield.

【0009】また、異物検査や外観欠陥検査の不良分布
マップとプローブ検査の不良分布マップとの突き合わせ
(重ね合わせ)は、今までは、製造ラインのエンジニア
によりほとんど勘と経験に頼ってほんの一部の工程及び
ロットでしか実施されていないため、検査工程の管理を
自動化を推進する上で、これを阻害する大きな要因とな
っていた。
Until now, the matching (superposition) of the defect distribution map of the foreign substance inspection or the appearance defect inspection with the defect distribution map of the probe inspection has been performed by a production line engineer based on intuition and experience. Since the inspection process is performed only in the process and the lot, it has been a major factor obstructing the promotion of automation of the management of the inspection process.

【0010】本発明の目的は、半導体ウェハの製造にお
いて、プローブ検査不良に結びつく異物や外観欠陥の不
良が多く発生する工程を早期に探し出す手段を供給する
ことにより、高い歩留りを確保できる製造方法と、この
機能を有する製造管理システム及び前記製造方法により
製造された高歩留りの半導体ウェハを提供することにあ
る。
An object of the present invention is to provide a manufacturing method capable of securing a high yield by providing a means for early searching for a process in which a large number of foreign matters and appearance defects are linked to probe inspection failures in the manufacture of semiconductor wafers. Another object of the present invention is to provide a manufacturing management system having this function and a high-yield semiconductor wafer manufactured by the manufacturing method.

【0011】[0011]

【課題を解決するための手段】上記課題は、異物検査を
行う手段と、異物検査直後に断線やショート等の簡易プ
ローブ検査を行う手段と、異物検査装置の不良分布マッ
プと簡易プローブ検査装置の不良分布マップの相関を求
める手段と、外観欠陥検査を行う手段と、外観欠陥検査
直後に断線やショート等の簡易プローブ検査装置を行う
手段と、外観欠陥検査装置の不良分布マップと簡易プロ
ーブ検査装置の不良分布マップの相関を求める手段、各
検査装置の不良分布マップの相関を元にプローブ検査不
良に結びつく異物や外観欠陥の不良が多く発生する工程
を探し出す手段、致命性不良多数発生工程の不良モード
解析を行う手段、前記手段の解析結果に基づき前記不良
多数発生工程のプロセス条件値の調整を行う手段と、こ
れらの検査装置群を管理するシステムを有する製造方法
を提供することにより解決することができる。
SUMMARY OF THE INVENTION The above object is achieved by a means for performing a foreign substance inspection, a means for performing a simple probe inspection such as disconnection or short-circuiting immediately after the foreign substance inspection, a defect distribution map of the foreign substance inspection apparatus, and a simple probe inspection apparatus. Means for determining the correlation of the defect distribution map, means for performing an external defect inspection, means for performing a simple probe inspection device such as a disconnection or short circuit immediately after the external defect inspection, a defect distribution map of the external defect inspection device, and a simple probe inspection device Means to find the correlation of the defect distribution map of the inspection equipment, means to find out the process where many defects such as foreign matter and appearance defects that lead to probe inspection failure occur based on the correlation of the defect distribution map of each inspection device, and failure of the process where many fatal defects occur A means for performing a mode analysis, a means for adjusting a process condition value of the step of generating a large number of defects based on an analysis result of the means, and a group of these inspection apparatuses It can be solved by providing a manufacturing method having a system for managing.

【0012】具体的には、複数の処理工程から成る半導
体装置の製造ラインにおいて、所定の処理工程を経た特
定品種の半導体装置を性能,検出方式の異なる複数の検
査装置を用いてそれぞれが所定の頻度で抜き取り検査ま
たは全数検査し、その直後に簡易プローブ検査を実施す
ることで、各検査装置の不良分布マップの相関度をほぼ
同時期に継続してモニタし、その製造状況を管理把握す
る。
More specifically, in a semiconductor device manufacturing line including a plurality of processing steps, a semiconductor device of a specific type having undergone a predetermined processing step is subjected to a predetermined number of inspection apparatuses having different performances and detection methods. By performing a sampling inspection or a 100% inspection at a frequency and performing a simple probe inspection immediately thereafter, the degree of correlation of the failure distribution map of each inspection device is continuously monitored almost at the same time, and the production status is managed and grasped.

【0013】より好ましくは、前記処理工程に投入させ
た複数の品種の半導体装置に対して、前記複数の検査装
置で所定の頻度で抜き取り検査または全数検査してお
り、品種毎に各検査装置の不良分布マップの相関度を継
続してモニタし、その製造状況を管理把握する。
More preferably, the semiconductor devices of a plurality of types introduced into the processing step are subjected to sampling inspection or 100% inspection at a predetermined frequency by the plurality of inspection devices. The degree of correlation of the failure distribution map is continuously monitored, and the production status is managed and grasped.

【0014】この場合、前記品種毎の各検査装置の不良
分布マップの相関度から、全品種合計の不良発生数が最
小となるように前記不良多数発生工程のプロセス条件値
を調整してもよい。
In this case, the process condition value of the step of generating a large number of defects may be adjusted based on the degree of correlation of the defect distribution map of each inspection device for each type so that the total number of defects generated in all types is minimized. .

【0015】従来のように、プローブ検査装置を全処理
工程終了後に固定して製造ラインを管理した場合、検査
時期が最大2ヶ月程度ずれてしまい、プローブ検査で確
認した特定の不良モードは変化している可能性がある。
そのプローブ検査装置の検査結果からは正常である(管
理基準を満たす)と判断しても、実際にはその時点で異
物不良や外観欠陥不良となる場合が多い。
When the production line is managed with the probe inspection apparatus fixed after the completion of all processing steps as in the prior art, the inspection time is shifted up to about two months, and the specific failure mode confirmed by the probe inspection changes. Could be.
Even if it is determined that the inspection is normal (satisfies the management standard) based on the inspection result of the probe inspection apparatus, there are many cases where a foreign matter defect or an appearance defect defect actually occurs at that time.

【0016】本発明は、このような実状を考慮したもの
であり、各検査装置の直後に簡易プローブ検査を行うこ
とで、不良発生モードの変化等に迅速に対応するもので
ある。また品種毎の各検査装置の不良分布マップの相関
度から、全品種合計の不良発生数が最小となるように前
記不良多数発生工程のプロセス条件値を調整すること
で、半導体装置を効率的に製造できる。
The present invention has been made in consideration of such a situation, and quickly responds to a change in a failure occurrence mode by performing a simple probe inspection immediately after each inspection apparatus. In addition, by adjusting the process condition values of the large number of failure occurrence steps so that the total number of failure occurrences of all the kinds is minimized from the correlation degree of the failure distribution map of each inspection device for each kind, the semiconductor device can be efficiently manufactured. Can be manufactured.

【0017】図1は、本発明の概念を図示したものであ
る。
FIG. 1 illustrates the concept of the present invention.

【0018】半導体ウェハ上の異物や外観欠陥等の不良
の検査を例にとり説明する。なお、最近の異物検査装置
は、画像処理技術の進歩により外観欠陥検査も可能とな
ってきており、「散乱光検出形外観検査装置」と位置づ
けることができるため、以下、両者をまとめて検査装置
と呼ぶ。
The inspection will be described by taking as an example the inspection of a defect such as a foreign substance or an appearance defect on a semiconductor wafer. In addition, the recent foreign-matter inspection equipment has been able to perform appearance defect inspection with the advance of image processing technology, and can be positioned as “scattered light detection type appearance inspection equipment”. Call.

【0019】半導体装置製造ラインに、様々な検出方式
を有する(従って、機種の異なる)検査装置A15,検査
装置B25,検査装置C35等から成る検査装置群管理シス
テム1が存在するとする。ここで検査装置A15,検査装
置B25,検査装置C35をそれぞれ異物検査装置,外観欠
陥検査装置,簡易プローブ検査装置とする。各検査装置
(検査装置A15,検査装置B25,検査装置C35)は検査
終了後に結果を品種、ロット、工程毎に(検査装置A品
種名11、検査装置A工程名12、検査装置AロットNO1
3、検査装置B品種名21、検査装置B工程名22、検査装
置BロットNO23、検査装置C品種名31、検査装置C工
程名32、検査装置CロットNO33)検査装置データ収集
系2に転送する。データ収集系2は大規模なデータベー
ス(検査装置Aデータベース14、検査装置Bデータベー
ス24、検査装置Cデータベース34)を有し、同一ウェハ
の検査結果の工程履歴や、同一工程の不良発生推移等を
解析する際に用いることができる。
It is assumed that an inspection device group management system 1 including an inspection device A15, an inspection device B25, an inspection device C35, and the like having various detection methods (and thus different models) exists in a semiconductor device manufacturing line. Here, the inspection device A15, the inspection device B25, and the inspection device C35 are referred to as a foreign material inspection device, an appearance defect inspection device, and a simple probe inspection device, respectively. After the inspection, each inspection device (inspection device A15, inspection device B25, inspection device C35) outputs the results for each type, lot, and process (inspection device A product name 11, inspection device A process name 12, inspection device A lot NO1).
3. Inspection device B product name 21, inspection device B process name 22, inspection device B lot NO23, inspection device C product name 31, inspection device C process name 32, inspection device C lot NO33) Transfer to inspection device data collection system 2. I do. The data collection system 2 has a large-scale database (the inspection apparatus A database 14, the inspection apparatus B database 24, and the inspection apparatus C database 34), and stores a process history of an inspection result of the same wafer, a failure occurrence transition of the same process, and the like. It can be used for analysis.

【0020】ある特定品種の不良多数発生工程を探し出
すには、特定工程から選択した同一のウェハを検査装置
群管理システム1の機種の異なる検査装置により検査し
たデータをデータ処理部4により収集し解析することに
より、各検査装置の不良分布マップの相関度を計算する
ことができ、検査装置A,C相関処理結果41及び検査
装置B,C相関処理結果42を求めることができる。ま
た、複数の品種毎の各検査装置の不良分布マップの相関
度から、全品種合計の不良発生数が最小となるような前
記不良多数発生工程のプロセス条件値を求めることがで
きる。そして、データ処理部4は全品種合計の不良発生
数が最小となるような前記不良多数発生工程のプロセス
条件値を各検査装置(検査装置A15,検査装置B25,検
査装置C35)直前の処理工程に指示する。
In order to find out a process for generating a large number of defects of a specific type, the data processing unit 4 collects and analyzes data obtained by inspecting the same wafer selected from the specific process using different types of inspection devices of the inspection device group management system 1. By doing so, the correlation degree of the failure distribution map of each inspection device can be calculated, and the inspection device A, C correlation processing result 41 and the inspection device B, C correlation processing result 42 can be obtained. Further, from the correlation degree of the defect distribution map of each inspection device for each of a plurality of types, it is possible to obtain the process condition value of the large number of defective occurrence steps that minimizes the total number of defective occurrences of all types. Then, the data processing unit 4 determines the process condition values of the large number of failure occurrence steps such that the total number of failure occurrences of all types is minimized in the processing step immediately before each inspection apparatus (inspection apparatus A15, inspection apparatus B25, inspection apparatus C35) To instruct.

