WO1998032884A1 - Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication - Google Patents

Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication Download PDF

Info

Publication number
WO1998032884A1
WO1998032884A1 PCT/JP1998/000303 JP9800303W WO9832884A1 WO 1998032884 A1 WO1998032884 A1 WO 1998032884A1 JP 9800303 W JP9800303 W JP 9800303W WO 9832884 A1 WO9832884 A1 WO 9832884A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
electrical steel
laser
oriented electrical
Prior art date
Application number
PCT/JP1998/000303
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Sakai
Naoya Hamada
Katsuhiro Minamida
Kimihiko Sugiyama
Akira Sakaida
Hisashi Mogi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26347219&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998032884(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP01171897A external-priority patent/JP3361709B2/ja
Priority claimed from JP9107748A external-priority patent/JPH10298654A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/125,574 priority Critical patent/US6368424B1/en
Priority to EP98901008A priority patent/EP0897016B8/en
Priority to DE69835923T priority patent/DE69835923T2/de
Publication of WO1998032884A1 publication Critical patent/WO1998032884A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet having improved magnetic properties by irradiating a laser beam, and more particularly to a grain-oriented electrical steel sheet which does not generate laser irradiation marks on the steel sheet surface and improves the magnetic properties, and a method of manufacturing the same.
  • the present invention relates to a device for realizing. Background art
  • the pulsed laser technique has the advantage that the film evaporation reaction force on the steel sheet surface can be obtained effectively, laser irradiation marks are generated because the insulating film on the surface is destroyed. Therefore, as a method of suppressing the damage of the film with a relatively low continuous wave laser is therefore instantaneous power problem has been made that it is necessary to perform insulation Koti ring after the laser irradiation, a technique of using a continuous wave C0 2 laser In Japanese Patent Publication No. 62-49322, or a technology using a continuous wave YAG laser. No. 32881, each of which is disclosed. Particularly in the latter patent, the Q-switch YAG laser has a short pulse time width and a high peak power in the specification, so that evaporation of the film and generation of irradiation marks are inevitable.
  • the principle of introducing distortion without generating irradiation marks with a continuous wave laser lies in the rapid heating and rapid cooling of a steel sheet by laser irradiation. This is a large difference compared to the fact that the strain source in the pulse laser method was the evaporation reaction force of the film.
  • this phenomenon greatly depends on the irradiation power density determined by the beam shape and the laser power. Therefore, irradiation marks can be suppressed by reducing the power density. However, it is necessary to secure a certain amount of total heat input to give sufficient thermal strain. Therefore, in these conventional continuous wave laser irradiation devices, the laser beam is shaped into an ellipse having a long axis in the plate width direction, which is the scanning direction, and the time during which the irradiation point is irradiated with the laser beam is extended. Heat input is secured. Therefore, in an irradiation apparatus that suppresses laser irradiation traces and adjusts the amount of heat input, complicated and delicate control of laser power, scan speed, and irradiation conditions including an elliptical beam shape was required.
  • the manufacturing process of grain-oriented electrical steel sheets includes annealing and insulation coating, and the surface of the steel sheet has an oxide film formed during annealing, as well as insulating and protection coatings applied thereon. Consists of As a result, the laser beam intensity on the steel sheet surface slightly changes depending on the annealing temperature and the time, and the type of the coating liquid. Therefore, in order to suppress laser irradiation marks, it is necessary to adjust the laser irradiation conditions sequentially according to the surface characteristics of the steel sheet. Among the irradiation conditions, the laser power can be controlled by the power adjustment function of the laser device.
  • the scanning speed can be easily controlled by adjusting the rotation speed of a polygon mirror or galvano mirror generally used in the scanning optical system.
  • the laser beam focusing apparatus uses a single cylindrical lens.
  • the adjustment can be performed only in the short axis direction of the elliptical beam, and the beam diameter emitted from the laser device cannot be changed in the long axis direction. Therefore, it was impossible to arbitrarily and finely adjust the elliptical shape.
  • the conventional technology responds to subtle changes in the laser light resistance of the steel sheet, and there is a limit to the suppression of laser irradiation marks. In a manufacturing process that requires continuous treatment of various steel sheets, it is not practical. There was a problem.
  • a first object of the present invention is to provide a grain-oriented electrical steel sheet having low iron loss and extremely excellent magnetostriction characteristics.
  • a second object of the present invention is to reduce iron loss of grain-oriented electrical steel sheets by suppressing surface laser irradiation traces caused by conventional pulsed laser irradiation and minimizing the increase in magnetostriction which is a problem with continuous wave lasers.
  • An object of the present invention is to provide a method for realizing a laser processing step which is suitable for high-speed and continuous processing while suppressing the laser processing.
  • a third object of the present invention is to reduce iron loss of grain-oriented electrical steel sheet by laser irradiation.
  • laser irradiation is constantly and stably suppressed in response to changes in the resistance to laser light on the steel sheet surface. Providing equipment. Disclosure of the invention
  • the present invention is directed to a grain-oriented electrical steel sheet having improved magnetic properties by irradiating a pulsed laser beam to reduce the domain wall interval, wherein the width of the rolling direction of the periodic return magnetic domain generated by laser irradiation is 150 / m or less.
  • a grain-oriented electrical steel sheet characterized in that the thickness in the thickness direction is 30 ⁇ m or more, and the product of the length in the width direction and the depth direction is 4500 / m 2 or more.
  • the present invention provides a grain-oriented electrical steel sheet having improved magnetic properties by irradiating a pulsed laser beam to reduce the 180 ° domain wall interval, wherein the rolling direction width of the periodic reflux domain generated by laser irradiation is 150 mm. m or less, thickness in the thickness direction is 30 or more, and the product of the width direction and the length in the depth direction is 4500 ⁇ m 2 or more, and the material is 0.23 mm in thickness and magnetostriction ( ⁇ 19p-p compression)
  • magnetostriction ( ⁇ 19p- p compression) plate thickness of a material of 0.27mm is oriented electrical steel sheet, characterized in that it is 1.3 X 10- 6 or less.
  • the magnetostriction ( ⁇ 19p-p compression) is the expansion and contraction ratio when a compressive stress of 0.3 kgZmm 2 is applied in a magnetic field of 1.9T.
  • the present invention is the surface of the grain-oriented electrical steel sheet, at regular intervals is irradiated with Rezabi beam, Te oriented electrical steel sheet production process smell for improving the magnetic properties, the laser pulse oscillation Q sweep rate pitch C0 2 laser
  • the irradiation beam shape is an ellipse having a major axis in the width direction of the plate, and the laser pulse irradiation power density is set to be equal to or less than the film damage threshold on the steel sheet surface, thereby suppressing the occurrence of laser irradiation marks.
  • Corrected paper A laser irradiation method in which a continuous pulse beam is superimposed on the steel sheet surface by setting it equal to or longer than the laser beam irradiation interval, and the integrated irradiation energy necessary and sufficient for improving magnetic properties is provided.
  • the present invention relates to an apparatus for manufacturing a grain-oriented electrical steel sheet, which irradiates a laser beam onto the surface of the grain-oriented electrical steel sheet to improve magnetic properties, comprising: a lens for focusing an irradiation laser beam; Parts are provided independently for the plate width and rolling direction, and an adjustment mechanism is provided to independently change the distance from each condensing part to the surface of the steel plate to be irradiated.
  • This is an apparatus for manufacturing grain-oriented electrical steel sheets with excellent magnetic properties that can adjust the direction diameter arbitrarily.
  • the directionality having excellent magnetic characteristics is adjusted so that the focal length of the light-collecting device in the plate width direction of the irradiation laser beam is longer than the focal length of the light-collecting device in the rolling direction.
  • This is a manufacturing device for electrical steel sheets.
  • FIG. 4 is a diagram illustrating a relationship between incident laser power and iron loss.
  • (b) is an explanatory diagram of a temperature history at an arbitrary point on a scan line when the laser irradiation method of the present invention is used for various lasers.
  • Fig. 4 is a graph showing the relationship between the surface coating damage grade and the laser peak power density.
  • FIG. 5 It is a relation diagram of an iron loss improvement rate and irradiation energy density.
  • FIG. 4 is a relationship diagram between magnetostriction and irradiation energy density.
  • FIG. 4 is a relationship diagram between an iron loss improvement rate and a beam diameter in one direction of an elliptical beam.
  • FIG. 4 is a diagram illustrating the relationship between magnetostriction and the beam diameter in one direction of an elliptical beam.
  • FIG. 9 is a diagram illustrating a relationship between an iron loss improvement rate and a beam diameter of an elliptical beam in the C direction.
  • FIG. 4 is a diagram showing the relationship between magnetostriction and the beam diameter of an elliptical beam in the C direction.
  • (a) is a diagram showing a conventional method
  • (b) is a diagram showing a return domain width according to the present invention.
  • (a) is an explanatory view of the laser irradiation device of the present invention viewed from the plate width direction, and is an explanatory view of a moving mechanism of the platform 7.
  • (b) is an explanatory diagram of the laser irradiation device of the present invention as viewed from the plate width direction, and is an explanatory diagram of a moving mechanism of the focusing mirror 16.
  • FIG. 3 is a schematic diagram of a relationship between a laser beam propagation distance and a beam diameter. (Fig. 16)
  • the rolling direction width of the periodic return magnetic domain generated by laser irradiation is 150 / zm or less.
  • Iron loss in grain-oriented electrical steel sheets is separated into abnormal eddy current loss and hysteresis loss.
  • the abnormal eddy current loss becomes lower as the 180 ° domain wall spacing of the steel sheet is smaller.
  • the 180 ° domain wall interval is reduced, and abnormal eddy current loss is reduced.
  • the hysteresis loss has a positive correlation with the width of the return domain in the rolling direction. . Therefore, when distortion is generated to reduce the abnormal eddy current loss, that is, when the return domain is excessively generated, the return domain width generally increases, so that the hysteresis loss increases. Therefore, the iron loss as a whole starts to increase.
  • the return magnetic domain volume is proportional to the average power of the incident laser.
  • Figure 1 schematically shows the relationship between the average power of the incident laser, the abnormal eddy current loss, the hysteresis loss, and the iron loss which is the sum of these.
  • the magnetostriction has a positive correlation with the width of the return magnetic domain in the rolling direction.
  • the width in the rolling direction may be reduced while increasing the return magnetic domain volume. That is, the best reflux domain shape is narrow in the rolling direction, deep in the sheet thickness direction, and force and volume are more than a certain level.
  • the present inventors investigated the relationship between the width and depth of the return magnetic domain and the shape of the irradiated laser beam, and searched for a magnetic domain shape that would provide high magnetic properties.
  • the width of the return domain in the rolling direction is proportional to the diameter d l of the beam in the rolling direction.
  • d l should be as small as possible.
  • the width of the return domain was measured to be 150 zm (0.15 mm) and the depth was 30 m or more. Looking at the relationship between d l and the iron loss improvement rate in Fig.
  • the iron loss improvement is maximized when d l is around 0.28 mm. This is due to a decrease in hysteresis loss due to a decrease in the width of the return magnetic domain. However, when d l was 0.20, the iron loss improvement rate decreased rather. This is because, despite the depth of the return domain of 30 m, the width is about 100 m, thus reducing the return domain volume.
  • the width in the direction of the magnetic domain rolling in the rolling direction is optimally 150 // m or less, and in this case, the depth must be 30 zm or more. Therefore, the domain volume is proportional to the product of the width in the rolling direction and the width in the thickness direction. 4500 / zm 2 or more is optimal.
  • the gist of the laser domain control method according to the present invention lies in that thermal flaws are effectively introduced while suppressing surface flaws.
  • FIG. 2A is a schematic view of an example of an embodiment of the laser domain control method according to the present invention
  • FIG. 2B is an enlarged view of an irradiation unit.
  • the steel sheet is a grain-oriented electrical steel sheet in which the direction of easy magnetization (180 ° magnetic domain) is aligned in the rolling direction (one direction).
  • Irradiated Q-switch C0 2 Laser pulse beam has two axes 1 and c orthogonal to each other, each with an independent focusing mirror or a lens, with short axis dl in the rolling direction and long axis dc in the strip width direction. It is focused on the ellipse that has it.
  • the scanning direction coincides with the major axis direction of the elliptical beam, and the condensing beam is scanned by a polygon mirror or the like at regular intervals Pc. Irradiation is performed at a constant interval P1 in the rolling direction.
  • dc to be larger than Pc, continuous pulsed laser light is superimposed on the steel sheet.
  • Equations (1) and (2) show the relational expression of each laser irradiation parameter in this method.
  • Pp is the pulse peak power
  • lp is the peak power density
  • Ep is the pulse energy
  • Up is the integrated energy density at any point on the scan line.
  • S is the beam area
  • Vc and Fp are the scanning speed in the C direction and the pulse repetition frequency, respectively.
  • n is the number of pulse superpositions.
  • the irradiation parameter when using a continuous wave laser is expressed by the following equation ( 3) and (4).
  • Pav is the average output of the continuous wave laser, and is the beam irradiation time to an arbitrary point on the scan line.
  • the Q-switch YAG laser is characterized by a very short pulse time of about 0.01 s and extremely low peak power despite low pulse energy. High.
  • the pulse time width of the CO 2 laser is as long as 0.2 to 0.5 ⁇ s, and the peak power is relatively low.
  • the heat input can be adjusted by tail time length.
  • FIG. 3 (b) is a schematic diagram of the temperature history at an arbitrary point on the steel sheet surface by various laser irradiations described in FIG. 3 (a).
