WO1998029685A1 - Superheated steam generator - Google Patents

Superheated steam generator Download PDF

Info

Publication number
WO1998029685A1
WO1998029685A1 PCT/JP1997/004781 JP9704781W WO9829685A1 WO 1998029685 A1 WO1998029685 A1 WO 1998029685A1 JP 9704781 W JP9704781 W JP 9704781W WO 9829685 A1 WO9829685 A1 WO 9829685A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
induction heating
pipe
heating element
superheated steam
Prior art date
Application number
PCT/JP1997/004781
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuzo Kawamura
Yoshitaka Uchihori
Original Assignee
Kabushiki Kaisha Seta Giken
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Seta Giken, Omron Corporation filed Critical Kabushiki Kaisha Seta Giken
Publication of WO1998029685A1 publication Critical patent/WO1998029685A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • B24B49/105Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means using eddy currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/281Methods of steam generation characterised by form of heating method in boilers heated electrically other than by electrical resistances or electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/282Methods of steam generation characterised by form of heating method in boilers heated electrically with water or steam circulating in tubes or ducts

Definitions

  • the present invention relates to a superheated steam producing apparatus for generating superheated steam used for home and industrial use by an electromagnetic induction heating method.
  • Superheated steam is obtained by further heating saturated steam and raising it to a predetermined temperature.
  • the temperature of saturated steam under atmospheric pressure is 100 ° C, but when it is further heated to 300 ° C, it becomes superheated steam.
  • Superheated steam which is used in large quantities for industrial purposes, is produced by generating saturated steam in the boiler body and heating it further with a super heater.
  • This superheater is installed in the high-temperature part of the furnace, and is installed in the radiant superheater, which heats the steam by receiving the radiant heat of the flame, and in the middle of the boiler flue, Contact vent superheaters have been used that superheat steam by contact.
  • An industrial superheated steam production apparatus requires a complicated superheater in addition to a large-sized boiler body, and thus has a problem that the entire apparatus becomes a large-scale apparatus.
  • a steam generator disclosed in Japanese Utility Model Publication No. 60-26243 is used for home use.
  • the steam generator disclosed in this publication includes a cylindrical boiler, a first heating coil wound below the outer periphery of the boiler, and a second heating coil wound above the outer periphery of the boiler. It becomes.
  • the water stored under the boiler is heated by the heat transfer from the first heating coil, and the steam reaching the upper part of the boiler is further heated by the heat transfer from the second heating coil.
  • Such household steam Air generators have the problem that they require installation space for inefficiency.
  • the present invention has been made in view of such problems of the related art, and an object of the present invention is to provide a superheated steam production apparatus having a compact device configuration and capable of efficiently generating superheated steam. Is to provide. Disclosure of the invention
  • the present invention was completed based on the idea that if the inventor further improved the heating device previously proposed in Japanese Patent Application Laid-Open No. 3-98286, it would be optimal for a superheated steam generator.
  • the superheated steam generator of the present invention has a first electromagnetic induction heating unit that heats a liquid to produce a vapor, and a second electromagnetic induction heating unit that heats the vapor, and the first and second electromagnetic inductions
  • Each of the heating units includes a pipe made of a non-magnetic material, a coil wound around the pipe, and a heating element housed in the pipe and heated by electromagnetic induction by the coil.
  • the first electromagnetic induction heating section turns the liquid into steam, and the second electromagnetic induction heating section heats the steam.
  • the use of a heating element with a large liquid or vapor contact area that allows the fluid or gas to be dispersed, diffused, dissipated, and volatilized regularly provides extremely high heat exchange properties for the entire device. As the height increases, the equipment becomes compact, and the entire equipment can be installed in the middle of piping. Therefore, pure superheated steam at a predetermined temperature and a predetermined pressure can be continuously obtained with a simple device configuration.
  • the heating element is preferably a laminate formed by electrical bonding so as to have a passage crossing in the axial direction.
  • a fluid or vapor is regularly dispersed, diffused, dissipated, and volatilized by passages in a direction crossing the axial direction. As a result, the entire laminate heats uniformly. Therefore, the production efficiency of superheated steam can be improved.
  • the first electromagnetic induction heating section and the second electromagnetic induction heating section are configured separately, and a first type of superheated steam production apparatus in which both are connected by piping can be provided.
  • this first type of superheated steam production apparatus it is preferable that the pipe of the first electromagnetic induction heating section is disposed upward and the pipe of the second electromagnetic induction heating section is disposed laterally.
  • the pipe in the first electromagnetic induction heating section and the pipe in the second electromagnetic induction heating section can be a second type of superheated steam production apparatus which is common.
  • a member for preventing steam from being blown up is provided between the heating element in the first electromagnetic induction heating section and the heating element in the second electromagnetic induction heating section.
  • FIG. 1 is a device configuration diagram of a superheated steam production device of the present invention
  • FIG. 2 is a device configuration diagram of another superheated steam production device of the present invention
  • FIG. 3 is a diagram of FIG.
  • FIG. 4 is a diagram showing a device configuration in a case where a circulation line is provided in a superheated steam production device
  • FIG. 4 is a device configuration diagram of still another superheated steam production device of the present invention
  • FIG. FIG. 6 is a perspective view
  • FIG. 6 is a structural diagram of the laminate
  • FIG. 7 is a diagram showing a heat generation state of the laminate
  • FIG. 8 is a sectional view of an electromagnetic induction heating unit.
  • Fig. 1 is the first electromagnetic induction heating section
  • 2 is the second electromagnetic induction heating section
  • 101 is a level control port
  • 102 is an automatic water supply valve
  • 103 is a safety valve.
  • a coil is wound around a pipe 6 made of a non-magnetic material as a fluid passage, and a heating element 8 made of a magnetic material is housed in the pipe 6. It is formed.
  • the coil 7 is formed by twisting a litz wire, and is wound around the outer circumference of the pipe 6 or wound and embedded in the thickness of the pipe 6.
  • the pipe 6 has a function of holding the coil 7, defining a fluid passage, and storing a heating element 8 that generates heat by electromagnetic induction in the passage. Therefore, the pipe 6 is formed of a nonmagnetic material having corrosion resistance, heat resistance, and pressure resistance.
  • inorganic materials such as ceramics, resin materials such as FRP (fiber reinforced plastic) and fluororesin, and non-magnetic metals such as stainless steel are used as the material of the pipe 6. Particularly, ceramics are used. Most preferred.
  • the pipeline is composed of a first line 110 that brings a liquid such as tap water at 20 ° C to the first electromagnetic induction heating section 1 and a second line 1102 that vaporizes the liquid from the first electromagnetic induction heating section 1. It comprises a second line 11 1 leading to the electromagnetic induction heating section 2 and a third line 112 leading the superheated steam from the second electromagnetic induction heating section 2 to a use section such as a sauna.
  • the amount of tap water reaching the electromagnetic induction heating section 1 can be controlled by the level controller 101 and the automatic water supply valve 102.
  • the first electromagnetic induction heating unit 1 is controlled so that tap water having a predetermined liquid level always exists in a boiling state.
  • the 100 ° C. saturated steam generated by evaporation in the first electromagnetic induction heating section 1 is further heated in the second electromagnetic induction heating section 2, for example. For example, it becomes superheated steam of 300 ° C.
  • the amount of superheated steam obtained can be controlled by the input power to the first electromagnetic induction heating unit 1.
  • the input power to the first electromagnetic induction heating unit 1 is large, a large amount of water can be boiled, and if the input power to the first electromagnetic induction heating unit 1 is small, water can be boiled little by little.
  • the temperature of the superheated steam can be controlled by the input power to the second electromagnetic induction heating section 2. When the input power to the second electromagnetic induction heating unit 2 is large, high-temperature superheated steam is obtained, and when the input power to the second electromagnetic induction heating unit 2 is small, low-temperature superheated steam is obtained.
  • the pressure setting valve 103 which functions as a safety valve, is set at, for example, 1.1 atm.
  • the safety of the equipment is ensured by preventing the pressure of the entire apparatus from rising above the design pressure.
  • the pressure in the apparatus becomes atmospheric pressure because the pressure of the supply destination is atmospheric pressure.
  • FIG. 2 is a diagram showing the equipment configuration of another superheated steam production device.
  • the difference from FIG. 1 is that the pipe 6 of the first electromagnetic induction heating section 1 is arranged upward and the pipe 6 of the second electromagnetic induction heating section 2 is arranged sideways.
  • the horizontal orientation is also advantageous in terms of heating the drain that accumulates in the heating element 8 of the second electromagnetic induction heating section 2 at the beginning of operation.
  • FIG. 3 is a view of the equipment configuration in the case where a circulation line 16 is provided in the superheated steam production apparatus of FIG.
  • the superheated steam production apparatus shown in FIG. 3 includes a second line 111 connecting the first electromagnetic induction heating section 1 and the second electromagnetic induction heating section 2, and the first electromagnetic induction heating section 1 And a circulation line 16 for returning the liquid component mixed with the steam blown up to the first line 110 which is a liquid introduction line to the first electromagnetic induction heating unit 1.
  • the second line 11 1 is a horizontal line 11 1 a for temporarily leading the steam blown up from the first electromagnetic induction heating unit 1 in a horizontal direction, and a gas component of the steam guided in the horizontal direction.
  • a vertical line 111b that is bent upward from the horizontal line to stand up.
  • the circulation line 16 extends downward from the bent portion of the second line 11 1 together with the second line 11 1 so as to form a T-shaped laterally branched portion 16 a. And is connected to the first line 110 side.
  • FIG. 4 is a diagram showing the configuration of another superheated steam production apparatus. The difference from FIG.
  • the first heating element 8A and the second heating element 8B are inserted in series through a distributor 104 in a single pipe 6.
  • the first coil 7A for the first heating element 8A and the second coil 7B for the second heating element 8B are separately arranged on the outer periphery of the pipe 6 of FIG.
  • the distributor 104 functions as a member for dispersing the steam in a cross section perpendicular to the axis and at the same time, preventing the steam from being blown up from the first heating element 8B.