【0021】また上記課題は、異物検査を行う手段と、
各検査工程の検出異物の座標を格納する手段と、前工程
重複異物除去処理を行う手段と、各検査工程の異物有り
チップ数を求める手段と、前記異物有りチップとプロー
ブ検査装置の不良分布マップ内の良品チップとを突き合
わせて異物有りチップ数内歩留りを求める手段と、前記
異物有りチップ数と前記異物有りチップ数内歩留りとの
関係をプロットし得られる近似曲線の相関係数を求める
手段と、前記相関係数と予め設定した相関係数管理値と
の比較を行う手段と、前記比較結果より検査工程別不良
解析レポートを生成する手段と、相関係数管理値を越え
た工程のプロセス装置にアラーム情報を送出する手段
と、相関係数管理値を越えた工程のプロセス条件値を不
良解析データベースに取り込む手段と、これらの検査装
置群を管理するシステムを有する製造方法を提供するこ
とにより解決することができる。
[0021] The above object is also achieved by a means for inspecting foreign matter,
Means for storing the coordinates of the detected foreign matter in each inspection step, means for performing the preceding step duplicate foreign matter removal processing, means for calculating the number of foreign matter chips in each inspection step, and a defect distribution map of the foreign matter chips and the probe inspection device Means for determining the yield within the number of foreign chips with matching non-defective chips in the module, and means for determining the correlation coefficient of an approximate curve obtained by plotting the relationship between the number of foreign chips and the yield within the number of foreign chips. Means for comparing the correlation coefficient with a preset correlation coefficient management value, means for generating a failure analysis report for each inspection step from the comparison result, and a process apparatus for a process exceeding the correlation coefficient management value Means for sending alarm information to the apparatus, means for importing process condition values of processes exceeding the correlation coefficient management value into the failure analysis database, and a system for managing these inspection apparatus groups. It can be solved by providing a manufacturing method having the beam.

【0022】具体的には前工程重複異物除去処理を各検
査工程での異物検出結果に適用していくことにより、検
査対象工程より前の工程から残留している異物とその工
程で新たに付着した異物との切り分けが可能となるた
め、検査対象工程での異物有りチップ数と異物有りチッ
プ数内歩留りを正確に求めることができる。よって、前
記異物有りチップ数と前記異物有りチップ数内歩留りと
の関係を示す近似曲線の信頼性が高くなり、相関係数管
理値を基準にした相関性有り/無しの判断がより正確に
行える。したがって、歩留りを低下させている異物多数
発生工程の特定とその工程へのフィードバックが正確か
つ迅速に行える。
Specifically, by applying the pre-process overlapping foreign matter removal processing to the foreign matter detection result in each inspection step, foreign matter remaining from the step before the inspection target step and newly adhering in the step are removed. Since it is possible to discriminate from the foreign particles, the number of foreign particles and the yield within the number of foreign chips in the inspection target process can be accurately obtained. Therefore, the reliability of the approximation curve indicating the relationship between the number of chips having a foreign substance and the yield within the number of chips having a foreign substance increases, and the determination of the presence / absence of correlation based on the correlation coefficient management value can be performed more accurately. . Therefore, it is possible to accurately and promptly specify a process for generating a large number of foreign substances that reduces the yield and feed back to the process.

【0023】前記具体例では半導体ウェハの異物検査を
例に取り説明したが、より好ましくは半導体ウェハ以外
にプリント基板,TFT液晶表示装置,プラズマディス
プレイ型表示装置,磁気ディスク基板等、広い範囲の電
子部品に応用してもよい。また検査の種類も異物検査に
限らず、外観欠陥検査に適用してもよい。
In the above-described embodiment, the inspection of foreign substances on a semiconductor wafer has been described as an example. More preferably, in addition to the semiconductor wafer, a wide range of electronic devices such as a printed board, a TFT liquid crystal display, a plasma display, a magnetic disk substrate, etc. It may be applied to parts. Further, the type of inspection is not limited to the foreign substance inspection, and may be applied to an appearance defect inspection.

【0024】[0024]

【発明の実施の形態】本発明の第一の実施の形態につい
て、以下詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment of the present invention will be described in detail below.

【0025】まず図2から図17を用いて、各検査装置
の不良分布マップどうしの相関度計算処理、品種別不良
多数発生工程の特定及び前記品種別不良多数発生工程の
プロセス条件の調整実施の形態について、機種の異なる
3つの検査装置(最初の2つは異物または外観欠陥検査
装置、最後の1つは簡易プローブ検査装置)をモデルに
説明する。
First, referring to FIG. 2 to FIG. 17, the correlation calculation processing between the defect distribution maps of the respective inspection apparatuses, the identification of the process of generating a large number of types of defects, and the adjustment of the process conditions of the process of generating a large number of types of defects. Regarding the form, a model will be described using three inspection apparatuses of different models (the first two are foreign substance or appearance defect inspection apparatuses, and the last one is a simple probe inspection apparatus).

【0026】既に説明したように、同一のウェハを検出
方式の異なる検査装置A15(異物検査装置)、検査装置
B25(外観欠陥検査装置)で検査し、検出された異物や
外観欠陥等の不良の座標を元に不良分布マップを作成す
る。各検査装置による検査終了直後に検査装置C35(簡
易プローブ検査装置)で異物や外観欠陥等の不良の座標
付近で電気特性を試験する。
As described above, the same wafer is inspected by the inspection device A15 (foreign matter inspection device) and the inspection device B25 (for appearance defect inspection device) having different detection methods, and the same wafer is inspected for defects such as foreign matter and appearance defects. Create a failure distribution map based on the coordinates. Immediately after the end of the inspection by each inspection device, the inspection device C35 (simple probe inspection device) tests the electrical characteristics near the coordinates of the defect such as a foreign substance or an appearance defect.

【0027】この場合、もっとも捕捉率の高い断線やシ
ョートを次の処理工程に影響を残さない程度の微弱電
流,微弱電圧を使用する小さなテスターで確認する。ま
たは異物や外観欠陥等の不良の座標付近で計測した3次
元形状より回路特性をシミュレーションし良・不良の判
定を行ってもよい。検査装置A15と検査装置C35の不良
分布マップの突き合わせを行うと、検査装置A15で検出
した異物や外観欠陥等のあるチップが検査装置C35で不
良となっている場合(不良モード1)、検査装置A15で
検出した異物や外観欠陥等のあるチップが検査装置C35
で不良とならない場合(不良モード2)、検査装置A15
で検出できなかった異物や外観欠陥等のあるチップ(不
良モード3)がある場合に分けて知ることができる。
In this case, a disconnection or a short circuit having the highest capture rate is confirmed by a small tester using a weak current and a weak voltage that do not affect the next processing step. Alternatively, the circuit characteristics may be simulated from a three-dimensional shape measured near the coordinates of a defect such as a foreign substance or an appearance defect, and the quality may be determined as good or defective. When the defect distribution maps of the inspection device A15 and the inspection device C35 are compared with each other, if a chip having a foreign substance or an appearance defect detected by the inspection device A15 is defective by the inspection device C35 (defective mode 1), Chips with foreign matter and appearance defects detected in A15 are inspected by the inspection device C35.
If the test does not cause a failure (failure mode 2), the inspection device A15
In the case where there is a chip (defective mode 3) having a foreign substance, an appearance defect, or the like that could not be detected by the above, it is possible to separately know.

【0028】突き合わせ(重ね合わせ)結果をベン図に
表示すると図5から図6に示すような2つの場合に分類
できる。
When the results of the matching (overlapping) are displayed in a Venn diagram, they can be classified into two cases as shown in FIGS.

【0029】図5は異物を検出する検査装置A15と簡易
プローブ検査をする検査装置C35の検査結果を突き合わ
せた場合のベン図である。
FIG. 5 is a Venn diagram when the inspection results of the inspection device A15 for detecting foreign matter and the inspection device C35 for performing a simple probe inspection are compared.

【0030】ここで、円として表示される10aは検査装
置A15で検出された異物チップ数、10bは検査装置C35
で検出された良品チップ数、10cは検査装置C35で検出
された救済チップ数、10dは検査装置A15と検査装置C3
5の両方で検査された全チップ数を示す。今、検査装置
A15で異物が検出された(不良)チップ数をNa(領域10
a)、検査装置C35で不良となったチップ数をNb(領域1
0d−領域10b)と定義する。検査装置A15で異物検出さ
れかつ検査装置C35で不良となったチップ数をNabとす
る。検査装置A15または検査装置C35で不良と判定され
た不良チップ数はNallは数1により定義される。
Here, 10a displayed as a circle is the number of foreign chips detected by the inspection device A15, and 10b is the inspection device C35.
10c is the number of rescue chips detected by the inspection device C35, and 10d is the number of rescue chips detected by the inspection device C35.
Shows the total number of chips tested for both 5 Now, the number of chips in which a foreign substance is detected (defective) by the inspection device A15 is Na (region 10).
a), the number of chips that failed in the inspection device C35 was Nb (area 1
0d-area 10b). The number of chips for which foreign matter has been detected by the inspection device A15 and which has become defective by the inspection device C35 is defined as Nab. The number of defective chips determined to be defective by the inspection device A15 or the inspection device C35 is defined by Equation 1 as Nall.

【0031】[0031]

【数1】 (Equation 1)

【0032】そして2機種間の相関度の有無は数2によ
り計算される。
The presence or absence of the degree of correlation between the two models is calculated by Equation 2.

【0033】[0033]

【数2】 (Equation 2)

【0034】R1は、検査装置A15の異物検出数を基準と
したときの検査装置C35の不良検出数を示す(数2)。
R1に対してはしきい値T1(例えば0.9)を設定してお
く。しきい値T1を越えた場合は検査装置A15と検査装置
C35が不良チップが異物起因で不良となったことを示
す。
R1 indicates the number of defects detected by the inspection apparatus C35 based on the number of foreign substances detected by the inspection apparatus A15 (Equation 2).
A threshold value T1 (for example, 0.9) is set for R1. If the threshold value T1 is exceeded, the inspection devices A15 and C35 indicate that the defective chip has become defective due to foreign matter.

【0035】図6は外観欠陥を検出する検査装置B25と
簡易プローブ検査を行う検査装置C35との間のベン図で
ある。
FIG. 6 is a Venn diagram between an inspection device B25 for detecting an appearance defect and an inspection device C35 for performing a simple probe inspection.

【0036】ここで、円として表示される11aは検査装
置B25で検出された外観欠陥チップ数、11bは検査装置
C35で検出された良品チップ数、11cは検査装置C35で
検出された救済良品チップ数、11dは検査装置B25と検
査装置C35の両方で検査された全チップ数を示す。
Here, 11a displayed as a circle is the number of appearance defect chips detected by the inspection device B25, 11b is the number of non-defective chips detected by the inspection device C35, and 11c is the rescue non-defective chips detected by the inspection device C35. The number 11d indicates the total number of chips inspected by both the inspection apparatus B25 and the inspection apparatus C35.

【0037】今、検査装置B25で外観欠陥が検出された
(不良)チップ数をMa(領域11a)、検査装置C35で不
良となったチップ数をMb(領域11d−領域11b)と定義す
る。検査装置B25で欠陥検出されかつ検査装置C35で不
良となったチップ数をMabとする。検査装置B25または
検査装置C35で不良と判定された不良チップ数はMallは
数3により定義される。
Now, the number of chips whose appearance defect is detected (defective) by the inspection apparatus B25 is defined as Ma (area 11a), and the number of chips failed by the inspection apparatus C35 is defined as Mb (area 11d-area 11b). The number of chips that have been detected by the inspection device B25 and have become defective by the inspection device C35 is defined as Mab. The number of defective chips determined to be defective by the inspection device B25 or the inspection device C35 is defined by Equation 3 as Mall.

【0038】[0038]

【数3】 (Equation 3)

【0039】そして2機種間の相関度の有無は数4によ
り計算される。
The presence or absence of the degree of correlation between the two models is calculated by Equation 4.

