WO1998027217A1 - Procede pour preparer un vecteur de retrovirus pour la therapie genique - Google Patents

Procede pour preparer un vecteur de retrovirus pour la therapie genique Download PDF

Info

Publication number
WO1998027217A1
WO1998027217A1 PCT/JP1997/004592 JP9704592W WO9827217A1 WO 1998027217 A1 WO1998027217 A1 WO 1998027217A1 JP 9704592 W JP9704592 W JP 9704592W WO 9827217 A1 WO9827217 A1 WO 9827217A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
retrovirus
dna construct
resistance gene
recombinase
Prior art date
Application number
PCT/JP1997/004592
Other languages
English (en)
French (fr)
Inventor
Hideo Iba
Tohru Arai
Original Assignee
Eisai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co., Ltd. filed Critical Eisai Co., Ltd.
Priority to JP51820498A priority Critical patent/JP3959117B2/ja
Priority to EP97947924A priority patent/EP0953647B1/en
Priority to US09/214,465 priority patent/US6743620B1/en
Priority to DE69738737T priority patent/DE69738737D1/de
Publication of WO1998027217A1 publication Critical patent/WO1998027217A1/ja
Priority to US09/800,520 priority patent/US7056696B1/en
Priority to US11/378,652 priority patent/US20060153810A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
    • C12N2810/6081Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV

Definitions

  • the present invention relates to a method for producing a high-titer retrovirus vector used for gene therapy.
  • Conventional technology :
  • the disadvantages are that many cells cannot be transfected due to the absence of the viral envelope protein receptor in the transfected cells, the inability to insert large DNA, and Can only be introduced. Gene therapy using retroviruses due to these disadvantages Although it has been used extensively, it has not achieved a sufficient therapeutic effect (Marsha 11, E. Science, 269, 1050-1055, 1995).
  • gene therapy requires: 1) efficient introduction of the target gene into target cells, 2) expression and persistence of the introduced gene, and 3) including patients. At least three conditions of public safety must be met.
  • the conventional method for producing a retroviral vector is to introduce a retroviral genome containing a foreign gene of interest into cells called packaging cells that stably express the retroviral gag and poU env.
  • a method for producing a retrovirus containing a foreign gene in its genome was used.
  • VSV vesicular stomatitis virus
  • the pseudotype is a phenomenon in which one viral genome germinates surrounded by the coat protein of another virus.
  • VSV is a virus with a negative single-stranded RNA genome belonging to the Rhabdoviridae family.
  • the receptor on the cell side of its coat protein (G protein) is phosphatidyl. It is considered to be an anionic lipid including serine and is known to have an extremely wide host range.
  • the retrovirus having the original outer coat protein has a low infection efficiency or is effective for cells that could not be infected. It will be possible to introduce genes more easily.
  • Emi et al. (Emi, N., et al., J. Virol., 65, 1202-1207, 1991) and Yee et al. (Yee, JK, et al., Pro atl. Acad. Sci.
  • VSV-G pseudotyped virus vector In order to clinically apply the VSV-G pseudotyped virus vector, it is necessary to establish a method for obtaining a high-titer virus with good reproducibility. However, since the VSV-G gene product itself has cytotoxicity, it is difficult to produce the VSVG gene product at high levels with high reproducibility in packaging cells. This is a major problem in developing pseudo-type vectors that are expected to have a wide range of applications. Recently, it has been reported that cells that produce VSV-G pseudotyped virus vectors can be produced by controlling the expression of VSV-G gene products using tetracycline (Yang, Y., et al. Hum. Gene Ther. 6, 1203-1213, 1995, Chen, ST, et al. Pro Natl. Acad. Sci.
  • VSV-G pseudotype of about 10 2 to 10 4 iu / ml, in which the expression of the VSV-G gene product by tetracycline is not completely regulated and can always be re-infected to producer cells. Due to the production of viral vectors and co-transfection of VSV-G-expressing DNA and drug-resistance gene-expressing DNA, the long-term stability of packaging cells remains questionable. And so on.
  • the foreign gene product is contained in the virus-producing cell (packaging cell containing the virus genome) itself. Is known to be unable to stably recover the virus that has the foreign gene in the virus genome due to the influence of the virus (Pear, W, S. et al., Pro at l. Acad. Sc i. USA, 90, 8392-8 396, 1993).
  • a retrovirus vector having a VSV-G gene product in its outer coat is referred to as a "pseudotyped virus vector”.
  • a retroviral vector having an original coat protein and a pseudotyped viral vector are combined to form a "retroviral vector”.
  • prepackaging cells cells that express retrovirus gag and poll, but do not normally express but can express env by recombinase are referred to as “prepackaging cells”.
  • prepackaged cells containing the viral genome cells that express retrovirus gag and poll, but do not normally express but can express env by recombinase are referred to as “prepackaging cells”.
  • prepackaged cells containing the viral genome cells that produce a virus by the introduction of the recombinant are referred to as “packaging cells containing the viral genome”.
  • a low-efficiency drug resistance gene or a transcript having a base sequence resulting from shortening the mRNA of the drug resistance gene, a drug resistance gene having a shortened life and a conventional drug resistance gene are collectively referred to as a “drug resistance gene”.
  • a DNA in which 1 oxP sequence, drug resistance gene, po 1 yA added sidanal, 1 oxP sequence, VSV-G gene and po 1 yA added signal are oriented in this order retroviral gag, po lGenerate pre-packaged cells by introducing them into cells into which the gene has been introduced and selecting with a drug.
  • the pre-packaging cells prepared in this way are used to express a drug resistance marker by infecting a retroviral vector into which the gene of interest has been inserted, and introducing the gene into the pre-packaging cell.
  • VSV-G gene product With the same powerful promoter as above, it is possible to express VSV-G gene product in a short time and with high expression.
  • the present inventors succeeded in producing a large amount of a high-type pseudotyped virus vector before the cytotoxicity of the VSV-G gene product appeared, and completed the present invention.
  • pseudotyped retrovirus Vekichi re-infected producer cells found that pseudotyped retrovirus Vekichi re-infected producer cells, and found that re-infection could be suppressed by adding a negatively charged high molecular weight substance to the culture medium to increase the amount recovered. did.
  • the drug resistance marker gene used for preparing the above pre-packaged cells may be a gene whose function has been reduced by adding substitutions, insertions, or deletions to the nucleotide sequence in the coding region, or Substitution, insertion, or deletion in the base sequence of the region
  • the translation efficiency can be reduced by introducing such a gene (low-efficiency drug resistance gene), or the stability of the mRNA produced from the gene can be reduced (drug resistance gene for shortening the transcription product).
  • drug resistance gene for shortening the transcription product the fact that cells requiring higher resistance marker expression can be efficiently selected was used.
  • a transcript shortened lifespan drug resistance gene to which these ideas are added is used.
  • the present invention relates to a DNA construct (hereinafter, referred to as DNA construct (A)) that controls the expression of a viral structural protein using a recombinase and its recognition sequence, and a virus genome using a recombinase and its recognition sequence.
  • A a DNA construct that controls the expression of a viral structural protein using a recombinase and its recognition sequence, and a virus genome using a recombinase and its recognition sequence.
  • the DNA construct (B), which controls the expression of the foreign gene encoded by the gene, into the retroviral gag-pol-producing cells, and then introduces the recombinase-expressing DNA A) a method for preparing a retroviral vector for gene therapy, comprising: 1) a promoter, a recombinase recognition sequence, a drug resistance gene, a polyA additional signal, a recombinase recognition sequence, a viral structural protein gene, Following the DN'A construct (A) oriented in the order of the polyA addition signal, the LTR of the retroviral genome, the packaging signal, The DN'A construct (B) in which the enzyme recognition sequence, drug resistance gene, polyA additional signal, recombinant recognition sequence, foreign gene and LTR were oriented in this order was introduced into retrovirus gag-pol producing cells.
  • a method for preparing a retroviral vector for gene therapy including introducing recombinase-expressing DNA, 2) gag-pot e of retrovirus A DNA construct in which the LTR of the retrovirus genome, the packaging signal, the recombination enzyme recognition sequence, the drug resistance gene, the polyA addition signal, the recombinase recognition sequence, the foreign gene, and the LTR are arranged in order in the nv-producing cell (B)
  • a method for preparing a retroviral vector for gene therapy which comprises introducing a recombinase-expressing DNA after the introduction of the gene, 3) a promoter, a recombinase recognition sequence, a drug resistance gene, a polyA additional signal, a recombinase recognition sequence, After introducing the viral structural protein gene, the DNA construct (A) oriented in the order of the poly A addition signal, and the retrovirus genome encoding the foreign gene into retroviral gag-po 1 producing cells, expression of the recombin
  • Method for producing a retroviral vector for gene therapy including introducing DNA, 4) Professional -Yuichi, recombinase recognition sequence, drug resistance gene, polyA-added signal, recombinase recognition sequence, viral structural protein gene, DNA construct (A) oriented in the order of poA-added signal, 5) LTR of retrovirus genome, Following the packaging signal, the DNA construct (B) in which the recombinase recognition sequence, drug resistance gene, polyA addition signal, recombinase recognition sequence, foreign gene, and LTR are oriented in this order (B), 6) DNA construct (A) whose promoter is CAG ), 7) DNA construct (A) or DNA construct (B) whose recombinase and its recognition sequence are Cre recombinase and ⁇ sequence, 8) Drug resistance gene is neomycin resistance gene, puromycin resistance gene method or hygromycin resistance DM construct (A) or DNA construct (B), which is a gene, 9) DNA construct (
  • the DNA construct (B) according to claim 2, wherein the retroviral genome is derived from lentivirus (B), and 17) the foreign gene is a gene intended to be introduced into a cell for genetic gene therapy.
  • DNA construct (B), 18) outside The gene is a DNA construct (B) that is a cytotoxic protein gene.19) CAG promoter, ⁇ ⁇ sequence, drug resistance gene, polyA addition signal, ⁇ sequence, VSV-G gene, polyA addition signal DNA construct (A), 20) Following the LTR of the retroviral genome and the packaging signal, the DNA construct (B), which is oriented in the order of ⁇ sequence, drug resistance gene, polyA addition signal, ⁇ sequence, foreign gene, LTR, 21 ) A prepackaging cell for producing a retrovirus vector, in which the DNA construct (A) was introduced into a retrovirus gag-pol-producing cell.
  • a DNA construct (B) was introduced into a retrovirus gag-pol env-producing cell. Pre-packaged cells containing the viral genome for the production of retroviral vectors. 23) DNA construct (A) and retroviral gag-pol Pre-packaging cells containing the viral genome for the production of one retrovirus vector, into which the DNA construct (B) has been introduced. 24) The DNA construct (A) and the foreign gene are added to the retroviral gag-pol-producing cells. Pre-packaging cells containing the viral genome for the production of a retroviral vector, into which the viral genome has been introduced. 25) Retrovirus whose retrovirus is murine leukeimia virus (MLV).
  • MMV murine leukeimia virus
  • Pre-packaging cells for the production of viral vectors 26) a method for producing pseudo-type retrovirus, a method in which a negatively charged high molecular substance coexists in the culture medium, 27) a negatively charged high molecular substance is heparin, heparan A method for producing a pseudotype retrovirus selected from sulfate and chondroitin sulfate.
  • FIG. 1 shows a schematic diagram of a pseudotype retrovirus production system using prepackaging cells.
  • FIG. 2 shows the construction of pCALNLG and pCALNdLG.
  • FIG. 3 shows a construction diagram of pBabe and pBabeloxpuro.
  • FIG. 4 shows detection of VSV-G by Western plot.
  • FIG. 5 shows the stability of Pt G-L1 as a prepackaging cell.
  • FIG. 6 shows the time course of the amount of virus production of PtG-Ll.
  • FIG. 7 shows a time-dependent change in the amount of pseudotype retrovirus produced from PtG-S2.
  • FIG. 8 shows the time course of pseudotype retrovirus production from PtG-L1.
  • FIG. 9 shows analysis of changes in protein synthesis before and after introduction of Cre recombinase by Western blotting.
  • FIG. 10 shows the analysis of changes in chromosomes before and after the introduction of Cre recombinase by Southern blotting.
  • FIG. 11 shows the effect of heparin on viral infection.
  • FIG. 1 shows an outline of the invention relating to a retroviral vector for gene therapy produced by the method of the present invention.
  • Recombinase is a DNA site-specific recombinase that recognizes specific nucleotide sequences It is an enzyme that performs a single series of reactions required for site-specific recombination called cleavage and binding.
  • Cre recombinase is an enzyme that specifically recognizes a 34 base pair ⁇ sequence (Fukushige, S., et al., Proc. Natl. Acad. Sc. USA, 89, 6232-6236, 1992), a recombination vector having two copies of the loxP sequence in the same direction was produced, and by the action of Cre recombinase, rearrangement between the two loxPs occurred. It is cut out as.
  • the DNA construct (A) is a promoter, a recombinase recognition sequence, a drug resistance gene, and a polyA.
  • An additional signal, a recombinase recognition sequence, a viral structural protein gene, and a polyA additional signal are oriented in this order, and a DNA construct (B) that controls the expression of a foreign gene using the recombinase and its recognition sequence.
  • a DNA construct (B) that controls the expression of a foreign gene using the recombinase and its recognition sequence.
  • Cre recombinase When Cre recombinase is allowed to act on the selected cells, rearrangement between the two loxPs of these constructs occurs, and the sandwiched portion is cut out as a cyclic molecule, and for the first time, the viral structural protein gene (or foreign gene) ) Will be expressed.
  • the present invention is based on this Cre / 1
  • a single promoter has two functions: the expression of drug-resistant marker genes and the expression of viral structural proteins (for example, VSV-G) after the action of Cre recombinase. It has great features. Apply Cre / loxP system even when it is difficult to produce a high-titer retrovirus vector with good reproducibility because the foreign gene or viral structural protein of interest has cytotoxicity. This makes it possible to produce a high-titer vector that can be applied clinically.
  • DNA constructs (A) and (B) the recombinant recognition sequence is inserted in the forward direction, but those inserted in the reverse direction are also included in the present invention.
  • a promoter may be inserted following the packaging signal, or the P01yA sequence following the drug resistance gene may be deleted.
  • DNA constructs including those oriented in the order of DNA construct (B) regardless of the presence or absence of both are included in the present invention.
  • those that do not contain the polyA signal can become the virus genome without the action of Cre recombinase, and the expression of foreign genes can be started by infecting the target cells and then introducing Cre recombinase. Can be done.
  • DNA constructs including those ordered in order, are included in the present invention.
  • the drug resistance gene a commonly used neomycin resistance gene, a pure mycin resistance gene, a hygromycin resistance gene and the like can be used, and preferably, it is replaced with a nucleotide sequence in the coding region of the drug resistance gene.
  • the mRNA destabilizing sequence found in the 3 'untranslated region of the cf os gene (ARE: AU-richelemem O (Chen, CA, Shyu, A., MoI. Cell. Biol.) l, H, 8471-8482, 1994) into the 3 'untranslated region of a known resistance gene.
  • Another major feature of the present invention is that the use of these devised drug resistance genes makes it possible to efficiently select cells with particularly high expression from a promoter normally inserted and introduced into a chromosome. This is to further enhance the selection efficiency of prepackaging cells for producing a titer vector.
  • a neomycin resistance gene that can be selected by G418 (manufactured by Schering AG) was used.
  • polymer of the negative home appliance as a reinfection inhibitor for increasing the recovery of pseudotype retrovirus, and examples thereof include heparin, heparan sulfate, and chondroitin sulfate, and preferably heparin. Are listed.
  • the viral structural protein is not particularly limited to any virus, but as an envelope for producing pseudotyped virus, a sequence of the VSV-G (indiana) species including the full-length translation region (Galli one, VSV-G gene which is CJ, 46, 162-169, 1983) is preferred.
  • the foreign gene is not particularly limited as long as it is a gene intended to be introduced into cells for gene therapy.However, the method using the Cre / loxP system of the present invention is particularly effective in the case of a protein having cytotoxicity. It is. The expression of the protein does not occur before the action of the recombinase, and the action of the recombinase results in the expression of the protein in a short time by the same promoter for the first time. This is because one fabrication can be performed.
  • the preferred example is Moroni mouse leukemia virus
  • MoMLV Moloney murine leukeimia virus
  • HAV human acquired immunodeficiency syndrome
  • any commonly used promoter can be used, but a high titer promoter capable of expressing a viral protein in a short time is preferable.
  • the CAG promoter reported by Niwa et al. (N'iwa, H., Yamamura, k., Miyazaki, J., Gene, _108, 193-200, 1991).
  • the polyA-added sequence is not particularly limited, but is preferably derived from the egret 3 globin gene or the SV40 virus.
  • the cells into which the DNA constructs (A) and (B) are introduced may be any as long as the gag and pol genes encoding the structural proteins are expressed.
  • Preferred cells include FLY cells (Cosset, et al., J. Viol., 69, 7430-7436, 1995).
  • the DNA construct (A), especially the DNA construct (A) containing the VSV-G gene, in the retrovirus gag and pol-producing cells is a pre-packaging cell for producing one viral vector, particularly a pseudotyped viral vector.
  • a retroviral gag or po1 producing cell is transfected with a DNA construct (A) and a DNA construct (B) or a retroviral genome encoding a conventional foreign gene can be used to produce retroviral vector-1 (especially pseudotype). It is useful as a prepackaging cell containing a viral genome and is included in the present invention.
  • Cells in which the DNA construct (B) has been introduced into producer cells are It is useful as a prepackaging cell containing a viral genome for the production of an ordinary retroviral vector containing a gene, and is particularly useful when the foreign gene protein to be introduced has cytotoxicity. These cells are also included in the present invention.
  • one promoter has two functions of expression of a drug resistance marker gene and expression of a VSV-G gene (or a foreign gene) after the action of Cre recombinase.
  • the major feature of this method is that the selection efficiency of prepackaging cells for the production of high titer vectors is further improved by using a drug resistance gene for shortening the life of transcripts. It is expected to be particularly effective when it is difficult to produce a high-titer retrovirus vector with good reproducibility, for example, because the target foreign gene has cytotoxicity.
  • a DNA construct containing a sex gene and a DNA construct (pCALNdLG) into which a sequence for shortening the life of the transcript of the drug resistance gene (hereinafter referred to as a transcript shortening sequence) is introduced.
  • the fabrication method will be described below.
  • pCALNLG To prepare pCALNLG, the coding sequence of the G protein of VSV (Indiana: serotype): (Rose, IK Cell, 30, 753-762, 1982) was converted to pCALNLw [(Kanegae, Y,, et al., Nucl. Acids, Res., 23, 3816-3821, 1995), except that the lacZ gene was removed from the pCALNZ and a Swal cleavage site was introduced. The ⁇ sequence is arranged on both sides of the neomycin resistance gene in the forward direction ] (Fig. 2).
  • the 3'-untranslated region of the neomycin resistance gene was replaced with NspV and Clal (Clal site is klenow fill in The Nrul site is created by blunting, and then blunted by cutting with Nrul.
  • Nc1 The 414 bps sequence of the chicken c-ios mRNA short-lived sequence (AU Rich Element: ARE) Clal, Bglll ( The Bgl11 site was cut by blunting with klenow fill in) and inserted using the attachment of both NspV and Clal to construct pCALNdLG ( Figure 2).
  • Fig. 3 shows the retrovirus genome used and prepared.
  • the retrovirus genome pBabe loxpuro which initiates expression of a foreign gene by excision of a drug resistance gene as a cyclic molecule by the action of Cre recombinase, was constructed as follows. The following oligo DNA was designed and ordered as a multi-cloning site for foreign gene insertion. Restriction enzyme recognition sites are indicated by underlining. 5 '-tcgac gc agate t cacgtg at t taaat at-3'
  • DNA containing the puromycin resistance gene and the SV40 polyA signal was excised from pPUR (GIBC0) with HindIII and BamHI, and inserted into the HindIII and BamHI sites of pBS246 (GIBC0), a plasmid for incorporating the ⁇ sequence. From there, the sequence of ⁇ ⁇ ⁇ ⁇ -Pu-Mouth Mycin Resistance Gene-SV40 polyA- ⁇ was excised with EcoRI and Seal, and blunt-ended with Klenow fragment was used as loxpuro insert.
  • the loxpuro insert was inserted into the site cut with SnaBI.
  • pBAbe loxpuro was prepared.
  • it since it does not contain the SV40 polyA signal, it can be used as a viral genome without the action of Cre recombinase, and the expression of foreign genes can be initiated by infecting target cells and then introducing Cre recombinase (pBabe loxpuroDpA) was also prepared at the same time.
  • nlslacZ cut from pCAL Z (Kanegae, Y., et al., Nucl. Acids, Res., 23, 3816-3821, 1995) into pBabe or pBabe loxpuro, and translocate to the nucleus for virus titer measurement It was used to construct a retrovirus genome with i3-galactosidase (nlslacZ) with a signal.