  • the lower half of the pipe 6, the first heating element 8A and the first coil 7A form the first electromagnetic induction heating section 1, and the upper part of the pipe 6
  • the half, the second heating element 8B, and the second coil 7B form the second electromagnetic induction heating section 2.
  • the electric power sufficient to evaporate the fluid is supplied from the first coil 7A, and the electric power sufficient to overheat the steam is supplied from the second coil 7B.
  • a predetermined amount of superheated steam can be obtained at a predetermined temperature as in the case of the present apparatus shown in FIG.
  • first electromagnetic induction heating section 1 and the second electromagnetic induction heating section 2 are divided into a first heating element 8A and a second heating element 8B, which are integrally formed as a single piece.
  • the classification may be such that the steam generation part and the steam superheated part are separately controlled by A and the second coil 7B.
  • FIG. 5 shows the structure of the heating element 8 incorporated in the apparatus main body 1.
  • the heating element 8 is formed by alternately stacking the first metal plates 31 and the flat second metal plates 32 bent in a zigzag mountain shape to form a cylindrical laminate as a whole.
  • a martensitic stainless steel such as SUS447J1 is used as a material of the first metal plate 31 and the second metal plate 32.
  • the peak (or valley) 33 of the first metal plate 31 is disposed so as to be inclined by an angle ⁇ with respect to the center axis 34, and sandwiches the second metal plate 32.
  • the peaks (or valleys) 33 of the first metal plates 31 adjacent to each other are arranged to intersect. Then, at the intersection of the peaks (or valleys) 33 of the adjacent first metal plates 31, the first metal plate 31 and the second metal plate 32 are welded by spot welding, and are electrically connected to each other. Have been.
  • a first small flow path 35 inclined by an angle of “1” is formed between the first metal plate 31 and the second metal plate 32 on the near side, and the second metal plate 32 and the rear
  • a second small flow path 36 inclined by an angle of 1 ° is formed between the first metal plate 31 and the first small flow path 35 and the second small flow path 36.
  • holes 37 are provided on the surfaces of the first metal plate 31 and the second metal plate 32 as third small flow paths for generating turbulent flow of fluid.
  • the surfaces of the first metal plate 31 and the second metal plate 32 are not smooth, and are provided with fine irregularities 38 by satin finishing or embossing. Mountain ( Or valley) 33 Negligibly small compared to the height of 3.
  • the temperature distribution is an eyeball shape extending in the longitudinal direction of the first metal plate 31 and the second metal plate 32, and the center portion generates heat more than the peripheral portion.
  • a first small flow path 35 and a second small flow path 36 that intersect are formed in the heating element 8, and fluid diffusion between the periphery and the center is performed.
  • the presence of the hole 37 forming the third small passage also causes fluid diffusion in the thickness direction between the first small passage 35 and the second small passage 36. Therefore, these small channels 35, 36, and 37 cause macroscopic dispersion, dissipation, and volatilization of the fluid (liquid or vapor) throughout the heating element 8.
  • microscopic diffusion, emission, and volatilization occur due to minute irregularities 38 on the surface.
  • the fluid passing through the heating element 8 becomes a substantially uniform flow, and a uniform chance of contact between the first metal plate 31 and the second metal plate 32 and the fluid is obtained. Heating is ensured.
  • the thickness of the metal plates 31 and 32 is not less than 30 microns and not more than lrnm, and the frequency of the high-frequency current generated by the high-frequency current generator is in the range of 15 to 150 KHz.
  • the thickness of the metal plate is 30 micron or more and 1 mm or less, it is easy to supply power, and it is easy to secure a small flow path by processing a waveform or the like to increase a heat transfer area.
  • the frequency used is in the range of 15 KHz to 15 OKHz, copper loss of the coil 7 and loss of the switching element can be prevented.
  • the frequency band with low loss is 20 to 7 OKHz.
  • the heating element 8 preferably has a heat transfer area of 2.5 square centimeters or more per cubic centimeter. . Heat exchange efficiency can be increased by stacking metal plates so that the surface area per cubic centimeter of the heating element 8 is 2.5 square centimeters or more, more preferably 5 square centimeters or more. . Further, it is preferable that the amount of fluid to be heated per square centimeter of the surface area of the heating element 8 is not more than 0.4 cubic centimeter. If the fluid volume per square centimeter of the surface area of the heating element 8 is set to 0.4 cubic centimeter or less, more preferably 0.1 cubic centimeter or less, rapid response of heat transfer to the fluid can be obtained.
  • the electromagnetic induction heating section 1 is mainly composed of flanges 3A and 3B, a pipe 6 made of silicon nitride, a coil 7, and a heating element 8.
  • a chemical blunt is installed in the middle of pipelines 121 and 122 so that liquid or vapor 14 flows from the lower side to the upper side.
  • the power unit 11 is connected to the coil 7 of the electromagnetic induction heating unit 1 or the coils 7 of the plurality of electromagnetic induction heating units 1, and the control unit 12 is connected to the power unit 11.
  • the temperature sensor 13 is connected to the control unit 12 to form a heating system. This temperature sensor 13 is used for controlling when the steam is overheated.
  • the control unit 12 can control the electric power unit 11 so that the superheated steam has a predetermined temperature.
  • the silicon nitride pipe 6 is manufactured integrally so that the flanges 6b and 6c are located at both ends of the body 6a.
  • the manufacturing process consists of molding, sintering, processing, etc.
  • the molding process is injection molding, slip casting, etc.
  • the sintering process is a nitrogen process that can use high temperatures while suppressing decomposition of silicon nitride. It is a sintering method under gas pressure, and the processing steps are electric discharge machining and laser machining.
  • the pipe is made into the shape shown in the figure by injection molding, sintering and hardening by sintering.
  • the body 6a is manufactured to have a predetermined inner diameter and a predetermined thickness.
  • the outer periphery of the flanges 6 b and 6 c at both ends is formed so that the contact surfaces 6 d and 6 e of the packings 4 and 5 and the hooks 6 f and 6 g for the flanges 3 A and 3 B are formed.
  • the flanges 3A and 3B have a structure that can be split into two parts.For example, the semicircular member is hinged so that it can be opened and closed, and a fixing means that can fix the semicircular member in a closed state is provided. is there.
  • the flanges 3A and 3B are provided with holes for bolts at equal circumferential positions. Can be.
  • flanges 3 A and 3 B hold the flanges 6 b and 6 c of the pipe 6 and are bolted to the flanges 1 2 3 and 1 2 4 at the end of the pipes 1 2 1 and 1 2 2. Concluded by 9 and nut 10. Then, the contact surfaces 6 d and 6 e of the flanges 6 b and 6 c are pressed tightly to the contact surfaces of the flanges 1 2 3 and 1 2 4 via the packings 4 and 5, and both sealing and joining are performed. .
  • the material of the flanges 3A and 3B is made of an austenitic stainless steel such as nonmagnetic SUS316 so as to be hardly affected by the magnetic flux formed by the coil 7.
  • a temperature sensor 13 can be attached to a pipeline 122 located on the outflow side of the liquid or vapor 14 via a socket.
  • a heating element 8 is accommodated in the pipe 6, and a coil 7 is wound around the pipe 6 at a position facing the heating element 8.
  • the heating element 8 has a diameter D so as to form an annular gap R s between its outer peripheral surface and the inner peripheral surface of the pipe 6, and its axis coincides with the axis of the heating element 8 in the pipe 6. It is loosely fitted so as to be inserted, inserted into the pipe 6, and held by the holding members 42, 43.
  • the diameter D of the heating element 8 is determined by the amount by which the pipe 6 thermally expands in the radial direction when the liquid or steam 14 is heated by the electromagnetic induction heating section 1 and the heat generation. It is determined that there is an annular gap Rs between the heating element 8 and the pipe 6 that is equal to or greater than the difference in thermal expansion between the heating element 8 and the pipe 6 in the radial direction.
  • the ring-shaped stopper 35 is made of non-magnetic, heat-resistant and corrosion-resistant ceramic or the like, and is fitted into the pipe 6 from the liquid or vapor 14 outflow side.
  • the heating element 8 is fixed to the heating element 8 with a gap Vs equal to or slightly smaller than the amount of thermal expansion in the axial direction of the heating element 8.
  • the ring-shaped stopper 35 is located on the heating element 8 across the annular gap Rs in the radial direction from the outflow side, and is connected to the heating element 8 by the thermal expansion of the heating element 8. At the same time, the annular gap Rs is closed from the outflow side.
  • the upper holding member 42 holds the stopper 35 with a square bar 42c, and holds the square bar 42c through a vertical bar 42b and a horizontal bar 42a. It is fixed to.
  • the lower holding member 43 holds the lower end center of the heating element 8 with a vertical bar 43b, and fixes the vertical bar 43b to the pipeline 122 via a horizontal bar 43a.
  • the liquid or vapor 14 flowing from the pipeline 12 21 to the inflow side of the device 1 flows into the heating element 8 and is heated and flows to the outflow side, and at the same time, a part of the liquid or vapor 14 Flows into the annular gap R s directly from the inflow side or from the heating element 8 to flow to the inflow side through the annular gap R s
  • the heating element 8 engages with the ring-shaped stopper 35 by thermal expansion in the axial direction the outflow side of the annular gap Rs is closed, and the fluid 14 flows directly to the outflow side.
  • the flow of the fluid 14 from the inflow side generates a pressure in the annular gap R s that pushes the fluid to the outflow side, and the liquid or vapor 14 flowing into the annular gap R s Can flow into the heating element 8 by this pressure.
  • the heating element 8 thermally expands and engages with the ring stopper 35 to close the annular gap Rs from the outflow side, and flows out into the annular gap Rs. Since the liquid or vapor 14 can flow into the heating element 8, the liquid or vapor 14 can be uniformly heated by the heating element 8.
  • the conversion efficiency from electric energy to heat energy is extremely high at 92%.
  • the film thickness of the fluid (the amount of water film per 1 cm 3 ) is 0. Since it is extremely thin, having a thickness of 5 to 0.2 mm, and the metal plates 31 and 32 constituting the heating element 8 are also thin, the temperature difference of the fluid is extremely small, and heat is quickly transferred to the fluid.
  • the sauna is used as an example of using superheated steam.
  • this device can be used for cooking food with superheated steam and cleaning metal parts using superheated steam.
  • this device can be heated to a temperature exceeding 300 ° C, a chemical device that separates oxygen and hydrogen by heating water vapor to 800 ° C or more at normal pressure. It can also be used as a device. If a conductive ceramic capable of electromagnetic induction heating is used as a heat generating element to enable such high-temperature overheating, magnetic transformation of the metal constituting the heat generating element at a high temperature does not occur.
  • the present apparatus is applicable to liquids of hydrocarbons having a boiling point other than water.
  • high-pressure superheated steam can be generated by using a pressure-resistant structure for each component of this device in addition to atmospheric pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