【0040】[0040]

【数4】 (Equation 4)

【0041】R2は、検査装置B25の外観欠陥検出数を基
準としたときの検査装置C35の不良検出数を示す(数
2)。R2に対してはしきい値T2(例えば0.9)を設定し
ておく。しきい値T2を越えた場合は検査装置B25の外観
欠陥不良がもとで検査装置C35が不良となったことを示
す。
R2 indicates the number of defects detected by the inspection apparatus C35 based on the number of appearance defects detected by the inspection apparatus B25 (Equation 2). A threshold value T2 (for example, 0.9) is set for R2. If the threshold value T2 is exceeded, it indicates that the inspection device C35 has failed due to the appearance defect of the inspection device B25.

【0042】図7から図12は別の視点から求めた各検
査装置間の相関度判定方法である。この判定方法は数1
から数4の相関度と併用するか、単独で用いることがで
きる。
FIGS. 7 to 12 show a method of judging the degree of correlation between the inspection devices obtained from different viewpoints. This determination method is given by Equation 1.
Can be used in combination with the correlation degree of Equation (4) or used alone.

【0043】図7から図9は検査装置A15で検出した不
良チップ数と検査装置C35で検出した良品チップ数との
関係を示した図である。図中の実線は異物有りチップデ
ータの相関曲線、破線は異物無しチップデータの相関曲
線を示す。図7から図9で示されている曲線の相関係数
のしきい値をT3、曲線の傾きのしきい値をT4(負)とす
る。
FIGS. 7 to 9 are diagrams showing the relationship between the number of defective chips detected by the inspection device A15 and the number of non-defective chips detected by the inspection device C35. The solid line in the figure shows the correlation curve of chip data with foreign matter, and the broken line shows the correlation curve of chip data without foreign matter. The threshold value of the correlation coefficient of the curves shown in FIGS. 7 to 9 is T3, and the threshold value of the slope of the curves is T4 (negative).

【0044】図7では検査装置A15で検出した不良チッ
プ数の大小によらず、検査装置C35で検出した良品チッ
プ数は一定である。このときの曲線の相関係数と傾きは
各々しきい値T3,T4より小さい場合であるとする。この
ときは相関はないという判定をする。
In FIG. 7, the number of non-defective chips detected by the inspection device C35 is constant regardless of the number of defective chips detected by the inspection device A15. At this time, it is assumed that the correlation coefficient and the slope of the curve are smaller than threshold values T3 and T4, respectively. At this time, it is determined that there is no correlation.

【0045】図8では検査装置A15で検出した不良チッ
プ数が大きくなると、検査装置C35で検出した良品チッ
プ数は少なくなる場合である。このときの曲線の相関係
数と傾きの絶対値は各々しきい値T3,T4より大きい場合
であり、相関度計算処理では「相関ありこの工程では異
物起因のプローブ検査不良が多い。」という結果を出す
ことになる。この場合は検査装置A15のプロセス条件値
の再調整を指示することになる。
FIG. 8 shows a case where the number of defective chips detected by the inspection device C35 decreases as the number of defective chips detected by the inspection device A15 increases. In this case, the absolute value of the correlation coefficient and the absolute value of the slope of the curve are larger than the threshold values T3 and T4, respectively, and the result of the correlation degree calculation processing is that "there is a correlation and there are many probe inspection failures due to foreign matter in this step." Will be issued. In this case, an instruction to readjust the process condition value of the inspection apparatus A15 is issued.

【0046】図9では検査装置A15で検出した異物チッ
プ数が大きくなると、検査装置C35で検出した良品チッ
プ数が増える場合である。このときの曲線の相関係数と
傾きは各々しきい値T3,T4より大きいが、曲線の傾きは
しきい値T4と符号が逆である。相関度計算処理では「相
関なし。この工程では異物起因以外のプローブ検査不良
が多い。」という結果を出すことになる。
FIG. 9 shows a case where the number of non-defective chips detected by the inspection device C35 increases as the number of foreign chips detected by the inspection device A15 increases. At this time, the correlation coefficient and the slope of the curve are larger than the thresholds T3 and T4, respectively, but the slope of the curve is opposite in sign to the threshold T4. In the correlation degree calculation processing, the result is "No correlation. In this step, there are many probe inspection failures other than those caused by foreign substances."

【0047】図10は図8の曲線上の各データの広がり
具合を示した図である。
FIG. 10 is a diagram showing the spread of each data on the curve of FIG.

【0048】異物有りチップデータの相関係数をK1、相
関曲線の傾きをe1とする。また、異物無しチップデータ
の相関係数をK2、相関曲線の傾きをe2とする。ここで相
関係数の大小により、検査装置A15と検査装置C35の相
関有り・無しを判定するしきい値をK0(例0.8)とす
る。
Let K1 be the correlation coefficient of the chip data with foreign matter, and let e1 be the slope of the correlation curve. The correlation coefficient of the chip data without foreign matter is K2, and the slope of the correlation curve is e2. Here, the threshold value for judging the presence or absence of the correlation between the inspection device A15 and the inspection device C35 based on the magnitude of the correlation coefficient is set to K0 (example 0.8).

【0049】異物有りチップの相関係数K1がしきい値K0
を越えている場合には検査装置A15と検査装置C35との
間には相関があり、検査装置A15で検出した異物起因で
検査装置C35のプローブ検査不良となると判定される。
この場合は検査装置A15のプロセス条件値の再調整を指
示することになる。また異物無しチップデータの相関係
数K2がしきい値K0を越えている場合は、異物無しチップ
にも異物起因の別の不良発生要因があることになるた
め、検査装置A15のプロセス条件値の再調整を指示する
ことになる。
The correlation coefficient K1 of the chip with foreign matter is equal to the threshold value K0
If the number exceeds the threshold, there is a correlation between the inspection apparatus A15 and the inspection apparatus C35, and it is determined that the probe inspection failure of the inspection apparatus C35 is caused by the foreign matter detected by the inspection apparatus A15.
In this case, an instruction to readjust the process condition value of the inspection apparatus A15 is issued. If the correlation coefficient K2 of the chip-free chip data exceeds the threshold value K0, the chip without chip also has another defect generation factor due to the foreign matter. You will be instructed to readjust.

【0050】図11から図14は外観欠陥を検査する検
査装置B25とプローブ検査をする検査装置C35との関係
を示した図であり、判定方法は図7から図10と同一で
ある。
FIGS. 11 to 14 show the relationship between the inspection device B25 for inspecting appearance defects and the inspection device C35 for probe inspection, and the determination method is the same as in FIGS. 7 to 10.

【0051】図11から図13は検査装置B25で検出し
た外観欠陥チップ数と検査装置C35で検出した良品チッ
プ数との関係を示した図である。図中の実線は外観欠陥
有りチップデータの相関曲線、破線は異物無しチップデ
ータの相関曲線を示す。図11から図13で示されてい
る曲線の相関係数のしきい値をT5、曲線の傾きのしきい
値をT6(負)とする。
FIGS. 11 to 13 are diagrams showing the relationship between the number of appearance defective chips detected by the inspection device B25 and the number of non-defective chips detected by the inspection device C35. The solid line in the drawing indicates the correlation curve of the chip data having the appearance defect, and the broken line indicates the correlation curve of the chip data having no foreign matter. The threshold value of the correlation coefficient of the curves shown in FIGS. 11 to 13 is T5, and the threshold value of the slope of the curves is T6 (negative).

【0052】図11では検査装置B25で検出した外観欠
陥チップ数の大小によらず、検査装置C35で検出した良
品チップ数は一定である。このときの曲線の相関係数と
傾きは各々しきい値T5,T6より小さい場合であるとす
る。このときは相関はないという判定をする。
In FIG. 11, the number of non-defective chips detected by the inspection device C35 is constant regardless of the number of appearance defect chips detected by the inspection device B25. It is assumed that the correlation coefficient and the slope of the curve at this time are smaller than threshold values T5 and T6, respectively. At this time, it is determined that there is no correlation.

【0053】図12では検査装置B25で検出した不良チ
ップ数の大きくなると、検査装置C35で検出した良品チ
ップ数は少なくなる場合である。このときの曲線の相関
係数と傾きの絶対値は各々しきい値T5,T6より大きい場
合であり、相関度計算処理では「相関ありこの工程では
外観欠陥起因のプローブ検査不良が多い。」という結果
を出すことになる。この場合は検査装置B25のプロセス
条件値の再調整を指示することになる。
FIG. 12 shows a case where the number of non-defective chips detected by the inspection device C35 decreases as the number of defective chips detected by the inspection device B25 increases. In this case, the absolute value of the correlation coefficient and the absolute value of the slope of the curve are larger than the threshold values T5 and T6, respectively. In the correlation degree calculation processing, "there is a correlation, and there are many probe inspection failures due to appearance defects in this step." You will get results. In this case, an instruction to readjust the process condition value of the inspection device B25 is issued.

【0054】図13では検査装置B25で検出した外観欠
陥チップ数が大きくなると、検査装置C35で検出した良
品チップ数が増える場合である。このときの曲線の相関
係数と傾きは各々しきい値T5,T6より大きいが、曲線の
傾きはしきい値T6と符号が逆である。相関度計算処理で
は「相関なし。この工程では外観欠陥起因以外のプロー
ブ検査不良が多い。」という結果を出すことになる。
FIG. 13 shows a case where the number of non-defective chips detected by the inspection device C35 increases as the number of appearance defective chips detected by the inspection device B25 increases. At this time, the correlation coefficient and the slope of the curve are larger than the thresholds T5 and T6, respectively, but the slope of the curve is opposite in sign to the threshold T6. In the correlation degree calculation process, the result is "No correlation. In this step, there are many probe inspection failures other than those caused by appearance defects."

【0055】図14は図12の曲線上の各データの広が
り具合を示した図である。
FIG. 14 is a diagram showing the spread of each data on the curve in FIG.

【0056】異物有りチップデータの相関係数をK3、相
関曲線の傾きをe3とする。また、異物無しチップデータ
の相関係数をK4、相関曲線の傾きをe4とする。ここで相
関係数の大小により、検査装置B25と検査装置C35の相
関有り・無しを判定するしきい値をK0'(例0.8)とす
る。
Let K3 be the correlation coefficient of the chip data with foreign matter, and let e3 be the slope of the correlation curve. The correlation coefficient of the chip data without foreign matter is K4, and the slope of the correlation curve is e4. Here, the threshold value for judging the presence or absence of the correlation between the inspection device B25 and the inspection device C35 based on the magnitude of the correlation coefficient is set to K0 '(0.8).

【0057】異物有りチップの相関係数K1がしきい値K
0'を越えている場合には検査装置B25と検査装置C35と
の間には相関があり、検査装置B25で検出した外観欠陥
起因で検査装置C35のプローブ検査不良となると判定さ
れる。この場合は検査装置B25のプロセス条件値の再調
整を指示することになる。また外観欠陥無しチップデー
タの相関係数K2がしきい値K0'を越えている場合は、外
観欠陥無しチップにも異物起因の別の不良発生要因があ
ることになるため、検査装置B25のプロセス条件値の再
調整を指示することになる。
The correlation coefficient K1 of the chip with foreign matter is equal to the threshold value K
If it exceeds 0 ', there is a correlation between the inspection apparatus B25 and the inspection apparatus C35, and it is determined that the probe defect of the inspection apparatus C35 is caused by the appearance defect detected by the inspection apparatus B25. In this case, an instruction to readjust the process condition value of the inspection device B25 is issued. If the correlation coefficient K2 of the chip with no appearance defect exceeds the threshold value K0 ', the chip with no appearance defect also has another defect generation factor due to foreign matter. The instruction to readjust the condition value will be given.