  • the occurrence of surface flaws due to laser irradiation is characterized by the threshold temperature.
  • thermal distortion of generating a reflux magnetic Zone is characterized by the threshold temperature T 2.
  • T corresponds to the softening and melting temperature of the surface insulating film, and is about 800 ° C.
  • T 2 is about 500 ° C. Therefore, in order to suppress irradiation flaws and introduce thermal distortion, the steel sheet temperature may be controlled to be 500 ° C. or more and 800 ° C. or less.
  • Fig. 3 (b) middle
  • the heating rate corresponding to the slope of the temperature rise is proportional to the energy density per unit time of the irradiated laser, that is, the power density Ip. Since thermal strain is introduced by rapid heating and rapid cooling of the steel sheet, the strain introduction efficiency is high by using a high peak power laser. Therefore, compared to the continuous wave laser, the pulse Q switch laser can improve the magnetism with lower irradiation energy.
  • the total volume of strain and the depth of strain penetration in the thickness direction are proportional to the total energy density Up, and in Fig. 3 (b), they are compared to the time integral of the temperature history (the shaded area in the figure). For example.
  • the ideal laser domain control according to the present invention is such that, when the steel sheet temperature is in the range of 500 to 800 ° C., rapid heating / cooling is repeated by pulsed laser irradiation, and the total energy applied to an arbitrary point is reduced.
  • the goal is to introduce the quantity Up as efficiently as possible.
  • Q sweep rate pitch C0 2 laser Q sweep rate pitch C0 2 Les monodentate used in the present invention peak power is lower than Q sweep rate pitch YAG laser, a high pulse laser device than that of the continuous-wave laser. Generally, the peak output is in the range of 10 to l OOO kW.
  • the initial pulse time width is 200 to 500 ns, and the total length including the tail is 1 to 10 s.
  • the pulse laser beam irradiation method focuses the light in directions 1 and c independently, and irradiates the light with scan light.
  • the major axis of the focused beam coincides with the direction c, which is the scan direction
  • the scan interval Pc is set to be less than the major axis length dc of the ellipse, and the pulsed laser beam is superimposed on the surface of the steel sheet.
  • the pulse peak power density Ip is adjusted by adjusting the peak power and the beam focusing area so that the steel sheet surface temperature does not reach the film damage threshold even under the beam superimposed condition.
  • a plurality of pulses are applied to an arbitrary point on the steel sheet by beam superposition.
  • the number n of pulses applied to each point is given by the above equation (2) using the beam major axis dc and the scan interval Pc. Therefore, as shown in Fig. 3 (b), intermittent rapid heating and rapid cooling with n pulses at the pulse repetition frequency Fp are repeated, so that the high distortion introduction capability, which is an advantage of the pulse laser, is secured.
  • the present invention has an advantage that laser irradiation marks are suppressed and an effective magnetic domain control effect can be obtained.
  • the present invention using a Q sweep rate pitch C 0 2 laser, compared to the case of using the Q sweep rate pitch YAG, single THE.
  • the pulse time width is short and the peak power is high.
  • the pulse time width is generally 0.01 s or less and the pulse peak power is typically 1 MW or more.
  • the irradiation method of the present invention it is possible to increase the beam diameter and suppress 1 p per single pulse.
  • the energy density per single pulse is significantly reduced, and the pulse time width is short, so that operation at a very fast pulse repetition frequency of 1 Mllz or more is necessary to obtain the pulse energy integration effect.
  • the Q sweep rate Tutsi C 0 2 laser from the viewpoint of industrial applications great advantages Have.
  • a Q-switch laser with a large average output which is the product of pulse energy and pulse repetition frequency
  • the average power of the Q-switch laser is proportional to the average power of the base continuous wave laser.
  • the C0 2, single-THE is inexpensive an apparatus' operating costs. Therefore, by using Q sweep rate pitch C0 2 laser has the advantage of low cost, it can be applied magnetic improvement technologies fast 'large electrical steel sheet production process.
  • FIG. 13 and FIG. 14 are diagrams showing the outline of the device of the present invention.
  • the laser beam has an ellipse having a long axis d 1 in the sheet width direction and a short axis dc in the rolling direction on the surface of the steel sheet 8. It is collected.
  • the focused laser beam is scanned at a constant speed V in the plate width direction.
  • the laser irradiation time T at an arbitrary point is expressed by equation (5).
  • the irradiation is intermittent. If the pulse repetition frequency is F p (H z), the irradiation pitch P 1 in the scanning direction is expressed by equation (6). Irradiation is performed at a constant interval P 1 in the rolling direction by a laser beam intermittent interrupter (not shown).
  • FIGS. 14 (a) and (b) are explanatory views of the device of the present invention as viewed from a cross section in the width direction.
  • the laser beam LB emitted from the laser device 1 is introduced into the platform 7 via the mirror 1.
  • the focusing mirrors 3, 4, 5, and f 2 have a focal length of f 1, a focusing mirror 3, a polygon mirror 4, and a scanning mirror 5.
  • Pressure It is equipped with a condensing column condensing mirror 6 that extends.
  • the laser beam LB incident on the platform 7 is focused by the mirror 13 at the focal length f1 only in the width direction of the plate.
  • the laser beam B is converted into a scan beam parallel to the sheet width direction by the combination of the polygon mirror 4 and the mirror 5.
  • FIG. 12 is a schematic diagram showing the relationship between the beam propagation distance and the beam diameter.
  • the laser beam is focused on the steel plate surface at a beam diameter d1 determined by f1, f2, and W (U, Wdc, and dc).
  • the platform 7 has a fixed base 1 1 is provided via a moving device 9 and has a mechanism for moving up and down with respect to the steel plate 8.
  • a focusing mirror 6 is provided via a moving device 10 on a platform 7. Therefore, as shown in Fig.
  • the vertical movement of the platform 7 causes the distance Wd between the condensing mirror 3 and the steel plate 8 in the width direction of the plate, as shown in Fig. 14. 1 and the distance Wdc between the condensing mirror 6 in the rolling direction and the steel plate 8 are simultaneously changed, while only the Wd1 is independently changed by the parallel movement of the mirror 6 in the rolling direction. Wd 1 and Wdc are arbitrarily changed and adjusted according to the combination of these two movement amounts. As a result, fine adjustment of the diameter d 1 in the sheet width direction on the steel sheet surface and the deformation direction dc on the steel sheet surface can be easily performed without changing the focal lengths f 1 and f 2 of the focusing mirror, that is, without changing the radius of curvature. You can do it.
  • the feature of this irradiation device is that the laser beam diameter is controlled independently by the condensing mirrors 13 and 6 in the plate width direction (C) and the rolling direction (L).
  • the C-direction focusing system has a longer focal point than the L-direction focusing system.
  • the beam diameter dl in the L direction it is particularly important to converge the beam diameter dl in the L direction to a small value of about 0.2 to 0.3 mm.
  • condensing mirrors is required.
  • the depth of focus is reduced, and the distance Wdc between the mirror 6 and the steel plate 8 needs a fine adjustment function, and the moving mechanism 9 is indispensable.
  • the condensing mirror 3 in the plate width direction is provided independently as in the configuration of the present invention and is made a mirror having a longer focal point than the condensing mirror 6 in the rolling direction, the depth of focus is It is larger than that of 6.
  • the increase / decrease of the diameter dc in the width direction can be almost ignored.
  • magnetostriction value as a material of the magnetic steel sheet is directly proportional to the noise of the product, which is a product. If it is X 10- 6 or less, the transformer noise is reduced to such an extent that people do not feel the discomfort. In addition, magnetostriction
  • Tables 2 and 3 show the values of magnetostriction ( ⁇ 19 ⁇ -p compression) according to the continuous wave laser method, the conventional pulse laser method, and the present invention when the plate thickness is 0.23 mm and 0.27 mm, respectively.
  • the magnetostriction level of the grain-oriented electrical steel sheet obtained by the present invention is superior to that of the grain-oriented electrical steel sheet manufactured by the conventional continuous wave laser method or pulsed laser conventional method. It can be seen that it has magnetostrictive characteristics.
  • the surface of the high magnetic flux density oriented electrical steel sheet 23mm according to the method of the present invention is irradiated with Q sweep rate pitch C0 2 laser, the occurrence of irradiation signatures, to evaluate the effect of improving the magnetic properties.
  • the beam diameter d 1 in the L direction was fixed at about 0.30 mm
  • the beam diameter dc in the C direction was changed from 0.50 to 12.00
  • lp was adjusted.
  • the peak output Pp of the Q switch oscillation is 20 kW
  • the pulse energy Ep is 8.3 mJ
  • the pulse repetition frequency Fp is 90 kHz
  • the average output is about 750 W.
  • the scanning speed Vc is 43 m / s
  • the irradiation pitch Pc in the c direction during Q switch laser irradiation is approximately 0.50 mm
  • the pitch PI in the L direction is 6.5 mm.
  • the average output Pav is 850 W
  • the other irradiation conditions are the same as those of the Q switch laser.
  • Figure 4 shows the relationship between Ip and the laser irradiation mark grade on the surface.
  • the laser irradiance grade is a five-step evaluation based on visual inspection and heat resistance test.
  • Grade 1 is a clear white trace
  • Grade 2 is a white trace with finer scratches in the dl direction than Grade 1
  • Grade 3 is a fine white trace
  • Grade 4 is a microscopic trace.
  • Possible, grade 5 is an evaluation that no trace can be observed by microscopic observation. In grades 3 and below, there is sales, and in grades 4 and above, there is no occurrence.
  • the threshold density of the irradiation mark generation threshold of the Q-switch laser is one order of magnitude higher than that of the continuous-wave laser.
  • Figure 5 shows the continuous wave C0 2 laser with the laser beam diameter in the C direction where no laser irradiation traces were selected from among the irradiation conditions described in Figure 4 and the iron loss improvement rate as a parameter.
  • Law and Q sweep rate pitch C0 2 laser method is a result of comparison.
  • the beam diameter in the C direction is 8.7 mm for the Q switch laser and about 10.5 mm for the continuous wave laser. From Q sweep rate pitch C0 2 Les This - the present invention using The, compared with the conventional continuous wave laser method, is either bright et be equivalent or iron loss improvement is obtained at a lower irradiation energy amount .
  • magnetostriction which is an important magnetic property of electrical steel sheets as well as iron loss, is a factor that is proportional to the noise when steel sheets are used for transformers. The smaller this is, the more desirable. 6 is a result of comparing the relationship between magnetostriction and total irradiated energy Up a continuous wave C0 2 laser and Q sweep rate pitch C0 2 laser. As shown in this figure, the magnetostriction increases as Up increases. If the treatment with Q sweep rate pitch C0 2 laser as described in FIG. 5, since high iron loss improvement effect at a lower irradiation energy is obtained, as a result, the magnetostriction is reduced compared to continuous-wave laser treatment material This has the effect.
  • the magnetic domain pattern of the steel sheet is different from the conventional method, and the reflux domain width is narrow as shown in Fig. 11 (b), and the elastic strain in the depth direction is 30%, as can be seen from the change of the magnetic domain pattern in Fig. 12. It can be seen that the return magnetic domain exists even deeper than ⁇ m and 30 m or more in the product of the present invention.
  • Fig. 8 similarly summarizes the relationship between d1 and magnetostriction.
  • Magnetostriction decreases monotonically with reduction of d 1.
  • the cause of magnetostriction is the expansion and contraction of the return magnetic domain that occurs when an external magnetic field is applied along the direction of the 180 ° magnetic domain.
  • the effect of expansion and contraction in the L direction is particularly large. Therefore, the magnetostriction is lower when the width of the return magnetic domain in the L direction, that is, the width of the strain in the L direction is smaller. Therefore, as is clear from FIG. 8, the magnetostriction is reduced by reducing the width d 1 of the irradiation beam in the L direction. 7 and 8 that d l is in the range of 0.25 to 0.35 iMi, and both iron loss and magnetostriction are improved.
  • Figures 9 and 10 are the same as the irradiation conditions described above, with d 1 fixed at 0.28 mm. This is the relationship between dc and the iron loss improvement rate and magnetostriction. From Fig. 9, the iron loss improvement rate is improved by increasing dc.
  • dc is greater than G, no laser irradiation marks are generated.
  • dc is as small as about 1, the peak power density IP increases as shown in equation (1), and as a result, laser irradiation marks are also generated. Occurs. Since plasma is a laser light absorbing medium, the efficiency of laser heat input to the steel sheet decreases.
  • Equation (2) Up is constant with respect to dc, so that the amount of heat input is increased more effectively because the plasma is suppressed, and the iron loss improvement effect increases.
  • the optimum value of dc is 6.0 to 10.0 mm from the viewpoint of suppressing laser irradiation marks and improving iron loss.
  • FIGS. 16 (a) and 16 (b) are diagrams showing measurement results of a beam shape in an embodiment in which beam shape control is performed in the apparatus of the present invention.
  • the value of M 2 is 5.7.
  • the diameter of the beam incident on mirror 13 is about 68 mm.
  • the irradiation apparatus of the present invention it is possible to easily adjust the shape of the condensing ellipse without changing the focal length of the condensing optical component.
  • Figures 17 (a) and 17 (b) show the laser beam resistance of two types of steel sheets A and B with different insulating coating solutions in the manufacturing process of high magnetic flux density grain-oriented electrical steel sheets. It is a result. Here it was using the Q sweep rate Tchiparusu oscillation C0 2 laser as a laser light.
  • the horizontal axis in Fig. 17 is the peak power density of the laser pulse, and the vertical axis is the grade of the surface irradiation mark (1 to 5).
  • the beam shapes of the steel sheets A and B were shaped so as not to cause laser irradiation marks, and the beam irradiation apparatus of the present invention shown in Figs. 13 and 14 was used. And irradiated the steel sheet.
  • Table 2 shows the laser irradiation conditions and iron loss improvement results at this time.
  • the laser light in here was using the Q sweep rate pitch C0 2 laser as a beam focusing parameters M 2 Chikaraku 1.1.
  • the diameter of the human beam to the converging mirror 3 is about 13.
  • the iron loss improvement ratio is the ratio of the iron loss value before and after laser irradiation to the iron loss value before laser irradiation.
  • the present invention makes it possible to stably produce a grain-oriented electrical steel sheet with improved iron loss without generating surface laser irradiation marks, even if the laser beam resistance on the surface of the electrical steel sheet changes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