An electromagnetic induction heating type superheated stream generator provided with a first electromagnetic induction heater heating a liquid into steam and a second electromagnetic induction heater superheating the steam. These first and second electromagnetic induction heaters are provided with pipes made of non-magnetic materials, coils wounded on the pipes, and heaters heated by the electromagnetic induction of the coils contained in the pipes respectively. The liquid is evaporated by the first electromagnetic induction heater and the steam is superheated by the second electromagnetic induction heater, the respective heaters being separate from each other.

Description

明 細 書  Specification
技術分野 Technical field
本発明は、 家庭用及び産業用に使用される過熱蒸気(superheated vap our)を電磁誘導加熱方式で発生させる過熱蒸気製造装置に関する。 背景技術  The present invention relates to a superheated steam producing apparatus for generating superheated steam used for home and industrial use by an electromagnetic induction heating method. Background art
過熱蒸気は、 飽和蒸気をさらに加熱して、 所定の温度まで上昇させた ものである。 例えば大気圧下の飽和蒸気の温度は 1 0 0 °Cであるが、 こ れをさらに加熱し 3 0 0 °Cにすると過熱蒸気となる。  Superheated steam is obtained by further heating saturated steam and raising it to a predetermined temperature. For example, the temperature of saturated steam under atmospheric pressure is 100 ° C, but when it is further heated to 300 ° C, it becomes superheated steam.
産業用に大量に使用される過熱蒸気は、 ボイ ラ本体で飽和蒸気を発生 させ、 これを過熱器(super heater) で更に加熱することにより製造され る。 この過熱器には、 火炉の高温部に配設され、 火炎の放射熱を受けて 蒸気を過熱する放射過熱器(rad ient superheater) や、 ボイラの煙道の 途中に配設され、 燃焼ガスの接触により蒸気を過熱する接触過熱器(con vent ion superheater)が使用されている。 産業用の過熱蒸気製造装置は 、 大型のボイラ本体の他に、 複雑な構造の過熱器を必要とするため、 全 体が大掛かりな装置になってしまうという問題点を有している。  Superheated steam, which is used in large quantities for industrial purposes, is produced by generating saturated steam in the boiler body and heating it further with a super heater. This superheater is installed in the high-temperature part of the furnace, and is installed in the radiant superheater, which heats the steam by receiving the radiant heat of the flame, and in the middle of the boiler flue, Contact vent superheaters have been used that superheat steam by contact. An industrial superheated steam production apparatus requires a complicated superheater in addition to a large-sized boiler body, and thus has a problem that the entire apparatus becomes a large-scale apparatus.
家庭用には、 例えば実公昭 6 0 - 2 6 2 4 3号公報に開示の蒸気発生 装置が使用される。 この公報に開示の蒸気発生装置は、 円筒状のボイラ と、 このボイラ外周の下方に巻かれた第 1発熱コイルと、 このボイ ラ外 周の上方に巻かれた第 2発熱コイルと、 を備えてなる。 ボイラ下方に溜 められた水を第 1発熱コィルからの伝熱で加熱し、 ボイラ上方に至る蒸 気を更に第 2発熱コィルからの伝熱で過熱する。 このような家庭用の蒸 気発生装置は、 効率が悪いわりに設置スペースを必要とするという問題 点を有している。 For home use, for example, a steam generator disclosed in Japanese Utility Model Publication No. 60-26243 is used. The steam generator disclosed in this publication includes a cylindrical boiler, a first heating coil wound below the outer periphery of the boiler, and a second heating coil wound above the outer periphery of the boiler. It becomes. The water stored under the boiler is heated by the heat transfer from the first heating coil, and the steam reaching the upper part of the boiler is further heated by the heat transfer from the second heating coil. Such household steam Air generators have the problem that they require installation space for inefficiency.
本発明は、 このような従来技術の問題点に鑑みてなされたものであり 、 本発明の目的は、 コンパク 卜な機器構成であって、 効率良く過熱蒸気 を発生することができる過熱蒸気製造装置を提供することにある。 発明の開示  The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide a superheated steam production apparatus having a compact device configuration and capable of efficiently generating superheated steam. Is to provide. Disclosure of the invention
発明者が特開平 3— 9 8 2 8 6号公報で先に提案した加熱装置を更に 改良を加えると、 過熱蒸気発生装置に最適なものになるという着想を得 て本発明が完成された。  The present invention was completed based on the idea that if the inventor further improved the heating device previously proposed in Japanese Patent Application Laid-Open No. 3-98286, it would be optimal for a superheated steam generator.
本発明の過熱蒸気発生装置は、 液体を加熱して蒸気にする第 1電磁誘 導加熱部と、 前記蒸気を過熱する第 2電磁誘導加熱部とを有し、 前記第 1及び第 2電磁誘導加熱部の各々は、 非磁性材料のパイプと、 該パイプ に巻かれたコィルと、 前記パイプ内に収納され前記コィルによる電磁誘 導で加熱される発熱体とを備えてなる。  The superheated steam generator of the present invention has a first electromagnetic induction heating unit that heats a liquid to produce a vapor, and a second electromagnetic induction heating unit that heats the vapor, and the first and second electromagnetic inductions Each of the heating units includes a pipe made of a non-magnetic material, a coil wound around the pipe, and a heating element housed in the pipe and heated by electromagnetic induction by the coil.
第 1電磁誘導加熱部で液体を蒸気にし、 第 2電磁誘導加熱部で蒸気を 過熱する。 液体又は蒸気の接触面積を大きく したものであって、 流体又 は気体を規則的に分散、 拡散、 放散、 揮散させられる形態の発熱体を使 用することよって、 装置全体の熱交換性が極めて高くなるとともに、 コ ンパク トな機器構成となり、 装置全体を配管途中に組み込むことができ る。 従って、 簡単な機器構成で、 所定温度且つ所定圧力の純粋な過熱蒸 気を連続的に得ることが出来る。  The first electromagnetic induction heating section turns the liquid into steam, and the second electromagnetic induction heating section heats the steam. The use of a heating element with a large liquid or vapor contact area that allows the fluid or gas to be dispersed, diffused, dissipated, and volatilized regularly provides extremely high heat exchange properties for the entire device. As the height increases, the equipment becomes compact, and the entire equipment can be installed in the middle of piping. Therefore, pure superheated steam at a predetermined temperature and a predetermined pressure can be continuously obtained with a simple device configuration.
前記発熱体は、 軸方向に交差する通路を有するように、 電気的接合で 形成された積層体であるものが好ましい。  The heating element is preferably a laminate formed by electrical bonding so as to have a passage crossing in the axial direction.
軸方向に交差する方向の通路によって流体又は蒸気が規則的に分散、 拡散、 放散、 揮散させられるし、 電気的接合で形成された積層体である ことによって積層体の全体が均一に発熱する。 従って、 過熱蒸気の製造 効率を高めることができる。 A fluid or vapor is regularly dispersed, diffused, dissipated, and volatilized by passages in a direction crossing the axial direction. As a result, the entire laminate heats uniformly. Therefore, the production efficiency of superheated steam can be improved.
前記第 1電磁誘導加熱部と前記第 2電磁誘導加熱部とは別個に構成さ れ、 両者が配管で接続されている第 1形式の過熱蒸気製造装置とするこ とができる。 この第 1形式の過熱蒸気製造装置において、 前記第 1電磁 誘導加熱部の前記パイプは上向きに配設され、 前記第 2電磁誘導加熱部 の前記パイプは横向きに配設されているものが好ましい。 前記第 1電磁 誘導加熱部と前記第 2電磁誘導加熱部を分離して配管で接続することで 、 蒸気発生用に適切な機器配置が選択でき、 蒸気過熱用に適切な機器配 置が選択できる。  The first electromagnetic induction heating section and the second electromagnetic induction heating section are configured separately, and a first type of superheated steam production apparatus in which both are connected by piping can be provided. In this first type of superheated steam production apparatus, it is preferable that the pipe of the first electromagnetic induction heating section is disposed upward and the pipe of the second electromagnetic induction heating section is disposed laterally. By separating the first electromagnetic induction heating section and the second electromagnetic induction heating section and connecting them with piping, it is possible to select an appropriate equipment arrangement for steam generation and an appropriate equipment arrangement for steam overheating. .