【0058】図7から図14の説明では相関曲線データ
の構成単位として、検査装置C35のプローブ検査の判定
単位となっているチップを用いていたが、フェイルビッ
トマップで用いられているビット数単位,異物数単位,
外観欠陥数単位、同一ウェハ内の全チップを合計したウ
ェハ単位、同一ロット内の全ウェハを合計した単位を用
いてもよい。
In the description of FIG. 7 to FIG. 14, the chip which is the judgment unit of the probe test of the test apparatus C35 is used as the constituent unit of the correlation curve data, but the bit number unit used in the fail bit map is used. , Foreign matter unit,
A unit of the number of appearance defects, a unit of a wafer in which all chips in the same wafer are totalized, or a unit of a total of all wafers in the same lot may be used.

【0059】図15は検査装置A15または検査装置B25
の検査直後に不良座標の電気特性(断線やショート)を
みる小型テスターの図である。
FIG. 15 shows an inspection apparatus A15 or an inspection apparatus B25.
FIG. 5 is a diagram of a small tester for checking electrical characteristics (disconnection or short circuit) of defective coordinates immediately after the inspection.

【0060】データ処理部4は検査装置Aデータベース
14または検査装置Bデータベース24より異物または外
観欠陥等の不良検出箇所(検査装置A,B不良箇所7
3)の座標データを検査装置C35に送る。検査装置C35
は得られた座標データをもとに小型テスター351,352を
前記不良検出箇所を含むチップ内回路配線72に接触さ
せ、断線,ショートの有無の検査を行う。検査結果は検
査装置Cデータベースに格納され、検査装置A15または
検査装置B25の検査結果との相関度解析計算に使用され
る。
The data processing unit 4 is an inspection device A database
14 or a defect detection position such as a foreign matter or an appearance defect from the inspection device B database 24 (inspection device A, B defective portion 7
The coordinate data of 3) is sent to the inspection device C35. Inspection device C35
The small testers 351 and 352 are brought into contact with the in-chip circuit wiring 72 including the defective detection part based on the obtained coordinate data, and an inspection for disconnection and short-circuit is performed. The inspection result is stored in the inspection device C database, and is used for calculating the degree of correlation with the inspection result of the inspection device A15 or the inspection device B25.

【0061】図16は検査装置A15または検査装置B25
の検査直後に不良座標付近の回路の3次元形状を測定
し、測定された形状から回路特性をシミュレーションす
る場合の模式図である。
FIG. 16 shows an inspection apparatus A15 or an inspection apparatus B25.
FIG. 6 is a schematic diagram in a case where a three-dimensional shape of a circuit near defective coordinates is measured immediately after the inspection and a circuit characteristic is simulated from the measured shape.

【0062】図15と同様に、データ処理部4は検査装
置Aデータベース14または検査装置Bデータベース24よ
り異物または外観欠陥等の不良検出箇所(検査装置A,
B不良箇所73)の座標データを検査装置C35に送る。検
査装置C35は得られた座標データをもとに異なる方向か
らCCDカメラ353,354で観察し、検査装置A,B不良
箇所を含むチップ内回路配線の3次元立体形状を生成す
る。次にあらかじめ全処理工程終了後のプローブ検査結
果(電気特性)とすでに測定済みの数多くの3次元立体
形状から求められている電気特性のシミュレーションデ
ータベース355と今回生成された3次元立体形状とを照
合して断線やショートが起きているかどうかを推定す
る。この推定結果を検査装置Cデータベースに取り込
み、相関度計算を行う。
As in FIG. 15, the data processing unit 4 uses the inspection device A database 14 or the inspection device B database 24 to detect a defect (such as a foreign object or an external appearance defect) such as a defect (inspection device A,
The coordinate data of the B defect location 73) is sent to the inspection device C35. The inspection device C35 observes the CCD devices 353 and 354 from different directions based on the obtained coordinate data, and generates a three-dimensional three-dimensional shape of the circuit wiring in the chip including the defective portions of the inspection devices A and B. Next, the probe inspection results (electrical characteristics) after the completion of all the processing steps are compared with the simulation database 355 of the electric characteristics obtained from the many measured three-dimensional shapes and the three-dimensional shape generated this time. Estimate whether a disconnection or short circuit has occurred. The estimation result is taken into the inspection apparatus C database, and the correlation degree is calculated.

【0063】図17は本発明による検査の流れに関する
概念をまとめたものである。
FIG. 17 summarizes the concept of the inspection flow according to the present invention.

【0064】まず、各検査装置でモニターするウェハの
品種名,工程名,ロットNOを初期設定する。ウェハを
投入し、処理工程N81終了後検査装置A15で異物を検出
し、その直後に検査装置C35で簡易プローブ検査する。
次に処理工程M82終了後に検査装置B25で外観欠陥を検
出し、その直後に検査装置C35で簡易プローブ検査を行
う。処理工程の進捗に従って、各検査装置間の相関度計
算処理を一定間隔で自動的に行い、各々設定済みのしき
い値を超えた場合には当該工程のプロセス条件値の再調
整を実施し、ウェハの高い歩留りが維持できるようにす
る。
First, the type name, process name, and lot number of a wafer to be monitored by each inspection device are initialized. After the wafer is loaded and the processing step N81 is completed, foreign matter is detected by the inspection device A15, and immediately thereafter, a simple probe inspection is performed by the inspection device C35.
Next, after completion of the processing step M82, the appearance defect is detected by the inspection device B25, and immediately after that, a simple probe inspection is performed by the inspection device C35. According to the progress of the processing process, the correlation degree calculation processing between the respective inspection devices is automatically performed at regular intervals, and when each exceeds the set threshold value, the process condition value of the process is readjusted, High wafer yield can be maintained.

【0065】本発明の第一の実施の形態は、半導体ウェ
ハ上の異物や外観欠陥の検査を例にとり説明を行った
が、検査の対象としてはウェハの各チップ内のビット単
位の検査(フェイルビット検査)も同様に考えられ、相
関度計算処理にフェイルビット検査装置と検査装置A1
5,検査装置B25,検査装置C35との相関判定を加えて
もよい。この場合は各ビット単位で相関度を比較するこ
とになるため、データ量が増え信頼度が増すことにな
る。また相関度比較の単位各工程により、ビット単位,
チップ単位に加えて、外観欠陥発生場所単位,異物発生
場所単位,ウェハ単位,ロット単位で行ってもよい。
The first embodiment of the present invention has been described by taking as an example the inspection of a foreign substance or an appearance defect on a semiconductor wafer. However, the inspection target is a bit-by-bit inspection (failure) in each chip of the wafer. Bit inspection) can be considered in the same way, and a failure bit inspection device and an inspection device A1
5, correlation determination with the inspection device B25 and the inspection device C35 may be added. In this case, since the degree of correlation is compared for each bit, the data amount increases and the reliability increases. In addition, the unit of correlation degree comparison is bit unit,
In addition to the chip unit, the inspection may be performed on the appearance defect occurrence location unit, the foreign matter occurrence location unit, the wafer unit, and the lot unit.

【0066】また製品の対象も半導体ウェハ以外にプリ
ント基板,TFT液晶表示装置,プラズマディスプレイ
型表示装置,磁気ディスク基板等、広い範囲の電子部品
の高歩留製造に適用できる。
In addition, the present invention can be applied to a high yield production of a wide range of electronic components such as a printed circuit board, a TFT liquid crystal display device, a plasma display type display device, and a magnetic disk substrate in addition to a semiconductor wafer.

【0067】次に本発明の第二の実施の形態について、
以下詳細に説明する。
Next, a second embodiment of the present invention will be described.
This will be described in detail below.

【0068】まず図18から図23を用いて、図1の検
査装置A15で検出した異物から前工程重複異物削除処理
を実施し、各半導体ウェハの異物有りチップ数と異物有
りチップ内歩留りの関係を示す近似曲線を求め、その近
似曲線の相関係数が所定の管理値を越えた場合に該当す
るプロセス装置に対してアラーム情報を送出する形態に
ついて説明する。
First, referring to FIG. 18 to FIG. 23, the process of removing the duplicate foreign matter in the preceding process is performed from the foreign matter detected by the inspection apparatus A15 in FIG. 1, and the relationship between the number of foreign matter chips on each semiconductor wafer and the yield in the foreign matter chips. An embodiment will be described in which an approximation curve indicating the following is obtained, and when the correlation coefficient of the approximation curve exceeds a predetermined management value, alarm information is transmitted to the corresponding process apparatus.

【0069】図18は図1の検査装置A15で検出した異
物から前工程重複異物削除処理を実施し、各半導体ウェ
ハの異物有りチップ数と異物有りチップ内歩留りの関係
を示す近似曲線を求め、その近似曲線の相関係数が所定
の管理値を越えた場合に該当するプロセス装置に対して
アラーム情報を送出する処理をフローチャートの形で示
したものである。
FIG. 18 is a diagram showing an example in which a foreign matter detected by the inspection apparatus A15 shown in FIG. 1 is subjected to a pre-process duplicate foreign matter elimination process, and an approximate curve showing the relationship between the number of foreign chips and the yield in foreign chips of each semiconductor wafer is obtained. The process of sending alarm information to a corresponding process device when the correlation coefficient of the approximate curve exceeds a predetermined management value is shown in the form of a flowchart.

【0070】ステップ51では最初の検査工程の処理を行
う準備のためにN=1としている。次にステップ52では
N=1であるために、図1の検査装置A15で最初の検査
工程の半導体ウェハを全面検査し、図19に示す異物マ
ップを作成する。ステップ53では現在の検査工程が最初
の検査工程であるか、2番目以降の検査工程であるかを
判断する。現在の検査工程が最初の検査工程であるとき
は1つ前の検査工程は存在しないためステップ54(前工
程重複異物削除処理)を飛び越す処理をする。次にステ
ップ55では同一ロット中にまだ未検査の半導体ウェハが
あるかどうかの確認がなされる。同一ロット中に未検査
の半導体ウェハが存在する場合にはステップ52に戻る。
全て検査済の場合はステップ56に進む。ステップ56では
現在の検査工程が最終検査工程であるかどうかを確認す
る。最終検査工程でない場合はステップ57に進み、現在
の検査工程の次の検査工程に進む処理を行う。この場
合、N=1であったので、次の検査工程は2番目(N=
2)となる。ステップ57の処理が終わるとステップ52に
戻り、2番目の検査工程の半導体ウェハの異物マップを
作成する。このようにしてステップ52からステップ56ま
での処理を最終検査工程の全半導体ウェハの処理が終わ
るまで繰り返す。
In step 51, N = 1 is set in preparation for performing the processing in the first inspection step. Next, in step 52, since N = 1, the entire surface of the semiconductor wafer in the first inspection step is inspected by the inspection apparatus A15 in FIG. 1, and a foreign matter map shown in FIG. 19 is created. In step 53, it is determined whether the current inspection step is the first inspection step or the second or later inspection step. If the current inspection step is the first inspection step, there is no previous inspection step, so that the processing skips step 54 (previous step duplicate foreign matter deletion processing). Next, in step 55, it is confirmed whether there is a semiconductor wafer yet to be inspected in the same lot. If there is an untested semiconductor wafer in the same lot, the process returns to step 52.
If all have been inspected, the process proceeds to step 56. In step 56, it is confirmed whether or not the current inspection step is the final inspection step. If it is not the final inspection process, the process proceeds to step 57, where the process proceeds to the next inspection process after the current inspection process. In this case, since N = 1, the next inspection process is the second (N =
2). Upon completion of the process in the step 57, the process returns to the step 52, and a foreign matter map of the semiconductor wafer in the second inspection process is created. In this manner, the processing from step 52 to step 56 is repeated until the processing of all the semiconductor wafers in the final inspection step is completed.