  • the measurement of the virus titer was performed as follows. Was prepared rack Bok fibroblast 3Y1 in 96-well plates infected one day before so that 1.5 X 10 3 / 96well. The thawed samples were diluted with the culture solution at various stages, and infected with rat fibroblasts 3Y1 together with 0.5 mg / 96 well of borylene. Three days later, the infected cells were fixed with 1.25% dataraldehyde, and lacZ-infected cells were stained with X-gal according to the method described above. Count the number of colonies stained blue and confirm that the number of colonies changes with dilution And the titer was calculated. The titer was expressed as infectious particles (Infectious units, hereinafter abbreviated as iu) contained per lml as a unit (iu / ml).
  • VECTASTAIN VECTOR
  • the cells were fixed with PBS containing 3% paraformaldehyde + 0.1% Triton X-100 at room temperature for 15 minutes. After washing twice with PBS, each primary antibody solution diluted 1/1000 to 1/3000 was prepared in Hank's balanced salt solution (HBSS) containing goat serum, and allowed to bind at room temperature for 2 hours. After washing twice with PBS, a secondary antibody to a mouse that is a primary antibody producing animal, labeled with biotin, was diluted 1/1000 with HBSS containing goat serum and allowed to bind at room temperature for 30 minutes. Thereafter, staining was carried out according to the instruction manual of VECTASTAIN.
  • HBSS Hank's balanced salt solution
  • a DNA construct pCALNLG (Fig. 2) containing a neomycin drug resistance gene for inducing expression of the VSV-G gene product by Cre recombinase was used in FLY cells (Cosset, et al.) That stably express the gag and pol gene products of MoMLV. al., I. Virol., 69, 7430-7436, 1995).
  • GIBC0 l418 mg / ml neomycin derivative G418
  • Each colony was split into two, and one was multiplied with the adenovirus (AxCANCre) for Cre recombinase expression (Kanegae, et al., Ucleic Acids Res., 23, 3816-3821, 1995).
  • the infection was performed at a rate of 30 moi), Cre recombinase was introduced, and G418 was removed from the culture solution.
  • culturing was continued in order to preserve the cells in liquid nitrogen without treatment.
  • Three days after infection with AxCANCre the expression of the VSV-G gene product was detected by the above-mentioned immunostaining method using a VSV-G antibody (P5D4, Sigma V5504).
  • VSV-G gene product produced by PtG-L1 a pre-packaging cell that showed strong staining in Example 1, was treated with an anti-VSV-G antibody (P5D4) As detected.
  • the 11 clones that had been cultured without treatment described in Example 1 were stored in liquid nitrogen, and a retrovirus genome encoding j3-galactosidase (lacZ) was introduced into some of them by viral infection. did. After confirming that the retroviral genome encoding 1 ac Z had been introduced into most cells by staining with X-gal, the cells were divided into two parts.One was not infected, and the other was infected with AxCANCre. Expression of the G gene product was induced. Thereafter, at intervals of about three days, the culture medium was exchanged on the day before the virus recovery, and the culture supernatant was recovered the next day. Centrifuge at 3000 rpm for 30 minutes. The virus stock was stored at 180 ° C.
  • PtG-L1 into which Cre recombinase was introduced produced a virus of up to 4 ⁇ 10 3 iu / ml. Since the virus production of the three clones other than PtG-L1 was 100 iu / ml or less, the properties were analyzed by narrowing down to PtG-Ll.
  • Example 4 Properties of coat protein of viral vector produced from PtG-L1
  • the virus envelope produced by PtG-Ll is expected to be VSV-G (Indiana type) derived from pCALNLG because the virus is AxCANCre-dependent, but anti-VSV -G antibody (Indiana type ATCC VR-1238AF) was purchased from ATCC, and infection control experiments were performed as follows.
  • a virus sample produced by allowing AxCANCre to act on PtG-L1 and a 1/10 volume (v / v) of the antibody were mixed and reacted at 4 ° C for 1 hour. Then, the effect on infection was examined using 3Y1 as described above, using the expression of the lacZ gene as an index (Table 1). As a negative control, an anti-VSV-G antibody (New jersey type ATCC VR-1238AF) that does not bind to Indiana type VSV-G was used. In the case of using the anti-VSV-G antibody (Indiana type), infection was completely suppressed in 1/10, and the effect was observed even in 1/1000.
  • the number of surviving cells was compared between those obtained by adding and removing G418 from the culture solution. After 9 days, the number of cells with G418 decreased to less than 5% of that without G418.
  • the neomycin resistance gene will continue to be expressed if it is present on the chromosome, but will lose expression if it is removed from the chromosome as circular DNA. Thus, the loss of neomycin resistance in AxCANCre-infected PtG-L1 appeared to be due to the removal of the neomycin resistance gene from the chromosome by Cre recombinase.
  • Fig. 5a shows the results of culturing at 37 ° C from day 3 after AxCANCre infection
  • Fig. 5b shows the results from those at 32 ° C.
  • Ax CANCre infection The amount of production on the third day of infection was slightly lower, but the amount of production thereafter was almost the same, indicating that the pCALNLG, gag, and pol genes were stably retained in PtG-Ll.
  • Example 7 Examination of conditions for virus production from G-L1
  • the conditions for virus production from PtG-LUacZ were examined from the following points (a to c), and the time course of the titer of the virus produced at that time was measured.
  • Figure 6a shows the time-dependent changes in the amount of virus production under these conditions, and Figure 6b shows the same results at a temperature of 32.
  • the cells that produced the highest amount were initially infected with AxCANCre at high moi, and the number of cells decreased due to the cytotoxicity of adenovirus.On the 22nd day, the cells became confluent.
  • pCALN'LG was transfected into FLY cells to establish a stable cell line PtG-L1.
  • the virus production was completely dependent on the introduction of Cre recombinase, and the envelope of the virus produced was VSV-G (indiana type).
  • VSV-G indiana type
  • VSV-G immunostaining was performed by the method described above. FLY and 3Y1 were not stained at all, regardless of the presence or absence of AxCANCre infection, whereas PtG-LUacZ stained VSV-G in almost all cells infected with AxCANCre. This suggests that PtG-L1 is a homogeneous cell clone, and that contamination with one that does not express the VS V-G gene product does not affect virus production. In addition, it was shown that gene transfer using adenovirus vector could introduce Cre recombinase into almost all cells, and recombination with Cre recombinase occurred following the transfer.
  • PtG-LllacZ was stained with lacZ according to the method described above to check that the viral genome encoding lacZ was stably maintained. LacZ staining was observed in all cells, indicating that the viral genome encoding lacZ was stably maintained in PtG-LllacZ and did not affect virus production.
  • a hybridoma (CRL-1890) that produces an antibody against MLVgagpl2 was purchased from ATCC, and a monoclonal antibody prepared from mouse ascites was used as described above. MLVgagpl 2 was detected by the method. While 3Y1 was not stained at all, FLY and PtG-LllacZ stained MLVgagpl 2 in all cells. This suggests that MLVgag was stably retained in PtG-LllacZ and did not affect virus production. Since gag and poll have the same transcription start point, it was considered that poll was also stably maintained.
  • pCALNdLG a DNA construct in which the c-ios-derived mRNA short-lived sequence was introduced into the 3'-untranslated region of the drug resistance gene was prepared, and this was compared with pCALNLG described above. An experiment like that was performed.
  • Example 9 Effect of pCALNdLG containing mRNA short-lived sequence and primary selection of prepackaging cell line expressing VSV-G gene product
  • the produced VSV-G gene product was detected by immunostaining using a VSV-G antibody (P5D4, Sigma V5504) according to the method described above. From three independent transfection experiments, pCALNLG was transfected, but the number of pCALNdLG transfected was about 1/3 compared to the number of G418 selected clones. The short life indicated that more stringent choices had been made.
  • Transfected pCALNLG obtained so far as a clone that highly expresses the VSV-G gene product in a Cre recombinase-dependent manner 1 clone (PtG-L1) and 25 clones transfected with pCAL NdLG Stored in nitrogen, and examined the virus-producing activity of a part of the clone by infecting a virus with the 3-galactosidase (lacZ) gene in the genome. Prepackaged cells containing the virus genome were used. The efficiency of introduction of the vector into each clone was almost 100% when stained according to the method described above.
  • Virus titers were measured at approximately three-day intervals one day before the culture medium was replaced. The collected virus sample was centrifuged (3000 rpm, 30 minutes), and the supernatant was stored at 180 ° C until immediately before analysis. The titers of these virus samples were measured using 3Y1 according to the method described above, using the expression of the lacZ gene as an index.
  • Example 9 In order to confirm the coat protein of the generated virus vector, it was examined whether the infection of the virus samples produced by the three clones selected in Example 9 was neutralized by the anti-VSV-G antibody (Indiana type). After reacting with the antibody by the method described in Example 2, the effect on infection was examined using 3Y1 using the expression of the lacZ gene as an index according to the method described above. The results are shown in (Table 2).
  • Anti-VSV-G Indiana type antibody completely suppressed virus infection against viruses produced from all clones, but anti-VSV-G (New Jersey type) showed no change. Therefore, virus induced by introduction of Cre recombinase was shown to be Gerhard one de type virus having pCALI ⁇ T LG, from pCALNdLG VSV- G a (Indiana-type) as a coat protein.
  • Example 12 Western blot analysis of neomycin resistance gene product and VSV-G gene product produced by prepackaging cells, and the effect of mRNA short-lived sequence on the amounts of both
  • Protein samples from PtG-Ll and PtG-S2 cells containing the MLV vector encoding lacZ, with and without Cre recombinase (after transfection) and without (equivalent before transfection) as in Example 2. was prepared and subjected to Western blotting (FIG. 9).
  • To detect the neomycin resistance gene product dilute the anti-neomycin resistance gene product (5Prime to 3Prime / Funakoshi) to 1/1000 and use biotin as a secondary antibody. : An antibody against the secondary antibody-immunized animal, eg, egret IgG, was diluted 1/1000 and used.
  • the genomic DNA was digested with Nc01, subjected to agarose electrophoresis, and transferred to a positively charged nylon membrane (HybondN + Amesham) by a cabinet transfer. As shown in FIG. 10, detection was carried out using a probe in which a 0.7 kb Mlul-Ncol fragment in the VSV-G translation region was labeled with 32P. As a result, as expected, the introduction of Cre recombinase changed the VSV-G expression unit from 1.2 kb to 2.0 kb for PtG-L1 and 1.5 kb to 2. Okb for PtG-S2.
  • PtG-L1 and PtG-S2 have a difference of 0.3 kb depending on the presence or absence of the mRNA short-lived sequence before the introduction of Cre recombinase, and have the same structure after the introduction. This is consistent with the assumption in FIG. 10, and in the prepackaging cells, the neomycin resistance gene and the polyA addition signal sandwiched between the loxP sequences were efficiently excised by Cre recombinase, and the results were obtained in Example 12. It was shown that the transcripts were switched as shown. The VSV-G expression unit contained in PtG-S2 is higher than that of PtG-L1, and it is considered that PtG-S2 contributes to the production of a large amount of VSV-G gene product.
  • RCR replication competent retrovirus
  • the method for introducing Cre recombinase into pre-packaging cells described in this patent is not limited to adenovirus as described above.
  • the method using adenovirus is extremely effective.
  • the inclusion of adenovirus in pseudotyped retroviruses produced from prepackaging cells must be avoided for clinical applications, and adenoviruses are included in pseudotyped retroviruses by the following method. We considered whether or not it was done. Cre recombinase was introduced into PtG-S2 containing the MLV vector encoding lacZ by the adenovirus (AxCANCre) according to the method described in Example 2.
  • the culture medium was changed daily, and at the time of the exchange, the cells were thoroughly washed three times with the culture medium to remove any adenovirus that may have remained.
  • adenovirus that may be contained in 5 ⁇ 10 4 iu / ml of pseudotyped retrovirus prepared by a standard method (Bio Manual Series 4 Expression-analytical method, Yodosha, 1994) using 293 cells.
  • Those infected with the AxCANCre whereas was also observed more than 50% of the modified 293 cells under conditions where there is one adenovirus until after infection 1 2 days, 5 X 10 4 i.
  • U . / Ml No infection of the pseudotyped retrovirus in 293 cells showed any degeneration of 293 cells, indicating that no adenovirus was present in these cells.
  • Adenovirus was introduced under the condition without washing. Adenovirus was similarly detected using 293 cells from the sample containing 2 days after the introduction, and degeneration of 293 cells was observed. The denaturation was attenuated by removing adenovirus in the sample by conjugated with Protein G Sep harose (Pharmacia). Although complete optimization requires further optimization, it was considered that adenovirus could be removed by antibody treatment.
  • the VSV-G pseudotyped retrovirus does not interfere with packaging cells expressing the VSV-G gene product on the surface, and is capable of self-infection (1).
  • the receptor used by the VSV-G pseudotyped virus vector for gene transfer is not a protein, but an anionic lipid, such as phosphorus, which is abundant on the cell surface. Have been. Therefore, unlike ordinary retroviruses, the receptor on the surface of packaging cells
  • Two PtG-S2 cells that do not contain the MLV vector that encodes I acZ were prepared with Cre recombinase transfection (after transfection) and non-Cre recombinase (equivalent to before transfection) in the same manner as in Example 2. .
  • VSV-G pseudotyped virus vector-producing cells can be produced by controlling the expression of VSV-G gene product using tetracycline.
  • the expression control of VSV-G gene product by tetracycline is not perfect, and it produces a VSV-G pseudotype virus vector of about 10 2 to 10 4 i.u./ml that can always re-infect producer cells.
  • the results described above suggest that the small amount of VSV-G pseudotyped virus vector produced during the maintenance of the packaging cells may re-infect the packaging cells themselves.
  • the chromosome in the packaging cell may always be in an unstable state due to gene transfer by the VSV-G pseudotyped virus vector.
  • Example 10 PtG-S2, which is a pre-packaging cell, did not produce any V SV-G pseudotyped virus vector before the Cre recombinase action, resulting in stable VSV- It is possible to prepare a G pseudotyped virus vector.
  • Example 18 Inhibition of infection of VSV-G pseudotyped virus vector by heparin As described above, VSV-G pseudotyped virus vector was shown to re-infect packaging cells, and this re-infection was suppressed. Therefore, it was thought that the amount of VSV-G pseudotyped viral vector recovered could be increased.
  • VSV-G pseudotyped viral vector encoding 3-galactosidase (lacZ) and the retroviral vector with an amphotropic MLV envelope in the manner described above.
  • Heparin Novo-Nordisk
  • the VSV-G pseudotyped viral vector was significantly reduced in titer by heparin compared to the retroviral vector with an amphotropic MLV envelope. This was thought to be due to the effect of heparin on the infection of VSV-G pseudotyped viral vectors.
  • Example 19 Increase in Recovery of VSV-G Pseudotyped Virus Vector by Heparin
  • heparin was shown to have the effect of suppressing infection of the VSV-G pseudotyped virus vector, and therefore, by adding heparin when recovering the VSV-G pseudotyped virus vector from packaging cells.
  • Cre recombinase was introduced into PtG-S2 cells containing the MLV vector encoding cZ in the same manner as in Example 2, and heparin was added to lli / ml or 3 U / ml culture medium 2 or 4 days after Cre recombinase was introduced. added. When the titer of the produced VSV-G pseudotyped virus vector was measured, the recovery was increased by 2 to 4 times as compared with the case where heparin was not added.
  • Heparin is a drug used clinically as an anticoagulant, and its safety is not considered to be a problem.
  • dilution of heparin restores the infectivity of the VSV-G pseudotyped virus vector, so that the effects of both are reversible, and it is possible to remove heparin during superoperation.
  • VSV-G pseudotyped virus vector was Concentration was performed.
  • VSV-G pseudo-type virus vector sterilized ultracentrifuge tube (Beckman No. 344058) 1 Dispense 40 ml 1 into 2 tubes, and divide each into 6 tubes. In the evening, concentration was performed at 19,500 ml for 40 minutes. After removing the supernatant from the tube after concentration, 0.2 ml of DMEM without FCS was added, and the mixture was allowed to stand on ice for 1 hour, then suspended with occasional gentle shaking, and left on ice for another 1 hour. By this concentration, 1.5 ml of a VSV-G pseudotype virus vector of 4 ⁇ 10 7 i.u / ml was obtained (recovery rate 69%).
  • this concentrated VSV-G pseudo-type virus vector was placed in an ultracentrifuge tube (Beckman 358650), and concentrated at 19500 rpm for 1 hour and 40 minutes using SW41 low-rate. The supernatant was removed with a syringe, and 0.05 ml of DMEM without FCS was added, followed by suspending on ice. By this centrifugation, 0.08 ml of a VSV-G pseudotyped virus vector concentrated to 1 ⁇ 10 9 Zm 1 was obtained. The recovery rate of the second ultracentrifugation was 53%, which was concentrated to 37% of the original VSV-G pseudotyped viral vector at 1 ⁇ 10 9 / ml.
  • pBabebeoxpuro prepared by the above method was cut with the same restriction enzyme, and blunt-ended with klenow fragment.
  • pBabe1 oxpuro-d was prepared by inserting the above-mentioned 414 bps sequence of the short-lived mRNA sequence (AU Rich Element: ARE) of chicken c-fos which had been blunt-ended with a klenow fragment.
  • VSV-G pseudotyped retrovirus vector that initiates gene expression of full-length vector RNA by Cre recombinase
  • pBabe loxpurola cZ in which lacZ was inserted into the multicloning site of pBabe loxpuro was introduced into PtG-S2 by ribofection.
  • the transfected cells were selected by utilizing the resistance to pure mouth mycin, and the selected cells were expanded without cloning.
  • Cre recombinase was introduced into the cells by AxCANCre, and the titer of the produced V SV-G pseudotype retrovirus vector was measured using lacZ as an index.
  • Cre recombinase one Ze started the production of VSV-G Gerhard one de evening I-flops retroviral vector and foremost, is to 8 days after the introduction 5 2 X 10 4 i. U .
  • VSV-G pseudotyped retrovirus vector can be produced by strictly controlling the expression of the gene encoded by the vector RNA using Cre recombinase.
  • the present invention enables a stable and large-scale preparation of a retrovirus vector having a vector RNA encoding a gene having a large influence, such as those shown below.
  • Example 14 The contents described in Example 14 were improved and the following results were obtained.
  • 1 ⁇ 10 7 i.u./m 1 pseudotyped retrovirus prepared from PtG-S2 cells containing MLV vector encoding lacZ according to a conventional method (basic technology for gene therapy, Yodosha 1996) M.dunni cells at m.0.i 5, and cultures were collected after 3 passages of 10 times every 10 days, and PG-4S was incubated in the presence of DEAE-dextran. + L- cells.
  • Example 15 The content described in Example 15 was further improved, and the following results were obtained.
  • Cre recombinase was introduced into PtG-S2 containing the MLV vector encoding lacZ by an adenovirus (AxCAN Cre) by the method described in Example 2.
  • the culture medium is changed every day, and the cells are thoroughly washed three times with the culture medium at the time of the exchange, and the washed culture medium is completely sucked up with a pipette to form any remaining adenovirus. Removed as long as possible.
  • Adenoviruses that may be contained in 2 x 10 6 iu / m1 pseudotyped retrovirus prepared from samples 3 to 5 days after introduction (6 or more washes) are routinely analyzed (Bio Manual Series 4).
  • 293 cells were detected by the method of gene transfer and expression ⁇ analysis, Yodosha, 1994).
  • AxCANCre-infected cells showed more than 50% degeneration of 293 cells by 12 days post-infection, even in the presence of one adenovirus infectious particle, whereas 2 ⁇ 10 6 i.u Infections in pseudotyped retroviruses of Zm1 did not show any degeneration of 293 cells, demonstrating the absence of adenovirus in them.
  • a culture containing 1 X 10 6 iu / ml of this adenovirus vector was conjugated with a rabbit polyclonal anti-adenovirus antibody (transferred from Dr. Shiraki, Professor of Virus Research, Institute of Medical Science, The University of Tokyo) to Protein G Sepharose (Pharmacia).
  • the cells were treated at 4 ° C. for 1 hour, centrifuged, and the supernatant was recovered. Detection of 293 cells was attempted in the same manner as described above. No degeneration of 293 cells was observed by 12 days after infection, indicating that this antibody completely removed the adenovirus vector contained in the culture medium.