前記第 1電磁誘導加熱部における前記パイプと前記第 2電磁誘導加熱 部における前記パイプとは共通となっている第 2形式の過熱蒸気製造装 置とすることができる。 この第 2形式の過熱蒸気発生装置において、 前 記第 1電磁誘導加熱部における前記発熱体と前記第 2電磁誘導加熱部に おける発熱体の間に、 蒸気の吹き上げを防止する部材が設置されている ものが好ましい。 全体がコンパク トになる。 図面の簡単な説明  The pipe in the first electromagnetic induction heating section and the pipe in the second electromagnetic induction heating section can be a second type of superheated steam production apparatus which is common. In the second type of superheated steam generator, a member for preventing steam from being blown up is provided between the heating element in the first electromagnetic induction heating section and the heating element in the second electromagnetic induction heating section. Are preferred. The whole becomes compact. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の過熱蒸気製造装置の機器構成図であり、 第 2図は 、 本発明の他の過熱蒸気製造装置の機器構成図であり、 第 3図は、 前記 第 2図の過熱蒸気製造装置に循環ライ ンを設けた場合の機器構成図であ り、 第 4図は、 本発明の更に他の過熱蒸気製造装置の機器構成図であり 、 第 5図は、 積層体の斜視図であり、 第 6図は、 積層体の構造図であり 、 第 7図は、 積層体の発熱状態を示す図であり、 第 8図は、 電磁誘導加 熱部の断面図である。 発明を実施するための最良の形態 FIG. 1 is a device configuration diagram of a superheated steam production device of the present invention, FIG. 2 is a device configuration diagram of another superheated steam production device of the present invention, and FIG. 3 is a diagram of FIG. FIG. 4 is a diagram showing a device configuration in a case where a circulation line is provided in a superheated steam production device, FIG. 4 is a device configuration diagram of still another superheated steam production device of the present invention, and FIG. FIG. 6 is a perspective view, FIG. 6 is a structural diagram of the laminate, FIG. 7 is a diagram showing a heat generation state of the laminate, and FIG. 8 is a sectional view of an electromagnetic induction heating unit. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図面を参照しつつ説明する。 第 1図におい て、 1は第 1電磁誘導加熱部、 2は第 2電磁誘導加熱部、 1 0 1はレべ ルコ ン ト口一ラ、 1 0 2は自動給水バルブ、 1 0 3は安全弁として機能 する圧力設定弁である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In Fig. 1, 1 is the first electromagnetic induction heating section, 2 is the second electromagnetic induction heating section, 101 is a level control port, 102 is an automatic water supply valve, and 103 is a safety valve. A pressure setting valve that functions as
第 1、 第 2電磁誘導加熱部 1 , 2の各々は、 流体通路としての非磁性 材料のパイプ 6の周囲にコィル Ίを巻き付け、 このパイプ 6内に磁性材 料の発熱体 8を収納して形成される。 コ イ ル 7は、 リ ッツ線を撚り合わ せたものであり、 パイプ 6の外周に卷回されるか、 又はパイプ 6の肉厚 内に巻回して埋設される。 パイプ 6は、 コイル 7を保持し、 流体通路を 区画し、 その通路内に電磁誘導で発熱する発熱体 8を収納する機能を有 する。 そのため、 耐蝕性、 耐熱性、 耐圧性があって非磁性体の材質でパ ィプ 6が形成される。 具体的には、 セラ ミ ツク等の無機質材料、 F R P (繊維強化プラスチック) 、 フッ素樹脂等の樹脂材料、 ステンレス等の 非磁性金属等がパイプ 6の素材として用いられるが、 特にセラ ミ ックが 最も好ましい。  In each of the first and second electromagnetic induction heating sections 1 and 2, a coil is wound around a pipe 6 made of a non-magnetic material as a fluid passage, and a heating element 8 made of a magnetic material is housed in the pipe 6. It is formed. The coil 7 is formed by twisting a litz wire, and is wound around the outer circumference of the pipe 6 or wound and embedded in the thickness of the pipe 6. The pipe 6 has a function of holding the coil 7, defining a fluid passage, and storing a heating element 8 that generates heat by electromagnetic induction in the passage. Therefore, the pipe 6 is formed of a nonmagnetic material having corrosion resistance, heat resistance, and pressure resistance. Specifically, inorganic materials such as ceramics, resin materials such as FRP (fiber reinforced plastic) and fluororesin, and non-magnetic metals such as stainless steel are used as the material of the pipe 6. Particularly, ceramics are used. Most preferred.
パイプライ ンは、 例えば 2 0 °Cの水道水の如き液体を第 1電磁誘導加 熱部 1に至らせる第 1 ライ ン 1 1 0と、 第 1電磁誘導加熱部 1からの蒸 気を第 2電磁誘導加熱部 2に導く第 2ライ ン 1 1 1と、 第 2電磁誘導加 熱部 2からの過熱蒸気を例えばサウナ等の使用部に導くための第 3ライ ン 1 1 2とからなる。  The pipeline is composed of a first line 110 that brings a liquid such as tap water at 20 ° C to the first electromagnetic induction heating section 1 and a second line 1102 that vaporizes the liquid from the first electromagnetic induction heating section 1. It comprises a second line 11 1 leading to the electromagnetic induction heating section 2 and a third line 112 leading the superheated steam from the second electromagnetic induction heating section 2 to a use section such as a sauna.
電磁誘導加熱部 1に至る水道水の量は、 レベルコン トローラ 1 0 1と 自動給水バルブ 1 0 2によって制御可能である。 この制御システムによ り、 第 1電磁誘導加熱部 1内に常に所定の液面高さの水道水が沸騰状態 で存在するように制御される。 第 1電磁誘導加熱部 1で蒸発して発生す る 1 0 0 ° Cの飽和蒸気は、 第 2電磁誘導加熱部 2で更に加熱されて例 えば 3 0 0 ° Cの過熱蒸気になる。 得られる過熱蒸気の量は、 第 1電磁 誘導加熱部 1に対する入力電力で制御可能である。 第 1電磁誘導加熱部 1に対する入力電力が大きいと、 大量の水を沸騰させることができ、 第 1電磁誘導加熱部 1に対する入力電力が小さいと、 水を少しずつ沸騰さ せることができる。 過熱蒸気の温度は、 第 2電磁誘導加熱部 2に対する 入力電力で制御可能である。 第 2電磁誘導加熱部 2に対する入力電力が 大きいと、 高温の過熱蒸気が得られ、 第 2電磁誘導加熱部 2に対する入 力電力が小さいと、 低温の過熱蒸気が得られる。 The amount of tap water reaching the electromagnetic induction heating section 1 can be controlled by the level controller 101 and the automatic water supply valve 102. By this control system, the first electromagnetic induction heating unit 1 is controlled so that tap water having a predetermined liquid level always exists in a boiling state. The 100 ° C. saturated steam generated by evaporation in the first electromagnetic induction heating section 1 is further heated in the second electromagnetic induction heating section 2, for example. For example, it becomes superheated steam of 300 ° C. The amount of superheated steam obtained can be controlled by the input power to the first electromagnetic induction heating unit 1. If the input power to the first electromagnetic induction heating unit 1 is large, a large amount of water can be boiled, and if the input power to the first electromagnetic induction heating unit 1 is small, water can be boiled little by little. The temperature of the superheated steam can be controlled by the input power to the second electromagnetic induction heating section 2. When the input power to the second electromagnetic induction heating unit 2 is large, high-temperature superheated steam is obtained, and when the input power to the second electromagnetic induction heating unit 2 is small, low-temperature superheated steam is obtained.
安全弁として機能する圧力設定弁 1 0 3は、 例えば 1 . 1気圧に設定 されており、 装置全体の圧力が設計圧力を越えて上昇しないようにして 機器の安全を確保している。 供給先が図示のようなサウナの場合、 供給 先の圧力が大気圧であるため、 装置内の圧力も大気圧になる。  The pressure setting valve 103, which functions as a safety valve, is set at, for example, 1.1 atm. The safety of the equipment is ensured by preventing the pressure of the entire apparatus from rising above the design pressure. In the case where the supply destination is a sauna as shown in the figure, the pressure in the apparatus becomes atmospheric pressure because the pressure of the supply destination is atmospheric pressure.
第 2図は他の過熱蒸気製造装置の機器構成図である。 第 1図と異なる 点は、 第 1電磁誘導加熱部 1のパイプ 6を上向き配置にし、 第 2電磁誘 導加熱部 2のパイプ 6を横向き配置とした点である。 第 1電磁誘導加熱 部 1からの蒸気の吹き上げが、 第 2ライ ン 1 1 1の約 9 0 ° の屈曲部分 で阻止されるという利点がある。 また、 第 2電磁誘導加熱部 2の発熱体 8内に運転初期に溜まる ドレンの加熱という点においても横向きが有利 である。  FIG. 2 is a diagram showing the equipment configuration of another superheated steam production device. The difference from FIG. 1 is that the pipe 6 of the first electromagnetic induction heating section 1 is arranged upward and the pipe 6 of the second electromagnetic induction heating section 2 is arranged sideways. There is an advantage that the blow-up of steam from the first electromagnetic induction heating section 1 is prevented at the bent portion of the second line 11 1 at about 90 °. The horizontal orientation is also advantageous in terms of heating the drain that accumulates in the heating element 8 of the second electromagnetic induction heating section 2 at the beginning of operation.
第 3図は前記第 2図の過熱蒸気製造装置に循環ライ ン 1 6を設けた場 合の機器構成図である。  FIG. 3 is a view of the equipment configuration in the case where a circulation line 16 is provided in the superheated steam production apparatus of FIG.
第 3図に示されている過熱蒸気製造装置は、 第 1電磁誘導加熱部 1と 第 2電磁誘導加熱部 2とを接続する第 2ライ ン 1 1 1と、 前記第 1電磁 誘導加熱部 1からの吹き上げ蒸気に混じっている液体成分を第 1電磁誘 導加熱部 1への液体導入ライ ンである第 1 ライ ン 1 1 0側へ戻すための 循環ライ ン 1 6とを有している。 前記第 2ライ ン 1 1 1は、 第 1電磁誘導加熱部 1からの吹き上げ蒸気 を、 一旦、 横向きに導くための横ライ ン 1 1 1 a と、 前記横向きに導い た蒸気の気体成分を上方に導くために前記横ライ ンから上方へ屈曲して 立ち上がった縦ライ ン 1 1 1 bとを有する。 そして、 前記循環ライ ン 1 6は、 前記第 2ライ ン 1 1 1と共に、 T字を横向きにした分岐部 1 6 a を形成するように、 前記第 2ライ ン 1 1 1の屈曲部から下方へ延びて第 1 ライ ン 1 1 0側へ接続されている。 The superheated steam production apparatus shown in FIG. 3 includes a second line 111 connecting the first electromagnetic induction heating section 1 and the second electromagnetic induction heating section 2, and the first electromagnetic induction heating section 1 And a circulation line 16 for returning the liquid component mixed with the steam blown up to the first line 110 which is a liquid introduction line to the first electromagnetic induction heating unit 1. . The second line 11 1 is a horizontal line 11 1 a for temporarily leading the steam blown up from the first electromagnetic induction heating unit 1 in a horizontal direction, and a gas component of the steam guided in the horizontal direction. And a vertical line 111b that is bent upward from the horizontal line to stand up. The circulation line 16 extends downward from the bent portion of the second line 11 1 together with the second line 11 1 so as to form a T-shaped laterally branched portion 16 a. And is connected to the first line 110 side.