【0071】ステップ56でNが最終検査工程と判断され
た場合はステップ58に進む。ステップ58ではステップ59
での各半導体ウェハ別の異物有りチップ数と異物有りチ
ップ内歩留りを集計する準備のために、N=1とする。
If it is determined in step 56 that N is the final inspection step, the process proceeds to step 58. In step 58, step 59
In order to prepare the total of the number of foreign chips and the yield in foreign chips for each semiconductor wafer, N = 1 is set.

【0072】ステップ59では最初の検査工程の半導体ウ
ェハのチップ別異物数を計算する。次に異物数1以上の
チップ数(異物有りチップ数)を集計する。異物有りチ
ップ数をさらに図1の検査装置Cデータベース34(プロ
ーブ検査装置データベース)を参照してプローブ検査良
品チップ数,プローブ検査不良チップ数毎に集計する。
プローブ検査良品チップ数をプローブ検査良品チップ数
とプローブ検査不良チップ数の和で除算することによ
り、現在集計している半導体ウェハの異物有りチップ内
歩留りを求めることができる。次にステップ60に進み、
同一ロット内に未集計の半導体ウェハがあるかどうかを
確認する。未集計の半導体ウェハがある場合はステップ
59に戻り、同様の処理を未集計のウェハがなくなるまで
繰り返す。
In step 59, the number of foreign particles for each chip of the semiconductor wafer in the first inspection process is calculated. Next, the number of chips with the number of foreign substances of 1 or more (the number of chips with foreign substances) is totaled. The number of chips with foreign matter is totaled for each of the number of non-defective chips in the probe test and the number of defective chips in the probe test with reference to the inspection device C database 34 (probe inspection device database) in FIG.
By dividing the number of non-defective chips in the probe test by the sum of the number of non-defective chips in the probe test and the number of defective chips in the probe test, it is possible to obtain the yield in the foreign-material-containing chip of the semiconductor wafer which is currently tabulated. Then go to step 60,
Check whether there are uncounted semiconductor wafers in the same lot. Step if there are uncounted semiconductor wafers
Returning to step 59, the same processing is repeated until there is no uncounted wafer.

【0073】1ロット分の処理が済むとステップ61に進
む。ステップ61では現在処理中の最初の検査工程の各半
導体ウェハの異物有りチップ数と異物有りチップ内歩留
りの関係をプロットし、得られる近似曲線の相関係数を
求め、ステップ62に進む。
When the processing for one lot is completed, the process proceeds to step 61. In step 61, the relationship between the number of chips with foreign matter and the yield in the chip with foreign matter of each semiconductor wafer in the first inspection process that is currently being processed is plotted, and the correlation coefficient of the obtained approximate curve is obtained.

【0074】ステップ62では得られた近似曲線の相関係
数が予め設定した管理値を越えているかどうかを確認す
る。管理値を越えている場合にはステップ63に進み、半
導体ウェハの異物有りチップ数と異物有りチップ内歩留
りの関係に関して相関性有りの告知情報を生成する。ス
テップ63の相関性有り告知情報はステップ64にそのまま
送られ、相関性有りの告知情報が入った検査工程別不良
解析レポートを生成する。ステップ62で管理値を越えて
いないときは直接ステップ64に進み異物有りチップ数と
異物有りチップ内歩留りデータのみの検査工程別不良解
析レポートを生成する。
In step 62, it is confirmed whether or not the correlation coefficient of the obtained approximate curve exceeds a preset management value. If it exceeds the control value, the process proceeds to step 63, in which notification information indicating that there is a correlation with respect to the relationship between the number of foreign chips in the semiconductor wafer and the yield in the foreign chip is generated. The notification information with correlation in step 63 is sent to step 64 as it is, and a failure analysis report for each inspection process including the notification information with correlation is generated. If the control value does not exceed the control value in step 62, the flow directly proceeds to step 64 to generate a failure analysis report for each inspection process only for the number of chips with foreign matter and the yield data in the chip with foreign matter.

【0075】ステップ64で最初の検査工程の不良解析レ
ポートを生成後、ステップ65に進み、Nが最終検査工程
かどうかを確認する。現在の検査工程は最初であるた
め、ステップ66に進み、N=2としてステップ59に戻
る。
After generating a failure analysis report for the first inspection process in step 64, the flow advances to step 65 to check whether N is the final inspection process. Since the current inspection process is the first, the process proceeds to step 66, and returns to step 59 with N = 2.

【0076】このようにしてステップ59からステップ65
までの処理を最終検査工程まで行い、ステップ67へ進
む。ステップ67では全検査工程に渡って検査工程別不良
解析レポートから相関係数管理値を超過した工程がある
かどうかを確認する。管理値を超過した工程がある場合
はステップ68に進みその工程のプロセス装置に対してア
ラーム情報を送出する。次にステップ69に進みその工程
のプロセス条件値を不良解析データベースに取り込む。
次にステップ91に移り一連の処理を終了する。この処理
を続けていくことにより、歩留りを低下させている異物
多数発生工程のプロセス条件値の傾向を掴むことが可能
となる。ステップ67で全検査工程に渡って相関係数管理
値を越えた工程がない場合にはステップ91に飛び一連の
処理を終了する。
As described above, steps 59 to 65 are performed.
Are performed up to the final inspection step, and the routine proceeds to step 67. In step 67, it is confirmed from the failure analysis report for each inspection process whether or not there is a process exceeding the correlation coefficient management value in all inspection processes. If there is a process exceeding the control value, the process proceeds to step 68, where alarm information is sent to the process device of that process. Next, the process proceeds to step 69, where the process condition value of the process is taken into the failure analysis database.
Next, the routine proceeds to step 91, where a series of processing is terminated. By continuing this processing, it is possible to grasp the tendency of the process condition value in the process of generating a large number of foreign substances that reduces the yield. If there is no process exceeding the correlation coefficient management value in all the inspection processes in step 67, the process jumps to step 91 to end a series of processes.

【0077】このようにステップ54の前工程重複異物除
去処理を各検査工程での異物検出結果に適用していくこ
とにより、検査対象工程より前の工程から残留している
異物とその工程で新たに付着した異物との切り分けが可
能となるため、検査対象工程での異物有りチップ数と異
物有りチップ数内歩留りを正確に求めることができる。
よって、前記異物有りチップ数と前記異物有りチップ数
内歩留りとの関係を示す近似曲線の信頼性が高くなり、
相関係数管理値を基準にした相関性有り/無しの判断が
より正確に行える。したがって、歩留りを低下させてい
る異物多数発生工程の特定とその工程へのフィードバッ
クが正確かつ迅速に行え、半導体ウェハの高い歩留りが
維持できるようになる。
As described above, by applying the pre-process overlapping foreign matter removal processing of step 54 to the foreign matter detection result in each inspection step, foreign matter remaining from the step before the inspection target step and new foreign matter in that step are obtained. Since it is possible to separate the foreign matter from the foreign matter attached to the semiconductor chip, the number of foreign matter chips and the yield within the foreign matter chip number in the inspection target process can be accurately obtained.
Therefore, the reliability of the approximate curve indicating the relationship between the number of the foreign particle chips and the yield within the foreign particle chip number increases,
The determination of the presence / absence of correlation based on the correlation coefficient management value can be performed more accurately. Therefore, the process of generating a large number of foreign substances that reduces the yield can be accurately and quickly performed, and a high yield of the semiconductor wafer can be maintained.

【0078】図19は検査装置AのN番目の検査工程で
検出された異物のマップを示す。半導体ウェハ200上に
検査装置AのN番目の検査工程で検出された異物201〜2
10が検出されている。
FIG. 19 shows a map of a foreign substance detected in the Nth inspection step of the inspection apparatus A. Foreign substances 201 to 2 detected on the semiconductor wafer 200 in the Nth inspection process of the inspection apparatus A
10 have been detected.

【0079】図20は検査装置AのN−1番目の検査工
程で検出された異物のマップを示す。半導体ウェハ200
上に検査装置AのN−1番目の検査工程で検出された異
物301〜309が検出されている。
FIG. 20 shows a map of the foreign matter detected in the (N-1) th inspection step of the inspection apparatus A. Semiconductor wafer 200
Above, the foreign substances 301 to 309 detected in the (N-1) th inspection step of the inspection apparatus A are detected.

【0080】図21は検査装置AのN番目の検査工程で
検出された異物のマップにおいて前工程で検出された異
物との座標比較をそれぞれの異物について行って、N番
目及びN−1番目の検査工程の検出異物間の座標が検査
装置A15の位置決め誤差以内にあるN番目検査工程で検
出された異物204,205,209と検査装置AのN番目の検査
工程で新たに検出された異物201,202,203,206,207,208,
210を示す。
FIG. 21 shows a map of the foreign substance detected in the N-th inspection step of the inspection apparatus A, in which the coordinates of the foreign substance detected in the preceding step are compared with those of the foreign substance. The foreign substances 204, 205, 209 detected in the Nth inspection step where the coordinates between the detected foreign substances in the inspection step are within the positioning error of the inspection apparatus A15 and the foreign substances 201, 202, 203, 206, 207, 208, newly detected in the Nth inspection step of the inspection apparatus A
210 is shown.

【0081】図22は図21のマップよりN番目及びN
−1番目の検査工程の検出異物間の座標が検査装置A15
の位置決め誤差以内にあるN番目検査工程で検出された
異物204,205,209を除去して検査装置AのN番目の検査
工程で新たに検出された異物201,202,203,206,207,208,
210を示す。
FIG. 22 shows the Nth and Nth maps from the map of FIG.
The coordinates between the foreign matter detected in the first inspection process are the inspection device A15
Foreign matter 201, 202, 203, 206, 207, 208, foreign matter 204, 205, 209 detected in the Nth inspection step within the positioning error is removed and newly detected in the Nth inspection step of the inspection apparatus A.
210 is shown.

【0082】図23は図18のステップ54の前工程重複
異物除去処理の方法をフローチャートで示したものであ
る。ステップ542では図18のステップ52で生成したN
番目の検査工程の異物マップのデータをそのまま用いて
N番目の検査工程の半導体ウェハの異物座標データベー
スを作成する。ステップ543でも同様にして一つ前の工
程のN−1番目の検査工程の同一半導体ウェハの異物マ
ップのデータをそのまま用いてN−1番目の検査工程の
半導体ウェハの異物座標データベースを作成する。
FIG. 23 is a flowchart showing a method of removing foreign matter from the preceding process in step 54 of FIG. In step 542, the N generated in step 52 in FIG.
Using the data of the foreign matter map of the Nth inspection step as it is, a foreign matter coordinate database of the semiconductor wafer of the Nth inspection step is created. In step 543, a foreign substance coordinate database of the semiconductor wafer in the (N-1) th inspection step is similarly created using the foreign substance map data of the same semiconductor wafer in the (N-1) th inspection step in the immediately preceding step.