Description

糸田 β 遺伝子治療用レトロウイルスベクターの作製法 発明の背景
発明の属する技術分野:
本発明は遺伝子治療に利用する高力価のレトロウイルスベクタ一の作製法に関 するものである。 従来の技術:
近年のめざましい遺伝子工学の進歩によって、 多くの遺伝病の原因遺伝子が同 定され、 病態の分子機構が明らかになつてきた。 それに伴い病態を改善させるこ とができると考えられる遺伝子を細胞に導入する遺伝子治療の研究が行われ、 実 際に実施されるに至っている。 また、 癌、 AIDS等の疾患においても遺伝子治療が 応用されつつある。 遺伝子治療において外来遺伝子を導入する方法はいくつかあ るが、 現在もっとも広く用いられている方法はレトロウイルスベクターを用いる ものである (M i l l er, A. D. , B l ood, 76, 271 -278, 1990) 。 このべクタ一の利 点として、 導入された遺伝子が確実に染色体に組み込まれるため長期間安定した 発現が期待できる点、 細胞障害性が少なく安全性も高いという点が挙げられる。 一方、 欠点としては、 ウィルスのエンベロープ蛋白質のレセプ夕一が導入細胞に 存在しないことにより遺伝子導入できない細胞が少なくないこと、 サイズの大き な DNAを挿入することができないこと、 分裂している細胞にしか導入できないこ と、 などが挙げられる。 これらの欠点によりレトロウイルスを用いた遺伝子治療 はもつとも繁用されていながら十分な治療効果を上げるに至っていない (Marsha 11, E. Science, 269, 1050-1055, 1995)。
いずれの方法を用いるにしろ遺伝子治療を行うためには、 1)標的細胞に目的の 遺伝子を効率よく導入できること、 2)導入された遺伝子が形質発現し、 かつ持続 すること、 3)患者を含め公共に対して安全であることの 3条件を最低限クリアし なければならない。
これまでのレトロウイルスベクタ一の作製法は、 レトロウイルスの gag、 poU envを安定に発現しているパッケージング細胞と呼ばれる細胞へ、 目的の外来遺 伝子を含むレトロウイルスゲノムを導入することで外来遺伝子をそのゲノムに含 むレトロウイルスを作製する方法を用いていた。 しかしながら、 臨床の使用に耐 える高品質ベクターの作製は難しく、 これまでに自己複製可能なレトロウイルス (Replication Competent Retrovirus: RCR) の出現を防ぐ方法、 力価の高いレ トロウィルスを産生させる方法、 ベクタ一ゲノムの構造を改良したり、 濃縮方法 や遺伝子導入の条件などを検討することによってレトロウイルスベクタ一の力価 を高める方法など多くの研究がなされているが (Vile, R. G. , Gene Therapy, Churchill Livingstone, 12-30, 1995)、 未だ感染範囲が広く力価の高いベクタ —を大量に安定に調製することができる技術は確立されていない。 このことが遺 伝子治療の大きな障害の一つとなっている。
一方、 レトロウイルスと他のウィルスの研究の接点として、 古くから水疱性口 内炎ウィルス (VSV) を用いたシユードタイプウィルスの研究が精力的になされ てきた (Zavada, J. , Arch. Virol. , 50, 1, 1976) 。 シユードタイプとは一つ のウィルスゲノムが別種のウィルスの外皮蛋白質に囲まれて発芽してくる現象を いう。 VSVはラブドウィルス科に属するネガティブ 1本鎖 RNAゲノムをもつウィル スであり、 その外皮蛋白質 (G蛋白質) の細胞側のレセプ夕一はホスファチジル セリンをはじめとする陰イオン脂質であると考えられ極めて広い宿主域を有する ことが知られている。 したがって、 この VSV-G遺伝子産物を外皮に持つシュ一ド タイプレトロウイルスを作製することにより、 本来の外皮蛋白質を持つレトロゥ ィルスでは感染効率が低かったり、 感染させることができなかった細胞に効率よ く遺伝子を導入することが可能になると考えられる。 実際に Emiら (Emi, N. , et al. , J. Virol. , 65, 1202-1207, 1991) 及び Yeeら (Yee, J. K. , et al. , Pro atl. Acad. Sci. USA, 91, 9564-9568, 1994) は VSV- G遺伝子産物を外皮 にもつレトロウイルスベクタ一の作製法を報告するとともに、 そのシユードタイ プウィルスが、 本来の外皮蛋白質を持つレトロウイルスでは感染効率が低かった 細胞に効率よく遺伝子を導入できることを示した。
VSV- Gシュ一ドタイプウィルスベクタ一を臨床応用するためには、 高力価のゥ ィルスを再現性よく得る方法を確立する必要がある。 しかし、 VSV- G遺伝子産物 自体が細胞障害性を有しているため、 パッケージング細胞において再現性よく VS V-G遺伝子産物を高レベルに産生させることが困難である。 このことが広い応用 が期待されるシユードタイプべクタ一を開発する上で大きな問題となっている。 最近、 テトラサイクリンを用いて VSV-G遺伝子産物の発現を制御することにより VSV-Gシユードタイプウィルスベクターの産生細胞を作製できることが報告され ているが (Yang, Y. , et al. Hum. Gene. Ther. 6, 1203-1213, 1995、 Chen, S. T. , et al. Pro Natl. Acad. Sci. USA, 93, 10057-10062, 1996、 Ory, D. S. et. al, Proc. Natl. Acad. Sci. USA, 93, 11400-11406, 1996) 、 テトラサイ クリンによる VSV-G遺伝子産物の発現制御が完全ではなく常に産生細胞に再感染 可能な 102から 104i. u. /ml程度の VSV-Gシユードタイプウィルスベクターを産生し ていること、 VSV- G発現 DNAと薬剤耐性遺伝子発現 DNAとのコ · トランスフエクシ ョンを用いていることからパッケージング細胞としての長期安定性に疑問が残る、 などの問題を残している。
またレトロウイルスによる標的細胞への外来遺伝子導入の際に、 外来遺伝子が 細胞に対して影響の強いものである場合に、 ウィルス産生細胞 (ウィルスゲノム を含むパッケージング細胞) 自体の中で外来遺伝子産物が影響を与えることによ りその外来遺伝子をウィルスゲノムにもつウィルスを安定に回収できないことが 知られている (Pear, W, S. e t al. , Pro at l. Acad. Sc i. USA, 90, 8392-8 396, 1993) 。
なお、 本明細書においては VSV-G遺伝子産物を外皮に持つレトロウイルスべク 夕一を 「シユードタイプウィルスベクター」 と表記する。 また、 本来の外皮蛋白 質を持つレトロウイルスベクターと、 「シユードタイプウィルスベクター」 を合 わせて 「レトロウイルスベクター」 とする。
またレトロウイルスの gag、 po lを発現し、 通常は発現しないもののリコンビナ ーゼにより envが発現できる細胞を 「プレパッケージング細胞」 と標記する。 ま たそこにウィルスゲノムを導入した細胞を 「ウィルスゲノムを含むプレパッケ一 ジング細胞」 と表記する。 さらに、 リコンビナ一ゼの導入によりウィルスを産生 する細胞を 「ウィルスゲノムを含むパッケージング細胞」 とする。
さらに低効率薬剤耐性遺伝子又は、 薬剤耐性遺伝子の mRNAを短寿命化した塩基 配列を有する転写産物短寿命化薬剤耐性遺伝子および従来型の薬剤耐性遺伝子を 総称して 「薬剤耐性遺伝子」 とする。 発明の開示 上記現状を鑑み、 本発明の目的は細胞毒性作用をもつウィルス構成蛋白質を従 来のものより厳密に制御することで、 細胞に影響を与えるものを含む外来遺伝子 を、 幅広い標的細胞に特異的に導入 ·発現させるためのレトロウイルスベクター を安定して高力価で作製しえる方法を確立すること、 及びシユードタイプレトロ ウィルスベクタ一が産生細胞に再感染することを抑制することによるレトロウイ ルスベクターの回収量増大方法を確立すること、 及びリコンビナ一ゼにより二つ の遺伝子を同一プロモーターで転写させる際に低効率あるいは転写産物短寿命化 薬剤耐性遺伝子を用いることで効率よく高発現細胞クローンの選択を行うことに ある。
そこで、 本発明者らは上記問題を解決するために鋭意検討した。
強力なプロモータ一の下流に 1 oxP配列、 薬剤耐性遺伝子、 po 1 yA付加シダナル、 1 oxP配列、 VSV-G遺伝子および po 1 yA付加シグナルをこの順に配向させた DNAを、 レトロウイルスの gag、 po l遺伝子が導入されている細胞に導入し、 薬剤で選択す ることによりプレパッケージング細胞を作製する。 このようにして作製したプレ パッケージング細胞に、 目的とする遺伝子を挿入したレトロウイルスベクタ一を 感染させて遺伝子を導入するとともに、 リコンビナーゼを作用させることにより、 薬剤耐性マーカ一の発現に用いたものと同一の強力なプロモ一夕一で、 VSV- G遺 伝子産物を短時間に高発現させることが可能となる。 この結果、 VSV- G遺伝子産 物の細胞障害性が現れる前に高力価のシュ一ドタイプウィルスベクタ一を大量に 作製することに成功し、 本発明を完成させるに至った。
さらにシユードタイプレトロウイルスべク夕一が産生細胞に再感染することを 見いだし、 培養液に陰性荷電高分子物質を添加することにより再感染を抑制し、 回収量を増大することができることを発見した。
また、 上記のプレパッケージング細胞を作製する際に用いる薬剤耐性マーカー 遺伝子として、 そのコ一ティング領域内の塩基配列に置換、 挿入、 欠失を加える ことにより機能を低下させたものや、 非翻訳領域の塩基配列に置換、 挿入、 欠失 等を導入することにより翻訳効率を低下させたり (低効率薬剤耐性遺伝子) 、 そ の遺伝子から産生される mRNAの安定性を低下させたものを用いることにより (転 写産物短寿命化薬剤耐性遺伝子) 、 より高い耐性マーカーの発現を必要とする細 胞を効率よく選択することができることを利用した。 本発明ではこれらの工夫を 加えた転写産物短寿命化薬剤耐性遺伝子を使用した。 また、 この細胞に目的とす る遺伝子を挿入したレトロウイルスベクターあるいはその DNAを導入するととも に、 リコンビナ一ゼを作用させることで、 さらに高い VSV- G遺伝子産物の発現を 得ることが可能となり、 高力価のシュ一ドタイプべクタ一を大量に作製すること に成功した。 発明の詳細な説明:
本発明は、 リコンビナーゼとその認識配列を用いてウィルスの構造蛋白質の発 現を制御する DNA構築物 (以下、 DNA構築物(A)と記す) 、 及びリコンビナ一ゼと その認識配列を用いて、 ウィルスゲノムにコードされる外来遺伝子の発現を制御 する DN'A構築物 (以下、 DNA構築物(B)と記す) をレトロウイルスの gag- po l産生細 胞に導入した後、 リコンピナ一ゼ発現 DNAを導入することを含む、 遺伝子治療用 レトロウイルスベクターの作製法に関するものであって、 1) プロモー夕一、 リ コンビナーゼ認識配列、 薬剤耐性遺伝子、 po l yA付加シグナル、 リコンビナーゼ 認識配列、 ウィルスの構造蛋白質遺伝子、 po lyA付加シグナルの順に配向した DN'A 構築物(A)、 及びレトロウイルスゲノムの LTR、 パッケージングシグナルに続き、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 po l yA付加シグナル、 リコンビナ一 ゼ認識配列、 外来遺伝子、 LTRの順に配向した DN'A構築物(B)をレトロウイルスの g ag - po l産生細胞に導入した後、 リコンピナ一ゼ発現 DNAを導入することを含む、 遺伝子治療用レトロウイルスベクタ一の作製法、 2) レトロウイルスの gag-po卜 e nv産生細胞に、 レトロウイルスゲノムの LTR、 パッケージングシグナルに続き、 リコンビナ一ゼ認識配列、 薬剤耐性遺伝子、 po lyA付加シグナル、 リコンビナー ゼ認識配列、 外来遺伝子、 LTRの順に配向した DNA構築物 (B)を導入した後、 リコ ンビナーゼ発現 DNAを導入することを含む、 遺伝子治療用レトロウイルスベクタ —の作製法、 3) プロモータ一、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 po l yA付加シグナル、 リコンビナーゼ認識配列、 ウィルスの構造蛋白質遺伝子、 po ly A付加シグナルの順に配向した DNA構築物(A)および外来遺伝子をコードするレト ロウィルスゲノムをレトロウイルスの gag- po 1産生細胞に導入した後、 リコンビ ナ一ゼ発現 DNAを導入することを含む、 遺伝子治療用レトロウイルスベクターの 作製法、 4) プロモー夕一、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 polyA付 加シグナル、 リコンビナーゼ認識配列、 ウィルスの構造蛋白質遺伝子、 po A付 加シグナルの順に配向した DNA構築物(A)、 5) レトロウイルスゲノムの LTR、 パッ ケージングシグナルに続き、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 po lyA 付加シグナル、 リコンビナーゼ認識配列、 外来遺伝子、 LTRの順に配向した DNA構 築物(B)、 6) プロモーターが CAGである DNA構築物(A)、 7) リコンビナーゼとその 認識配列が Creリコンビナーゼと Ι οχΡ配列である DNA構築物(A)又は DNA構築物(B)、 8) 薬剤耐性遺伝子が、 ネオマイシン耐性遺伝子、 ピューロマイシン耐性遺伝子 法又はハイグロマイシン耐性遺伝子である DM構築物(A)又は DNA構築物(B)、 9) 薬剤耐性遺伝子が、 低効率薬剤耐性遺伝子又は、 薬剤耐性遺伝子の mRNAを短寿命 化した塩基配列を有する転写産物短寿命化薬剤耐性遺伝子である DNA構築物 (A)又 は DNA構築物(B)、 10) 低効率薬剤耐性遺伝子又は転写産物短寿命化薬剤耐性遺伝 子が、 ネオマイシン耐性遺伝子、 ピューロマイシン耐性遺伝子又はハイグロマイ シン耐性遺伝子由来である DNA構築物(A)又は DNA構築物(B)、 1 1) ネオマイシン耐 性遺伝子、 ピューロマイシン耐性遺伝子又はハイグロマイシン耐性遺伝子の mRNA を短寿命化した塩基配列を有することを特徴とする転写産物短寿命化薬剤耐性遺 伝子、 12) mRNAの短寿命化が c- fos由来の mRNA不安定化シグナルによるものであ る転写産物短寿命化薬剤耐性遺伝子、 13) polyA付加シグナルが SV40由来又は /3 一グロビン由来である DNA構築物(A)又は DNA構築物(B)、 14) ウィルスの構造蛋白 質遺伝子が水疱性口内炎ウィルス (Vesicular stomatitis virusゝ VSV) の G蛋白 質 (VSV- G) をコードする DNAである DNA構築物(A)、 15) レトロウイルスゲノムが モロニ——マ'ノス白血病ウイ レス (Moloney murine leukemia virus, MoMLV)由来 である請求項 2に記載の DNA構築物(B)、 16) レトロウイルスゲノムがレンチウイ ルス由来である DNA構築物(B)、 17) 外来遺伝子が遺伝遺伝子治療のために細胞導 入を目的とする遺伝子である DNA構築物 (B)、 18) 外来遺伝子が、 細胞毒性を有す る蛋白質の遺伝子である DNA構築物(B)、 19) CAGプロモーター、 ΙοχΡ配列、 薬剤 耐性遺伝子、 polyA付加シグナル、 ΙοχΡ配列、 VSV- G遺伝子、 polyA付加シグナル の順に配向した DNA構築物(A)、 20) レトロウイルスゲノムの LTR、 パッケージン グシグナルに続き、 ΙοχΡ配列、 薬剤耐性遺伝子、 polyA付加シグナル、 ΙοχΡ配列、 外来遺伝子、 LTRの順に配向した DNA構築物(B)、 21) レトロウイルスの gag- pol 産生細胞に DNA構築物(A)を導入した、 レトロウイルスベクタ一産生用プレパッケ —ジング細胞、 22) レトロウイルスの gag-po卜 env産生細胞に DNA構築物(B)を導 入した、 レトロウイルスベクター産生用の、 ウィルスゲノムを含むプレパッケー ジング細胞、 23) レトロウイルスの gag- pol産生細胞に DNA構築物(A)及び DNA構築 物(B)を導入した、 レトロウイルスベクタ一産生用の、 ウィルスゲノムを含むプ レパッケージング細胞、 24) レトロウイルスの gag- pol産生細胞に DNA構築物(A) および外来遺伝子をコ一ドするウィルスゲノムを導入した、 レトロウイルスべク 夕一産生用の、 ウィルスゲノムを含むプレパッケージング細胞、 25) レトロウイ ルスがマウス白血病ウィルス (murine leukeimia virus, MLV)であるレトロウイ ルスベクター産生用プレパッケージング細胞、 26)シユードタイプレトロウィル スを作製する方法において、 培養液中に陰性荷電高分子物質を共存させる方法、 27)陰性荷電高分子物質がへパリン、 へパラン硫酸、 コンドロイチン硫酸から選 ばれるシユードタイプレトロウイルスの作製方法、 に関する。 図面の簡単な説明:
図 1はプレパッケージング細胞によるシユードタイプレトロウイルス産生系の 概略図を示す。
図 2は pCALNLG及び pCALNdLGの構築図を示す。
図 3は pBabe, pBabe l oxpuroの構築図を示す。
図 4はウェスタンプロットによる VSV-Gの検出を示す。
図 5は P t G-L 1のプレパッケージング細胞としての安定性を示す。
図 6は P t G-L lのウィルス産生量の経時変化を示す。
図 7は P t G- S2からのシュ一ドタイプレトロウイルス産生量の経時変化を示す。 図 8は P t G- L 1からのシユードタイプレトロウイルス産生量の経時変化を示す。 図 9はウエスタンブロット法による Cr eリコンビナーゼ導入前後におけるタン パク合成変化の解析を示す。
は図 1 0はサザンブロット法による Creリコンビナ一ゼ導入前後のおける染色 体の変化の解析を示す。
図 1 1はウィルス感染に及ぼすへパリンの効果を示す。 本発明の方法により作製された遺伝子治療用レトロウイルスベクタ一に関する 発明の概要を図 1に示した。
リコンビナ一ゼは DNA部位特異的組換え酵素であって、 特定の塩基配列を認識 して切断 ·結合という部位特異的組換えに必要な一連の反応を単独で行う酵素で ある。 具体的には酵母の 2 プラスミド由来の FLP遺伝子がコードするリコンビ ナ一ゼ、 シゾサッカロマイセス ·ルーイイの pSRlプラスミド由来のもの、 大腸菌 の P1ファージにコードされている Creリコンビナーゼ (Cre recomb i nase) などと それらに対応する認識配列の組み合わせのいずれも使用できるが、 好ましくは Creリコンビナーゼが挙げられる。 Creリコンビナーゼは 34塩基対の Ι οχΡ配列を特 異的に認識する酵素であるが (Fukush ige, S. , e t al. , Proc. Nat l. Acad. Sc i. USA, 89, 6232-6236, 1992) 、 この l oxP配列を同じ向きに 2コピーもつ組換えべ クタ一を作製し、 Creリコンビナ一ゼを作用させることにより 2つの l oxP間の再 構成が起き、 挟まれた部分が環状分子として切り出される。 これを Cre/l oxPシス リコンビナーゼとその認識配列を用いてウィルスの構造蛋白質遺伝子の発現を 制御する DNA構築物 (A)は、 プロモータ一、 リコンビナ一ゼ認識配列、 薬剤耐性遺 伝子、 po l yA付加シグナル、 リコンビナーゼ認識配列、 ウィルスの構造蛋白質遺 伝子、 po l yA付加シグナルの順に配向したものであり、 リコンビナ一ゼとその認 識配列を用いて外来遺伝子の発現を制御する DNA構築物(B)は、 レトロウイルスゲ ノムの LTR、 パッケージングシグナルに続き、 リコンビナーゼ認識配列、 薬剤耐 性遺伝子、 po l yA付加シグナル、 リコンビナーゼ認識配列、 外来遺伝子、 LTRの順 に配向したものである。 この場合、 プロモータ一 (又は、 DNA構築物(B)における LTR) は薬剤耐性遺伝子のみを発現させていることから、 これら構築物を細胞に 導入した際に、 薬剤による細胞の選択をすることができる。 選択された細胞に Creリコンビナーゼを作用させると、 これら構築物の 2つの l oxP間の再構成が起 き、 挟まれた部分が環状分子として切り出されることにより、 初めてウィルス構 造蛋白質遺伝子 (又は外来遺伝子) が発現されることになる。 本発明はこの Cre/ 1 oxPシステムを用いることによって、 一つのプロモーターで薬剤耐性マ一カー遺 伝子の発現および Creリコンビナーゼ作用後のウィルス構造蛋白質 (例えば、 VSV - G) の発現の 2つの機能を持たせたことに大きな特徴を有している。 目的とする 外来遺伝子又はウィルス構造蛋白質が細胞障害性を持つ等の理由により、 再現性 良く高力価のレトロウィルスベクタ一を作製することが困難である場合にも、 Cre/l oxPシステムを応用することで臨床応用できる高力価べクタ一を作製するこ とを可能としたものである。