このような循環ライ ン 1 6を備えた過熱蒸気製造装置によると、 第 1 電磁誘導加熱部 1からの吹き上げ蒸気を、 第 2ライ ン 1 1 1の横ライ ン 1 1 1 aによって横向きに導き、 分岐部 1 6 aの壁にぶっけるので、 第 2電磁誘導加熱部 2へ直接蒸気が吹き上がることを防止する。 また、 分 岐部 1 6 aの壁にぶつけられた蒸気は、 そこで気液が分離され、 液体は 循環ライ ン 1 6を通って第 1電磁誘導加熱部 1へと戻り、 気体は第 2ラ イ ン 1 1 1の縦ライ ン 1 1 1 bを通って第 2電磁誘導加熱部 2へ至る。 第 4図は更に他の過熱蒸気製造装置の機器構成図である。 第 1図と異 なる点は、 一本のパイプ 6の中に、 第 1発熱体 8 Aと第 2発熱体 8 Bと を分配器 1 0 4を介して直列に挿入した点と、 一本のパイプ 6の外周に 、 第 1発熱体 8 Aに対する第 1 コ イ ル 7 Aと第 2発熱体 8 Bに対する第 2 コ イ ル 7 Bを分割して配設した点である。 前記分配器 1 0 4は軸直角 断面内での蒸気の分散を行うと同時に、 第 1発熱体 8 Bからの蒸気の吹 き上げを阻止する部材として機能する。 このような構成の本装置にあつ ては、 パイプ 6の下半分と第 1発熱体 8 Aと第 1 コ イ ル 7 Aとが第 1電 磁誘導加熱部 1を形成し、 パイプ 6の上半分と第 2発熱体 8 Bと第 2コ ィ ル 7 Bとが第 2電磁誘導加熱部 2を形成する。 このような本装置でも 、 第 1 コ イ ル 7 Aから流体を蒸発させるに足る電力を投入し、 第 2コィ ノレ 7 Bから蒸気を過熱するに足る電力を投入するというように分割して 制御することができ、 第 1図の本装置と同様に所定温度で所定量の過熱 蒸気を得ることが出来る。 なお、 第 1電磁誘導加熱部 1と第 2電磁誘導 加熱部 2の区分は、 第 1発熱体 8 Aと第 2発熱体 8 Bを一体の一本で形 成し、 第 1 コ イ ル 7 Aと第 2 コ イ ル 7 Bとによつて蒸気発生部分と蒸気 過熱部分とを区分して制御することによる区分であってもよい。 According to the superheated steam production apparatus having such a circulation line 16, the steam blown up from the first electromagnetic induction heating section 1 is guided laterally by the horizontal line 111a of the second line 111. However, since it collides with the wall of the branch part 16a, it is possible to prevent steam from directly blowing up to the second electromagnetic induction heating part 2. In addition, vapor hitting the wall of the branch section 16a separates gas and liquid there, and the liquid returns to the first electromagnetic induction heating section 1 through the circulation line 16 while the gas passes through the second line. To the second electromagnetic induction heating section 2 through the vertical line 1 1 1b of the pin 1 1 1. FIG. 4 is a diagram showing the configuration of another superheated steam production apparatus. The difference from FIG. 1 is that the first heating element 8A and the second heating element 8B are inserted in series through a distributor 104 in a single pipe 6. The first coil 7A for the first heating element 8A and the second coil 7B for the second heating element 8B are separately arranged on the outer periphery of the pipe 6 of FIG. The distributor 104 functions as a member for dispersing the steam in a cross section perpendicular to the axis and at the same time, preventing the steam from being blown up from the first heating element 8B. In this device having such a configuration, the lower half of the pipe 6, the first heating element 8A and the first coil 7A form the first electromagnetic induction heating section 1, and the upper part of the pipe 6 The half, the second heating element 8B, and the second coil 7B form the second electromagnetic induction heating section 2. Even in such a device, the electric power sufficient to evaporate the fluid is supplied from the first coil 7A, and the electric power sufficient to overheat the steam is supplied from the second coil 7B. As a result, a predetermined amount of superheated steam can be obtained at a predetermined temperature as in the case of the present apparatus shown in FIG. Note that the first electromagnetic induction heating section 1 and the second electromagnetic induction heating section 2 are divided into a first heating element 8A and a second heating element 8B, which are integrally formed as a single piece. The classification may be such that the steam generation part and the steam superheated part are separately controlled by A and the second coil 7B.
第 5図は装置本体 1に組み込まれる発熱体 8の構造を示している。 ジ グザグの山型に折り曲げられた第 1金属板 3 1と平たい第 2金属板 3 2 とを交互に積層し、 全体として円筒状の積層体に形成した発熱体 8であ る。 この第 1金属板 3 1や第 2金属板 3 2の材質としては、 S U S 4 4 7 J 1の如きマルテンサイ ト系ステンレスが用いられる。 し力、し、 導電 性の炭素やセラ ミ ックのような非金属材質のように、 電磁誘導加熱でき る素材であれば使用可能である。  FIG. 5 shows the structure of the heating element 8 incorporated in the apparatus main body 1. The heating element 8 is formed by alternately stacking the first metal plates 31 and the flat second metal plates 32 bent in a zigzag mountain shape to form a cylindrical laminate as a whole. As a material of the first metal plate 31 and the second metal plate 32, a martensitic stainless steel such as SUS447J1 is used. Any material that can be subjected to electromagnetic induction heating, such as non-metallic materials such as conductive carbon and ceramics, can be used.
第 6図に示されるように、 第 1金属板 3 1の山 (又は谷) 3 3は中心 軸 3 4に対して角度 αだけ傾く ように配設され、 第 2金属板 3 2を挾ん で隣り合う第 1金属板 3 1の山 (又は谷) 3 3は交差するように配設さ れている。 そして、 隣り合う第 1金属板 3 1における山 (又は谷) 3 3 の交差点において、 第 1金属板 3 1と第 2金属板 3 2がスポッ ト溶接で 溶着され、 電気的に導通可能に接合されている。  As shown in FIG. 6, the peak (or valley) 33 of the first metal plate 31 is disposed so as to be inclined by an angle α with respect to the center axis 34, and sandwiches the second metal plate 32. The peaks (or valleys) 33 of the first metal plates 31 adjacent to each other are arranged to intersect. Then, at the intersection of the peaks (or valleys) 33 of the adjacent first metal plates 31, the first metal plate 31 and the second metal plate 32 are welded by spot welding, and are electrically connected to each other. Have been.
結局、 手前側の第 1金属板 3 1と第 2金属板 3 2との間には、 角度" だけ傾いた第 1小流路 3 5が形成され、 第 2金属板 3 2と奥側の第 1金 属板 3 1との間には、 角度一 oだけ傾いた第 2小流路 3 6が形成され、 この第 1小流路 3 5と第 2小流路 3 6は角度 2 X orで交差している。 ま た、 第 1金属板 3 1や第 2金属板 3 2の表面には、 流体の乱流を生じさ せるための第 3小流路としての孔 3 7が設けられている。 さらに、 第 1 金属板 3 1や第 2金属板 3 2の表面は平滑ではなく、 梨地加工又はェン ボス加工によって微小な凹凸 3 8が施されている。 この凹凸 3 8は山 ( 又は谷) 3 3の高さに比較して無視できる程度に小さい。 As a result, a first small flow path 35 inclined by an angle of “1” is formed between the first metal plate 31 and the second metal plate 32 on the near side, and the second metal plate 32 and the rear A second small flow path 36 inclined by an angle of 1 ° is formed between the first metal plate 31 and the first small flow path 35 and the second small flow path 36. Also, holes 37 are provided on the surfaces of the first metal plate 31 and the second metal plate 32 as third small flow paths for generating turbulent flow of fluid. Further, the surfaces of the first metal plate 31 and the second metal plate 32 are not smooth, and are provided with fine irregularities 38 by satin finishing or embossing. Mountain ( Or valley) 33 Negligibly small compared to the height of 3.
コ イ ル 7に高周波電流を流して、 発熱体 8に高周波磁界を作用させる と、 第 1金属板 3 1と第 2金属板 3 2の全体に渦電流が生じ、 発熱体 8 が発熱する。 このときの温度分布は、 第 7図に示されるように、 第 1金 属板 3 1と第 2金属板 3 2の長手方向に延びた目玉型となり、 周辺部よ り中心部の方が発熱し、 中央部を流れようとする流体 (液体又は蒸気) の加熱に有利になつている。  When a high-frequency current is applied to the coil 7 and a high-frequency magnetic field is applied to the heating element 8, an eddy current is generated in the entire first metal plate 31 and the second metal plate 32, and the heating element 8 generates heat. At this time, as shown in FIG. 7, the temperature distribution is an eyeball shape extending in the longitudinal direction of the first metal plate 31 and the second metal plate 32, and the center portion generates heat more than the peripheral portion. In addition, it is advantageous for heating a fluid (liquid or vapor) that is going to flow in the center.