【0083】次にステップ544でN番目の検査工程の半
導体ウェハの最初の異物座標とN−1番目の検査工程の
同一半導体ウェハの最初の異物座標どうしを比較するた
め、繰り返し回数の初期値(i=1,j=1)を設定す
る。
Next, at step 544, an initial value of the number of repetitions (ie, an initial value of the number of repetitions (for comparing the first particle coordinates of the semiconductor wafer in the Nth inspection step with the first particle coordinates of the same semiconductor wafer in the (N-1) th inspection step) is compared. i = 1, j = 1) are set.

【0084】次にステップ545にてN番目の検査工程の
半導体ウェハのi番目の異物座標(Ai,Bi)とN−
1番目の検査工程の同一半導体ウェハのj番目の異物座
標(Cj,Dj)の座標との距離が検査装置A15の位置
決め誤差以内にあるかどうかを確認する。
Next, at step 545, the i-th foreign matter coordinates (Ai, Bi) of the semiconductor wafer in the N-th inspection step and N-
It is confirmed whether or not the distance from the j-th foreign matter coordinate (Cj, Dj) of the same semiconductor wafer in the first inspection step is within the positioning error of the inspection apparatus A15.

【0085】位置決め誤差をδとすると、(Ai,B
i)と(Cj,Dj)との距離がδ以内かどうかの判定
式は数5により定義される。
Assuming that the positioning error is δ, (Ai, B
The expression for determining whether the distance between i) and (Cj, Dj) is within δ is defined by Equation 5.

【0086】[0086]

【数5】 (Equation 5)

【0087】(Ai,Bi)と(Cj,Dj)との距離
がδ以内にある時はステップ546に進み、N番目検査工
程の半導体ウェハのデータベースから検出座標(Ai,
Bi)の異物を削除し、ステップ547に進む。(Ai,
Bi)と(Cj,Dj)との距離がδ以内にない時は
(Ai,Bi)と(Cj,Dj)は別個の異物と判断す
るため、ステップ547へ進む。
When the distance between (Ai, Bi) and (Cj, Dj) is within δ, the process proceeds to step 546, where the detection coordinates (Ai, Bi) are obtained from the database of the semiconductor wafer in the Nth inspection step.
The foreign matter in Bi) is deleted, and the flow advances to step 547. (Ai,
When the distance between (Bi) and (Cj, Dj) is not within δ, (Ai, Bi) and (Cj, Dj) are determined to be different foreign substances, and the process proceeds to step 547.

【0088】ステップ547では、繰り返し数jがN−1
番目の検査工程の同一半導体ウェハの検出異物数qと等
しいかどうかを確認する。等しくない場合はステップ54
7aに進み、繰り返し数jを1増やしてステップ545に戻
る。このようにしてステップ545,546の処理を繰り返し
数j=qになるまで繰り返す。
In step 547, the number of repetitions j is N-1.
It is checked whether the number is equal to the number q of detected foreign substances of the same semiconductor wafer in the second inspection step. If not, step 54
Proceeding to 7a, increase the number of repetitions j by 1 and return to step 545. In this way, the processes of steps 545 and 546 are repeated until the number of repetitions j = q.

【0089】j=qになった場合はステップ548に進
み、繰り返し数iがN番目の検査工程の検出異物数pと
等しいかどうかを確認する。等しくない場合はステップ
548aに進み、繰り返し数iを1増やしてステップ545に
戻る。このようにしてステップ545,546の処理を繰り返
し数i=pになるまで繰り返す。i=pになった場合は
ステップ549に進み、前工程重複異物削除処理を終了す
る。
If j = q, the flow advances to step 548 to check whether or not the number of repetitions i is equal to the number of detected foreign substances p in the Nth inspection step. Step if not equal
Proceeding to 548a, the number of repetitions i is increased by 1 and the process returns to step 545. In this way, the processing of steps 545 and 546 is repeated until the number of repetitions i = p. If i = p, the process proceeds to step 549, and the previous-process duplicate foreign matter removal processing ends.

【0090】図23の例では一つ前の検査工程で重複し
て検出された異物のみを除去する処理を説明したが、N
番目の検査工程で検出された異物から1番目からN−1
番目までの検査工程で重複して検出された異物を全て除
去する処理としてもよい。
In the example shown in FIG. 23, the processing for removing only the foreign substance detected redundantly in the immediately preceding inspection step has been described.
N-1 from the first foreign matter detected in the inspection process
The processing may be a processing for removing all the foreign substances detected in duplicate in the inspection steps up to the first.

【0091】また図23で現在のN番目の検査工程と座
標比較を行う工程を1工程分のみ(最初の検査工程〜N
−1番目の検査工程までで組合せはN−1通り)とした
場合、2工程分のみとした場合(最初の検査工程〜N−
1番目の検査工程までで組合せは(N−1)・(N−
2)/2)、3工程分のみとした場合(最初の検査工程
〜N−1番目の検査工程までで組合せは(N−1)・
(N−2)・(N−3)/(3・2),…,N−2工程
分のみとした場合(最初の検査工程〜N−1番目の検査
工程までで組合せはN−1通り)、N−1工程分のみと
した場合(最初の検査工程〜N−1番目の検査工程まで
で組合せは1通り)の全ての場合を実施し、各々の場合
の検査装置Aの位置決め誤差の範囲内にある重複異物数
を求めて、予め設定された異物数管理値nを越える重複
異物数が出た検査工程を自動的に図18のステップ64の
検査工程別不良解析レポートに加えてもよい。この場合
は特定の工程で発生した残留異物がどの検査工程で見え
るかがわかるため、残留異物の出現工程に重点的にフィ
ードバックが掛けられる。
In FIG. 23, only one step (steps from the first inspection step to N
When the number of combinations is N-1 until the first inspection step), when only two steps are used (first inspection step to N-
The combination up to the first inspection process is (N-1). (N-
2) / 2) When only three processes are used (from the first inspection process to the (N-1) th inspection process, the combination is (N-1).
(N−2) · (N−3) / (3 · 2),..., N−2 processes only (N-1 combinations from the first inspection process to the (N−1) th inspection process) ), And only N-1 steps (one combination from the first inspection step to the N-1st inspection step, one combination) is performed, and the positioning error of the inspection apparatus A in each case is determined. The number of duplicate foreign substances within the range is obtained, and the inspection process in which the number of duplicate foreign substances exceeds the preset foreign substance number management value n is automatically added to the inspection process failure analysis report of step 64 in FIG. Good. In this case, since it is possible to know in which inspection step the residual foreign matter generated in a specific process can be seen, feedback is applied mainly to the process in which the residual foreign material appears.

【0092】以上図18から図23を用いて、本発明の
第二の実施の形態を半導体ウェハ上の異物の検査を例に
とって説明を行ったが、検査の内容としては外観欠陥検
査を加えてもよい。また製品の対象も半導体ウェハ以外
にプリント基板,TFT液晶表示装置,プラズマディス
プレイ型表示装置,磁気ディスク基板等、広い範囲の電
子部品の高歩留製造に適用できる。
The second embodiment of the present invention has been described above with reference to FIGS. 18 to 23 by taking as an example the inspection of a foreign substance on a semiconductor wafer. Is also good. In addition, the present invention can be applied to a high yield production of a wide range of electronic components such as a printed circuit board, a TFT liquid crystal display device, a plasma display type display device, and a magnetic disk substrate in addition to a semiconductor wafer.

【0093】[0093]

【発明の効果】以上本発明によれば、半導体ウェハ,プ
リント基板,TFT液晶表示装置,プラズマディスプレ
イ型表示装置,磁気ディスク基板の製造において、常
時、プロセス条件値を最適に保つことができるので、高
歩留り製造に大きく寄与することができる。
As described above, according to the present invention, in the manufacture of a semiconductor wafer, a printed circuit board, a TFT liquid crystal display device, a plasma display type display device, and a magnetic disk substrate, the process condition values can always be kept optimal. It can greatly contribute to high yield manufacturing.

【0094】また半導体ウェハ,プリント基板,TFT
液晶表示装置,プラズマディスプレイ型表示装置,磁気
ディスク基板の製造において、前工程重複異物除去処理
を各検査工程での異物検出結果に適用していくことによ
り、検査対象工程より前の工程から残留している異物と
その工程で新たに付着した異物との切り分けが可能とな
るため、検査対象工程での異物有りチップ数と異物有り
チップ数内歩留りを正確に求めることができる。よっ
て、前記異物有りチップ数と前記異物有りチップ数内歩
留りとの関係を示す近似曲線の信頼性が高くなり、相関
係数管理値を基準にした相関性有り/無しの判断がより
正確に行える。したがって、歩留りを低下させている異
物多数発生工程の特定とその工程へのフィードバックが
正確かつ迅速に行え、半導体ウェハ,プリント基板,T
FT液晶表示装置,プラズマディスプレイ型表示装置,
磁気ディスク基板の製造において高い歩留りが維持でき
るようになる。
Semiconductor wafers, printed circuit boards, TFTs
In the manufacture of liquid crystal display devices, plasma display devices, and magnetic disk substrates, pre-process duplicate foreign matter removal processing is applied to the foreign matter detection results in each inspection process, thereby remaining from processes before the inspection target process. Since it is possible to separate the foreign matter that is present and the foreign matter newly attached in the process, it is possible to accurately obtain the number of foreign matter chips and the yield within the number of foreign matter chips in the inspection target process. Therefore, the reliability of the approximation curve indicating the relationship between the number of chips having a foreign substance and the yield within the number of chips having a foreign substance increases, and the determination of the presence / absence of correlation based on the correlation coefficient management value can be performed more accurately. . Therefore, it is possible to accurately and promptly identify the process of generating a large number of foreign substances which lowers the yield and to feed back to the process.
FT liquid crystal display, plasma display type display,
High yield can be maintained in the manufacture of magnetic disk substrates.

【0095】また不良解析データベースにより、歩留り
を低下させている異物多数発生工程のプロセス条件値の
傾向を掴むことが可能となる。
Further, by using the failure analysis database, it is possible to grasp the tendency of the process condition value in the process of generating a large number of foreign substances that reduces the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態を示す処理機能ブロッ
ク図。
FIG. 1 is a processing functional block diagram showing a first embodiment of the present invention.

【図2】検査装置Aの異物発生箇所を示す図。FIG. 2 is a view showing a foreign matter generation location of the inspection apparatus A;

【図3】検査装置Bの外観欠陥発生箇所を示す図。FIG. 3 is a diagram showing locations where an appearance defect occurs in the inspection apparatus B;

【図4】検査装置Cのプローブ検査不良箇所を示す図。FIG. 4 is a diagram showing a failure point of the probe inspection of the inspection apparatus C;

【図5】検査装置Aと検査装置Cのベン図。FIG. 5 is a Venn diagram of the inspection device A and the inspection device C.

【図6】検査装置Bと検査装置Cのベン図。FIG. 6 is a Venn diagram of the inspection device B and the inspection device C.

【図7】検査装置Aと検査装置Cの相関曲線を示す図。FIG. 7 is a diagram showing a correlation curve between an inspection device A and an inspection device C.

【図8】検査装置Aと検査装置Cの相関曲線を示す図。FIG. 8 is a diagram showing a correlation curve between the inspection device A and the inspection device C.

【図9】検査装置Aと検査装置Cの相関曲線を示す図。FIG. 9 is a diagram showing a correlation curve between the inspection device A and the inspection device C.

【図10】検査装置Aと検査装置Cの相関曲線を示す
図。
FIG. 10 is a diagram showing a correlation curve between an inspection device A and an inspection device C.