DNA構築物(A)および (B)中で、 リコンビナ一ゼ認識配列は順方向に挿入してあ るが、 逆方向に挿入したものも本発明に含まれる。 DNA構築物(B)の場合、 パッケ —ジングシグナルに続きプロモー夕一を挿入しても、 あるいは薬剤耐性遺伝子に 続く P 01 yA配列を削除しても差し支えない。 これら両者の有無に関わらず DNA構築 物(B)の順に配向したものを含む DNA構築物は本発明に含まれる。 ここで po lyAシ グナルを含まないものは Creリコンビナ一ゼを作用させなくともウィルスゲノム となることができ、 目的細胞に感染してから Creリコンビナーゼを導入すること で外来遺伝子の発現を開始させることができるものである。 また特異的プロモ一 夕一を使用することで感染後の外来遺伝子の発現を特異的に制御することが可能 となる。 これら DNA構築物(A)及び (B)の構成は、 上記の遺伝子 (DNA構築物) の間 に別の DNAを挿入することは差し支えないが、 本発明の趣旨と同一目的の DNA構築 物、 上記の順に配向したものを含む DNA構築物は本発明に含まれる。
薬剤耐性遺伝子としては通常使用されているネオマイシン耐性遺伝子、 ピュー 口マイシン耐性遺伝子、 ハイグロマイシン耐性遺伝子などを使用することができ るが、 好ましくは、 薬剤耐性遺伝子のコーディング領域内の塩基配列に置換、 挿 入、 欠失を加えることにより機能を低下させたもの、 非翻訳領域の塩基配列に置 換、 挿入、 欠失等を導入することにより翻訳効率を低下させた薬剤耐性遺伝子 (低効率薬剤耐性遺伝子) 、 mRNAの安定性を低下させた薬剤耐性遺伝子 (転写産 物短寿命化薬剤耐性遺伝子) が挙げられる。 さらに好ましくは、 c-f os遺伝子の 3 '非翻訳領域にみられる mRNA不安定化配列 (ARE: AU - r i ch e l emem O (Chen, C. A. , Shyu, A. , Mo l. Ce l l. Bi o l. , H, 8471-8482, 1994) を公知の耐性遺伝子 の 3'非翻訳領域に導入することによる転写産物短寿命化薬剤耐性遺伝子である mR NA短寿命ネォマイシン耐性遺伝子が挙げられる。
本発明のもう一つの大きな特徴は、 これら工夫した薬剤耐性遺伝子を用いるこ とにより、 染色体に正常に挿入され導入したプロモーターからの発現が特に高い 細胞を効率よくに選択することを可能にし、 高力価べクタ一作製のためのプレパ ッケ一ジング細胞の選択効率をさらに高くしたことにある。 本発明では G418 (シ エーりング社製) で選択できるネオマイシン耐性遺伝子を用いた。
シユードタイプレトロウィルス回収量増大のための再感染抑制物質としての陰 性家電高分子物質は特に限定はされず、 へパリン、 へパラン硫酸、 コンドロイチ ン硫酸などが挙げられ、 好ましくはへパリンが挙 げられる。
ウィルス構造蛋白質としては、 いずれのウィルスであれ特に限定されないが、 シユードタイプウィルスを産生するためのエンベロープとしては全長翻訳領域を 含む VSV - G ( i nd i ana)種の配列 (Gal l i one, C. J. , 46, 162-169, 1983)である VSV-G遺伝子が好ましい。
外来遺伝子としては、 遺伝子治療のための細胞導入を目的とする遺伝子であれ ば特に限定はされないが、 本発明の Cre/l oxPシステムを用いる方法においては、 細胞毒性を有する蛋白質の場合に特に有効である。 リコンビナーゼを作用させる 前では該蛋白質の発現は起こらず、 リコンビナ一ゼを作用させることにより初め て同一プロモーターにより短時間に該蛋白質の発現がもたらされ、 細胞毒性を発 揮する前にレトロウイルスベクタ一の作製を可能することができるためである。 ず使用することができるが、 好ましい例として、 モロニ一マウス白血病ウィルス
(Moloney murine leukeimia virus, MoMLV) 、 ヒト後天性免疫不全症候群ウイ ルス(Human immunodeficiency virus, HIV)などのレンチウィルス由来のものが 挙げられる。
DNA構築物(A)のプロモーターとしては通常使用されているプロモーターであれ ば使用可能であるが、 短時間にウィルス蛋白質を発現しえる高力価プロモーター が好ましく、 例えば Niwaらが報告している CAGプロモーターが挙げられる (N'iwa, H. , Yamamura, k. , Miyazaki, J. , Gene, _108, 193-200, 1991) 。
polyA付加配列は特に限定されないが、 ゥサギ 3グロビン遺伝子または SV40ゥ ィルス由来のものが望ましい。
DNA構築物(A)及び (B)を導入する細胞は、 構造タンパク質をコードする gagおよ び pol遺伝子が発現するものであればよい。 好ましい細胞として FLY細胞 (Cosset, et al. , J. Viol. , 69, 7430-7436, 1995) が挙げられる。
上記の、 レトロウイルスの gag、 pol産生細胞に DNA構築物(A)、 '特に VSV- G遺伝 子を含む DNA構築物(A)はウィルスベクタ一、 特にシユードタイプウィルスベクタ 一産生用プレパッケージング細胞作製用に有用であり、 本発明に含まれる。 レト ロウィルスの gag、 po 1産生細胞に DNA構築物(A)及び DNA構築物(B)又は従来型の外 来遺伝子をコードするレトロウイルスゲノムを導入した細胞は、 レトロウイルス ベクタ一 (特にシユードタイプ) 産生の、 ウィルスゲノムを含むプレパッケージ ング細胞として有用であり、 本発明に含まれる。 齧歯類細胞のみに感染可能なェ コトロピック又はヒトを含めて多くの種の細胞に感染可能にアンフォトロピック envをもつレトロウィルス産生用プレパッケージング細胞、 すなわちレトロウイ ルスの gag-po卜 env産生細胞に DNA構築物(B)を導入した細胞は、 導入目的外来遺 伝子を含む通常のレトロウイルスベクター産生用の、 ウィルスゲノムを含むプレ パッケ一ジング細胞として有用であり、 特に導入目的外来遺伝子蛋白質が細胞毒 性を有する場合に有用である。 これら細胞も本発明に含まれる。
Creリコンビナ一ゼを細胞内で作用させるための Creリコンビナ一ゼ発現系を 細胞に導入するためには、 レトロウイルスベクタ一、 アデノウイルスベクター等 が利用可能であるが、 好ましい例としてアデノウイルスベクター (J P—A— 8 - 84589) が挙げられる。
本発明はこの Cre/loxPシステムを用いることによって、 一つのプロモーターで 薬剤耐性マ一カー遺伝子の発現および Creリコンビナ一ゼ作用後の VSV-G遺伝子 (又は外来遺伝子) の発現の 2つの機能を持たせたこと、 転写産物短寿命化薬剤 耐性遺伝子を用いることにより、 高力価べクタ一作製のためのプレパッケージン グ細胞の選択効率をさらに高くしたことに大きな特徴を有するものである。 目的 とする外来遺伝子が細胞障害性を持つ等の理由により、 再現性良く高力価のレト ロウィルスべクタ一を作製することが困難である場合に特に有効であると期待さ れる。 発明の実施の形態:
各 DNA構築物の作製方法、 ウィルス ·細胞の取り扱い操作などは、 通常行われ る公知の方法により実施することができ、 例えば、 新生化学実験講座 18 細胞培 養技術 (1990) ·東京化学同人、 遺伝子治療の基礎技術 ·羊土社 (1996)、 遺伝 子治療の基礎技術 (1996) ·羊土社、 および Molecular Cloning. A Laboratory Manual. , T. Manitis ら編 (1989) · Cold Spring Harbor Laboratoryに記載の 方法に準じて行うことができる。
C r eリコンビナーゼにより VS V- G遺伝子産物の発現を誘導させるのための薬剤耐 性遺伝子をもった DNA構築物 (pCALNLG) 、 およびその中の薬剤耐性遺伝子の転写 産物を短寿命化させるための配列 (以下転写産物短寿命化配列と略する) を導入 した DNA構築物 (pCALNdLG) の作製法を以下に説明する。
pCALNLGを作製するために、 VSV (Indiana:血清型) : (Rose, I. K. Cell, 30, 753-762, 1982) の Gタンパク質のコード配列を、 pCALNLw [ (Kanegae, Y, , et al. , Nucl. Acids, Res. , 23, 3816-3821, 1995) に報告されている pCALNZから lacZ遺伝子を除き Swal切断部位を導入したもの、 ΙοχΡ配列はネオマイシン耐性遺 伝子の両側に順方向に並んでいる] の Swal切断部位に挿入した (図 2) 。
また mRNA短寿命化配列を pCALNLG中の薬剤耐性遺伝子の 3'-非翻訳領域へ導入す るために、 ネオマイシン耐性遺伝子の 3'-非翻訳領域部分を NspV、 Clal (Clalサ イトは klenow fill inによる blunt化により Nrulサイトを創出後 Nrulで切断する ことで平滑末端化) で切断した部分へ chicken c- iosの mRNA短寿命配列 (AU Rich Element : ARE) である 414bpsの配列を Clal、 Bglll (Bgl 11サイトは klenow fill inによる blunt化) で切断したものを、 両者の NspVと Clalが付着することを利用 して挿入し、 pCALNdLGを構築した (図 2) 。
外来遺伝子を導入するためのモロニ一マウス白血病ウィルス (Moloney murine leukemia virus> oMLV) 由来のレトロゥ リレスケノムとしては pBabe (Morgens tenm, J. , P. and Hartmut, L. , Nucleic Acids Res. , 18, 3587-3596, 1990) 等を用いた。 レトロウイルスゲノムとして使用 ·作製したものを図 3に示す。
Creリコンビナーゼを作用させて薬剤耐性遺伝子を環状分子として切り出され ることにより外来遺伝子の発現を開始させるレトロウィルスゲノム pBabe loxpur oは以下のように構築した。 外来遺伝子挿入のためのマルチクローニングサイト として次に示すオリゴ DNAを設計 ·発注しグライナ一ジャパンより購入した。 下 線部に制限酵素の認識サイトを示す。 5' -tcgac gc agate t cacgtg at t taaat at - 3'
Sail Bglll Pmll Swal Clal
3' - g eg tctaga glgcac taaat t ta tagc -5'
ピュ一ロマイシン耐性遺伝子と SV40 polyAシグナルを含む DNAは pPUR (GIBC0) より HindIII、 BamHIで切り出し、 ΙοχΡ配列を組み込むためのプラスミドである pB S246 (GIBC0) の HindIII、 BamHIサイトに揷入した。 そこから ΙοχΡ-ピュ一口マイ シン耐性遺伝子- SV40 polyA- ΙοχΡ配列を EcoRI、 Sealで切り出し、 Klenow fragmentにより平滑末端としたものを loxpuroィンサ一トとした。 別に pBabeより S a 11、 C 1 a Iを用いて SV40プロモータ一と薬剤耐性遺伝子を除き前述のマルチクロ —ニングサイ ト導入用オリゴ DNAを挿入した後、 SnaBIで切断した部分に loxpuro インサートを挿入して pBAbe loxpuroを作製した。 また SV40 polyAシグナルを含 まないために Creリコンピナーゼを作用させなくともウィルスゲノムとなること ができ、 目的細胞に感染してから Creリコンビナーゼを導入することで外来遺伝 子の発現を開始させるもの(pBabe loxpuroDpA)も同時に作製した。
pCAL Z (Kanegae, Y. , et al. , Nucl. Acids, Res. , 23, 3816-3821, 1995)よ り切り出した nlslacZを pBabe又は pBabe loxpuroに挿入し、 ウィルス力価測定の ための核移行シグナルの付いた i3- galactosidase (nlslacZ) をもつレトロウイ ルスゲノム作製に用いた。
ウィルス力価の測定は以下のように行った。 感染一日前に 1.5 X 103/96wellと なるようにラッ卜の線維芽細胞 3Y1を 96穴プレートに用意した。 解凍したサンプ ルは種々の段階に培養液で希釈し、 0.5mg/96wellのボリブレンとともにラッ卜の 線維芽細胞 3Y1に感染させた。 3日後、 感染細胞を 1.25%ダルタルアルデヒドにて 固定し、 前記に記載の方法に従って X- galを用いて lacZ感染細胞の染色を行った。 青く染まったコロニー数を数え希釈に応じたコロニー数の変化があることを確認 して力価を算出した。 力価は lmlあたりに含まれる感染粒子 (Infectious units, 以下 i. u.と略する) を単位 (i. u./ml) として表記した。
VSV- G遺伝子産物および MLV gagpl2の免疫染色は VECTASTAIN (VECTOR) を用い て以下のように行った。 細胞を 3 %パラフオルムアルデヒド + 0.1% Triton X - 10 0を含む PBSで室温 15分間固定した。 PBSで 2回洗浄した後、 1/1000から 1/3000に希 釈した各々の一次抗体液をャギ血清を含む Hank's平衡塩溶液 (HBSS) で調製して、 室温 2時間結合させた。 PBSで 2回洗浄した後、 一次抗体の産生動物であるマウス に対する二次抗体に biot inを標識したものをャギ血清を含む HBSSで 1/1000希釈し て室温 30分間結合させた。 以後は VECTASTAINの取り扱い説明書に従って染色を行 つた。 実施例 次に実施例をもって本発明を説明するが、 本発明はこれらに限定されるもので はない。
実施例 1 PCALNLGの FLY細胞への導入と VSV- G遺伝子産物を発現誘導するプレパ ッケージング細胞株の一次選択
Creリコンビナーゼにより VSV-G遺伝子産物の発現を誘導させるためのネオマイ シン薬剤耐性遺伝子をもった DNA構築物 pCALNLG (図 2) を、 MoMLVの gagおよび pol遺伝子産物を安定に発現する FLY細胞 (Cosset, et al. , I. Virol. , 69, 743 0-7436, 1995) へ以下のようにトランスフエクシヨンを行った。
前日に 5 X105cells/10cm dishとなるように継代した FLY細胞に 10- 30 igの pCA LNLGをリン酸カルシウム法 (Chen, C. and Okayama, H. , Mol. Cell. Biol. , 7, 2745-2752, 1987) によってトランスフエクトした。 翌日リン酸カルシウムを除 き、 その 1あるいは 2日後に培養細胞を分割した。 さらにその翌日、 安定株を選 択するために lmg/mlのネオマイシン誘導体である G418 (GIBC0) を加え 14日間 程度選択を行った。 G418に抵抗性のあるコロニーがつり上げ可能な大きさになつ た時点で、 クローニングシリンダーを用いて各コロニーを別々に 96穴プレー卜へ 移して培養を続けた。
各コロニーは 2つに分割し、 一方には Creリコンピナ一ゼ発現のためのアデノ ウィルス (AxCANCre) (Kanegae, et al. , ucleic Acids Res. , 23, 3816-3821, 1995) を感染多重度 (以下 m.o. i.) 30の割合で感染させ、 Creリコンビナーゼを 導入するとともに培養液から G418を除去した。 他方は無処置のまま細胞を液体窒 素に保存するために培養を続けた。 AxCANCreを感染したものは感染 3日後に、 VSV- G抗体 (P5D4、 Sigma V5504) を用い上述した免疫染色法により VSV-G遺伝子 産物の発現を検出した。 ここで得られた 11クローンのうち 2クローン(PtG- Ll、 PtG- L2)が、 AxCANCreを作用させて VSV-G遺伝子産物の発現がみられた。 両者を比 較すると PtG-Llは PtG- L2よりもかなり強い染色がみられた。 一方 AxCANCreを感染 させなかったものは、 全てのクローンで VSV- G遺伝子産物の発現はみられなかつ た。 実施例 2 G- L1細胞の産生する VSV- G遺伝子産物のウエスタンプロ卜法による 検出
実施例 1で強い染色がみられたプレパッケ一ジング細胞である P t G- L 1の産生す る VSV-G遺伝子産物をその C末端部分を認識する抗 VSV-G抗体 (P5D4) により以下 のように検出した。
?(6-し1細胞を5 10 6113/10(;111 dishとなるように継代したものを 2つ用意し、 翌日に一方は AxCANCreを ra. 0. i. =30で感染し、 他方は感染を行わなかった。 その 4日後にサンプルバッファ一 (61.2mM Tris/HCl pH=6.8 1.6% SDS、 2.5% β -mercaptoethanoU 9.8% glycerol) 500 1で細胞成分を可溶化後 100°C 5分間 の処理を行い一 20°Cに保存した。 その後得られたサンプルの夕ンパク量を protein assay溶液 (BI0RAD) を用いて定量し、 1レーンあたり 20 gとなるよう にして SDS- PAGEを行った。 泳動ゲルをエレクトロトランスファ一により
I讓 obi Ion (Millipore) にトランスファーし、 一次抗体として 1/3000希釈した VSV- G抗体 (P5D4、 Sigma V5504) を、 二次抗体として 1/1000希釈した biot inをラ ベルした一次抗体免疫動物であるマウス IgGに対する抗体を結合させ、 ECL キッ 卜 (Amersham) により検出を行った。 AxCANCreを作用させたものは 70kDa付近に VSV- G遺伝子産物と思われるバンドがみられるのに対して、 感染を行わないもの にはバンドがみられなかった。 この結果は免疫染色の結果と一致し、 AxCANCreを 作用させないものでは全く VSV- G遺伝子産物の発現がみられないのに対して、 AxC ANCreにより Creリコンビナーゼを導入することで VSV- G遺伝子産物の発現が開始 されることを示している。 結果を図 4に示す。 実施例 3 PtG-Llへのウィルスゲノム導入と Creリコンビナーゼによるウィルス 産生の測定
実施例 1で記述した無処置のまま培養を続けていた 11クローンを液体窒素中に 保存すると共に、 その一部に対して j3-galactosidase (lacZ) をコードするレト ロウィルスゲノムをウィルス感染により導入した。 X-galによる染色でほとんど の細胞に 1 ac Zをコードするレトロウイルスゲノムが導入されたことを確認した後 2つに分割し、 一方はそのまま感染を行わず、 他方は AxCANCreを感染させ VSV - G 遺伝子産物の発現を誘導した。 以後、 3日間程度の間隔で、 ウィルス回収前日に 培養液を交換しその翌日培養上清を回収した。 3000rpmで 30分間遠心した上清を ウィルスストツクとして一 80°Cに保存した。 前述した方法でラット線維芽細胞 3Y 1を用い lacZ遺伝子の発現を指標として各クローンの力価を測定したところ、 AxC ANCreを感染したものから前述の PtG-Ll、 PtG- L2を含む 4クローンでウィルスを 検出した。 一方、 AxCANCreを作用させないものはいずれも全くウィルスの産生が みられなかった。 VSV-G遺伝子産物の発現が確認できなかった 2クロ一ンはカ価 が低く、 またそのウィルス産生が AxCANCre依存的であることから、 それらは VSV - Gを遺伝子産物を発現するものの少量であり免疫染色の感度ではとらえられなか つたものと考えられる。 このうち Creリコンビナーゼを導入した PtG- L1は最大で 4 X103 i. u. /mlのウィルスを産生した。 PtG- L1以外の 3クローンのウィルス産 生量は 100 i. u. /ml以下であったため以後 PtG-Llに絞りその性質を解析した。 実施例 4 PtG- L1より産生されたウィルスベクターの外皮蛋白質の性質
PtG-Llが産生するウィルスのェンペロープは、 ゥィルスが AxCANCre依存的な産 生であることから pCALNLGに由来する VSV-G (Indiana型) であることが期待され るが、 それを確かめるために抗 VSV- G抗体 (Indiana型 ATCC VR-1238AF) を ATCC より購入し、 感染抑制の実験を以下のように行った。
PtG- L1に AxCANCreを作用させて産生させたウィルスサンプルと、 その 1/10量 (v/v) の抗体を混合し 4°Cで 1時間反応させた。 その後、 前述した方法で 3Y1を 用い lacZ遺伝子の発現を指標として感染に対する影響を調べた (表 1) 。 陰性対 象としては Indiana型 VSV- Gとは結合しない抗 VSV - G抗体 (New jersey型 ATCC VR- 1238AF) を用いた。 抗 VSV- G抗体 (Indiana型) を用いたものは 1/10では感染が完 全に抑制され、 その効果は 1/1000でも観察された。 一方陰性対象である抗 VSV - G 抗体 (New Jersey型) では希釈度に関わらず感染に影響はみられなかった。 これ らのことから PtG- L1が産生するウィルスのエンベロープは期待通り VSV-G (Ind i ana型) であることが示された。 表 1
P tG- L1が産生するウィルスの抗 VSV-G抗体処理後の感染力価(i. u. /ml)
Figure imgf000023_0001
実施例 5 Creリコンビナーゼ導入後のネオマイシン耐性遺伝子の染色体からの 脱落
P tG-Llを AxCANCr e感染による Creリコンピナーゼの導入直後、 培養液から G418 を加えたものと除いたものを用いて両者の生存細胞数を比較した。 G418を加えた ものの細胞数は 9日後に、 除いたものの 5 %以下に減少した。 ネオマイシン耐性 遺伝子は染色体に存在していれば発現を続けるが、 環状 DNAとなって染色体から 除かれると発現はなくなると考えられる。 したがって、 AxCANCreを感染させた P t G - L 1でネオマイシン耐性がなくなつたことは、 C r eリコンビナ一ゼによってネ ォマイシン耐性遺伝子が染色体から除かれたためと思われた。 実施例 6 pCALNLG遺伝子の P tG- L1における安定性 PtG-Llでの pCALNLG遺伝子が安定に保持されているかをみるために、 P t G-L 1に 実施例 3で使用した 1 ac Zゲノムを導入した P t G-L 11 ac Zを液体窒素に保存したもの を用いて以下の実験を行った。 新たに液体窒素より解凍した PtG- LllacZ- 1と Cre リコンビナーゼを導入せずに 1力月間継続して培養した P t G-L 11 ac Z- 2とに対して m. 0. i = 30で AxCANCreにより Creリコンビナーゼを導入した。 PtG- LI lacZ- 2は 2力月 の間継続培養により当初の 8.7X1013倍となったものである。 以下実施例 1と同 様に培養液をウィルスストックとし、 前述した方法で 3Y1を用い lacZ遺伝子の発 現を指標としてウィルス産生量を調べた。 AxCANCre感染後 3日目から 37°Cの培養 を継続したものの結果を図 5aに、 32°Cに移したものからの結果を図 5bに示す。 Ax CANCre感染 3日目の産生量はやや低いものの、 その後の産生量はほぼ同等であり PtG-Ll中で pCALNLGおよび gag、 pol遺伝子は安定に保持されていると考えられた。 実施例 7 G-L1からのウィルス産生条件の検討
実施例 2から 4までの結果より PtG- L1は当初期待した性質をもつものと思われ た。 そこで、 ウィルス産生の至適条件を見いだすために以下の実験を行った。
PtG- LUacZからのウィルス産生条件を以下の点 (a〜c) から検討し、 その際に 産生されるウィルスの力価の経時的変化を測定した。
(a) AxCANCreの感染 m.0. i (m. o. i = 0、 3、 10、 30、 100、 300、 1000、 3000) 3、 10、 1000、 3000は一部のみ、
(b)感染時の細胞数(1.5Χ1(Τ、 4.5X10\ 1.5X103) 48wellあたり、
(c) AxCANCre感染 3日後からの培養温度(32°C、 37°C)。
前述した方法で 3Y1を用い lacZ遺伝子の発現を指標として、 各条件におけるゥ ィルスの力価に対する影響を調べたところ以下のような結果が得られた。
(a) AxCANCreの感染 m. o. i.は 300以上は毒性が強く、 生存細胞が再び増えてくる までウィルス力価は低かった。 m.0. i=30から 100程度が最も産生量が多かった。 AxCANCre感染させないもの (m. o. i == 0 ) では、 すべての条件でウィルスの産生 はみられなかった。
(b)感染時の細胞数は細胞一個あたりのウィルス産生量に大きな影響を与えな い。 初期細胞が少ないと初期にはウィルス産生量は少ないが、 培養を続けて細胞 が増えることで初期細胞が多かつたものと同等のウィルス産生がみられた。
(c)細胞増殖にとって好ましい 37°Cとウィルス粒子がより安定であるとされる 3 2°C (Kotani, H. , et. al. , Hum. Gene. Ther. , 5, 19-28, 1994) とでは、 最高 力価を指標とすると大きな差はみられなかった。 32°Cのほうが比較的安定したゥ ィルス産生がみられた。
最高ウィルス産生は 2 X104 し u./mlであった (初期細胞 4.5xl03cells/48well、 m. o. i=3000、 感染後 22日目、 37°C) 。 この条件のウィルス産生量の経時的変化 を図 6aに、 同条件で温度を 32 としたもののそれを図 6bに示す。 最高産生をした ものは当初 AxCANCreを高 m. o. i.で感染させたためアデノウイルスによる細胞障害 性の影響を受けて細胞数が減少していたが、 22日目には細胞はコンフルェントに
実施例 8 PtG- L1の genotypeの詳細な解析
これまで示したように pCALN'LGを FLY細胞にトランスフエクトして、 安定な細胞 株 PtG- L1を樹立することができた。 そのウィルス産生は完全に Creリコンビナ一 ゼの導入に依存的であり、 産生されるウィルスのエンベロープは VSV-G (indiana 型) であった。 しかし、 質的には当初予想した性質を示すとはいえ、 量的にはそ のウィルス産生量は最大で 2X104 i. u. /mlと十分なものではなかった。
前述したように P t G- L 1からのウイルス産生量が十分でなかつた。 そこでこの 原因がどこにあるかを調べる目的で以下の実験 (a〜c) を行った。
(a) Creリコンビナーゼ導入による VSV-G遺伝子産物の発現がない細胞が PtG - L1 の一部にあるのか、 または、 アデノウイルスによる Creリコンビナーゼの導入効 率に問題があるのか、
(b) X-ga 1染色による 1 ac Zの安定保持の確認、
(c)免疫染色による MLVgagの安定保持の確認。
PtG- LllacZとそのもととなっている FLY細胞および陰性対象として 3Y1細胞を 48 穴プレートに 1.5X104 (PtG-LK FLY), 5X103 (3Y1) ずつ用意したものを 3枚 準備した。 翌日 AxCA'Creを m.0. i= 0あるいは 30で感染し、 5日後固定し、 以下 の結果を得た。
(a)前述した方法で VSV-Gの免疫染色を行った。 AxCANCreの感染の有無にかかわ らず FLY、 3Y1は全く染色されなかったのに対して、 PtG-LUacZでは AxCANCreを感 染させたもののみほぼ全ての細胞で VSV-Gの染色がみられた。 このことは、 PtG - L 1は均一な細胞クローンであり、 VS V- G遺伝子産物を発現しないものの混入がゥ ィルス産生に影響しているのではないと考えられた。 また、 アデノウイルスべク 夕一による遺伝子導入はほとんど全ての細胞に Creリコンビナーゼを導入するこ とが可能であり、 その導入に引き続いて Creリコンビナーゼによる組換えが起き たことが示された。
(b) lacZをコードするウィルスゲノムが安定に保持されていることを調べるた めに、 PtG- LllacZを前述した方法で lacZによる染色を行った。 全ての細胞で lacZ による染色がみられ lacZをコードするウィルスゲノムは PtG-LllacZ中で安定に保 持されておりウィルス産生に影響しているのではないと考えられた。
(c) MLVgagpl2に対する抗体を産生するハイブリ ドーマ (CRL- 1890) を ATCCより 購入し、 マウス腹水よりモノクローナル抗体を調製したものを用いて前述した方 法により MLVgagpl 2の検出を行った。 3Y1は全く染色されなかったのに対して FLY、 P tG-L l l acZは全ての細胞で MLVgagpl 2の染色がみられた。 このことより MLVgagは P tG - L l l acZ中で安定に保持されておりウィルス産生に影響しているのではないと 考えられた。 また gag、 po lは同一の転写開始点をもつことから po lも安定に保持 されていると考えられた。
以上の結果よりウィルスを構成する gag、 o K env (VSV-G) および l acZをコー ドするウィルスゲノムは安定に P tG-Llに保持されていると考えられ、 これらのこ とがウィルス産生に影響しているのではないと考えられた。
一方、 実施例 1で記述した P t G-L 1以外のウイルス産生が少ない細胞株と P t G - L 1 とを Creリコンピナ一ゼ導入後の VSV-G免疫染色で比較すると P tG- L1の方がかなり 強く染色され VSV-G遺伝子産物の発現量とウィルス力価との間に相関がみられた。 これらのことより実施例 6で記述された P tG-L lのウィルス産生量が少ない原因 は、 VSV-G遺伝子産物の発現量がまだ高力価ウィルス産生には十分ではないこと によるものと考えられた。
そのためより効率よく VSV-G遺伝子産物の高発現安定細胞株を選択することを 目的として、 以下の DNA構築物を考案、 作製した。
薬剤耐性遺伝子の 3' -非翻訳領域に c-f os由来の mRNA短寿命配列を導入し、 耐性 遺伝子の産生量を減少させることで、 相対的に導入した CAGプロモーターからの 発現の高い細胞株を効率よく選択できることを目的とした。 Creリコンビナーゼ 導入後 VSV-G遺伝子は耐性遺伝子と同一のプロモータ一で転写されるため、 この DNA構築物によって選択された細胞株は VSV-G遺伝子産物産生量が高いことが期待 される。 前述したように薬剤耐性遺伝子の 3' -非翻訳領域に c-ios由来の mRNA短寿 命配列を導入した DNA構築物 (pCALNdLG) を作製し、 これと前述している pCALNLG とを比較しながら以下のような実験を行った。 実施例 9 mRNA短寿命配列を含む pCALNdLGの効果と VSV- G遺伝子産物を発現する プレパッケージング細胞株の一次選択
実施例 1に記述した方法で pCALNLGあるいは pCALNdLG 10- 30 gを FLY細胞へト ランスフエクトし、 G418を用いて安定発現株を 96穴プレートへ移した。
各コロニーは 2つに分割し、 一方には AxCANCreを m. o. i. = 10の割合で感染させ、 Creリコンビナーゼを導入するとともに培養液から G41 8を除去した。 他方は無処 置のまま細胞ストックをとるために培養を続けた。 アデノウイルスを感染したも のは感染 3日後に、 上述した方法に従って VSV-G抗体 (P5D4、 S i gma V5504) を使 用した免疫染色により産生した VSV-G遺伝子産物を検出した。 3回の独立したト ランスフエクション実験から、 pCALNLGをトランスフエクトしたものの G41 8によ る選択クローン数と比較して pCALNdLGをトランスフエクトしたもののそれは 1/3 程度であり、 薬剤耐性遺伝子の mRNAを短寿命したことで、 より厳しい選択が行わ れていることが示唆された。 別の独立した 2回のトランスフエクション実験から、 P t G- L 1と同等以上の VSV- Gの発現がみられたクロ一ンは pCALNLGをトランスフエク 卜したものが 25クローン中 1クローンであつたのに対して、 mRNA短寿命ネオマイ シン耐性遺伝子をもつ pCALNdLGをトランスフエクトしたものでは 1 1クローン中 3 クロ一ンであった。 また、 全てのクローンで Creリコンビナ一ゼ発現のためのァ デノウィルスを感染させなかったものは、 VS V-G遺伝子産物は検出されなかった。 これらのことから、 薬剤耐性遺伝子の mRNAを短寿命化したことで、 より厳しい選 択を行うことが可能となり、 リコンビナーゼにより誘導される VSV-G遺伝子産物 の発現量の高いクローンを効率よく選択できることが示された。 そのため pCALNd LGに絞って同様のトランスフエクションと VSV- G遺伝子産物の検出を行い、 合計 225クローンから 25クローンの Creリコンビナ一ゼ依存的 VSV-G遺伝子産物高発現 クロ一ンを得た。 今回 pCALNLGをトランスフエクトしたものでは、 P tG- L1を越え る VSV-G遺伝子産物の発現がみられたものがなかったため、 以後 pCALNLGの安定細 胞株の代表として P tG- L1を用いることとした。 実施例 1 0 プレパッケージング細胞株へのレトロウイルスゲノムの導入と Creリコンビナ一ゼによる各クローンのシュ一ドタイプウィルス産生の測定
Creリコンビナ一ゼ依存的に VSV-G遺伝子産物を高発現するクローンとしてこれ までに得られた pCALNLGをトランスフエクトしたもの 1クローン (P tG- L1) と pCAL NdLGをトランスフエクトしたもの 25クローンを液体窒素中に保存すると共に、 そ の一部に対してウィルス産生活性を調べるために 3— gal ac t os i dase ( l acZ) 遺 伝子をゲノムにもつウィルスの感染により、 それぞれ 26クローンをウィルスゲノ ムを含むプレパッケージング細胞とした。 ベクターの各クロ一ンへの導入効率は、 上述した方法に従って染色するとほぼ 100%であった。 その後、 各クローンを 2 つに分け、 AxCA 'Creを m. 0. i. = 10の割合で各クローンに感染させた。 以後この日 を第 0日として定義し両者ともに第 2日まで 37°Cで培養を続けリコンビナーゼを 作用させた。 第 3日以降一方は 37°Cで培養を続け、 他方はウィルス粒子がより安 定であると言われる 32°Cで培養した。 ウィルスの力価は採取一日前に培養液を交 換してほぼ 3日間隔で測定した。 採取したウィルスサンプルは遠心分離 (3000 rpm、 30分) し、 上清を分析の直前まで一 80°Cで保存した。 これらウィルスサン プルの力価は上述した方法に従って 3Y1を用い l acZ遺伝子の発現を指標として測 定した。
測定した 26クローンの最高タイ夕一で分類すると、 10R i. u. /ml以上のものが 1 クローン、 106 i. u. /ml未満から 105 i. u. /ml以上のものが 8クローン、 105 i. u. /ml未満から 104 i. u. /ml以上のものが 14クローン、 1 (T i. u. /ml未満から 103 i. u. /ml以上のものが 3クローンであった。 Creリコンビナーゼを導入しないものは、 いずれも全くウィルスを産生しなかった。 そのなかで夕イタ一の高かった pCALNd LG 1クローン (PtG- S2) と pCALNLG 1クローン (PtG-Ll) のウィルス産生量の 時間的変遷を図 7及び図 8に示す。 実施例 1 1 PtG- Ll、 PtG-S2、 PtG-Slより産生されたウィルスベクタ一の外皮蛋 白質の性質
生成したウィルスベクタ一の外皮蛋白を確認するために、 実施例 9で選択され た 3クローンが産生するウィルスサンプルの感染が抗 VSV-G抗体 (Indiana型) で 中和されるかどうか調べた。 実施例 2で記述した方法で抗体と反応させた後、 前 述した方法に従って 3Y1を用い lacZ遺伝子の発現を指標として感染に対する影響 を調べた。 その結果を (表 2) に示した。
いずれのクローンから産生されたウィルスに対しても抗 VSV-G (Indiana型) 抗 体は完全にウィルスの感染を抑制したが、 抗 VSV- G (New Jersey型) では変化は なかった。 したがって、 Creリコンビナーゼの導入によって誘導されたウィルス は pCALI\TLG、 pCALNdLGに由来する VSV- G (Indiana型) を外皮蛋白質として有する シュ一ドタイプウィルスであることが示された。
表 2 抗体とのィンキュベ一トによるウィルスサンプルの感染に対する影響(i. u. /ml) (抗体は 1/10量でウィルスサンプルとィンキュベート)
Figure imgf000031_0001
実施例 1 2 プレパッケージング細胞の産生するネオマイシン耐性遺伝子産物と VSV-G遺伝子産物のウエスタンブロット法による解析、 及びその際に mRNA短寿命 配列が両者の量に及ぼす影響
プレパッケージング細胞への C r eリコンビナーゼ導入前後で、 合成されるネオ マイシン耐性遺伝子産物と VSV-G遺伝子産物の量的変化を調べるために以下の実 験を行った。
lacZをコードする MLVベクタ一を含む PtG- Ll、 PtG- S2細胞を用い、 実施例 2と 同様に Creリコンビナ一ゼ導入したもの (導入後) としないもの (導入前に相 当) からタンパクサンプルを調製しウエスタンブロッテイングを行った (図 9) 。 ネオマイシン耐性遺伝子産物を検出するためには抗ネオマイシン耐性遺伝子産物 (5Prime to 3Pr ime社/フナコシ) を 1/1000に希釈し、 二次抗体として biotinを :ー次抗体免疫動物であるゥサギ IgGに対する抗体を 1/1000希釈して用 いた。
ネオマイシン耐性遺伝子産物を検出したもの (図 9 a) では、 PtG-Ll、 PtG-S2 共に Creリコンビナーゼ導入しないものでバンドが見られた (1レーンあたり 20 g) 。 PtG-S2でのバンドは PtG- L1でのそれより少なく、 PtG- L1のサンプルを 1/2 ずつ希釈したもの (PtG- LI Cre (-)と記載のもの、 右から 1レーンあたり 10、 5、 2.5、 1.25 gとなる) と比較すると PtG- S2でのネオマイシン耐性遺伝子産物量は PtG-Llの 1/3程度であると考えられた。
VSV-G遺伝子産物を検出したもの (図 9 b) では、 PtG- Ll、 PtG-S2共に Creリコ ンビナーゼを導入したもののみでバンドが見られた (1レーンあたり 20 g) 。 C r eリコンビナ一ゼを導入しないものでバンドが全く見られないことは、 実施例 10で Creリコンビナ一ゼを導入しないものからは全くウィルスが検出されなか つたことと符号する。 PtG- S2のサンプルを 1/2ずつ希釈したもの (PtG- S2 Cre (+) と記載のもの、 右から 1レーンあたり 10、 5、 2.5、 1.25 gとなる) と比較する と PtG- S2での VSV-G耐性遺伝子産物量は PtG - L1の 20倍程度であると考えられた。 以上の結果より PtG-Ll、 PtG- S2共に期待されたとおり Creリコンビナーゼ導入 により、 ネオマイシン耐性遺伝子産物から VSV-G遺伝子産物に発現が切り替わる ことが示された。 PtG- Ll、 PtG-S2はそれぞれ図 2に示される pCALNLG、 pCALNdLG を持ち、 両者の差は mRN'A短寿命配列の有無のみである。 ネオマイシン耐性遺伝子 産物および VSV-G遺伝子産物は同一のプロモー夕一より転写される (図 1矢印) ことを考えると、 PtG- S2が PtG- L1より約 30倍効率よくネオマイシン耐性遺伝子産 物より VSV-G遺伝子産物を産生することは、 PtG- S2では転写されたネオマイシン 耐性遺伝子 mRNAが mRNA短寿命配列により速やかに分解されることによるものと考 えられた。 このことは実施例 9で G418を用いて VSV-G高発現クローンの効率の良 い選択を行うことができたことを説明するものである。 実施例 1 3 サザンブロット法による Creリコンビナーゼ導入前後の VSV- G発現ュ ニットの変化の解析
プレパッケージング細胞への Creリコンビナ一ゼ導入前後で、 トランスフエク シヨンにより導入された VSV-G発現ユニット (pCALNLG、 pCAL dLG) の変化を調べ るために、 発明の実施の形態の項に記載の方法でサザンブロティングを行った。 lacZをコードする MLVベクターを含む PtG- Ll、 PtG- S2細胞を用い、 実施例 2と 同様に Creリコンビナ一ゼ導入したもの (導入後) としないもの (導入前に相 当) を用意した。 Creリコンビナーゼ導入 4日後に DNA抽出溶液により細胞を可溶 化し、 プロティナ一ゼ K消化、 フエノール抽出を行ってゲノム DNAを調製した。 ゲノム DNAを Nc 01消化した後にァガロース電気泳動し、 キヤビラリートランスフ ァ一により陽荷電ナイロンメンブレン (HybondN+ Amesham) にトランスファ一し た。 検出は図 1 0に示すように VSV- G翻訳領域中の 0.7kbの Mlul- Ncol断片を 32Pで ラベルしたものをプローブとして行った。 その結果、 期待されたように Creリコ ンビナーゼ導入により VSV - G発現ュニットは PtG- L1では 1.2kbから 2.0kb、 PtG-S2 では 1.5kbから 2. Okbへと変化した。 PtG- L1と PtG- S2は Creリコンビナ一ゼ導入前 は mRNA短寿命配列の有無により 0.3kbの差があり、 導入後は同じ構造をもつこと となる。 このことは図 1 0での想定と一致し、 プレパッケージング細胞では Cre リコンビナ一ゼにより効率よく loxP配列間に挟まれたネオマイシン耐性遺伝子及 び poly A付加シグナルが切り出され、 実施例 1 2に示したような転写産物の切り 替えが行われていることが示された。 バンドの濃度より PtG- S2が含む VSV- G発現 ュニットは PtG- L1のそれより多く、 PtG- S2が多量の VSV- G遺伝子産物を産生する ことの一因となっていると考えられる。 実施例 14 プレパッケージング細胞から産生されるシユードタイプレトロウイ ルス中に自己増殖可能なレトロウイルス (replication competent retrovirus: RCR) が含まれないことの証明
常法 (遺伝子治療の基礎技術 羊土社、 1996)に従い、 lacZをコードする MLVベ クタ一を含む G- S2細胞から調製された 5X106i. u. /mlのシュ一ドタイプレトロ ウィルスを m 0. i = 5で M. dunni細胞に感染させ、 4日毎に 1/10の継代を 3回繰り 返した後の培養液を採取し、 DEAE- dextran存在下で PG- 4 S+L-細胞に加えた。 同 時に行った RCRを含む Mink4070A細胞からの培養液を PG- 4 S+L-細胞に加えたもの では 4日後からファーカスが観察されたのに対して、 P t G- S 2細胞から調製された シュ一ドタイプレトロウイルス中に含まれている可能性のある RCRを M. dunniで増 幅したものでは 8日後でも非感染のものと同様にフォーカスがみられなかつた。 このことは PtG- S2細胞から調製された 5X106i. u. /mlのシユードタイプレトロゥ ィルス中には RCRが含まれていないことを示している。 実施例 1 5 プレパッケージング細胞から産生されるシユードタイプレトロウイ ルス中にアデノウイルスが含まれないことの証明
本特許で記述しているプレパッケージング細胞への C r eリコンビナーゼ導入の ための方法としては、 前述したようにアデノウイルスに限定されるものではない 力^ 高い導入効率で再現性の良い導入法としてはアデノウイルスを用いる方法は 極めて有効である。 反面、 プレパッケージング細胞から産生されるシユードタイ プレトロウイルス中にアデノウイルスが含まれることは、 臨床応用上避けなけれ ばならないことであり以下の方法によりシユードタイプレトロウイルス中にアデ ノウィルスが含まれているか否かを検討した。 l acZをコードする MLVベクターを含む P tG- S2へ、 実施例 2に記述した方法でァ デノウィルス (AxCANCre) により Creリコンビナ一ゼを導入した。 培養液は毎日 交換すると共に、 交換時に培養液で入念に 3回ずつ細胞を洗い残存している可能 性のあるアデノウイルスを除いた。 導入 4日後 (洗浄回数 9回) のサンプルから 調製された 5 X 104 i. u. /mlのシュ一ドタイプレトロウイルス中に含まれる可能性 のあるアデノウイルスを常法(バイオマニュアルシリーズ 4遺伝子導入と発現 - 解析法、 羊土社、 1994)により 293細胞を用いて検出した。 AxCANCreを感染させた ものでは、 感染 1 2日後までに一つのアデノウイルスが存在する条件でも 293細胞 の 50 %以上の変性が見られたのに対して、 5 X 104 i . u. /m lのシユードタイプレ トロウィルス中を感染させたものでは 293細胞の変性は見られず、 この中にアデ ノウィルスは存在しないことが示された。
洗浄を行わない条件でアデノウイルスによる Creリコンビナーゼ導入 2日後の サンプルを含むものから 293細胞を用いて同様にアデノウイルスを検出したとこ ろ、 293細胞の変性が見られたが、 同時に抗アデノウイルス抗体を Pro t e i n G Sep harose (Pharmac i a) に結合させたものでサンプル中のアデノウイルスを除去す ることで変性は減弱した。 完全な除去にはさらなる至適化が必要であるものの、 抗体処理によりアデノウイルスは除去することが可能と考えられた。 実施例 1 6 VSV- Gシユードタイプレトロウイルスは VSV- G遺伝子産物を表面に発 現しているパッケージング細胞に対して干渉作用が成立せず、 自己感染しうるこ と(1 )
VSV- Gシュ一ドタイプウィルスベクタ一が遺伝子導入時に用いるレセプ夕一は、 一般のレトロウイルスとは異なりタンパク質ではなく、 細胞表面に豊富に存在す リンをはじめとする陰イオン脂質であると考えられている。 そのため一般のレトロウイルスとは異なり、 パッケージング細胞表面のレセプ夕
—は VSV-G遺伝子産物で飽和されておらず、 産生された VSV- Gシュ一ドタイプウイ ルスべクターが、 再度パッケ一ジング細胞に感染する可能性があると考えて以下 の実験を行った。
I acZをコードする MLVベクターを含まない P tG- S2細胞を、 24穴プレ一卜に 3 X 104ce l l s/we l lとなるようにしたものを 5枚用意し、 翌日 1枚のプレートの半 分に AxCANCreを m. 0. i = 10で感染させた。 感染しないもの及び感染後 4日まで毎 日 10及び 100 i. u. /we l lの I acZをコードする VSV-Gシュ一ドタイプレトロウイルス を Creリコンビナーゼ導入したものしないもの双方に感染させた。 その後、 上述 の方法に従って固定、 X- gal染色を行った。 いずれのプレートでも Creリコンピナ —ゼを導入し VSV- Gを発現している P tG- S2は、 Creリコンビナーゼを導入せず VSV - Gを発現していない細胞と同等以上の i acZ遺伝子導入による X- gal染色が見られた。 このことは VSV-G遺伝子産物のパッケージング細胞上の有無によらず、 I acZをコ ―ドする VSV- Gシユードタイプレトロウイルスはパッケージング細胞に感染する ことが示唆された。 そこで大量の VSV- Gシユードタイプレトロウイルスが存在し ている条件下でのものとして実施例 1 7に示す実験を行った。 実施例 1 7 VSV-Gシユードタイプレトロウイルスは VSV- G遺伝子産物を表面に発 現しているパッケージング細胞に対して干渉作用が成立せず、 自己感染しうるこ と(2)
I acZをコ一ドする MLVベクターを含まない P tG- S2細胞へ、 実施例 2と同様に Cre リコンビナーゼ導入したもの (導入後) としないもの (導入前に相当) を 2枚ず つ用意した。 Creリコンビナーゼ導入 3日後に細胞を継代し、 その翌日に別に調 製した I acZをコ一ドする MLVベクタ一を含む VSV-Gシユード: —を、 in. ο· i = 3で感染させた。 継代はコンフルェントになることを避けるために 行つたが、 このことにより VSV- G発現細胞に大きく影響することが確かめられて いる。 l acZをコードする MLVベクタ一の感染 2日後に各 1枚は上述の方法に従って 固定、 X- ga l染色を行い、 各 1枚は前記に記載の方法で VSV-G遺伝子産物に対する 免疫染色を行った。 その結果、 Creリコンビナーゼの導入の有無によらず、 VSV - G シユードタイプウィルスベクターにより l acZ遺伝子が、 l acZをコードする MLVベ クタ一を含まなかった P tG-S2へ導入され、 X- ga lによる染色がみられた。 このと き免疫染色の結果より、 Creリコンビナーゼを導入した細胞のみから VSV-G遺伝子 産物が産生されていることが示されている。 以上の結果は VSV-Gシユードタイプ ウィルスベクタ一は一般のレトロウイルスとは異なり、 干渉作用が成立すること なく産生細胞自体に感染しうることを示している。
前述したように、 これまでにテトラサイクリンを用いて VSV-G遺伝子産物の発 現を制御することにより VSV-Gシユードタイプウィルスベクタ一の産生細胞を作 製できることが報告されているが、 それらでは、 テトラサイクリンによる VSV - G 遺伝子産物の発現制御が完全ではなく、 常に産生細胞に再感染可能な 102から 104 i . u. /m l程度の VSV- Gシュ一ドタイプウィルスベクターを産生していることが報 告されている。 前述した結果は、 このようにパッケージング細胞維持時に産生さ れる少量の VSV-Gシユードタイプウイルスベクタ一が、 パッケ一ジング細胞自体 に再感染しうる可能性を示唆するものであり、 その結果、 パッケージング細胞中 の染色体は、 常に VSV- Gシュ一ドタイプウィルスベクタ一による遺伝子導入によ つて不安定な状態にある可能性が考えられる。 一方、 プレパッケージング細胞で ある P tG- S2は、 実施例 1 0で示したように、 Creリコンビナーゼ作用前には全く V SV-Gシユードタイプウィルスベクタ一を産生せず、 安定した VSV- Gシユードタイ プウィルスベクタ一を調製することが可能である。 実施例 1 8 へパリンによる VSV-Gシュ一ドタイプウィルスベクターの感染抑制 前述したように VSV- Gシユードタイプウィルスベクターはパッケージング細胞 に再感染することが示されたため、 この再感染を抑制することにより VSV-Gシュ 一ドタイプウィルスベクターの回収量を増大することができないかと考えた。 再 感染を抑制するためには、 培養液を環流することで VSV-Gシユードタイプウィル スベクターとパッケージング細胞を分離すること、 再感染抑制物質を見いだして 回収時に添加することが考えられる。 そこで陰荷電高分子であるへパリンに再感 染抑制効果を見レ ^だし、 以下の実験でその効果を確かめた。
前記に記載した方法で 3 -ga l ac t os i dase ( l acZ) をコードする VSV-Gシユード タイプウィルスベクタ一及びアンフォロトロピック MLVエンベロープをもつレト ロウィルスベクターについてポリプレン (8 g/m l ) を加えず、 へパリン (ノボ - ノルディスク) 0、 1 、 3 U/mlの条件下での力価測定を行った。 結果を図 1 1 に示す。 VSV- Gシュ一ドタイプウィルスベクタ一はアンフォロトロピック MLVェン ベロープをもつレトロウイルスベクタ一に比べへパリンにより著しく力価が減少 した。 このことはへパリンに VSV- Gシュ一ドタイプウィルスベクタ一の感染抑制 効果があるためと考えられた。 実施例 1 9 へパリンによる VSV-Gシユードタイプウィルスベクターの回収量増 大
前述したようにへパリンによる VSV- Gシユードタイプウィルスベクタ一の感染 抑制効果が示されたため、 パッケージング細胞から VSV- Gシユードタイプウィル スベクターを回収する際にへパリンを添加することにより、 再感染を抑制し回収 量が増大できるか検討した。 cZをコードする MLVベクターを含む P tG- S2細胞へ実施例 2と同様に Creリコン ピナーゼ導入し、 へパリンを Creリコンビナーゼ導入後 2あるいは 4日後に l li/mlあるいは 3 U/ml培養液に加えた。 産生されてくる VSV-Gシュ一ドタイプゥ ィルスベクターの力価を測定したところ、 へパリンを加えないものに比べ 2から 4倍の回収量の増大が見られた。
へパリンは抗凝血剤として臨床に用いられている薬剤であり安全性については 問題がないと考えられる。 また、 へパリンを希釈すると VSV-Gシユードタイプゥ ィルスべクタ一の感染性は回復することより、 両者の作用は可逆的であり、 超操 作時にへパリンを除くことが可能である。 実施例 2 0 プレパッケージング細胞 P tG- S2の安定性
P t G-S 2についてプレパッケージング細胞としての安定性を調べた。
3ヶ月間継続培養したもの及び新たに液体窒素より解凍した 1 acZをコードする MLVベクタ一を含む PtG- S2細胞へ実施例 1 6と同様に Creリコンビナ一ゼ導入した ものとしないものを用意した。 産生されてくる VSV-Gシュ一ドタイプウィルスべ クタ一の力価を前記に記載の方法でしたところ両者ともに Creリコンビナ一ゼ導 入しないものでは全く VSV-Gシユード夕ィプウィルスべクタ一が検出されなかつ たのに対して、 Creリコンビナ一ゼを導入したものでは同等の VSV-Gシュ一ドタイ プウィルスベクタ一の産生が見られた。 以上のことは P tG- S2のプレパッケージン グ細胞としての安定性は高いことを示している。 実施例 2 1
超遠心による VSV-Gシユードタイプウィルスベクタ一の濃縮
超遠心装置(Beckman L-60E)を使って VSV- Gシュ一ドタイプウィルスベクターの 濃縮を行った。
2.2X108 i. u. Ζ480Π11の VSV - Gシユードタイプウィルスベクターを滅菌した超 遠心チューブ (Beckman No.344058) 1 2本に 4 0 m 1ずつ分注し、 2回に分け て 6本ずつを SW28ロー夕一で 19500卬 ml時間 40分間、 濃縮を行った。 濃縮後の チューブから上清を除いた後に FCSを含まない DMEMを 0. 2m l加え、 氷上 1時間 静置したのちに時々軽く揺らしながら懸濁してさらに氷上 1時間放置した。 この 濃縮により 4 X107 i. u/mlの VSV-Gシユードタイプウィルスベクタ一が 1.5m 1 得られた (回収率 6 9 %) 。 さらにこの濃縮 VSV-Gシユードタイプウィルスべク 夕一を超遠心チューブ (Beckman 358650) に入れ SW41ロー夕一を用い 19500rpm 1 時間 4 0分間、 濃縮を行った。 上清を注射筒で除き FCSを含まない DMEM 0.05m 1 を加え、 氷上で懸濁した。 この遠心により 1 X109Zm 1まで濃縮された VSV- Gシ ユードタイプウィルスベクターが 0.08m 1得られた。 2回目の超遠心の回収率は 5 3 %であり、 当初の VSV-Gシユードタイプウィルスベクターの 3 7 %カ 1 X109 /m 1までに濃縮された。 実施例 2 2
VSV-Gシユードタイプウィルスベクタ一による導入遺伝子発現の持続
FLY (ヒト線維芽細胞) 、 3Y1 (ラット線維芽細胞) に対して、 いずれも核移行 シグナルをもつ lacZ (beta-galactosidase) をべクタ一 RNAにもつ以下のレトロ ウィルスベクタ一を m.0. i. = 1で感染させ、 lacZの発現の持続をしらべた。 1. 濃縮した VSV - Gシュ一ドタイプレトロウイルスベクタ一
2. 濃縮していない VSV- Gシュ一ドタイプレトロウイルスベクター
3. アンフォトロピックエンベロープをもつレトロウイルスベクタ一
感染後 3日毎に細胞をまきなおし、 その一部について X- galを用いて核に局在 している lacZによる染色をしらべた。 感染後 1 3日までに 3者のレトロウイルス ベクターによる lacZの発現の持続に差は見られず、 VSV- Gシユードタイプレトロ ウィルスベクタ一はアンフォトロピックエンベロープをもつレトロウイルスべク 夕一と同様に安定した導入遺伝子の発現を行うと考えられた。 実施例 23
mRNA短寿命配列を耐性遺伝子中に含む pBabe loxpuro- dの作成
前記の方法で作製した pBabe 〖 oxpuro中のピュ一ロマイシン耐性遺伝子とポリ A付加シグナルの間に存在する Ncolサイトを同制限酵素で切断し、 klenow fragmentによる平滑末端化を行った。 ここへ前記で述べた chicken c-fosの mRNA 短寿命配列 (AU Rich Element: ARE) である 414bpsの配列を klenow fragmentによ る平滑末端化したものを挿入し pBabe 1 oxpuro-dを作成した。 実施例 24
Creリコンビナ一ゼにより完全長のベクター RNAの遺伝子発現を開始させる VSV-G シユードタイプレトロウイルスベクタ一の作成
pBabe loxpuroのマルチクローニングサイトに lacZを挿入した pBabe loxpurola cZをリボフェクシヨンにより PtG-S2へ導入した。 導入細胞をピュー口マイシンに 対する耐性を利用して選択し、 選択された細胞をクロ一ニングせずに増やした。 その細胞に対して AxCANCreにより Creリコンビナーゼを導入し、 産生されてくる V SV - Gシュードタイプレトロウイルスベクタ一の力価を lacZを指標に測定した。 Creリコンビナ一ゼを導入したものは VSV-Gシュ一ド夕ィプレトロウイルスベクタ 一の産生を始め、 導入 5から 8日後には 2 X 104 i . u. /m 1の産生が見られた。 X - galを用いて lacZの染色を行ったところ、 導入 8日後の細胞では染色がみられ た細胞が存在したのに対して、 導入しない細胞では 1 acZの発現が全く見られなか つた。 このことはベクター RNAにコードされる遺伝子も Creリコンビナーゼにより 発現を厳密に制御することで VSV-Gシユードタイプレトロウイルスベクタ一を産 生させることができることを示しており、 細胞に対して毒性を示すものなど影響 の大きい遺伝子をコードするベクター RNAをもつレトロウイルスベクタ一の安定 した大量調製法を可能とするものである。 実施例 2 5
プレパッケージング細胞から産生されるシユードタイプレトロウイルス中に自己 増殖可能なレトロウイルス (replication competent retrovirus: RCR) が含ま れないことの証明 (2)
実施例 1 4で記述した内容を改善し以下の結果を得た。 常法 (遺伝子治療の基 礎技術、 羊土社 1996) に従い、 lacZをコードする MLVベクターを含む PtG-S2細 胞から調製された 1 X107 i . u. /m 1のシユードタイプレトロウイルスを m.0. i = 5で M. dunni細胞に感染させ、 4日毎に 1ノ1 0の継代を 3回繰り返した 後の培養液を採取し、 DEAE- dextran存在下で PG- 4 S+L-細胞に加えた。 同時に行 つた RCRを含む Mink4070A細胞からの培養液を PG-4 S+L-細胞に加えたものでは 4 日後からフォ一カスが観察されたのに対して、 P tG-S2細胞から調製されたシュ ―ドタイプレトロウイルス中に含まれている可能性のある RCRを M. dunniで増幅し たものでは 8日後でも非感染のものと同様にフォーカスがみられなかった。 この ことは PtG- S2細胞から調製された 1 X107 i . u. /m 1のシュ一ドタイプレ卜 ロウィルス中には RCRが含まれていないことを示している。 実施例 2 6 プレパッケージング細胞から産生されるシユードタイプレトロウイルス中にアデ ノウィルスが含まれないことの証明 (2)
実施例 1 5で記述した内容をさらに改善し以下の結果を得た。 lacZをコードす る MLVベクタ一を含む PtG-S2へ実施例 2で記述した方法でアデノウイルス (AxCAN Cre)により Creリコンビナ一ゼを導入した。 培養液は毎日交換すると共に、 交換 時に培養液で入念に 3回ずつ細胞を洗い、 洗った際の培養液はピへッ卜で完全に 吸い取ることで残存している可能性のあるアデノウイルスできる限り除いた。 導 入 3から 5日後 (洗浄回数 6回以上) のサンプルから調製された 2 X106 i. u. /m 1のシユードタイプレトロウイルス中に含まれる可能性のあるアデノウィル スを常法 (バイオマニュアルシリーズ 4遺伝子導入と発現 ·解析法、 羊土社、 199 4) により 293細胞を用いて検出した。 AxCANCreを感染させたものでは、 一つのァ デノウィルス感染粒子が存在する条件でも感染 1 2日後までには 293細胞の 5 0 %以上の変性が見られたのに対して、 2 X106 i . u. Zm 1のシユードタイプ レトロウイルス中を感染させたものでは 293細胞の変性は一切見られず、 この中 にアデノウイルスは存在しないことが示された。
またこのアデノウイルスベクタ一を 1 X106 i. u./m l含む培養液をゥサ ギポリクローナル抗アデノウイルス抗体 (東京大学医科学研究所ウィルス研究部 白木先生より譲渡) と Protein G Sepharose (Pharmacia) とを結合させたもの で 4度 1時間処理後に遠心しその上清を回収して上記と同様に 293細胞による検 出を試みた。 感染 1 2日後までに一切 293細胞の変性は見られず、 この抗体によ り培養液中に含まれるアデノウイルスベクターは完全に除去されることが示され た。

Claims

言青 求 の 範 囲
1 . リコンビナーゼとその認識配列を用いてウィルスの構造蛋白質遺伝子の発 現を制御する DNA構築物であって、 プロモータ一、 リコンビナーゼ認識配列、 薬 剤耐性遺伝子、 po lyA付加シグナル、 リコンビナーゼ認識配列、 ウィルスの構造 蛋白質遺伝子、 po lyA付加シグナルの順に配向した DNA構築物。
2 . リコンビナーゼとその認識配列を用いて外来遺伝子の発現を制御する DNA 構築物であって、 レトロウイルスゲノムの LTR、 パッケージングシグナルに続き、 リコンビナ一ゼ認識配列、 薬剤耐性遺伝子、 po l yA付加シグナル、 リコンビナ一 ゼ認識配列、 外来遺伝子、 LTRの順に配向した DNA構築物。
3 . プロモーターが CAGである請求項 1に記載の DNA構築物。
4 . リコンビナーゼとその認識配列が Creリコンビナーゼと Ι οχΡ配列である請 求項 1又は 2に記載の DNA構築物。
5 . 薬剤耐性遺伝子が、 ネオマイシン耐性遺伝子、 ピューロマイシン耐性遺伝 子又はハイグロマイシン耐性遺伝子である請求項 1又は 2に記載の DNA構築物。
6 . 薬剤耐性遺伝子が、 低効率薬剤耐性遺伝子又は、 薬剤耐性遺伝子の mRNAを 短寿命化した塩基配列を有する転写産物短寿命化薬剤耐性遺伝子である、 請求項 1又は 2に記載の DNA構築物。
7 . 低効率薬剤耐性遺伝子又は転写産物短寿命化薬剤耐性遺伝子が、 ネオマイ シン耐性遺伝子、 ピュー口マイシン耐性遺伝子又はハイグロマイシン耐性遺伝子 由来である、 請求項 6に記載の DNA構築物。
8 . ネオマイシン耐性遺伝子、 ピューロマイシン耐性遺伝子又はハイグロマイ シン耐性遺伝子の mRNAを短寿命化した塩基配列を有することを特徴とする転写産 物短寿命化薬剤耐性遺伝子。
9. mRNAの短寿命化が c-f os由来の mRNA不安定化シグナルによるものである、 請求項 8に記載の転写産物短寿命化薬剤耐性遺伝子。
1 0. polyA付加シグナルが SV40由来又は 0-グロビン由来である請求項 1又は 2 に記載に DNA構築物。
1 1. レトロウイルスの構造蛋白質遺伝子が水疱性口内炎ウィルス (Vesicular stomatitis virus, VSV) の G蛋白質 (VSV-G) をコードする DNAである、 請求項 1 に記載の DNA構築物。
1 2. レトロウイルスゲノムがモロニ一マウス白血病ウィルス (Moloney murine leukemia virus, MoMLV) 由来である請求項 2に記載の DNA構築物。
1 3. レトロウイルスゲノムがレンチウィルス由来である請求項 2に記載の DNA 構築物。
14. 外来遺伝子が遺伝子治療のために細胞導入を目的とする遺伝子である請求 項 2に記載の DNA構築物。
1 5. 細胞導入を目的とする遺伝子が、 細胞毒性を有する蛋白質の遺伝子である 請求項 14に記載の DNA構築物。
1 6. リコンビナーゼとその認識配列を用いてウィルスの構造蛋白質の発現を制 御する DNA構築物であって、 CAGプロモーター、 ΙοχΡ配列、 薬剤耐性遺伝子、 poly A付加シグナル、 ΙοχΡ配列、 VSV- G遺伝子、 po A付加シグナルの順に配向した、 請求項 1に記載の DNA構築物。
1 7. リコンビナーゼとその認識配列を用いて外来遺伝子の発現を制御する DNA 構築物であって、 レトロウイルスゲノムの LTR、 パッケージングシグナルに続き、 ΙοχΡ配列、 薬剤耐性遺伝子、 polyA付加シグナル、 ΙοχΡ配列、 外来遺伝子、 LTRの 順に配向した請求項 2に記載の DNA構築物。
1 8. レトロウィルスの gag- pol産生細胞に請求項 1に記載の DNA構築物を導入し た、 レトロウイルスベクタ一産生用プレパッケージング細胞。
1 9. レトロウイルスの gag- po卜 env産生細胞に請求項 2に記載の DNA構築物を導 入した、 レトロウイルスベクター産生用の、 ウィルスゲノムを含むプレパッケ一 ジング細胞。
20. レトロウイルスのエンベロープ蛋白質 (env) がェコトロピックまたはァ ンフォトロピックマウス白血病ウィルス由来である、 請求項 1 9に記載のレトロ ウィルスベクター産生用の、 ウィルスゲノムを含むプレパッケージング細胞。
2 1. レトロウイルスの gag- pol産生細胞に請求項 1及び 2に記載の DNA構築物を 導入した、 レトロウイルスベクタ一産生用の、 ウィルスゲノムを含むプレパッケ 一ジング細胞。
22. レトロウイルスがマウス白血病ウィルス (murine leukeimia virus, ML V)である、 請求項 1 8、 1 9、 20又は 21に記載のレトロウイルスベクタ一産 生用プレパッケ一ジング細胞。
23. レトロウイルスがレンチウィルスである、 請求項 18、 1 9、 20又は 2 1に記載のレトロウイルスベクタ一産生用プレバッケージング細胞。
24. 請求項 1 9又は 2 1に記載のウィルスゲノムを含むプレパッケージング細 胞に、 リコンビナーゼ発現 DNAを導入することを含む、 遺伝子治療用レトロウイ ルスべクタ一の作製法。
25. 請求項 24に記載の方法により作製された遺伝子治療用レトロウイルスべ クタ一。
26. プロモ一夕一、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 polyA付加シ ダナル、 リコンビナーゼ認識配列、 ウィルスの構造蛋白質遺伝子、 polyA付加シ グナルの順に配向した DNA構築物、 及びレトロウイルスゲノムの LTR、 パッケージ ングシグナルに続き、 リコンビナ一ゼ認識配列、 薬剤耐性遺伝子、 po l yA付加シ ダナル、 リコンビナーゼ認識配列、 外来遺伝子、 LTRの順に配向した DNA構築物を レトロウィルスの gag- po l産生細胞に導入した後、 リコンビナーゼ発現 DNAを導入 することを含む、 遺伝子治療用レトロウィルスベクタ一の作製法。
2 7 . レトロウイルスの gag- po卜 env産生細胞に、 レトロウイルスゲノムの LTR、 パッケージングシグナルに続き、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 po l y A付加シグナル、 リコンビナ一ゼ認識配列、 外来遺伝子、 LTRの順に配向し た DNA構築物を導入した後、 リコンビナーゼ発現 DNAを導入することを含む、 遺伝 子治療用レトロウイルスベクタ一の作製法。
2 8 . プロモーター、 リコンビナーゼ認識配列、 薬剤耐性遺伝子、 po A付加シ ダナル、 リコンビナ一ゼ認識配列、 ウィルスの構造蛋白質遺伝子、 po l yA付加シ グナルの順に配向した DNA構築物を、 外来遺伝子をコ一ドするレトロウイルスゲ ノムを含むレトロウイルスの gag- po 1産生細胞に導入した後、 リコンピナーゼ発 現 DNAを導入することを含む、 遺伝子治療用レトロウイルスベクタ一の作製法。
2 9 . シユードタイプレトロウイルスを作製する方法において、 培養液中に陰性 荷電高分子物質を共存させることを特徴とする請求項 2 4、 2 6、 2 7又は 2 8 に記載のレトロウイルスベクタ一作製法。
3 0 . シユードタイプレトロウイルスを作製する方法において、 培養液中に陰性 荷電高分子物質を共存させることを特徴とするレトロウイルスベクタ一作製法。
3 1 . 陰性荷電高分子物質がへパリン、 へパラン硫酸、 コンドロイチン硫酸から 選ばれる物質である、 請求項 2 9又は 3 0に記載のレトロウイルスベクタ一作製 法。
3 2 . シュ一ドタイプレトロウイルスがモロニ一マウス白血病ウィルスである請 求項 2 9又は 3 0に記載のレトロウイルスベクタ一作製法。
3 . シユードタイプレトロゥ. '請求項 2 9又は 3 に記載のレトロウイルスベクター作製法。
PCT/JP1997/004592 1996-12-16 1997-12-12 Procede pour preparer un vecteur de retrovirus pour la therapie genique WO1998027217A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP51820498A JP3959117B2 (ja) 1996-12-16 1997-12-12 遺伝子治療用レトロウイルスベクターの作製法
EP97947924A EP0953647B1 (en) 1996-12-16 1997-12-12 Method for preparing retrovirus vector for gene therapy
US09/214,465 US6743620B1 (en) 1996-12-16 1997-12-12 Method for preparing retrovirus vector for gene therapy
DE69738737T DE69738737D1 (de) 1996-12-16 1997-12-12 Verfahren zur herstellung von retroviralen vektoren für die gentherapie
US09/800,520 US7056696B1 (en) 1996-12-16 2001-03-08 Expression vector containing a drug-resistance gene having a destabilizing sequence as selection marker
US11/378,652 US20060153810A1 (en) 1996-12-16 2006-03-20 Process for preparing retrovirus vector for gene therapy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/335433 1996-12-16
JP33543396 1996-12-16
JP15953897 1997-06-17
JP9/159538 1997-06-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09214465 A-371-Of-International 1997-12-12
US09/800,520 Continuation US7056696B1 (en) 1996-12-16 2001-03-08 Expression vector containing a drug-resistance gene having a destabilizing sequence as selection marker

Publications (1)

Publication Number Publication Date
WO1998027217A1 true WO1998027217A1 (fr) 1998-06-25

Family

ID=26486305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004592 WO1998027217A1 (fr) 1996-12-16 1997-12-12 Procede pour preparer un vecteur de retrovirus pour la therapie genique

Country Status (5)

Country Link
US (3) US6743620B1 (ja)
EP (2) EP1484409B1 (ja)
JP (1) JP3959117B2 (ja)
DE (2) DE69738737D1 (ja)
WO (1) WO1998027217A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807016B1 (ko) 2000-06-01 2008-02-25 가부시키가이샤 디나벡크 겐큐쇼 헤마글루티닌 활성을 갖는 막단백질을 포함하는 슈도타입레트로바이러스 벡터
US10017784B2 (en) 2005-10-28 2018-07-10 Id Pharma Co., Ltd. Gene transfer into airway epithelial stem cell by using lentiviral vector pseudotyped with RNA virus or DNA virus spike protein
WO2022079082A1 (en) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Nucleic acid constructs for simultaneous gene activation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743620B1 (en) * 1996-12-16 2004-06-01 Eisai Co., Ltd. Method for preparing retrovirus vector for gene therapy
US20030224415A1 (en) * 2001-06-29 2003-12-04 Gala Design, Inc. Selection free growth of host cells containing multiple integrating vectors
AU2001270252B2 (en) * 2000-07-03 2007-02-08 Catalent Pharma Solutions, Llc Expression vectors
US20040235173A1 (en) * 2000-07-03 2004-11-25 Gala Design, Inc. Production of host cells containing multiple integrating vectors by serial transduction
US6852510B2 (en) * 2000-07-03 2005-02-08 Gala Design Inc Host cells containing multiple integrating vectors
JP2002142770A (ja) * 2000-11-08 2002-05-21 Dnavec Research Inc 循環系への遺伝子送達用パラミクソウイルスベクター
JP2004530425A (ja) * 2001-03-09 2004-10-07 ジーン ストリーム プロプライエトリー リミティッド 新規な発現ベクター
US7384738B2 (en) * 2002-03-28 2008-06-10 Bremel Robert D Retrovirus-based genomic screening
US20040038304A1 (en) * 2002-03-28 2004-02-26 Gala Design, Inc. Antibody libraries
WO2004061113A1 (en) * 2003-01-07 2004-07-22 The University Of Hong Kong Adeno-associated virus mediated b7.1 vaccination synergizes with angiostatin to eradicate disseminated liver metastatic cancers
GB0312676D0 (en) * 2003-06-02 2003-07-09 Babraham Inst Binding assay
US20050221429A1 (en) * 2004-01-16 2005-10-06 Cardinal Health Pts, Llc Host cells containing multiple integrating vectors comprising an amplifiable marker
EP2568289A3 (en) 2011-09-12 2013-04-03 International AIDS Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies
EP2586461A1 (en) 2011-10-27 2013-05-01 Christopher L. Parks Viral particles derived from an enveloped virus
US9347065B2 (en) 2012-03-29 2016-05-24 International Aids Vaccine Initiative Methods to improve vector expression and genetic stability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040955A1 (en) * 1995-06-07 1996-12-19 Graham Frank L Adenovirus vectors for gene therapy

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194376A (en) 1989-02-28 1993-03-16 University Of Ottawa Baculovirus expression system capable of producing foreign gene proteins at high levels
US5318890A (en) 1991-05-06 1994-06-07 The Regents Of The University Of California Assays for inhibitors of leukocyte adhesion
US6174666B1 (en) * 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
US6506604B2 (en) 1993-06-11 2003-01-14 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
US6051427A (en) 1993-06-11 2000-04-18 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
FR2726574B1 (fr) * 1994-11-04 1997-01-17 Univ Paris Curie Procede de dissociation des cellules eucaryotes en culture
US5629159A (en) * 1995-06-07 1997-05-13 California Institute Of Technology Immortalization and disimmortalization of cells
US6087129A (en) * 1996-01-19 2000-07-11 Betagene, Inc. Recombinant expression of proteins from secretory cell lines
KR100517818B1 (ko) 1996-06-12 2005-12-07 니뽄 다바코 산교 가부시키가이샤 외래 유전자의 발현방법 및 그를 위한 벡터
US6743620B1 (en) 1996-12-16 2004-06-01 Eisai Co., Ltd. Method for preparing retrovirus vector for gene therapy
US6902929B1 (en) 1997-02-27 2005-06-07 Bundesrepublik Deutschland Last Represented By The President Of The Paul-Ehrlich-Instituts Retroviral vectors, methods for their preparation and their use for gene transfer into CD4-positive cells
US5965393A (en) 1997-07-01 1999-10-12 National Institute Of Immunology Method for enhancing foreign gene expression in baculovirus expression vector system
EP1012236A1 (en) 1997-08-15 2000-06-28 Rubicon Laboratory Inc. Retrovirus and viral vectors
CA2322057A1 (en) 2000-05-18 2001-11-18 Dnavec Research Inc. Paramyxovirus vectors used for transfer of foreign genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040955A1 (en) * 1995-06-07 1996-12-19 Graham Frank L Adenovirus vectors for gene therapy

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF VIROLOGY, (1996), Vol. 70, No. 8, ANDREAS P. RUSS et al., "Self-Deleting Retrovirus Vectors for Gene Therapy", p. 4927-4932. *
JOURNAL OF VIROLOGY, (1997), Vol. 71, No. 10, CORINNE FERNEX et al., "Cre/loxP-Mediated Excision of a Neomycin Resistance Expression Unit from an Integrated Retroviral Vector Increases Long Terminal Repeat-Driven Transcription in Human Hematopoietic Cells", p. 7533-7540. *
JOURNAL OF VIROLOGY, (1997), Vol. 71, No. 3, STE-PHEN HARDY et al., "Construction of Adenovirus Vectors Through Cre-Lox Recombination", p. 1842-1849. *
PROC. NATL. ACAD. SCI. U.S.A., (1996), Vol. 93, ROBIN J. PARKS et al., "A Helper-Dependent Adenovirus Vector System : Removal of Helper Virus by Cre-Mediated Excision of the Viral Packaging Signal", p. 13565-13570. *
PROC. NATL. ACAD. SCI. U.S.A., (1996), Vol. 93, Y. WANG et al., "Targeted DNA Recombination In Vivo Using an Adenovirus Carrying the Crerecombinase Gene", p. 3932-3936. *
See also references of EP0953647A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807016B1 (ko) 2000-06-01 2008-02-25 가부시키가이샤 디나벡크 겐큐쇼 헤마글루티닌 활성을 갖는 막단백질을 포함하는 슈도타입레트로바이러스 벡터
US7510706B2 (en) 2000-06-01 2009-03-31 Dnavec Research Inc. Pseudotype retroviral vectors containing membrane proteins having hemagglutinin activity
US10017784B2 (en) 2005-10-28 2018-07-10 Id Pharma Co., Ltd. Gene transfer into airway epithelial stem cell by using lentiviral vector pseudotyped with RNA virus or DNA virus spike protein
WO2022079082A1 (en) 2020-10-15 2022-04-21 F. Hoffmann-La Roche Ag Nucleic acid constructs for simultaneous gene activation

Also Published As

Publication number Publication date
US7056696B1 (en) 2006-06-06
EP0953647A4 (en) 2004-03-24
US20010018203A1 (en) 2001-08-30
US6743620B1 (en) 2004-06-01
EP1484409B1 (en) 2009-04-08
EP1484409A3 (en) 2006-08-02
US20060153810A1 (en) 2006-07-13
EP1484409A2 (en) 2004-12-08
EP0953647B1 (en) 2008-05-28
EP0953647A1 (en) 1999-11-03
DE69739351D1 (de) 2009-05-20
JP3959117B2 (ja) 2007-08-15
DE69738737D1 (de) 2008-07-10

Similar Documents

Publication Publication Date Title
US20060153810A1 (en) Process for preparing retrovirus vector for gene therapy
US5714353A (en) Safe vectors for gene therapy
JP6001702B2 (ja) ポリプリントラクト改変レトロウイルスベクター
AU686181B2 (en) Generation, concentration and efficient transfer of VSV-G pseudotyped retroviral vectors
DE19856463B4 (de) Retrovirale, mit LCMV pseudotypisierte Hybrid-Vektoren
SA518391585B1 (ar) طريقة تحوير عابر لإنتاج فيروس عكسي
JP4214239B2 (ja) 二機能性レトロウイルス/アデノウイルス系
JP2000500013A (ja) プソイドタイプのレトロウイルスを産生する安定パッケージング細胞株
Deyle et al. Nonintegrating foamy virus vectors
Lin Construction of new retroviral producer cells from adenoviral and retroviral vectors
WO1997015679A1 (en) Recombinant viruses containing mobile genetic elements and methods of use in gene therapy
WO1997015679A9 (en) Recombinant viruses containing mobile genetic elements and methods of use in gene therapy
US6303380B1 (en) Construction of retroviral producer cells from adenoviral and retroviral vectors
Solaiman et al. Modular retro‐vectors for transgenic and therapeutic use
WO2000017376A1 (en) Replication deficient retroviral vector system and methods of using
IL152527A (en) Retroviral vectors containing termination termination with increased efficiency
DE69829174T2 (de) Exprimierung eines modifiziertem "foamy virus envelope protein" (hüllenprotein)
WO2021204655A1 (en) Modified vectors for production of retrovirus
Yu Adeno-associated Virus Vector as a Tool for the Analysis of in vivo Ovine Betaretroviral Gene Expression, and its use as a Vector for Therapeutic Gene Delivery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09214465

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997947924

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997947924

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997947924

Country of ref document: EP