また、 第 6図のように、 発熱体 8内には交差する第 1小流路 3 5と第 2小流路 3 6が形成され、 周辺と中央との間の流体拡散が行われ、 加え て第 3小通路を形成する孔 3 7の存在によって、 第 1小流路 3 5と第 2 小流路 3 6間の厚み方向の流体拡散も行われる。 したがって、 これらの 小流路 3 5 , 3 6, 3 7によって発熱体 8の全体にわたる流体 (液体又 は蒸気) のマクロ的な分散、 放散、 揮散が生じる。 加えて、 表面の微小 な凹凸 3 8によってミ クロ的な拡散、 放散、 揮散も生じる。 その結果、 発熱体 8を通過する流体は略均一な流れになって、 第 1金属板 3 1及び 第 2金属板 3 2と流体との均一な接触機会が得られ、 液体又は蒸気の均 一な加熱が確保される。  Also, as shown in FIG. 6, a first small flow path 35 and a second small flow path 36 that intersect are formed in the heating element 8, and fluid diffusion between the periphery and the center is performed. As a result, the presence of the hole 37 forming the third small passage also causes fluid diffusion in the thickness direction between the first small passage 35 and the second small passage 36. Therefore, these small channels 35, 36, and 37 cause macroscopic dispersion, dissipation, and volatilization of the fluid (liquid or vapor) throughout the heating element 8. In addition, microscopic diffusion, emission, and volatilization occur due to minute irregularities 38 on the surface. As a result, the fluid passing through the heating element 8 becomes a substantially uniform flow, and a uniform chance of contact between the first metal plate 31 and the second metal plate 32 and the fluid is obtained. Heating is ensured.
ところで、 金属板 3 1 , 3 2の厚みが 3 0 ミ クロン以上 l rn m以下で あり、 高周波電流発生器による高周波電流の周波数が 1 5〜 1 5 0 K H zの範囲にあるものが好ましい。 金属板の厚みが 3 0 ミ クロン以上 1 m m以下であると、 電力が入り易く、 又伝熱面積を大き く とるための波形 等の加工による小流路の確保が容易になる。 また、 使用する周波数が 1 5 K H z〜 l 5 O K H zの範囲であると、 コイル 7の銅損や、 スィ ッチ ング素子の損失を防止できる。 特に、 損失が少ない周波数帯としては、 2 0〜 7 O K H zである。 たま、 発熱体 8の 1立方センチメー トル当た りの伝熱面積が、 2 , 5平方センチメ ー トル以上であるものが好ましい 。 発熱体 8の 1立方センチメ ー トル当たりの表面積が 2 . 5平方センチ メ一トル以上、 より好ましく は 5平方センチメー トル以上になるように 金属板を積層すると、 熱交換の効率を上げることができる。 また、 発熱 体 8の表面積 1平方センチメ ー トル当たりで加熱すべき流体量が、 0 . 4立方センチメ―トル以下であるものが好ましい。 発熱体 8の表面積 1 平方センチメ ー トル当たりの流体量を 0 . 4立方センチメ ー トル以下、 より好ましく は 0 . 1立方センチメ一トル以下にすると、 流体に対する 伝熱の急速応答性が得られる。 By the way, it is preferable that the thickness of the metal plates 31 and 32 is not less than 30 microns and not more than lrnm, and the frequency of the high-frequency current generated by the high-frequency current generator is in the range of 15 to 150 KHz. When the thickness of the metal plate is 30 micron or more and 1 mm or less, it is easy to supply power, and it is easy to secure a small flow path by processing a waveform or the like to increase a heat transfer area. If the frequency used is in the range of 15 KHz to 15 OKHz, copper loss of the coil 7 and loss of the switching element can be prevented. In particular, the frequency band with low loss is 20 to 7 OKHz. The heating element 8 preferably has a heat transfer area of 2.5 square centimeters or more per cubic centimeter. . Heat exchange efficiency can be increased by stacking metal plates so that the surface area per cubic centimeter of the heating element 8 is 2.5 square centimeters or more, more preferably 5 square centimeters or more. . Further, it is preferable that the amount of fluid to be heated per square centimeter of the surface area of the heating element 8 is not more than 0.4 cubic centimeter. If the fluid volume per square centimeter of the surface area of the heating element 8 is set to 0.4 cubic centimeter or less, more preferably 0.1 cubic centimeter or less, rapid response of heat transfer to the fluid can be obtained.
つぎにパイプライ ンにイ ンライ ンで組み込み可能な電磁誘導加熱部 1 の詳細構造を第 8図により説明する。 電磁誘導加熱部 1は、 主な部分と して、 フランジ 3 A , 3 Bと、 窒化珪素製のパイプ 6と、 コ イ ル 7と、 発熱体 8とから構成される。 下側から上側に向かって液体又は蒸気 1 4 が流れるように、 例えば化学ブラント等のパイプライ ン 1 2 1, 1 2 2 の途中に組み込んで配置される。 そして、 電磁誘導加熱部 1のコ イ ル 7 又は複数の電磁誘導加熱部 1のコ イ ル 7に共通に、 電力部 1 1が接続さ れ、 電力部 1 1には制御部 1 2が接続され、 制御部 1 2には温度センサ 1 3が接続されて加熱システムを構成している。 この温度センサ 1 3は 蒸気を過熱する際の制御に用いられる。 所定温度の過熱蒸気になるよう に制御部 1 2が電力部 1 1を制御することができる。  Next, the detailed structure of the electromagnetic induction heating section 1 that can be incorporated in-line into the pipeline will be described with reference to FIG. The electromagnetic induction heating section 1 is mainly composed of flanges 3A and 3B, a pipe 6 made of silicon nitride, a coil 7, and a heating element 8. For example, a chemical blunt is installed in the middle of pipelines 121 and 122 so that liquid or vapor 14 flows from the lower side to the upper side. The power unit 11 is connected to the coil 7 of the electromagnetic induction heating unit 1 or the coils 7 of the plurality of electromagnetic induction heating units 1, and the control unit 12 is connected to the power unit 11. The temperature sensor 13 is connected to the control unit 12 to form a heating system. This temperature sensor 13 is used for controlling when the steam is overheated. The control unit 12 can control the electric power unit 11 so that the superheated steam has a predetermined temperature.
窒化ケィ素のパイプ 6は、 胴体 6 aの両端に鍔部 6 b , 6 cが位置す るように一体的に製造されたものである。 製造工程は、 成形、 焼結、 加 ェ等からなり、 成形工程は、 射出成形、 ス リ ップキャスティ ング等であ り、 焼結工程は、 窒化ケィ素の分解を抑えつつ高温度を利用できる窒素 ガス圧力下の焼結法などであり、 加工工程は、 放電加工、 レーザ加工な どである。 すなわち、 射出成形等で図示のパイプ形状にし、 焼結で焼き 硬め、 放電加工等で当たり面等の加工を施して所定形状のパイプとする 胴体 6 aは、 所定の内径を有し所定の肉厚みを有するように製造され る。 両端の鍔部 6 b, 6 cは、 パッキン 4, 5の当たり面 6 d, 6 eと フ ラ ンジ 3 A, 3 Bに対する引っ掛かり部 6 f , 6 gとが形成されるよ うに、 外周が必要最小限に拡径して製造される。 フランジ 3 A, 3 Bは 2つ割り可能な構造になっており、 例えば半円部材を開閉可能にヒ ンジ 結合すると共にこの半円部材を閉じた状態で固定できる固定手段が設け られたものである。 また、 フランジ 3 A, 3 Bはボルトを通す孔が円周 等分位置に配設され、 胴体 6 aの外周に遊嵌された状態で、 ボルトをパ イブ 6の軸方向に平行に通すことができる。 The silicon nitride pipe 6 is manufactured integrally so that the flanges 6b and 6c are located at both ends of the body 6a. The manufacturing process consists of molding, sintering, processing, etc.The molding process is injection molding, slip casting, etc.The sintering process is a nitrogen process that can use high temperatures while suppressing decomposition of silicon nitride. It is a sintering method under gas pressure, and the processing steps are electric discharge machining and laser machining. In other words, the pipe is made into the shape shown in the figure by injection molding, sintering and hardening by sintering. The body 6a is manufactured to have a predetermined inner diameter and a predetermined thickness. The outer periphery of the flanges 6 b and 6 c at both ends is formed so that the contact surfaces 6 d and 6 e of the packings 4 and 5 and the hooks 6 f and 6 g for the flanges 3 A and 3 B are formed. Manufactured with the minimum required diameter. The flanges 3A and 3B have a structure that can be split into two parts.For example, the semicircular member is hinged so that it can be opened and closed, and a fixing means that can fix the semicircular member in a closed state is provided. is there. The flanges 3A and 3B are provided with holes for bolts at equal circumferential positions. Can be.
このフラ ンジ 3 A, 3 Bはパイプ 6の鍔部 6 b, 6 cを抱え込み、 パ ィプライ ン 1 2 1, 1 2 2の端のフ ラ ンジ 1 2 3, 1 2 4に対してボル ト 9及びナッ ト 1 0によって締結される。 すると、 鍔部 6 b, 6 cの当 たり面 6 d, 6 e力くパッキン 4, 5を介してフランジ 1 2 3, 1 2 4の 当たり面に密着し、 シールと接合の両方が行われる。 なお、 フ ラ ンジ 3 A, 3 Bの素材は、 コイル 7が形成する磁束の影響を受けにく いように 、 非磁性の S U S 3 1 6の如きオーステナイ ト系ステンレスが用いられ る。 また、 液体又は蒸気 1 4の流出側に位置するパイプライ ン 1 2 2に はソケッ トを介して温度センサ 1 3を取り付けられる。  These flanges 3 A and 3 B hold the flanges 6 b and 6 c of the pipe 6 and are bolted to the flanges 1 2 3 and 1 2 4 at the end of the pipes 1 2 1 and 1 2 2. Concluded by 9 and nut 10. Then, the contact surfaces 6 d and 6 e of the flanges 6 b and 6 c are pressed tightly to the contact surfaces of the flanges 1 2 3 and 1 2 4 via the packings 4 and 5, and both sealing and joining are performed. . The material of the flanges 3A and 3B is made of an austenitic stainless steel such as nonmagnetic SUS316 so as to be hardly affected by the magnetic flux formed by the coil 7. A temperature sensor 13 can be attached to a pipeline 122 located on the outflow side of the liquid or vapor 14 via a socket.