【図11】検査装置Bと検査装置Cの相関曲線を示す
図。
FIG. 11 is a diagram showing a correlation curve between the inspection device B and the inspection device C.

【図12】検査装置Bと検査装置Cの相関曲線を示す
図。
FIG. 12 is a diagram showing a correlation curve between an inspection device B and an inspection device C.

【図13】検査装置Bと検査装置Cの相関曲線を示す
図。
FIG. 13 is a diagram showing a correlation curve between the inspection device B and the inspection device C.

【図14】検査装置Bと検査装置Cの相関曲線を示す
図。
FIG. 14 is a diagram showing a correlation curve between the inspection device B and the inspection device C.

【図15】簡易プローブ検査の第一の実施例を示す図。FIG. 15 is a diagram showing a first example of a simple probe test.

【図16】簡易プローブ検査の第二の実施例を示す図。FIG. 16 is a diagram showing a second embodiment of the simple probe test.

【図17】本発明による検査の流れに関する概念を示す
図である。
FIG. 17 is a diagram showing a concept regarding a flow of inspection according to the present invention.

【図18】本発明の第二の実施形態を示す処理機能ブロ
ック図。
FIG. 18 is a processing function block diagram showing a second embodiment of the present invention.

【図19】検査装置AのN番目の検査工程で検出された
異物のマップである。
FIG. 19 is a map of a foreign substance detected in an N-th inspection step of the inspection apparatus A.

【図20】検査装置AのN−1番目の検査工程で検出さ
れた異物のマップである。
FIG. 20 is a map of a foreign substance detected in the (N-1) th inspection step of the inspection apparatus A.

【図21】検査装置AのN番目の検査工程で検出された
異物のマップである。
FIG. 21 is a map of a foreign substance detected in an N-th inspection step of the inspection apparatus A.

【図22】検査装置AのN番目の検査工程で新たに検出
された異物マップである。
FIG. 22 is a foreign substance map newly detected in the N-th inspection step of the inspection apparatus A.

【図23】前工程重複異物除去処理を示す処理機能ブロ
ック図。
FIG. 23 is a processing functional block diagram showing a pre-process duplicate foreign matter removal process.

【符号の説明】[Explanation of symbols]

1…検査装置群管理システム、11…検査装置A品種
名、12…検査装置A工程名、13…検査装置Aロット
NO、14…検査装置Aデータベース、15…検査装置
A、21…検査装置C品種名、22…検査装置C工程
名、23…検査装置CロットNO、24…検査装置Cデ
ータベース、25…検査装置B、31…検査装置B品種
名、32…検査装置B工程名、33…検査装置Bロット
NO、34…検査装置Bデータベース、35…検査装置
C、4…データ処理部、41…検査装置A,C相関処理
結果、42…検査装置B,C相関処理結果、10a…異
物有りチップ数、10b…プローブ検査良品チップ数、
10c…プローブ検査救済良品チップ数、10d…全チ
ップ数、11a…外観欠陥チップ数、11b…プローブ
検査良品チップ数、11d…全チップ数、7…半導体ウ
ェハ、71…異物又は外観欠陥発生チップ、351,3
52…小型テスター、353,354…CCDカメラ、
355…シミュレーションデータベース、72…チップ
内回路配線、73…検査装置A,B不良箇所、81…処
理工程N,処理工程M、200…半導体ウェハ、20
1,202,203,204,205,206,20
7,208,209,210…N番目検査工程での検出
異物、301,302,303,304,305,30
6,307,308,309…N−1番目検査工程での
検出異物。
DESCRIPTION OF SYMBOLS 1 ... Inspection apparatus group management system, 11 ... Inspection apparatus A kind name, 12 ... Inspection apparatus A process name, 13 ... Inspection apparatus A lot number, 14 ... Inspection apparatus A database, 15 ... Inspection apparatus A, 21 ... Inspection apparatus C Product name, 22: Inspection device C process name, 23: Inspection device C lot No., 24: Inspection device C database, 25: Inspection device B, 31: Inspection device B product name, 32: Inspection device B process name, 33 ... Inspection device B lot NO, 34: Inspection device B database, 35: Inspection device C, 4: Data processing unit, 41: Inspection device A, C correlation processing result, 42: Inspection device B, C correlation processing result, 10a: Foreign matter Number of existing chips, 10b: Number of good chips for probe inspection,
10c: Number of non-defective chips for probe inspection, 10d: Total number of chips, 11a: Number of externally defective chips, 11b: Number of non-defective chips for probe inspection, 11d: Total number of chips, 7: Semiconductor wafer, 71: Chip for foreign matter or external defects 351, 3
52: Small tester, 353, 354: CCD camera,
Reference numeral 355: simulation database, 72: circuit wiring in a chip, 73: inspection device A, B defective part, 81: processing step N, processing step M, 200: semiconductor wafer, 20
1,202,203,204,205,206,20
7, 208, 209, 210... Foreign substances detected in the Nth inspection step, 301, 302, 303, 304, 305, 30
6, 307, 308, 309... Foreign substances detected in the (N-1) th inspection step.