明 細 書 磁気特性の優れた方向性電磁鋼板とその製造方法、 およびその装置 技術分野
本発明は、 レーザビームの照射により磁気特性を改善した方向性 電磁鋼板に関し、 特に鋼板表面にレーザ照射痕を発生させず、 かつ 、 磁気特性を改善する方向性電磁鋼板とその製造方法およびそれを 実現するための装置に関するものである。 背景技術
従来、 方向性電磁鋼板の製造方法において、 鋼板表面に力学的歪 みを導入し、 周期的な還流磁区を発生させることで 180 ° 磁区を細 分化し、 鉄損を減少させる方法が種々提案されてきた。 中でも特開 昭 55— 18566 号公報に開示されるように、 鋼板の表面にパルス YAG レーザビームを集光照射して、 被照射部での皮膜の蒸発反力により 歪みを導入する方法は、 鉄損改善効果が大き く、 かつ非接触加工で あることから信頼性 · 制御性も高い非常に優れた方向性電磁鋼板の 製造法である。
しかし、 パルスレーザを用いる手法では、 鋼板表面での皮膜蒸発 反力は効果的に得られるという利点はある ものの、 表面の絶縁皮膜 が破壊されるためレーザ照射痕が発生する。 従って、 レーザ照射の 後に絶縁コーティ ングを行わなければならないという問題があつた そこで瞬間パワーは比較的低い連続波レーザを用いて皮膜の損傷 を抑える方法と して、 連続波 C02レーザを用いる技術が特公昭 62 - 4 9322号公報に、 または連続波 YAGレーザを用いる技術が特公平 5 — 3288 1 号公報にそれぞれ開示されている。 特に後者の特許において はその明細書中で Qスィ ツチ YAGレーザはパルス時間幅が短く 、 高 ピークパワーを持っため、 皮膜の蒸発 · 照射痕発生は不可避であり
、 電磁鋼板のレーザ処理には適していないと明確に記述されている 。 また、 パルスランプ励起等で行う通常のパルスレーザは次のよう な点で、 電磁鋼板のレーザ処理には適さない事が明らかとなった。 まず、 このタイプのレーザは本質的に非常に低いパルス繰り返し率 をもっため、 高速の生産ライ ンに追従できないという点である。 更 にこのタイプのレーザを用いた場合、 必要な磁区制御を行なうため には、 Qスィ ッ チパルス レーザに比較して、 照射面の平均エネルギ 一密度を増加してやらねばならない点である。 照射面の平均エネル ギ一密度を増加させた場合では、 鋼板の平担性を物理的に歪めると いう新たな問題が生じてく ることになる。 このような歪みは鋼板が 反る、 および/または、 表面に線状の痕跡を形成するといつた形で 表わされる。 このよ う な痕跡はパルスレーザ処理された鋼板の鉄損 に対して害となり、 またこのパルスレーザ処理された鋼板からなる 変圧器の積層要素に対しても害となる旨記載されている。
ところで、 連続波レーザで照射痕を発生させずに歪みを導入する 原理はレーザ照射による鋼板の急速加熱 · 急速冷却にある。 これは 、 パルスレーザ法での歪み源が皮膜の蒸発反力であったことに比較 して大きな差違である。
しかし、 連続波レーザはパワー密度が低いため照射痕の抑制には 効果的であるものの、 急速加熱 · 急速冷却の能力においても、 高ピ ークパワーのパルスレーザに比べて低いため、 歪み導入効率が低い 。 そこでパルスレーザ法並みの歪みを導入し、 同等の鉄損改善を得 るには、 鋼板への トータルの照射エネルギーを相対的に増大させな ければならない。 ところで、 電磁鋼板の磁歪は、 トラ ンスに使用 し た時の騒音に比例する特性であり、 鉄損と並び電磁鋼板の重要な品 質の一つである。 レーザ磁区制御の場合、 磁歪は トータルの照射ェ ネルギ一に正の相関があることが分っており、 従って、 連続波レー ザによる磁区制御法ではパルスレーザ法に比べ磁歪が増大するとい う問題があり、 これは照射痕の発生有無に関わらず連続波レーザ法 の欠点であった。
また、 表面照射痕の発生有無について詳し く 見てみると、 この現 象は、 ビーム形状と レーザパワーにより決まる照射パワー密度に大 き く依存する。 従って、 パワー密度を低減させることで照射痕の抑 制ができる。 しかし、 十分な熱歪みを与えるには総合入熱量は一定 量以上を確保する必要がある。 そこで、 これら従来の連続波レーザ 照射装置ではレーザビームをスキャ ン方向である板幅方向に長軸を 持つ楕円に整形し、 被照射点にレーザビ一ムが照射されている時間 を延長することで入熱量を確保している。 従って、 レーザ照射痕を 抑制して、 かつ入熱量を調整する照射装置では、 レーザパワー、 ス キャ ン速度、 および楕円ビーム形状からなる照射条件の複雑かつ微 妙な制御が必要とされていた。
ところで、 方向性電磁鋼板の製造工程には焼鈍、 および絶縁コー ティ ングが含まれ、 鋼板表面は、 焼鈍時に形成される酸化皮膜、 更 にその上に塗布された絶縁 · 防銷コ一ティ ングからなる。 その結果 、 鋼板表面の耐レーザ光強度は、 焼鈍温度 ' 時間、 およびコ一ティ ング液の種類で微妙に変化する。 従って、 レーザ照射痕を抑制する には、 鋼板の表面特性にあわせて、 レーザ照射条件を逐次調整する 必要がある。 照射条件の内、 レーザパワーはレーザ装置のパワー調 整機能で制御可能である。 スキャ ン速度は、 スキャ ン光学系で一般 的に用いられているポリ ゴン ミ ラ一、 あるいはガルバノ ミ ラーの回 転速度を調整することで容易に制御できる。 しかし、 照射痕を抑制 するために、 レーザパワーを低下させると、 入射される熱量も減少 するため、 十分な歪みが導入されず、 鉄損特性が劣化する。 そこで スキャ ン速度を低下させることが考えられるが、 その場合、 処理速 度が犠牲になるという問題が生じる。 従って、 レーザパワー強度を 制御するにはレーザパワー、 スキャ ン速度だけでなく、 楕円ビーム 形状にも柔軟に対応可能な制御装置が必要であつた。
従来の照射装置では前述した特公平 5 - 3288 1 号公報に開示され ているように、 レーザビームの集光装置は単一の円柱レンズを用い ている。 この様な集光装置では楕円ビームの短軸方向のみしか、 調 整ができず、 長軸方向はレーザ装置から出射されたビーム径からの 変更はできない。 従って、 楕円形状を任意に、 かつ微妙に調整する ことは不可能であった。 このため、 従来の技術では鋼板の耐レーザ 光強度の微妙な変化に対応し、 レーザ照射痕を抑制するには限界が あり、 種々の鋼板を連続して処理する必要のある製造工程では実用 上問題があった。
この様な背景により、 磁気特性の優れた電磁鋼板の製造方法と し て、 パルスレーザ法で問題となる レーザ照射痕が発生せず、 かつ、 連続波レーザ法で困難である鉄損、 磁歪両方の特性向上が可能な手 法とそれを実現するための装置の開発が望まれていた。
本発明の第一の目的は、 低鉄損で、 かつ磁歪特性の極めて優れた 方向性電磁鋼板を提供することにある。
本発明の第二の目的は、 方向性電磁鋼板の鉄損を低減させる方法 と して、 従来のパルスレーザ照射による表面レーザ照射痕を抑制し 、 連続波レーザで問題となる磁歪の増加を極力抑え、 かつ高速 · 連 続処理に適したレーザ処理工程を実現する方法を提供することにあ る。
本発明の第三の目的は、 レーザ照射により方向性電磁鋼板の鉄損 を低減させ、 かつ表面レーザ照射痕を抑制した方向性電磁鋼板の製 造装置において、 鋼板表面の耐レーザ光強度の変化に容易に対応し て、 常に安定的にレーザ照射痕を抑制する レーザ照射装置を提供す し とにめ 。 発明の開示
本発明は、 パルスレーザ光を照射して磁壁間隔を縮小して磁気特 性を改善した方向性電磁鋼板において、 レーザ照射により発生する 周期的な還流磁区の圧延方向幅が 150/ m以下、 板厚方向深さが 30 〃 m以上、 かつ幅方向と深さ方向の長さの積が 4500 / m 2 以上であ ることを特徴とする方向性電磁鋼板である。
また、 本発明は、 パルスレーザ光を照射して 180° 磁壁間隔を縮 小して磁気特性を改善した方向性電磁鋼板において、 レーザ照射に より発生する周期的な還流磁区の圧延方向幅が 150 m以下、 板厚 方向深さが 30 以上、 かつ幅方向と深さ方向の長さの積が 4500〃 m 2 以上であり、 かつ板厚が 0.23mmの材料で磁歪 ( λ 19p- p 圧縮) が 0.9 X 10— 6以下、 板厚が 0.27mmの材料で磁歪 ( λ 19p- p 圧縮) が 1.3 X 10— 6以下であることを特徴とする方向性電磁鋼板である。 なお、 磁歪 ( λ 19p- p 圧縮) とは、 1.9Tの磁界で 0.3kgZmm2 の圧縮応力をかけたときの伸縮率である。
また、 本発明は、 方向性電磁鋼板の表面に、 等間隔にレーザビー ムを照射して、 磁気特性を改善する方向性電磁鋼板製造方法におい て、 当該レーザがパルス発振 Qスィ ッチ C02レーザであり、 照射ビ ーム形状が板幅方向に長軸を持つ楕円であり、 レーザパルスの照射 パワー密度を鋼板表面の皮膜損傷閾値以下に設定することで、 レー ザ照射痕の発生を抑制し、 かつ楕円ビームの長軸長を板幅方向のパ
訂正された甩紙 ルスビーム照射間隔以上に設定することで、 連続するパルスビーム を鋼板表面で重畳させ、 磁気特性改善に必要十分な積算照射エネル ギーを与える レーザ照射方法である。
更に、 本発明は、 方向性電磁鋼板の表面にレーザビームを照射し て磁気特性を改善する方向性電磁鋼板の製造装置において、 照射レ 一ザビームを集光する レンズ、 あるいはミ ラー等の集光部品を、 板 幅および圧延方向のそれぞれについて独立に備え、 また、 各集光部 品から被照射鋼板表面までの距離を独立に変更する調整機構を備え 、 レーザ照射ビームの板幅方向径、 圧延方向径を任意に調整する磁 気特性の優れた方向性電磁鋼板の製造装置である。 また、 本発明に おいては、 照射レーザビームの板幅方向の集光装置の焦点距離が圧 延方向の集光装置の焦点距離より も長く なるように調整する磁気特 性の優れた方向性電磁鋼板の製造装置である。
図面の簡単な説明
〔図 1 〕
入射レーザパワーと鉄損との関係を示す図である。
〔図 2〕
本発明のレーザ照射方法の実施例の説明図であり、 ( a ) は全体 を示す模式図、 ( b ) は照射部の拡大図である。
〔図 3 ]
( a ) 各種レーザの出力波形の説明図である。
( b ) 各種レーザに本発明のレーザ照射方法を用いたときのスキ ャ ン線上の任意点の温度履歴の説明図である。
〔図 4〕
表面皮膜損傷グレー ドと レーザピークパワー密度の関係図である
〔図 5〕 鉄損改善率と照射エネルギー密度の関係図である。
〔図 6〕
磁歪と照射エネルギー密度の関係図である。
〔図 7〕
鉄損改善率と楕円ビームの 1方向ビーム径の関係図である。
〔図 8〕
磁歪と楕円ビームの 1 方向ビーム径の関係図である。
〔図 9〕
鉄損改善率と楕円ビームの C方向ビーム径の関係図である。
〔図 10〕
磁歪と楕円ビームの C方向ビーム径の関係図である。
〔図 1 1〕
( a ) は従来法と、 ( b ) は本発明による還流磁区幅を示す図で ある。
〔図 12〕
従来法と本発明による板厚深さ方向の弾性歪の磁区模様を示す図 であり、 ( a ) は G. 5關で観察した顕微鏡写真で、 ( b ) は 10mmで 観察した顕微鏡写真である。
〔図 13〕
本発明のレーザ照射装置の概要を示す図である。
〔図 14〕
( a ) は、 本発明のレーザ照射装置の板幅方向から見た説明図で あり、 プラ ッ トホーム 7 の移動機構の説明図である。
( b ) は、 本発明のレーザ照射装置の板幅方向から見た説明図で あり、 集光ミ ラ一 6の移動機構の説明図である。
〔図 15〕
レーザビーム伝搬距離と ビーム径との関係の模式図である。 〔図 16〕
ビーム形状制御の実施例の説明図であり、 ( a ) は f 1 = 375mm 、 f 2 = 200mm の集光ミ ラーで、 Wd l = 430mm 、 Wdc = 210mm に設 定したときの鋼板表面のビーム形状を示し、 ( b ) は ( a ) と同一 集光ミ ラーを用い、 Wd l 420mm 、 Wdc = 207mm に設定したときの 鋼板表面のビーム形状を示す図である。
〔図 17〕
レーザパルスピークパワー密度と鋼板のレーザ照射痕評価結果で あり、 ( a ) は鋼板 Aの、 ( b ) は鋼板 Bの耐レーザ光強度を示す 図である。 発明を実施するための最良の形態
本発明においては、 方向性電磁鋼板にパルスレーザ光を照射して 磁壁間隔を縮小して磁気特性を改善するために、 レーザ照射により 発生する周期的な還流磁区の圧延方向幅が 150/z m以下、 板厚方向 深さが 30 m以上、 かつ幅方向と深さ方向の長さの積が 4500〃 m 2 以上の条件を満足する場合に優れた磁気特性の改善が図れる もので ある。 その理由を以下に述べる。
方向性電磁鋼板の鉄損は異常渦電流損と ヒ ステリ シス損に分離さ れる。 異常渦電流損は鋼板の 180° 磁壁間隔が狭いほど低く なる。 レーザ磁区制御ではレーザ照射により圧延方向に周期的に弾性歪み を導入することで還流磁区 ( = 90° 磁区) を発生させる。 その結果 、 180° 磁壁間隔は狭ま り、 異常渦電流損が減少する。 180° 磁壁 で作られる磁区 (=主磁区) の細分化効果は発生する還流磁区量に 依存して高く なり、 異常渦電流損のみの低減の観点では還流磁区量 (=体積) が多い方が好ま しい。
一方、 ヒ ステリ シス損は還流磁区の圧延方向幅に正の相関がある 。 従って、 異常渦電流損を低減させるために歪み、 すなわち還流磁 区を過大に発生させると、 一般に還流磁区幅も増加するため、 ヒ ス テリ シス損が増加する。 従って、 全体と しての鉄損は増加に転ずる マク ロ的には還流磁区体積は入射する レーザの平均パワーに比例 する。 入射レーザ平均パワーと異常渦電流損、 ヒステリ シス損、 お よびこれらの合計である鉄損の関係は図 1 に模式的に示される。 また磁歪は還流磁区の圧延方向幅に正の相関がある。 従って、 異 常渦電流損、 ヒステリ シス損、 および磁歪をすベて低減するには還 流磁区体積は増加させつつ、 圧延方向の幅は減少させればよい。 す なわち最良の還流磁区形態は圧延方向に狭く 、 板厚方向に深く 、 力、 つ体積も一定以上あることである。
次に、 本発明者らは、 還流磁区幅、 および深さ と照射レーザビー ム形状の関係を調査し、 高い磁気特性が得られる磁区形状を探索し た。 まず還流磁区の圧延方向幅はビームの圧延方向径 d lに比例する その観点では d lは出来るだけ小さい方がよい。 図 8 にあるように d 1が 0. 28mm以下で磁歪が格段に減少することが判明した。 その際の 還流磁区幅を測定したところ 1 50 z m ( 0. 15mm) で、 かつ深さは 30 m以上であった。 また図 7で d lと鉄損改善率の関係を見ると d lが 0. 28mm近傍で鉄損改善が最大化している。 これは還流磁区幅減少に よる ヒ ステリ シス損の減少に起因する ものである。 しかし、 d lが 0. 20 ではむしろ鉄損改善率が低下した。 これは還流磁区の深さは 30 mあるにも係わらず、 幅は約 100 mであり、 従って還流磁区体 積が減少したためである。
以上の結果から、 還流磁区圧延方向幅は 150 // m以下が最適であ り、 この際、 深さ も 30 z m以上が必要であることがわかった。 従つ て磁区体積は圧延方向幅と板厚方向幅の積に比例するので、 その値 と して 4500 /z m2 以上が最適である。
次に、 本発明が係わるレーザ磁区制御法の要点は、 表面疵を抑制 した上で、 かつ効果的に熱歪みを導入することにある。
図 2 ( a ) は本発明による レーザ磁区制御法の実施形態の一例の 模式図であり、 ( b ) は照射部の拡大図である。 鋼板は圧延方向 ( 1 方向) に磁化容易方向(180° 磁区) がー致した方向性電磁鋼板で ある。 照射される Qスィ ッチ C02レーザパルスビームは直交する 1 , cの二方向をそれぞれ独立の集光ミ ラー、 あるいはレ ンズで圧延 方向に短軸 dlを、 板幅方向に長軸 dcを持つ楕円に集光される。 ここ でスキヤ ン方向と楕円ビームの長軸方向は一致しており、 集光ビ一 ムはポ リ ゴン ミ ラー等で一定間隔 Pcでスキャ ン照射される。 また圧 延方向には一定間隔 P1で照射される。 ここで dcは Pcより大き く なる ように設定することで、 連続するパルスレーザ光は鋼板上で重畳す る。
この手法におけるレーザの各照射パラ メ ータの関係式は式 ( 1 ) 、 ( 2 ) に示される。 ここで Ppはパルスピークパワー、 lpはピーク パワー密度、 Epはパルスエネルギー、 Upはスキャ ン線上の任意の点 での積算エネルギー密度である。 Sはビーム面積、 Vc, Fpはそれぞ れ C方向スキャ ン速度、 パルスの繰り返し周波数である。 nはパル スの重畳回数である。
Pp
I 式 ( 1 )
S
Ep 4 Ep
UP n = 式 ( 2 )
S π - de · Pc
π
( n = dc/Pc, S = (de - dc))
4
一方、 連続波レーザを用いた場合の照射パラメータは以下の式 ( 3 ) 、 ( 4 ) で表される。 ここで Pavは連続波レーザの平均出力、 て はスキ ヤ ン線上の任意点へのビーム照射時間である。
Pav
lp= 式 ( 3 )
S
4 - Pav
Up= Ip · τ = ( て = dc/Vc) ……式 ( 4 )
π · de · Vc
次に図 3 を用いてパルスレーザ、 連続波レーザによる照射痕の発 生、 熱歪みの導入原理について整理し、 本発明のかかわる レーザ磁 区制御の作用を説明する。
図 3 ( a ) にはレーザ波形を Qスィ ッチ YAGレーザ、 Qスィ ッチ C02レーザ、 および連続波レーザのそれぞれの場合について示した 。 特公平 5 - 32881 号公報にも示されるように、 Qスィ ッチ YAGレ —ザは特徴と してパルス時間が 0.01 s程度と非常に短く、 低パル スエネルギーにもかかわらずピークパワーは非常に高い。 それに比 ベ同じ Qスィ ッチレーザでも CO 2レーザの場合、 パルス時間幅は 0 .2〜 0.5〃 s と長く、 ピークパワーは比較的低い。 また特徴と して 初期パルスに続き、 低ピーク · 高エネルギーのテール部分があり、 テール時間長で入熱量の調整も可能である。
図 3 ( b ) は図 3 ( a ) で説明した各種レーザ照射による鋼板表 面の任意点における温度履歴の模式図である。 レーザ照射による表 面疵の発生は閾値温度 によって特徴づけられる。 また、 還流磁 区を発生させる熱歪みは閾値温度 T 2 で特徴づけられる。 T , は表 面絶縁皮膜の軟化 · 溶融温度に相当し、 約 800°Cである。 一方、 熱 歪みの解放温度から推測して、 T 2 は約 500°Cである。 従って、 照 射疵を抑制して、 且つ熱歪みを導入するには鋼板温度を 500°C以上 、 かつ 800°C以下に制御すればよい。
次に温度履歴と歪みの導入効果について説明する。 図 3 ( b ) 中 の温度上昇の傾きに相当する加熱速度は照射される レーザの単位時 間当たりのエネルギー密度、 すなわちパワー密度 I pに比例する。 熱 歪みは鋼板の急速加熱 · 急速冷却によつて導入されるため、 高ピ一 クパワーの レーザを用いることで歪み導入効率は高い。 従って、 連 続波レーザに比べ、 パルス Qスィ ツチレーザの方が低照射ェネルギ —で磁性改善を行う ことが可能である。 一方、 歪み総体積、 および 板厚方向への歪み浸透深さは照射された総エネルギー密度 U pに比例 し、 図 3 ( b ) では温度履歴の時間積分値 (図の斜線部面積) に比 例する。
従って、 本発明の係わる理想的なレーザ磁区制御は、 鋼板温度が 500〜 800 °Cの範囲で、 パルスレーザ照射により急速加熱 · 急速冷 却を繰り返し、 且つ任意の点に照射される総エネルギ一量 U pをでき るだけ効率的に導入することにある。
以上の知見を基に、 Qスィ ッチ C0 2レーザを用いた本発明の磁気 特性改善方法を詳細に説明する。 本発明に用いる Qスィ ッ チ C02レ 一ザはピーク出力が Qスィ ッチ YAGレーザより低く、 連続波レーザ のそれよりは高いパルスレーザ装置である。 一般にはピーク出力は 1 0〜 l O O O kWの範囲である。 パルス時間幅は初期パルス時間幅が 200 ~ 500 n s , テールを含めた全長が 1〜10 sである。
パルスレーザビーム照射方法は図 2で説明したように、 1 , c方 向をそれぞれ独立に集光し、 スキャ ン照射される。 特にスキャ ン方 向である c方向と集光ビームの長軸は一致し、 且つそのスキャ ン間 隔 P cは楕円の長軸長 d c以下に設定し、 パルスレーザビームが鋼板表 面で重畳される。 パルスピークパワー密度 I pはピークパワーとビー ム集光面積を調整し、 ビーム重畳条件下においても鋼板表面温度が 皮膜損傷閾値 に達しないよう調整される。 この様に I pを抑制す る ビーム照射条件下では、 同時に単一パルス当たりの照射ェネルギ 一密度も減少するため、 一般的には効果的な歪み導入は不可能であ る。 しかし本発明ではビーム重畳により鋼板上の任意の点には複数 のパルスが照射される。 各点に照射されるパルス数 nはビーム長軸 d cとスキャ ン間隔 P cにより前述の式 ( 2 ) で与えられる。 従って図 3 ( b ) に示すように、 パルス繰り返し周波数 F pで n個のパルスに よる間欠的な急速加熱 · 急速冷却が繰り返されるため、 パルスレ一 ザの利点である高い歪み導入能力は確保したまま、 エネルギー的に はパルス重畳による積分効果で U pを増加させ、 磁区細分化に必要十 分な歪みを与えることが可能である。
以上説明した作用により、 本発明ではレーザ照射痕を抑制し、 効 率的な磁区制御効果が得られるという利点がある。
次に Qスィ ッチ C 0 2レーザを用いる本発明を、 Qスィ ッチ YAGレ 一ザを用いる場合と比較する。 図 3 ( b ) に示すように Qスィ ッチ YAGレーザの場合、 パルス時間幅が短く、 かつピークパワーが高い 。 例えばフラ ッ シュラ ンプ励起の YAGレーザ媒質に、 電気光学結晶 を用いて Qスィ ツチ発振を行う場合、 一般的にパルス時間幅 0. 0 1 s以下、 パルスピークパワーは 1 MW以上となる。 この様な短時間幅 、 高ピークパルスレーザ光では微妙な鋼板の加熱 · 温度制御は困難 であり、 容易に皮膜損傷が発生する。 そこで本発明の照射法と同様 にビーム径を拡大し、 単一パルスあたりの 1 pを抑制することは可能 である。 しかし同時に単一パルスあたりのエネルギー密度も著しく 低下し、 かつパルス時間幅が短いため、 パルスエネルギー積分効果 を得るには、 1 Mll z 以上の非常に早いパルス繰り返し周波数での動 作が必要であり、 現実的には不可能である。 従って、 Qスィ ッ チ Y A Gレーザでは照射痕の発生しない方向性電磁鋼板の特性改善は困難 である。
また工業応用の観点からも Qスィ ツチ C 0 2レーザは大きな利点を 持つ。 電磁鋼板製造工程における レーザ処理速度を高速化するため には、 パルスエネルギーとパルス繰り返し周波数の積である平均出 力の大きな Qスィ ツチレーザが望まれる。 Qスィ ツチレーザの平均 出力はベースとなる連続波レーザの平均出力に比例する。 固体結晶 である YAGレーザの場合、 平均出力と して 5 kW程度が限界であり、 一方、 ガス媒質である C0 2レーザは大型化が比較的容易で、 40 kW以 上の出力を持つ連続波レーザ装置も市販されている。 また C0 2レ一 ザは装置 ' 稼動コス トが廉価である。 よって Qスィ ッチ C0 2レーザ を使用することで、 低コス トで、 高速 ' 大型の電磁鋼板製造工程に 磁性改善技術の適用が可能であるという利点を有する。
図 1 3、 および図 14は本発明の装置の概要を示す図である。 本発明 による方向性電磁鋼板の製造方法では、 図 1 3に示すように、 レーザ ビームは鋼板 8表面上で、 板幅方向に長軸 d 1 を持ち、 圧延方向に 短軸 d cを持つ楕円に集光される。 集光されたレーザビームは板幅 方向にある一定速度 Vでスキヤ ンされる。 連続波レーザビームを用 いる場合は、 任意の点における レーザ照射時間 Tは式 ( 5 ) で示さ れる。 またパルス レーザビームを用いる場合は間欠照射となり、 パ ルス繰り返し周波数を F p ( H z ) とするとスキャ ン方向の照射ピッチ P 1 は式 ( 6 ) で示される。 また、 圧延方向には図示されていない レーザビーム間欠遮断装置により一定間隔 P 1 で照射される。
T = d 1 / V …式 ( 5 )
P 1 = V / F p …式 ( 6 )
図 1 4 ( a ) , ( b ) は、 本発明の装置を扳幅方向の断面から見た 説明図である。 レーザ装置 1 より発振されたレーザビーム LBは ミ ラ 一 2 を介して、 プラ ッ 卜ホーム 7 に導入される。 プラ ッ 卜ホーム 7 上には焦点距離が f 1 である板幅方向集光円柱集光ミ ラ一 3、 ポリ ゴン ミ ラ一 4 、 スキャ ン ミ ラ一 5 、 および焦点距離が f 2 である圧 延方向集光円柱集光ミ ラ一 6が備えてある。 プラ ッ 卜ホーム 7 に入 射したレーザビーム LBはミ ラ一 3 により板幅方向のみ焦点距離 f 1 で集光される。 次にレーザビームし Bはポリ ゴン ミ ラー 4 と ミ ラ一 5 の組み合わせで、 板幅方向に平行したスキヤ ンビームに変換される 。 更に ミ ラー 6 により圧延方向にのみ焦点距離 f 2で集光され、 鋼 板 8 に照射される。 図 1 2はビームの伝搬距離とビーム径との関係を 示す模式図である。 レーザビームは鋼板面上において f 1, f 2、 および W(U, Wd c で決まるビーム径 d 1 、 および d c に集光される 図 1 3に示すように、 プラ ッ トホーム 7 は固定台 1 1に移動装置 9 を 介して設置され、 鋼板 8 に対して上下動する機構を備えている。 ま た集光ミ ラー 6 はプラ ッ トホーム 7上に移動装置 1 0を介して設置さ れており、 圧延方向に平行移動する機構を備えるものである。 従つ て、 図 1 4に示すよ う にプラ ッ トホーム 7の上下移動により板幅方向 集光ミ ラー 3 と鋼板 8 との距離 Wd 1 、 および圧延方向集光ミ ラ一 6 と鋼板 8 との距離 Wd cは同時に変更される。 一方、 ミ ラー 6の圧延 方向の平行移動により、 Wd 1 のみが独立に変更される。 従って、 こ れら二つの移動量の組み合わせにより Wd 1 と Wd cは任意に変更 · 調 整される。 この結果、 集光ミ ラ一の焦点距離 f 1 , f 2、 すなわち 曲率半径を変更しなくても鋼板表面上の板幅方向径 d 1 、 および圧 延方向怪 d c の微妙な調整が容易に行えるのである。
また、 本照射装置の特徴は図 1 3、 図 14に示すように、 レーザビー ム径を板幅方向 ( C ) と圧延方向 ( L ) でそれぞれ独立に集光ミ ラ 一 3, 6で制御し、 かつ C方向集光系が L方向集光系に比べ長焦点 を持つこ とにある。
本発明の技術では特に L方向ビーム径 d lを 0. 2〜0. 3mm 程度に微 小集光するこ とが重要であることから、 ミ ラ一 6 には比較的短焦点 の集光ミ ラーが必要である。 その結果、 焦点深度も小さ く なり、 ミ ラ一 6 と鋼板 8 の距離 Wd cには微妙な調整機能が必要であり、 移動 機構 9 は必須である。 しかし、 本発明の構成のように板幅方向集光 ミ ラ一 3 を独立に設け、 かつそれを圧延方向集光ミ ラー 6 より長焦 点のミ ラーにする場合、 その焦点深度は ミ ラー 6のそれより大き く なる。 その結果、 移動機構 9 による Wd c調整の範囲では扳幅方向径 dcの増減はほとんど無視することも可能である。
従って、 図 13に示す様な移動機構 9, 10を設けて Wd l, Wd cを独 立に制御することが最も望ま しいが、 上述のような ミ ラ一構成の特 徴より、 移動機構 10は省略すること も可能である。
本発明によるパルスレーザ磁区制御された方向性電磁鋼板の周期 的還流磁区を詳細に観察した結果、 表 1 に示すように従来法 (パル スレーザによる表面照射痕の発生する磁区制御法) のものに比較し 、 深い還流磁区が存在することが判明し、 前記還流磁区幅が図 11 ( b ) に示すように 150/z m以下に減少し、 従来法図 11 ( a ) に比べ 圧延方向幅が狭い。 従って、 表 1 、 図 11から明らかなように本発明 では従来法に比べ、 狭く深い還流磁区形状をもつ方向性電磁鋼板が 得られた。
〔表 1 〕
Figure imgf000018_0001
〇 : 還流磁区有り △ : 還流磁区部分的有り X : 還流磁区なし また、 電磁鋼板の素材と しての磁歪値は製品である 卜ラ ンスの騒 音に直接的に比例し、 一般に磁歪が 1.3 X 10— 6以下であると、 トラ ンス騒音は人が不快感を感じない程度に低下する。 さ らに磁歪が
1 6
訂正された/ ¾紙( 91) 0.9X 10— 6以下であれば、 ト ラ ンス騒音は格段に低下し、 全く 不快 感を感じないものとなる。 本発明の電磁鋼板は還流磁区形状の特性 により (0.23mm材においては) 磁歪が極力低減され、 表に示すよう に磁歪値は 0.9 X 10_6以下である。 従って、 本発明の電磁鋼板を使 用することで従来に比べ、 極めて低騒音の ト ラ ンスを製造すること ができる。
板厚が 0.23mm、 0.27mmの場合における連続波レーザ法、 パルスレ —ザ従来法および本発明による磁歪 ( λ 19ρ- p 圧縮) の値をそれぞ れ表 2、 表 3 に示した。
〔表 2 ]
Figure imgf000019_0001
表 2、 表 3 から明らかなように、 本発明により得られた方向性電 磁鋼板の磁歪レベルは従来の連続波レーザ法或いはパルスレーザ従 来法により製造された方向性電磁鋼板に比べ優れた磁歪特性を有し ていることがわかる。
1 7
訂正された甩紙 実施例
板厚 0 . 23mmの高磁束密度方向性電磁鋼板の表面に本発明の方法 により Qスィ ッチ C02レーザを照射し、 照射痕の発生、 磁気特性の 改善効果を評価した。 こ こで L方向ビーム径 d 1は約 0.30mmに固定し 、 C方向ビーム径 dcは 0.50~ 12.00隱で変更し、 lpを調整した。 Q スィ ッチ発振のピーク出力 Ppは 20kW、 パルスエネルギー Epは 8.3mJ 、 パルス繰り返し周波数 Fpは 90kHz であり、 平均出力は約 750Wで ある。 またスキャ ン速度 Vcは 43m/ sであり、 Qスィ ッチレーザ照 射時の c方向照射ピッチ Pcは約 0.50mm、 L方向ピッチ P I は 6.5mm である。 連続波レーザの場合、 平均出力 Pavは 850Wであり、 その 他の照射条件は Qスィ ツチレーザの場合と同じである。
図 4 は I pと表面のレーザ照射痕グレー ドの関係である。 レーザ照 射痕グレ一 ドは目視と耐銪試験による 5段階評価である。 すなわち 、 グレー ド 1 は明確な白色の痕跡、 グレー ド 2 はグレー ド 1 より も dl方向の傷が細かく 白色の痕跡、 グレー ド 3 は微小な白色の痕跡、 グレー ド 4 は顕微鏡観察で痕跡確認可能、 グレー ド 5 は顕微鏡観察 で痕跡が観察しえない、 という評価である。 グレー ド 3以下では銷 発生があり、 グレー ド 4以上では銪発生がない ものである。 図 4 よ り、 Qスィ ッ チ レーザの照射痕発生閾値パヮ一密度は連続波レーザ のそれに比べ 1 桁以上高い。 これは図 3 ( b ) で示すように Qスィ ツチレーザの場合、 ピークパワーは高いものの、 間欠的照射である ため、 ピークパワーは高く ても鋼板温度は損傷閾値 T , まで達しな いためである。 それに比べ、 連続波レーザは瞬時的パワーは低いも のの連続的な熱の蓄積が影響し、 低パワーでも皮膜の溶融損傷が発 生する ものである。 図 4 より Qスィ ッ チ C02レーザの場合、 皮膜損 傷閾値パワー密度は 12kWZmm2 であり、 1 pをこの値以下に調整する ことで照射痕を発生させないパルス レーザによる磁気特性改善が行 えるこ とが明らかである。
図 5 は図 4で説明した照射条件の中で、 特にレーザ照射痕が発生 しなかった C方向ビーム径を選択し、 鉄損改善率を Upをパラメ 一夕 と して、 連続波 C02レーザ法と Qスィ ッチ C02レーザ法を比較した 結果である。 ここで C方向ビーム径は Qスィ ッチレーザの場合 8.7 mm、 連続波レーザでは約 10.5mmである。 これより Qスィ ッチ C02レ —ザを使用する本発明により、 従来の連続波レーザ法に比べ、 より 低い照射エネルギー量で同等以上の鉄損改善率が得られることが明 らかである。
ところで鉄損と並び電磁鋼板の重要な磁気特性である磁歪は、 鋼 板を ト ラ ンスに使用 したときの騒音に比例する要因であり、 これは 小さいほど望ま しい。 図 6 は磁歪と総照射エネルギー Upの関係を Q スィ ッチ C02レーザと連続波 C02レーザで比較した結果である。 こ の図に示されるように磁歪は Upが大きいほど増加する。 図 5で説明 したように Qスィ ッチ C02レーザで処理をする場合、 より低い照射 エネルギーで高い鉄損改善効果が得られるため、 その結果、 連続波 レーザ処理材に比べ磁歪が低減されるという効果がある。
また、 鋼板の磁区模様は従来法と異なり、 還流磁区幅が図 11 ( b ) に示すように狭い、 更に深さ方向の弾性歪は図 12の磁区模様の変 化からも分かるように、 30〃 mより も深く 、 本発明の製品では 30 m以上の深い部分でも還流磁区が存在していることがわかる。
以上、 本発明の基本骨子である Qスィ ッチ C02レーザの楕円ビー ム重畳照射法の基本作用について実施例を示した。 しかし、 本発明 においては鋼板の種類、 楕円ビーム形状、 照射ピッチ、 照射パワー • エネルギー密度、 パルス繰り返し周波数等を限定することで更に 高い磁気特性改善効果を得ることが可能である。 そこで次に照射条 件限定による特性改善の一例を挙げる。 図 7 および図 8 は本発明の照射方法を用いて、 楕円ビームの短軸 、 長軸を種々変更して、 長軸長 d 1 と鉄損改善率、 および磁歪の関 係をまとめたものである。 こ こでは被照射素材と して板厚 0.23mmの 高磁束密度方向性電磁鋼板を用い、 照射条件は Pc= 0.5mm, P 1 = 6.5mm. Fp= 90kHz 、 Vs = 43m/ s . Ep= 8.3mJ、 Pp=20kWである 。 図 6 は dcを 0.5~12.0 mm, d 1 を 0.20〜0.40mmの範囲で変更した 時の鉄損改善率を d 1 との関係でまとめた結果である。 図 7 より、 d 1 = 0.25〜0.35mmの範囲において、 より高い鉄損改善率が得られ るこ とが明らかである。 これは次のように説明される。 式 ( 2 ) よ り、 Pcが固定された条件では d 1 を縮小することで Upが増加するた め、 歪みが効果的に導入される。 更に歪みの圧延方向幅が狭ま り、 ヒステリ シス損が減少したこと も鉄損の改善に寄与している。 従つ て、 鉄損改善率は向上する。 しかし d 1 が著しく縮小されると歪み の L方向長さ も減少し、 歪み体積は減少する。 鉄損改善は歪みを起 点とする磁区の細分化にあるため、 歪み体積が著し く減少すると磁 区細分化効果も減少するこ とになる。 その結果、 図 7 のよ う に d 1 に関しては最適点が存在すると考えられる。
次に図 8 は同様に d 1 と磁歪の関係をま とめたものである。 磁歪 は d 1 の縮小で単調に減少する。 磁歪の原因は外部磁界が 180° 磁 区方向に沿つて印加されたときに生ずる還流磁区の伸縮にあるが、 特に L方向の伸縮の影響が大きい。 従って、 L方向の還流磁区幅、 すなわち歪みの L方向幅が狭い方が磁歪は低い。 従って図 8で明ら かなように照射ビームの L方向幅 d 1 の縮小で磁歪が低減されるも のである。 図 7 および図 8 より d l は 0.25〜0.35iMiの範囲で鉄損、 磁歪特性向上の両立が成される。
次に楕円ビームの C方向径 dcについての最適値を示す。 図 9 およ び図 10は前述の照射条件に同じで、 更に d 1 を 0.28mmに固定した場 合の dcと鉄損改善率、 および磁歪の関係である。 図 9 より dcを拡大 するこ とで鉄損改善率は向上し、 10mm以上では急激に劣化する。 こ こで dcが G 關以上でレーザ照射痕は発生しない。 dcが 1 程度に小 さい場合は式 ( 1 ) で示されるようにピークパヮ一密度 IPが高く な り、 その結果、 レーザ照射痕も発生するが、 その際、 皮膜の蒸発に より鋼板表面でプラズマが発生する。 プラズマはレーザ光の吸収媒 質であるため鋼板へのレーザ入熱効率が減少する。 しかし、 dcが拡 大されると Ipは低下し、 プラズマ発生はほとんど観測されない。 ま た式 ( 2 ) より Upは dcに対して一定であるため、 プラズマが抑制さ れた分、 より効果的に入熱が行われ、 鉄損改善効果が上昇する もの である。 しかし、 更に dcを拡大すると、 単一パネルのエネルギー密 度が著し く減少するため、 パルスの重畳によっても十分な加熱 · 歪 み導入が成されず、 鉄損改善は劣化する。 従って、 レーザ照射痕の 抑制、 鉄損改善の観点で dcは 6.0〜10.0mmが最適である。
図 10より磁歪は dcの拡大で単調に減少する。 これもやはりプラズ マの有無で説明される。 レーザによる直接加熱を一次熱源とすると
、 鋼板の極近傍で発生するプラズマは二次熱源と して働く 。 プラズ マはレーザビ一ム径より も鋼板面上での面積が大きいため、 プラズ マを熱源と した歪み幅は、 レーザビームの L方向径より大き く なる 。 前述したように磁歪は歪みの 1 方向幅に比例するため、 プラズマ の存在で磁歪は増大する。 一方、 dc拡大でプラズマ影響は軽減され るが、 dc= 10mm以上の領域では図 8 に示した通り十分な歪みが導入 されていないため、 磁歪も低いと理解される。 従って、 dcの最適な 範囲はやはり 6.0〜 10.0mmと限定される。
図 16 ( a ) , ( b ) は本発明装置においてビーム形状制御を行つ た実施例におけるビーム形状の測定結果を示す図である。 こ こでレ —ザ光は連続波 C02レーザを用い、 ビームの集光性を示すパラメ 一 タである M 2 値は 5. 7である。 ここでミ ラ一 3への入射ビーム直径 は約 68mmである。 図 16 ( a ) は f 1 = 375mm, f 2 = 200mmの集光 ミ ラ一を本発明の集光装置に配置し、 それぞれ調整機構により Wd 1 = 430mm、 および Wd c 二 2 1 0mmに設定したときの鋼板表面でのビー ム形状測定結果である。 この設定により、 板幅方向径に相当する楕 円長軸 d 1 = 4. 3 、 および圧延方向径に相当する楕円短軸 d c = 1. 1關力く得られた。
次に、 図 1 6 ( b ) は同じ集光ミ ラ一を用い、 本発明の調整機構に より Wd l = 420mm, Wd c = 207匪に設定した場合の鋼板表面でのビ ーム形状測定結果である。 この設定では d l = . 9mm. d c = 1 . 4 mm力く得られた。
以上示した実施例により、 本発明の照射装置では集光光学部品の 焦点距離を変更せずに集光楕円形状を容易に調整することが可能で ある。
次に本発明を、 レーザ照射痕を抑制した電磁鋼板の鉄損改善装置 に適用 した場合の例を示す。 図 17 ( a ) , ( b ) は高磁束密度方向 性電磁鋼板の製造工程において、 焼鈍条件、 および絶縁コ一ティ ン グ液が異なる 2種の鋼板 A , Bの耐レーザ光強度を調べた結果であ る。 ここではレーザ光と して Qスィ ッチパルス発振 C0 2レーザを使 用した。 図 17の横軸はレーザパルスのピークパワー密度であり、 縦 軸は表面照射痕の段階評価 ( 1 〜 5 ) である。 評価値 5で、 目視観 察による痕跡は見られず、 同時に耐銪加速試験でも銪の発生は見ら れず、 表面の特性と してはレーザを照射しない材料と全く 同じであ る。 この結果から明らかなように、 焼鈍条件、 コーティ ング液の違 いにより、 耐レ一ザ強度に差が発生することがわかる。
この評価を基に A , B各鋼板でレーザ照射痕の発生しないビーム 形状に整形し、 図 1 3および図 14に示す本発明のビーム照射装置を用 いて鋼板に照射した。 この時のレーザ照射条件および鉄損改善結果 を表 2 に示す。 こ こでレーザ光はビーム集光パラメ ータ M 2 力く 1. 1 である Qスィ ッチ C02レーザを用いた。 集光ミ ラー 3への人射ビー ム径は約 1 3 である。 また、 鉄損改善率はレーザ照射前の鉄損値に 対する レーザ照射前後の鉄損値の差の比率である。
〔表 4 ]
Figure imgf000025_0001
この結果から、 本発明により、 電磁鋼板の表面の耐レーザ光強度 が変化しても、 安定的に表面レーザ照射痕を発生させることなく鉄 損の改善された方向性電磁鋼板を製造できる。 産業上の利用可能性
以上に説明したように本発明の Qスィ ツチ C0 2レーザを用いた方 向性電磁鋼板の鉄損改善法によれば、 従来パルスレーザ法で問題で あった表面のレーザ照射痕が発生せず、 且つ連続波レーザ法で問題 であつた磁歪の劣化を抑制できるという利点を有する。 またレーザ 照射条件に合わせて集光ビーム形状を限定することで、 より高い磁 気特性を得ることが可能である。 更に、 YAGレーザに比べ高平均出 力発振が可能で、 設備 · 稼動コス トが廉価な Qスィ ッ チ C02レーザ を使用することから、 高速 · 大規模の連続処理に対しても対応可能 であり、 かつ製造コス トを低減できるという効果がある。

Claims

請 求 の 範 囲
1. パルスレーザ光を照射して 180° 磁壁間隔を縮小して磁気特 性を改善した方向性電磁鋼板において、 レーザ照射により発生する 周期的な還流磁区の圧延方向幅が 150/z m以下、 板厚方向深さが 30 〃 m以上、 かつ幅方向と深さ方向の長さの積が 4500 // m 2 以上であ ることを特徴とする方向性電磁鋼板。
2. パルスレーザ光を照射して 180° 磁壁間隔を縮小して磁気特 性を改善した方向性電磁鋼板において、 レーザ照射により発生する 周期的な還流磁区の圧延方向幅が 150 m以下、 板厚方向深さが 30 〃 m以上、 かつ幅方向と深さ方向の長さの積が 4500 m 2 以上であ り、 かつ、 板厚が 0.23mmの材料で磁歪 (ス 19p- p 圧縮) が 0.9x 10 6以下であることを特徴とする方向性電磁鋼板。
3. パルスレーザ光を照射して 180° 磁壁間隔を縮小して磁気特 性を改善した方向性電磁鋼板において、 レーザ照射により発生する 周期的な還流磁区の圧延方向幅が 150 m以下、 板厚方向深さが 30 〃 m以上、 かつ幅方向と深さ方向の長さの積が 4500 m 2 以上であ り、 かつ、 板厚が 0.27mmの材料で磁歪 (ス 19p- p 圧縮) が 1.3x 10 6以下であることを特徴とする方向性電磁鋼板。
4. 方向性電磁鋼板表面にパルスレーザビームを照射して磁気特 性を改善する方向性電磁鋼板の製造方法であって、 照射レ—ザビー ムの集光形状が板幅方向に長軸を持つ楕円であり、 かつ連続するパ ルス レーザビームの被照射部分を空間的に重畳させ、 前記鋼板表面 の皮膜を何ら損傷させるこ となく連続照射することを特徴とする磁 気特性の優れた方向性電磁鋼板の製造方法。
5. 方向性電磁鋼板表面にパルスレーザビームを照射して磁気特 性を改善する方向性電磁鋼板の製造方法であつて、 照射レーザビー
2 5
訂正された用紙 (mi 1) ムの集光形状が板幅方向に長軸を持つ楕円であり、 単一レーザパル スの照射パワー密度は鋼板表面の皮膜損傷閾値以下であり、 かつ連 続するパルスレーザビームの被照射部分を空間的に重畳させ、 前記 鋼板表面の皮膜を何ら損傷させることなく連続照射することを特徴 とする磁気特性の優れた方向性電磁鋼板の製造方法。
6. 前記パルスレーザに Qスィ ッチ C 0 2レーザを用いることを特 徵とする請求の範囲 2 または 3記載の磁気特性の優れた方向性電磁 鋼板の製造方法。
7. 単一集光パルスのピークパワー密度が、 1 2 kWZ mm 2 以下であ ることを特徴とする請求の範囲 2 , 3 または 4記載の磁気特性の優 れた方向性電磁鋼板の製造方法。
8. 前記照射楕円ビームの短軸が 0. 25 ~ 0. 35mm、 長軸が 6. 0〜1 0 . 0mmであることを特徴とする請求の範囲 2, 3 , 4 または 5記載の 磁気特性の優れた方向性電磁鋼板の製造方法。
9. 方向性電磁鋼板表面にパルス レーザビームを照射して磁気特 性を改善する方向性電磁鋼板の製造装置であって、 照射レーザビー ムの鋼板板幅方向の集光装置および鋼板圧延方向の集光装置をそれ ぞれ独立に具備することを特徴とする磁気特性の優れた方向性電磁 鋼板の製造装置。
1 0. 前記鋼板板幅方向および鋼板圧延方向のそれぞれの集光装置 と被照射方向性電磁鋼板との距離をそれぞれ独立に変更可能な調整 機構を具備することを特徴とする磁気特性の優れた方向性電磁鋼板 の製造装置。
1 1 . 方向性電磁鋼板表面にパルスレーザビームを照射して磁気特 性を改善する方向性電磁鋼板の製造装置であつて、 照射レーザビー ムの板幅方向の集光装置の焦点距離が圧延方向の集光装置の焦点距 離より も長いことを特徴とする磁気特性の優れた方向性電磁鋼板の 製造装置
PCT/JP1998/000303 1997-01-24 1998-01-26 Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication WO1998032884A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/125,574 US6368424B1 (en) 1997-01-24 1998-01-26 Grain-oriented electrical steel sheets having excellent magnetic characteristics, its manufacturing method and its manufacturing device
EP98901008A EP0897016B8 (en) 1997-01-24 1998-01-26 Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device
DE69835923T DE69835923T2 (de) 1997-01-24 1998-01-26 Verfahren und vorrichtung zur herstellung von kornorientiertem stahlblech mit hervorragenden magnetischen eigenschaften

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/11718 1997-01-24
JP01171897A JP3361709B2 (ja) 1997-01-24 1997-01-24 磁気特性の優れた方向性電磁鋼板の製造方法
JP9/107748 1997-04-24
JP9107748A JPH10298654A (ja) 1997-04-24 1997-04-24 磁気特性の優れた方向性電磁鋼板の製造装置

Publications (1)

Publication Number Publication Date
WO1998032884A1 true WO1998032884A1 (fr) 1998-07-30

Family

ID=26347219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000303 WO1998032884A1 (fr) 1997-01-24 1998-01-26 Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication

Country Status (5)

Country Link
US (1) US6368424B1 (ja)
EP (1) EP0897016B8 (ja)
CN (1) CN1083895C (ja)
DE (1) DE69835923T2 (ja)
WO (1) WO1998032884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755637A (zh) * 2012-11-08 2015-07-01 新日铁住金株式会社 激光加工装置以及激光照射方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60139222D1 (de) * 2000-04-24 2009-08-27 Nippon Steel Corp Kornorientiertes Elektroblech mit ausgezeichneten magnetischen Eigenschaften
KR100442099B1 (ko) * 2000-05-12 2004-07-30 신닛뽄세이테쯔 카부시키카이샤 저철손 및 저소음 방향성 전기 강판 및 그의 제조 방법
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP4398666B2 (ja) * 2002-05-31 2010-01-13 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板およびその製造方法
JP4510757B2 (ja) * 2003-03-19 2010-07-28 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板とその製造方法
TWI273157B (en) * 2003-07-22 2007-02-11 Nippon Steel Corp Joining structure
TWI305548B (en) 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
RU2371487C1 (ru) * 2005-11-01 2009-10-27 Ниппон Стил Корпорейшн Способ и устройство для изготовления листа текстурированной электротехнической стали с прекрасными магнитными свойствами
JP2009527914A (ja) * 2006-02-23 2009-07-30 ピコデオン エルティーディー オイ 太陽電池ならびに太陽電池を生産する装置および方法
JP5000182B2 (ja) * 2006-04-07 2012-08-15 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
PL2418294T3 (pl) * 2009-04-06 2020-06-01 Nippon Steel Corporation Sposób obróbki stali na blachę cienką ze stali elektrotechnicznej o ziarnach zorientowanych i sposób wytwarzania blachy cienkiej ze stali elektrotechnicznej o ziarnach zorientowanych
EP2602342A4 (en) * 2010-08-06 2013-12-25 Jfe Steel Corp CORNORATED MAGNETIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
JP5593942B2 (ja) * 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN102477484B (zh) 2010-11-26 2013-09-25 宝山钢铁股份有限公司 一种快速激光刻痕方法
DE102011000712A1 (de) 2011-02-14 2012-08-16 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Erzeugen eines kornorientierten Stahlflachprodukts
JP5912264B2 (ja) * 2011-02-28 2016-04-27 日本発條株式会社 レーザー加工方法及び装置
WO2012155967A1 (de) * 2011-05-18 2012-11-22 Siemens Aktiengesellschaft Geräuscharmer transformator
KR101998934B1 (ko) * 2011-06-01 2019-07-10 닛폰세이테츠 가부시키가이샤 방향성 전자기 강판의 제조 장치 및 방향성 전자기 강판의 제조 방법
BR112013030612B1 (pt) * 2011-06-03 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Aparelho para a fabricação de chapa de aço para fins elétricos de grãos orientados e método para fabricar chapa de aço para fins elétricos de grãos orientados
US10020101B2 (en) 2011-12-22 2018-07-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same
EP2799561B1 (en) * 2011-12-27 2019-11-27 JFE Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
RU2570250C1 (ru) * 2011-12-27 2015-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированный лист из электротехнической стали
JP6010907B2 (ja) 2011-12-28 2016-10-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
KR101370634B1 (ko) * 2011-12-29 2014-03-07 주식회사 포스코 전기강판 및 그 제조방법
EP2933343B1 (en) * 2012-10-31 2019-04-17 JFE Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
RU2514559C1 (ru) * 2013-03-05 2014-04-27 Общество с ограниченной ответственностью "ВИЗ-Сталь" Способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь
BR112016030522B1 (pt) * 2014-07-03 2019-11-05 Nippon Steel & Sumitomo Metal Corp aparelho de processamento a laser
KR101562962B1 (ko) * 2014-08-28 2015-10-23 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 자구미세화 장치 및 이로부터 제조되는 방향성 전기강판
CN104673991A (zh) * 2014-12-03 2015-06-03 华北电力大学 一种通过激光刻痕改善电工钢磁性能的方法
CN105185503B (zh) * 2015-09-24 2018-01-19 国网智能电网研究院 一种电工钢板材及其制备方法
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
CN113348257B (zh) * 2019-01-28 2023-04-14 日本制铁株式会社 方向性电磁钢板及其制造方法
TWI817019B (zh) 2019-06-28 2023-10-01 日商博邁立鋮股份有限公司 鐵基非晶質合金薄帶及其製造方法、鐵芯和變壓器
KR20230034355A (ko) * 2020-09-04 2023-03-09 제이에프이 스틸 가부시키가이샤 방향성 전기 강판
DE102021202644A1 (de) * 2021-03-18 2022-09-22 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Ableiterfolie für Batterien

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933802A (ja) * 1982-07-30 1984-02-23 アームコ、アドバンスト、マテリアルズ、コーポレーション 磁性材料の鉄損の改善方法
JPH0657335A (ja) * 1992-08-07 1994-03-01 Nippon Steel Corp パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置
JPH0790385A (ja) * 1993-09-14 1995-04-04 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468551A (en) * 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor
US4645547A (en) * 1982-10-20 1987-02-24 Westinghouse Electric Corp. Loss ferromagnetic materials and methods of improvement
DE4314601C2 (de) * 1993-05-04 1996-08-08 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum mit fokussiertem Licht erfolgenden Behandeln von kornorientierten Werkstücken
EP0870843A1 (en) * 1995-12-27 1998-10-14 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933802A (ja) * 1982-07-30 1984-02-23 アームコ、アドバンスト、マテリアルズ、コーポレーション 磁性材料の鉄損の改善方法
JPH0657335A (ja) * 1992-08-07 1994-03-01 Nippon Steel Corp パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置
JPH0790385A (ja) * 1993-09-14 1995-04-04 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755637A (zh) * 2012-11-08 2015-07-01 新日铁住金株式会社 激光加工装置以及激光照射方法
US9607744B2 (en) 2012-11-08 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus and laser irradiation method

Also Published As

Publication number Publication date
EP0897016B1 (en) 2006-09-20
CN1083895C (zh) 2002-05-01
DE69835923D1 (de) 2006-11-02
EP0897016A4 (en) 2004-06-02
CN1216072A (zh) 1999-05-05
US6368424B1 (en) 2002-04-09
DE69835923T2 (de) 2007-09-13
EP0897016A1 (en) 1999-02-17
EP0897016B8 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
WO1998032884A1 (fr) Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication
KR101060746B1 (ko) 방향성 전자 강판의 자기 특성 개선 방법
JP3361709B2 (ja) 磁気特性の優れた方向性電磁鋼板の製造方法
EP1880396B1 (en) Low core loss grain-oriented electrical steel sheet and method for producing the same
JP4669565B2 (ja) レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法
JP2003129135A (ja) 低鉄損一方向性電磁鋼板の製造方法
JP3482340B2 (ja) 一方向性電磁鋼板とその製造方法
RU2548544C2 (ru) Способ быстрого нанесения насечек с помощью лазера
JP4091749B2 (ja) 磁気特性の優れた方向性電磁鋼板
WO1997024466A1 (fr) Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication
JP7010311B2 (ja) 方向性電磁鋼板
KR100479213B1 (ko) 자기 특성이 우수한 방향성 전기 강판
CA2939336C (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
JP4705382B2 (ja) 一方向性電磁鋼板およびその製造方法
JP2002292484A (ja) レーザによる溝加工装置
JP4598321B2 (ja) 磁気特性の優れた方向性電磁鋼板
JPH10298654A (ja) 磁気特性の優れた方向性電磁鋼板の製造装置
JP2006117964A (ja) 磁気特性の優れた方向性電磁鋼板とその製造方法
RU2776383C1 (ru) Лист анизотропной электротехнической стали и способ его производства
CA3187406A1 (en) Grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800062.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09125574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998901008

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998901008

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998901008

Country of ref document: EP