また、 パイプ 6内に発熱体 8が収納されており、 パイプ 6の外周であ つて発熱体 8に対向する位置に、 コイル 7が卷かれている。 発熱体 8は 、 その外周面とパイプ 6の内周面との間に環状隙間 R sを形成するよう な直径 Dとされて、 パイプ 6内にその軸心と発熱体 8の軸心を一致させ るように遊嵌して、 パイプ 6内に挿入されて保持部材 4 2, 4 3で保持 されている。 そして、 発熱体 8の直径 Dは、 電磁誘導加熱部 1で液体又 は蒸気 1 4を加熱した際、 パイプ 6がその径方向に熱膨張する量と発熱 体 8がその径方向に熱膨張する量との熱膨張差以上の環状隙間 R sを、 発熱体 8とパイプ 6間に有するように決定されている。 A heating element 8 is accommodated in the pipe 6, and a coil 7 is wound around the pipe 6 at a position facing the heating element 8. The heating element 8 has a diameter D so as to form an annular gap R s between its outer peripheral surface and the inner peripheral surface of the pipe 6, and its axis coincides with the axis of the heating element 8 in the pipe 6. It is loosely fitted so as to be inserted, inserted into the pipe 6, and held by the holding members 42, 43. The diameter D of the heating element 8 is determined by the amount by which the pipe 6 thermally expands in the radial direction when the liquid or steam 14 is heated by the electromagnetic induction heating section 1 and the heat generation. It is determined that there is an annular gap Rs between the heating element 8 and the pipe 6 that is equal to or greater than the difference in thermal expansion between the heating element 8 and the pipe 6 in the radial direction.
リ ング状ス ト ッパ 3 5は、 非磁性、 耐熱性及び耐蝕性の優れたセラ ミ ック等で製作されており、 液体又は蒸気 1 4の流出側からパイプ 6内に 嵌合され、 発熱体 8との間に当該発熱体 8の軸方向の熱膨張の量と同一 、 又は多少少ない隙間 V sを有して固定されている。 また、 このリ ング 状ス ト ッパ 3 5は、 流出側から環状隙間 R sを径方向に横切って発熱体 8上に位置しており、 発熱体 8の熱膨張でこの発熱体 8と係合して、 環 状隙間 R sを流出側から閉塞する。 上側の保持部材 4 2は、 ス ト ツパ 3 5を角棒 4 2 cで抑え、 角棒 4 2 cを縦バ一 4 2 b及び横バ一 4 2 aを 介してパイプライ ン 1 2 2に固定したものである。 下側の保持部材 4 3 は、 発熱体 8の下端中央を縦バー 4 3 bで抑え、 縦バー 4 3 bを横バー 4 3 aを介してパイプライ ン 1 2 1に固定したものである。  The ring-shaped stopper 35 is made of non-magnetic, heat-resistant and corrosion-resistant ceramic or the like, and is fitted into the pipe 6 from the liquid or vapor 14 outflow side. The heating element 8 is fixed to the heating element 8 with a gap Vs equal to or slightly smaller than the amount of thermal expansion in the axial direction of the heating element 8. The ring-shaped stopper 35 is located on the heating element 8 across the annular gap Rs in the radial direction from the outflow side, and is connected to the heating element 8 by the thermal expansion of the heating element 8. At the same time, the annular gap Rs is closed from the outflow side. The upper holding member 42 holds the stopper 35 with a square bar 42c, and holds the square bar 42c through a vertical bar 42b and a horizontal bar 42a. It is fixed to. The lower holding member 43 holds the lower end center of the heating element 8 with a vertical bar 43b, and fixes the vertical bar 43b to the pipeline 122 via a horizontal bar 43a.
そして、 電磁誘導加熱部 1の流入側から流出側に液体又は蒸気 1 4を 流すと共に、 コイル 7による電磁誘導加熱でパイプ 6、 発熱体 8を介し て液体又は蒸気 1 4を加熱すると、 パイプ 6及び発熱体 8にその径方向 の熱膨張に差が生じるが、 パイプ 6と発熱体 8間にはその熱膨張差以上 の環状隙間 R sが形成されているので、 この環状隙間 R sを狭めつつ熱 膨張差を吸収して、 発熱体 8がパイプ 6に当接して押すことによる応力 の作用を防止され、 また、 発熱体 8はその軸方向にも熱膨張するが、 こ の熱膨張はリ ング状ス ト ッパ 3 5との間に形成された隙間 V sを熱膨張 することにより吸収される。  When the liquid or steam 14 flows from the inflow side to the outflow side of the electromagnetic induction heating section 1 and the liquid or steam 14 is heated via the pipe 6 and the heating element 8 by electromagnetic induction heating by the coil 7, the pipe 6 There is a difference in the thermal expansion in the radial direction of the heating element 8 and the annular gap Rs is formed between the pipe 6 and the heating element 8. While absorbing the difference in thermal expansion, the effect of stress caused by the heating element 8 coming into contact with and pushing the pipe 6 is prevented, and the heating element 8 also thermally expands in its axial direction. The gap Vs formed between the ring stopper 35 and the ring-shaped stopper 35 is absorbed by thermal expansion.
このとき、 パイプライ ン 1 2 1から装置 1の流入側に流入した液体又 は蒸気 1 4は、 発熱体 8内に流入して加熱されて流出側に流れると共に 、 液体又は蒸気 1 4の一部は、 流入側から直接的に、 又は発熱体 8から 環状隙間 R sに流入して環状隙間 R sを通過して流入側に流れようとす るが、 発熱体 8が軸方向の熱膨張により リ ング状ス ト ッパ 3 5に係合す ることで環状隙間 R sの流出側を閉塞して流体 1 4が直接に流出側に流 れることを阻止するので、 環状隙間 R s内には流入側からの流体 1 4の 流れにより流出側に押すような圧力が発生し、 環状隙間 R s内に流れ込 んだ液体又は蒸気 1 4をこの圧力により発熱体 8内に流れ込ませること ができる。 At this time, the liquid or vapor 14 flowing from the pipeline 12 21 to the inflow side of the device 1 flows into the heating element 8 and is heated and flows to the outflow side, and at the same time, a part of the liquid or vapor 14 Flows into the annular gap R s directly from the inflow side or from the heating element 8 to flow to the inflow side through the annular gap R s However, when the heating element 8 engages with the ring-shaped stopper 35 by thermal expansion in the axial direction, the outflow side of the annular gap Rs is closed, and the fluid 14 flows directly to the outflow side. As a result, the flow of the fluid 14 from the inflow side generates a pressure in the annular gap R s that pushes the fluid to the outflow side, and the liquid or vapor 14 flowing into the annular gap R s Can flow into the heating element 8 by this pressure.
これにより、 コイル 7による電磁誘導加熱で発熱体 8を加熱しても、 発熱体 8の熱膨張に起因するパイプ 6の破損が防止できると共に、 発熱 体 8の熱膨張を吸収するための環状隙間 R sを形成したとしても、 発熱 体 8が熱膨張してリ ング状ス ト ッパ 3 5に係合することにより環状隙間 R sを流出側から閉塞して、 この環状隙間 R s に流れ出す液体又は蒸気 1 4を発熱体 8内に流れ込ませることができるので、 液体又は蒸気 1 4 を発熱体 8で均一に加熱することが可能となる。  Thereby, even if the heating element 8 is heated by the electromagnetic induction heating by the coil 7, the breakage of the pipe 6 due to the thermal expansion of the heating element 8 can be prevented, and the annular gap for absorbing the thermal expansion of the heating element 8 can be prevented. Even if Rs is formed, the heating element 8 thermally expands and engages with the ring stopper 35 to close the annular gap Rs from the outflow side, and flows out into the annular gap Rs. Since the liquid or vapor 14 can flow into the heating element 8, the liquid or vapor 14 can be uniformly heated by the heating element 8.
上述した構造の発熱体 8による加熱においては、 電気エネルギーから 熱エネルギーへの変換効率が 9 2 %と極めて高いことが確認されている 。 例えば、 1 0 0 m m径、 長さ 2 0 0 m m、 表面積 2 . 2〜 6 . 2 m 2 の発熱体 8を用いた場合、 流体の膜厚 ( 1 c m 3 当たりの水膜量) が 0 . 5〜 0 . 2 m mと極めて薄膜状であり、 発熱体 8を構成する金属板 3 1、 3 2も薄いため、 流体の温度差も極めて小さく、 流体への熱伝達が 素早く行われる。 産業上の利用可能性 In the heating by the heating element 8 having the above-described structure, it has been confirmed that the conversion efficiency from electric energy to heat energy is extremely high at 92%. For example, when a heating element 8 having a diameter of 100 mm, a length of 200 mm, and a surface area of 2.2 to 6.2 m 2 is used, the film thickness of the fluid (the amount of water film per 1 cm 3 ) is 0. Since it is extremely thin, having a thickness of 5 to 0.2 mm, and the metal plates 31 and 32 constituting the heating element 8 are also thin, the temperature difference of the fluid is extremely small, and heat is quickly transferred to the fluid. Industrial applicability
過熱蒸気の使用例としてサウナを例示したが、 過熱蒸気による食品の 調理や、 過熱蒸気による金属部品の洗浄等に本装置が使える。  The sauna is used as an example of using superheated steam. However, this device can be used for cooking food with superheated steam and cleaning metal parts using superheated steam.
また、 3 0 0 °Cを越える温度まで過熱できるような本装置を使うと、 水の蒸気を常圧で 8 0 0 °C以上に過熱して酸素と水素に分離する化学装 置としても利用できる。 このような高温の過熱を可能にするために、 発 熱体として電磁誘導加熱が可能な導電性セラ ミ ックを使用すると、 発熱 体を構成する金属の高温における磁気変態が発生しない。 In addition, if this device can be heated to a temperature exceeding 300 ° C, a chemical device that separates oxygen and hydrogen by heating water vapor to 800 ° C or more at normal pressure. It can also be used as a device. If a conductive ceramic capable of electromagnetic induction heating is used as a heat generating element to enable such high-temperature overheating, magnetic transformation of the metal constituting the heat generating element at a high temperature does not occur.
また、 液体としての水蒸気の過熱を説明したが、 水以外の沸点を有す る炭化水素類の液体でも本装置が適用可能である。  Although the superheat of steam as a liquid has been described, the present apparatus is applicable to liquids of hydrocarbons having a boiling point other than water.
さらに、 過熱蒸気は大気圧以外に、 本装置の各機器を耐圧構造にする ことによって、 高圧の過熱蒸気を発生させることもできる。  In addition to superheated steam, high-pressure superheated steam can be generated by using a pressure-resistant structure for each component of this device in addition to atmospheric pressure.