フロントページの続き (72)発明者 野口 稔 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内Continued on the front page (72) Minoru Noguchi Minoru Noguchi 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Pref.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】複数の処理工程からなる半導体装置の製造
ラインにおいて、所定の処理工程を経た半導体装置を検
出方式の異なる複数の検査装置を用いて特定品種の半導
体装置を常時抜き取りまたは全数検査した直後に、前記
複数の検査装置で検出された不良(付着異物,外観欠
陥,ビット不良等)箇所の多い半導体装置上の一部の領
域(10チップ以上)について、その後の処理工程に影
響を与えない微小電流,電圧を印加して断線,ショート
を感知する簡易プローブ検査を実施し、前記複数の検査
装置で検出された検査結果と前記簡易プローブ検査結果
の相関度比較を行って、最終プローブ検査で致命不良が
多数発生する可能性の高い処理工程を早期に特定し、前
記工程のプロセス条件の再調整を行うことを特徴とする
半導体装置製造方法。
In a semiconductor device manufacturing line including a plurality of processing steps, a semiconductor device of a specific type is constantly extracted or 100% inspected by using a plurality of inspection apparatuses having different detection methods from a semiconductor device having undergone a predetermined processing step. Immediately after that, a partial area (10 chips or more) on the semiconductor device having many defects (adhesion foreign matters, appearance defects, bit defects, etc.) detected by the plurality of inspection devices affects subsequent processing steps. A simple probe test for detecting disconnection and short-circuit by applying no minute current and voltage, and comparing the correlation between the test results detected by the plurality of test devices and the simple probe test results to obtain a final probe test A semiconductor device manufacturing method, wherein a processing step in which a large number of fatal failures are likely to occur is identified at an early stage, and the process conditions of the step are readjusted.
【請求項2】請求項1記載の半導体装置製造方法におい
て、相関曲線データ構成の単位が半導体装置の同一ウェ
ハ内のビット数単位,異物数単位,外観欠陥数単位,チ
ップ単位と同一ロット内のウェハ単位であることを特徴
とする半導体装置製造方法。
2. The semiconductor device manufacturing method according to claim 1, wherein the unit of the correlation curve data configuration is the same as the number of bits, the number of foreign particles, the number of external defects, and the number of chips in the same wafer of the semiconductor device. A method of manufacturing a semiconductor device, wherein the method is a wafer unit.
【請求項3】複数品種の半導体装置を常時抜き取りまた
は全数検査し、各品種毎にプロセス条件値の再調整を行
うことを特徴とする請求項1または請求項2の何れかに
記載の半導体装置製造方法。
3. The semiconductor device according to claim 1, wherein a plurality of types of semiconductor devices are constantly sampled or 100% inspected, and process condition values are readjusted for each type. Production method.
【請求項4】複数品種の半導体装置を常時抜き取りまた
は全数検査し、全品種総合の不良率が最低となるように
プロセス条件値の再調整を行うことを特徴とする請求項
1または請求項2の何れかに記載の半導体装置製造方
法。
4. The method according to claim 1, wherein a plurality of types of semiconductor devices are constantly sampled or 100% inspected, and the process condition values are readjusted so that the total failure rate of all types is minimized. The method for manufacturing a semiconductor device according to any one of the above.
【請求項5】請求項3または4の何れかに記載の半導体
装置製造方法において、簡易プローブ検査後に各不良分
類別に不良率を集計し、前記複数の検査装置で検出され
た検査結果と前記簡易プローブ検査結果の不良分類別不
良率との相関度比較を行って、異物や外観欠陥がもとで
致命不良となる不良の種類を特定し、前記特定された種
類の不良に基づきプロセス条件値の再調整を行うことを
特徴とする半導体装置製造方法。
5. The method for manufacturing a semiconductor device according to claim 3, wherein after a simple probe test, a defect rate is tabulated for each defect class, and the test result detected by said plurality of test devices and the simplified test result. By comparing the degree of correlation with the failure rate for each failure classification of the probe inspection results, to identify the type of failure that is fatal failure based on foreign matter and appearance defects, based on the identified type of failure process condition value A method for manufacturing a semiconductor device, wherein readjustment is performed.
【請求項6】請求項1〜5いずれか記載の半導体装置製
造方法で製造された半導体装置。
6. A semiconductor device manufactured by the method of manufacturing a semiconductor device according to claim 1.
【請求項7】複数の処理工程からなる半導体装置の製造
ラインにおいて、所定の処理工程を経た半導体装置を検
出方式の異なる複数の検査装置を用いて特定品種の半導
体装置を常時抜き取りまたは全数検査した直後に、前記
複数の検査装置で検出された不良(付着異物,外観欠
陥,ビット不良等)箇所の多い半導体装置上の一部の領
域(10チップ以上)について、回路パターンの非接触
式3次元計測を行って回路の動作特性をシミュレーショ
ン(疑似プローブ検査)し、前記複数の検査装置で検出
された検査結果と前記シミュレーション結果(疑似プロ
ーブ検査結果)の相関度比較を行って、最終プローブ検
査で致命不良が多数発生する可能性の高い処理工程を早
期に特定し、前記工程のプロセス条件の再調整を行うこ
とを特徴とする半導体装置製造方法。
7. In a semiconductor device manufacturing line comprising a plurality of processing steps, a semiconductor device of a specific type is constantly extracted or 100% inspected by using a plurality of inspection apparatuses having different detection methods from a semiconductor device having undergone a predetermined processing step. Immediately after that, in a non-contact three-dimensional circuit pattern of a partial area (10 chips or more) on the semiconductor device having many defects (attached foreign matter, appearance defect, bit defect, etc.) detected by the plurality of inspection devices. A measurement is performed to simulate the operation characteristics of the circuit (pseudo-probe inspection), and a comparison between the inspection results detected by the plurality of inspection devices and the simulation result (pseudo-probe inspection result) is performed. A semiconductor process characterized in that a processing step in which many fatal defects are likely to occur is identified early, and the process conditions of the step are readjusted. Device manufacturing method.
【請求項8】請求項7記載の半導体装置製造方法におい
て、相関曲線データ構成の単位が半導体装置の同一ウェ
ハ内のビット数単位,異物数単位,外観欠陥数単位,チ
ップ単位と同一ロット内のウェハ単位であることを特徴
とする半導体装置製造方法。
8. The method of manufacturing a semiconductor device according to claim 7, wherein the unit of the correlation curve data structure is the same as the number of bits, the number of foreign particles, the number of external defects, and the number of chips in the same wafer of the semiconductor device. A method of manufacturing a semiconductor device, wherein the method is a wafer unit.
【請求項9】複数品種の半導体装置を常時抜き取りまた
は全数検査し、各品種毎にプロセス条件値の再調整を行
うことを特徴とする請求項7または請求項8の何れかに
記載の半導体装置製造方法。
9. The semiconductor device according to claim 7, wherein a plurality of types of semiconductor devices are constantly extracted or 100% inspected, and the process condition value is readjusted for each type. Production method.
【請求項10】複数品種の半導体装置を常時抜き取りま
たは全数検査し、全品種総合の不良率が最低となるよう
にプロセス条件値の再調整を行うことを特徴とする請求
項7または請求項8の何れかに記載の半導体装置製造方
法。
10. A semiconductor device of a plurality of types is constantly extracted or 100% inspected, and process condition values are readjusted so as to minimize the total failure rate of all types of semiconductor devices. The method for manufacturing a semiconductor device according to any one of the above.
【請求項11】請求項7記載の半導体装置製造方法にお
いて、回路パターンの非接触式3次元計測を行って回路
の動作特性をシミュレーション(疑似プローブ検査)し
た後に、予想される不良数を各不良分類別の不良率とし
て集計し、前記複数の検査装置で検出された検査結果と
前記疑似プローブ検査結果の不良分類別不良率との相関
度比較を行って、異物や外観欠陥がもとで致命不良とな
る不良の種類を特定し、前記特定された種類の不良に基
づきプロセス条件値の再調整を行うことを特徴とする半
導体装置製造方法。
11. The method of manufacturing a semiconductor device according to claim 7, wherein after performing a non-contact three-dimensional measurement of the circuit pattern to simulate the operation characteristics of the circuit (pseudo-probe inspection), the expected number of defects is determined for each defect. The defect rate for each category is tabulated, and the degree of correlation between the inspection results detected by the plurality of inspection devices and the defect rate for each failure category of the pseudo probe inspection result is compared. A method of manufacturing a semiconductor device, comprising: identifying a type of a defect to be defective; and re-adjusting a process condition value based on the identified type of the defect.
【請求項12】請求項7〜11いずれか記載の半導体装
置製造方法で製造された半導体装置。
12. A semiconductor device manufactured by the method of manufacturing a semiconductor device according to claim 7.
【請求項13】複数の処理工程からなる半導体装置の製
造ラインにおいて、所定の処理工程を経た半導体装置を
検出方式の異なる複数の検査装置を用いて特定品種の半
導体装置を常時抜き取りまたは全数検査する半導体装置
製造方法において、現在検査している処理工程の検出異
物または検出外観欠陥の座標と1つ前の処理工程での検
出異物または検出外観欠陥の座標とを各々比較し、検査
装置の位置決め精度の誤差の範囲内にある、両工程で重
複して検出している異物数または外観欠陥数を現在検査
している処理工程で検出された異物数または外観欠陥数
より除去して現在検査している処理工程で新たに検出さ
れた異物数または外観欠陥数を求め、前記新規発生異物
数または新規発生外観欠陥数と最終プローブ検査結果と
の相関度比較を行って、最終プローブ検査で致命不良が
多数発生する可能性の高い処理工程を早期に特定し、前
記工程のプロセス条件の再調整を行うことを特徴とする
半導体装置製造方法。
13. In a semiconductor device manufacturing line including a plurality of processing steps, a semiconductor device of a specific type is constantly extracted or 100% inspected by using a plurality of inspection apparatuses having different detection methods from a semiconductor device having undergone a predetermined processing step. In the semiconductor device manufacturing method, the coordinates of the detected foreign matter or detected appearance defect in the processing step currently being inspected are compared with the coordinates of the detected foreign matter or detected appearance defect in the immediately preceding processing step, and the positioning accuracy of the inspection apparatus is determined. Within the error range, the number of foreign substances or appearance defects detected in both processes in duplicate is removed from the number of foreign substances or appearance defects detected in the processing step currently being inspected, and the current inspection is performed. The number of foreign substances or the number of appearance defects newly detected in the processing step in which the number of newly generated foreign substances or the number of newly generated appearance defects are compared with the final probe inspection result. Te, final fatal defect in the probe test to identify likely treatment step of generating many early, the semiconductor device manufacturing method characterized by performing the readjustment process conditions of said process.
【請求項14】請求項13記載の半導体装置製造方法に
おいて、現在検査している処理工程の検出異物または検
出外観欠陥の座標と比較する処理工程を最初の検査工程
から現在検査している工程の1つ前の工程までの全工程
としたことを特徴とする半導体装置製造方法。
14. The semiconductor device manufacturing method according to claim 13, wherein the processing step of comparing with the coordinates of the detected foreign matter or the detected appearance defect of the processing step currently being inspected is the same as that of the current inspection step. A method of manufacturing a semiconductor device, comprising all steps up to the previous step.
【請求項15】請求項13または14の何れかに記載の
半導体装置製造方法において、新規発生異物数または新
規発生外観欠陥数をチップ単位に集計して異物有りチッ
プ数としたことを特徴とする半導体装置製造方法。
15. The method of manufacturing a semiconductor device according to claim 13, wherein the number of newly generated foreign particles or the number of newly generated appearance defects is totaled for each chip to obtain the number of foreign particles. Semiconductor device manufacturing method.
【請求項16】請求項13記載の半導体装置製造方法に
おいて、現在検査している処理工程の検出異物または検
出外観欠陥の座標と比較する処理工程を1工程分のみ
(最初の検査工程〜N−1番目の検査工程までで組合せ
はN−1通り)とした場合、2工程分のみとした場合
(最初の検査工程〜N−1番目の検査工程までで組合せ
は(N−1)・(N−2)/2)、3工程分のみとした
場合(最初の検査工程〜N−1番目の検査工程までで組
合せは(N−1)・(N−2)・(N−3)/(3・
2)),…,N−2工程分のみとした場合(最初の検査
工程〜N−1番目の検査工程までで組合せはN−1通
り)、N−1工程分のみとした場合(最初の検査工程〜
N−1番目の検査工程までで組合せは1通り)の全ての
場合を実施し、各々の場合の検査装置の位置決め誤差の
範囲内にある重複異物数を求めて、予め設定された異物
数管理値を越える重複異物数が出た検査工程を自動的に
特定し、前記工程のプロセス条件の再調整を行うことを
特徴とする半導体装置製造方法。
16. A method of manufacturing a semiconductor device according to claim 13, wherein only one processing step (first inspection step to N- When the number of combinations is N-1 for the first inspection step, the combination is only for two steps (from the first inspection step to the (N-1) th inspection step, the combination is (N-1). (N -2) / 2) When only three processes are performed (the combination from the first inspection process to the (N-1) th inspection process is (N-1). (N-2). (N-3) / ( 3.
2)),..., N-2 steps only (N-1 combinations from the first inspection step to the N-1st inspection step), and N-1 steps only (first step) Inspection process ~
All combinations (one combination up to the (N-1) th inspection step) are performed, and the number of overlapping foreign substances within the range of the positioning error of the inspection apparatus in each case is obtained, and the preset foreign substance number management is performed. A method for manufacturing a semiconductor device, comprising: automatically identifying an inspection step in which the number of overlapping foreign substances exceeding a value is found, and re-adjusting process conditions of the step.
【請求項17】請求項16記載の半導体装置製造方法に
おいて、新規発生異物数または新規発生外観欠陥数をチ
ップ単位に集計して異物有りチップ数としたことを特徴
とする半導体装置製造方法。
17. The method of manufacturing a semiconductor device according to claim 16, wherein the number of newly generated foreign substances or the number of newly generated appearance defects is totaled for each chip to obtain the number of chips with foreign substances.
【請求項18】請求項13〜17いずれかの方法で製造
された半導体装置。
18. A semiconductor device manufactured by the method according to claim 13.
JP16991497A 1997-06-26 1997-06-26 Manufacturing method of semiconductor device and semiconductor device manufactured therethrough Pending JPH1116973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16991497A JPH1116973A (en) 1997-06-26 1997-06-26 Manufacturing method of semiconductor device and semiconductor device manufactured therethrough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16991497A JPH1116973A (en) 1997-06-26 1997-06-26 Manufacturing method of semiconductor device and semiconductor device manufactured therethrough

Publications (1)

Publication Number Publication Date
JPH1116973A true JPH1116973A (en) 1999-01-22

Family

ID=15895307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16991497A Pending JPH1116973A (en) 1997-06-26 1997-06-26 Manufacturing method of semiconductor device and semiconductor device manufactured therethrough

Country Status (1)

Country Link
JP (1) JPH1116973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050206A1 (en) * 2000-01-03 2001-07-12 Advanced Micro Devices, Inc. Wafer manufacturing control
KR100333359B1 (en) * 1999-07-20 2002-04-18 박종섭 A robot for fabricating semiconductor
WO2005096688A1 (en) * 2004-04-02 2005-10-13 Original Solutions Inc. System and method for defect detection and process improvement for printed circuit board assemblies
JP2007300003A (en) * 2006-05-01 2007-11-15 Fujitsu Ltd System for inspecting semiconductor wafer, and inspecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333359B1 (en) * 1999-07-20 2002-04-18 박종섭 A robot for fabricating semiconductor
WO2001050206A1 (en) * 2000-01-03 2001-07-12 Advanced Micro Devices, Inc. Wafer manufacturing control
WO2005096688A1 (en) * 2004-04-02 2005-10-13 Original Solutions Inc. System and method for defect detection and process improvement for printed circuit board assemblies
JP2007300003A (en) * 2006-05-01 2007-11-15 Fujitsu Ltd System for inspecting semiconductor wafer, and inspecting method

Similar Documents

Publication Publication Date Title
US6797526B2 (en) Method for manufacturing semiconductor devices and method and its apparatus for processing detected defect data
TWI802560B (en) Methods and systems for inline parts average testing and latent reliability defect detection
US7117057B1 (en) Yield patrolling system
KR20040067875A (en) Methods and apparatus for semiconductor testing
US6701204B1 (en) System and method for finding defective tools in a semiconductor fabrication facility
US6985830B2 (en) Method of measuring the probability of failure caused only by defects, method of measuring defect limited yield, and system using the same
CN116897291B (en) System and method for Z-PAT defect guidance statistical outlier detection for semiconductor reliability failure
US7279923B2 (en) LSI inspection method and defect inspection data analysis apparatus
JP4080087B2 (en) Analysis method, analysis system, and analysis apparatus
JPH1116973A (en) Manufacturing method of semiconductor device and semiconductor device manufactured therethrough
JP3751680B2 (en) Manufacturing method of semiconductor device
JPH10229110A (en) Manufacture of semiconductor device and semiconductor device manufactured by the same
JP2000077495A (en) Inspection system and manufacture of electronic device using the same
JPH11176899A (en) Method and system for alarming defect
JP2001110867A (en) Manufacture of electronic device and quality control system for electronic device
JPH10214870A (en) Manufacture of semiconductor device
JPH10107111A (en) Manufacturing method of semiconductor device
TWI299538B (en) Method and system for defect category inspection
US7137085B1 (en) Wafer level global bitmap characterization in integrated circuit technology development
JP3307304B2 (en) Electronic device inspection system and electronic device manufacturing method using the same
US11899065B2 (en) System and method to weight defects with co-located modeled faults
JPH10199953A (en) Method and apparatus for analyzing yield
CN115795772A (en) Method and system for evaluating test data, wafer test system and storage medium
US7197435B1 (en) Method and apparatus for using clustering method to analyze semiconductor devices
KR20050072166A (en) Method for testing wafer