Claims

請 求 の 範 囲 The scope of the claims
1 . 液体を加熱して蒸気にする第 1電磁誘導加熱部と、 前記蒸気を過 熱する第 2電磁誘導加熱部とを有し、  1. It has a first electromagnetic induction heating unit that heats a liquid to produce a vapor, and a second electromagnetic induction heating unit that heats the vapor.
前記第 1及び第 2電磁誘導加熱部の各々は、 非磁性材料のパイプと、 該パイプに卷かれたコィルと、 前記パイプ内に収納され前記コィルによ る電磁誘導で加熱される発熱体とを備えてなる過熱蒸気製造装置。 Each of the first and second electromagnetic induction heating sections includes a pipe made of a non-magnetic material, a coil wound around the pipe, and a heating element housed in the pipe and heated by electromagnetic induction by the coil. A superheated steam production apparatus comprising:
2 . 前記発熱体は、 軸方向に交差する通路を有するように、 電気的接 合で形成された積層体である請求項 1記載の過熱蒸気製造装置。 2. The superheated steam production apparatus according to claim 1, wherein the heating element is a laminate formed by electrical connection so as to have a passage crossing in the axial direction.
3 . 前記第 1電磁誘導加熱部と前記第 2電磁誘導加熱部とは別個に構 成され、 両者が配管で接続されている請求項 1又は 2記載の過熱蒸気製  3. The superheated steam product according to claim 1 or 2, wherein the first electromagnetic induction heating section and the second electromagnetic induction heating section are configured separately, and both are connected by a pipe.
4 . 前記第 1電磁誘導加熱部の前記パイプは上向きに配設され、 前記 第 2電磁誘導加熱部の前記パイプは横向きに配設されている請求項 3記 載の過熱蒸気製造装置。 4. The superheated steam production apparatus according to claim 3, wherein the pipe of the first electromagnetic induction heating section is disposed upward, and the pipe of the second electromagnetic induction heating section is disposed laterally.
5 . 前記第 1電磁誘導加熱部における前記パイプと前記第 2電磁誘導 加熱部における前記パイプとは共通となっている請求項 1又は 2記載の  5. The method according to claim 1, wherein the pipe in the first electromagnetic induction heating section and the pipe in the second electromagnetic induction heating section are common.
6 . 前記第 1電磁誘導加熱部における前記発熱体と前記第 2電磁誘導 加熱部における発熱体の間に、 蒸気の吹き上げを防止する部材が設置さ れている請求項 5記載の過熱蒸気製造装置。 6. The superheated steam production apparatus according to claim 5, wherein a member for preventing steam from being blown up is provided between the heating element in the first electromagnetic induction heating section and the heating element in the second electromagnetic induction heating section. .
PCT/JP1997/004781 1996-12-26 1997-12-22 Superheated steam generator WO1998029685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34682696 1996-12-26
JP8/346826 1996-12-26

Publications (1)

Publication Number Publication Date
WO1998029685A1 true WO1998029685A1 (en) 1998-07-09

Family

ID=18386073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004781 WO1998029685A1 (en) 1996-12-26 1997-12-22 Superheated steam generator

Country Status (1)

Country Link
WO (1) WO1998029685A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077448A1 (en) * 2001-03-27 2002-10-03 Seiichi Akiba Self-active power generation system by induction heating system and others
WO2004068033A1 (en) * 2003-01-28 2004-08-12 Izumi Information Co., Ltd. Superheated steam producing device
JP2004308978A (en) * 2003-04-04 2004-11-04 Tadashi Miyamoto Connection type boiler system
JP2009159913A (en) * 2008-01-09 2009-07-23 Tokuden Co Ltd Induction-heating apparatus for bioethanol production process
CN101893224A (en) * 2010-09-01 2010-11-24 陈维金 Small electromagnetic induction low-pressure superheated steam generator
JP2012163229A (en) * 2011-02-04 2012-08-30 Tokuden Co Ltd Superheated water vapor generator
CN104864386A (en) * 2015-04-30 2015-08-26 深圳市三能新能源技术有限公司 Three-dimensional heat-exchange electromagnetic-energy steam heater device
JP2019196878A (en) * 2018-05-10 2019-11-14 株式会社幸和電熱計器 Fluid heating device
CN110701592A (en) * 2019-09-29 2020-01-17 广州三川控制系统工程设备有限公司 Multi-stage pipeline type hysteresis heat effect thermal power generation method and generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739745A (en) * 1993-07-30 1995-02-10 Seta Giken:Kk Gas-liquid contacting apparatus
JPH08135903A (en) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd Steam heating apparatus
JPH08264272A (en) * 1995-03-27 1996-10-11 Seta Giken:Kk Electromagnetic induction heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739745A (en) * 1993-07-30 1995-02-10 Seta Giken:Kk Gas-liquid contacting apparatus
JPH08135903A (en) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd Steam heating apparatus
JPH08264272A (en) * 1995-03-27 1996-10-11 Seta Giken:Kk Electromagnetic induction heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077448A1 (en) * 2001-03-27 2002-10-03 Seiichi Akiba Self-active power generation system by induction heating system and others
WO2004068033A1 (en) * 2003-01-28 2004-08-12 Izumi Information Co., Ltd. Superheated steam producing device
JP2004308978A (en) * 2003-04-04 2004-11-04 Tadashi Miyamoto Connection type boiler system
JP2009159913A (en) * 2008-01-09 2009-07-23 Tokuden Co Ltd Induction-heating apparatus for bioethanol production process
CN101893224A (en) * 2010-09-01 2010-11-24 陈维金 Small electromagnetic induction low-pressure superheated steam generator
JP2012163229A (en) * 2011-02-04 2012-08-30 Tokuden Co Ltd Superheated water vapor generator
CN104864386A (en) * 2015-04-30 2015-08-26 深圳市三能新能源技术有限公司 Three-dimensional heat-exchange electromagnetic-energy steam heater device
JP2019196878A (en) * 2018-05-10 2019-11-14 株式会社幸和電熱計器 Fluid heating device
JP7153902B2 (en) 2018-05-10 2022-10-17 株式会社幸和電熱計器 Fluid heating device
CN110701592A (en) * 2019-09-29 2020-01-17 广州三川控制系统工程设备有限公司 Multi-stage pipeline type hysteresis heat effect thermal power generation method and generator

Similar Documents

Publication Publication Date Title
JP5240987B2 (en) Superheated steam generator, superheated steam generator, and superheated steam generation method
US6955050B2 (en) Thermal storage unit and methods for using the same to heat a fluid
US5237144A (en) Electromagnetic induction heater
JPH08264272A (en) Electromagnetic induction heater
KR100827468B1 (en) Electric boiler using high frequency induction heaing
WO1998029685A1 (en) Superheated steam generator
KR100762950B1 (en) Induction boiler
EP0830893A1 (en) Catalytic reaction device, catalytic reaction method, and laminate used for catalytic reaction
JP4958679B2 (en) Fluid heating device
JPH06208887A (en) Induction heated steam generator
EP0385700A1 (en) Heat exchange unit, heat exchange system, method of improving heat exchange efficiency, and refrigeration circuit
JP2004205146A (en) Steam generator
KR101084162B1 (en) Heater Module Assembly
JP3642415B2 (en) Fluid heating device
JPH09178103A (en) Induction type super heated steam generator
JPH1194202A (en) Steam producing equipment
JP5149302B2 (en) Superheated steam generator
JPH1194203A (en) Steam producing equipment
US8424309B2 (en) Continuous power source of steam in circulation, and power reinforcement
JP2001203069A (en) Electromagnetic induction heating device
JPH10180260A (en) Magnetized water production device
JPH09122635A (en) Apparatus for removing impurity in water
JP2006147431A (en) Fluid heating device and heating system
JPH01115075A (en) Fluid heater
Curran et al. Electric-induction fluid heaters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase