WO1998027215A1 - Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire - Google Patents

Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire Download PDF

Info

Publication number
WO1998027215A1
WO1998027215A1 PCT/FR1997/002307 FR9702307W WO9827215A1 WO 1998027215 A1 WO1998027215 A1 WO 1998027215A1 FR 9702307 W FR9702307 W FR 9702307W WO 9827215 A1 WO9827215 A1 WO 9827215A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
recombinant
plasmid
nucleotide sequence
promoter
Prior art date
Application number
PCT/FR1997/002307
Other languages
English (en)
Inventor
Jean-Christophe Francis Audonnet
Michel Joseph Marie Bublot
Eliane Louise Françoise LAPLACE
Original Assignee
Merial
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merial filed Critical Merial
Priority to EP97952066A priority Critical patent/EP0948637A1/fr
Priority to AU55627/98A priority patent/AU734085B2/en
Priority to JP52739498A priority patent/JP2001510338A/ja
Publication of WO1998027215A1 publication Critical patent/WO1998027215A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16041Use of virus, viral particle or viral elements as a vector
    • C12N2710/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron

Definitions

  • the present invention relates to vaccines for avian use based on infectious laryngotracheitis virus (ILTV), into which has been inserted, by genetic recombination, at least one heterologous nucleotide sequence, in particular coding for and expressing, an antigenic polypeptide of an avian pathogen, under conditions ensuring immunization leading to effective protection of the animal vaccinated against said pathogen.
  • ILTV infectious laryngotracheitis virus
  • Infectious laryngotracheitis virus is an alphaherpesvirus (B. Roizman, Arch. Virol. 1992. 123. 425-449) which causes an important respiratory pathology (infectious laryngotracheitis or ILT) in chicken (LE Hanson and TJ Bagust, Diseases of Poultry 9th edn 1991. pp 485-495. Ames, lowa State University Press).
  • the vaccines currently available against this condition contain an attenuated strain which can be administered by different routes including the intranasal, conjunctival, cloacal in the drinking water and aerosol (LE and T Hanson. Bagust, Diseases of Poultry 9th Edition 1991. pp 485-495. Ames, Iowa State University Press).
  • ILTV Molecular biology studies ILTV have characterized the viral genome (MA Johnson et al., Arch. Vlrot. 1991. 119. 181-198) and iden t ify some virus genes (AM Griffin, J. Gen. Virol. 1989. 70. 3085-3089) including the genes coding for thy idine inase (UL23) (AM Griffin and MEG Boursnell, /. Gen. Virol. 1990. 71. 841-850; CL. Eeier et al ., Avion Dis. 1991. 35. 920-929), the glycoprotein gB (UL27) (AM Griffin, /. Gen. Virol. 1991. 72. 393-398;. Kongsuwan et al., Virology 1991. 184.
  • the aim of the present invendon is to develop an avian vaccine based on a recombinant ILTV virus expressing a heterologous gene, this virus being capable of replicating and of inducing immunity in the vaccinated host while maintaining good safety.
  • Another objective of the invention is to provide such a vaccine which is at the same time particularly effective against infectious laryngotracheitis (ILT).
  • ILT infectious laryngotracheitis
  • Another objective of the invention is to propose such a vaccine which can be used in mass vaccination by mucosal route, for example by aerosol route or in drinking water, in such a way that the replication of the virus at the mucosal level allows to induce mucosal and systemic immunity.
  • mucosal immunity will be particularly effective against respiratory diseases and con t re other diseases for which the input po ⁇ e pathogen is mucosal.
  • Another object of the invention is to provide such a vaccine which can be used both in adults and in young animals.
  • a specific objective is to propose such a vaccine usable in mass vaccination by mucosal route of very young animals such as day-old chicks.
  • Another objective of the invention is to provide a vaccine against the ILT which has an increased efficacy compared to the parental strain and which may even possibly allow the insertion and expression of a heterologous gene.
  • a genomic region which has proved quite suitable as a site for the insertion of heterologous genes.
  • NDV Newcastle disease virus
  • MDV Mare Disease Virus gB glycoprotein
  • IBDV Gumboro Disease Virus VP2 protein
  • IBV Infectious Bronchitis Virus S and M proteins
  • the present invention therefore relates to a live recombinant avian vaccine comprising, as a vector, the ILTV virus comprising at least one heterologous nucleotide sequence, in particular coding for and expressing, an antigenic polypeptide of an avian pathogenic agent, inserted into the locus d 'inse ⁇ ion formed of the intergene located between the stop codons of COL-B and COL-C of the ILTV virus and which, in a particular ILTV strain, is defined between nucleotides 908 and 994 with the sequence SEQ ID NO: l . If the specific sequence described in the request (SEQ ID NO: 1) comes from the ILTV vaccine strain T-20 12-8-66 from Select Laboratories (10026 Main
  • the COL-B and COL-C correspond respectively to the UL3.5 and UL4 genes described in the article by W. Fuchs and T.C. Mettreleiter (/. Gen. Virol. 1996. 77. 2221-
  • SEQ ID NO: 19 reproduces for this pathogenic strain, the sequence equivalent to SEQ ID NO: 1.
  • the intergene serving as insertion locus according to the invention is included in SEQ ID NO: 19 between nucleotides 908 and 994.
  • heterologous sequence is meant a sequence which does not originate from this insertion locus, c '' is to say both a sequence not originating from the ILTV virus, as well as a sequence originating from another genomic region of this virus, or also originating from another ILTV strain, in particular a virulent strain.
  • insertion into the insertion region is meant in particular simple insertion or after total or partial deletion of the insertion locus.
  • One or more expression cassettes can be inserted, each comprising at least one sequence to be expressed.
  • a strong eukaryotic promoter such as the immediate early CMV promoter (IE), the Rous sarcoma virus LTR (RSV), and the early promoter of the SV40 virus.
  • immediate early CMV promoter IE
  • the CMV IE promoter can be the human promoter (HCMV IE) or the murine promoter (MCMV IE), or else a CMV IE promoter from another origin, for example from monkeys, rats, guinea pigs or pigs.
  • promoters of viral or cellular origin can also be used.
  • promoters of viral origin mention may also be made of promoters of genes for ILTN virus (genes considered to be early-immediate (ICP4, ICP27, ...), early fthymidine kinase, D ⁇ A helicase, ribonucleotide reductase, ...), or late (gB, gD, gC, gK, ...)) .
  • Marek's disease virus (MDV) gB, gC, pp38, ppl4, ICP4, Meq, ... genes
  • h ⁇ ès turkey virus he ⁇ èsvirus of rurkey
  • the nucleotide sequence inserted into the ILTN vector to be expressed can be any sequence coding for an antigenic polypeptide, of an avian pathogenic agent, capable, once expressed under the favorable conditions provided by the invention, of ensuring immunization leading to effective protection of the animal vaccinated against the pathogen. It will therefore be possible to insert, under the conditions of the invention, the nucleotide sequences coding for the antigens of interest for a given disease.
  • This nucleotide sequence inserted into the ILTV vector can also code for an immunomodulatory polypeptide, and in particular a cytokine.
  • the vaccines according to the invention can be used for vaccination in ovo, day-old chicks or more and adults.
  • Different routes of administration could be used: the parenteral route, or the mucosa routes such as oronasale (drinking water, aerosol), conjunctival (drop in the eye) or cloacale, with a preference for the routes allowing a mucosal vaccination of mass (drinking water, aerosol).
  • the invention proves to be particularly useful both for protection against respiratory pathologies and against systemic pathologies by blocking the natural pathways of entry of the pathogenic agent.
  • the invention can in particular be used for the insertion of a nucleotide sequence suitably coding for an antigenic protein of the ⁇ DV virus and in particular, the glycoprotein H ⁇ or the glycoprotein F.
  • a nucleotide sequence suitably coding for an antigenic protein of the ⁇ DV virus and in particular, the glycoprotein H ⁇ or the glycoprotein F.
  • the recombinant ⁇ ewcastle disease vaccine will preferably contain 10 to 10 4 PFU / dose.
  • nucleotide sequences coding for antigens of other avian pathogens are inserted of nucleotide sequences coding for antigens of other avian pathogens, and in particular, but not limited to, antigens of the ⁇ arek disease virus, in particular genes gB, gC, gD, and gH + gL (WO-A-90 / 02803), the Gumboro disease virus, in particular the VP2 gene, the infectious bronchitis virus (IBV), in particular the S and M genes (M. Binns et al., J. Gen. Virol. 1985. 66. 719-726; M. Boursnell et al., Virus Research 1984. 1.
  • CAV chicken anemia virus
  • ILTN virus in particular the genes coding for gB (AM Griffin, /. Gen. Virol.
  • gp60 KK Kongsuwan et al., Genes Virus 1993. 7. 297-303
  • swelling head syndrome virus swollen head syndrome
  • chicken pneumovirus or turkey rhinotracheitis vires TRTV
  • pneumovirus in particular the fusion glycoprotein F (Q. Yu et al., J. Gen. Virol. 1991. 72. 75-81), or the attachment glycoprotein G (R. Ling et al., J. Gen. Virol.
  • the doses will preferably be the same as those for the castewcastie vaccine.
  • the promoter CMV IE is associated with another promoter so that their 5 'ends are adjacent (which implies transcriptions in opposite directions), which makes it possible to insert, in the insertion zone, two nucleotide sequences , one under the control of the CMV IE promoter, the other under that of the associated promoter.
  • the associated promoter may in particular be a promoter of a gene of the ILTN virus or of the MDV or HVT virus.
  • An interesting case of the invention is a vaccine comprising a nucleotide sequence coding for HN of NDV and a nucleotide sequence coding for F of
  • NDV or an antigen of another avian disease, in particular those mentioned above, one of the genes being under the control of the CMV IE promoter, and the other under the control of the associated promoter.
  • IVS Internai Ribosome Entry Site
  • SVDV swine vesicular disease virus
  • EMCV encephalomyocarditis virus
  • FMDV foot-and-mouth disease virus
  • the expression cassette for two genes would therefore have the following minimum structure: promoter - gene 1 - IRES - gene2 - polyadenylation signal.
  • the recombinant live vaccine according to the invention may therefore comprise, inserted into the insertion locus, an expression cassette successively comprising a promoter, two or more genes separated in pairs by an IRES, and a polyadenylation signal.
  • one or more other insertions, one or more mutations, or one or more deletions can be made elsewhere in the genome; if the parental strain is virulent, it is possible, for example, to inactivate (by deletion, insertion or mutation) of the genes involved in virulence such as the thymidine kinase gene, the ribonucleotide reductase gene, the gE gene, etc. In all cases, insertion into another locus than that described in the invention makes it possible to express other genes,
  • the subject of the present invention is also a vaccine against ILT comprising a recombinant ILTV virus in which genes coding for major immunogens of ILTV have been inserted upstream, preferably the genes coding for gB (AM Griffin, J. Gen. Virol. 1991. 72. 393-398), or for gD (MA Johnson et ai, DNA Séquence- Journal of Sequencing and Mapping 1995. Vol. 5. ppl91- 194. Harwood Académie Publishers GmbH), or for gp60 (KK Kongsuwan and ai , Virus Genes 1993. 7. 297-303), an exogenous promoter, in particular a strong promoter as described above. This increases the level of expression of one or more of these genes and thus leads to a vaccine with increased efficacy against ILT.
  • a recombinant ILTV virus in which genes coding for major immunogens of ILTV have been inserted upstream, preferably the genes coding for gB (AM Griffin,
  • the present invention also relates to a multivalent vaccine formula, comprising, as a mixture or to be mixed, a vaccine as defined above with another vaccine, and in particular another live recombinant avian vaccine as defined above, these vaccines comprising different inserted sequences, in particular of different pathogens.
  • the present invention also relates to a method for preparing the vaccines according to the invention, as it emerges from the description.
  • the present invention also relates to a method of avian vaccination comprising the administration of a recombinant live vaccine or of a multivalent vaccine formula as defined above. It relates in particular to such a method for vaccination in ovo, day-old chicks and adults.
  • Different routes of administration of the vaccine can be used (see above) with a preference for the routes allowing mass vaccination by mucosal route (aerosol, drinking water), the dose of vaccine being preferably chosen between 10 * and 10 * per animal.
  • the present invention also relates to an ILTV virus comprising at least one heterologous nucleotide sequence as described above inserted into the insertion locus as defined above.
  • the present invention also relates to all or part of the sequence S ⁇ Q ID NO: 1; by parts of this sequence is meant not only the characterized COLs taken individually or their fragments, but also the intergene located between the COL B and COL C and the fragments located on either side of this intergene, which may possibly include a part of this intergene, and which can serve as flanking arms for homologous recombination, a technique which is moreover well known to those skilled in the art.
  • the flanking arms can have from 100 to 800 base pairs.
  • Figure 2 Sequence of 4161 bp and translation of COLs A, B, C and D of the T-20 vaccine strain from Select Laboratories ( LT BLEN vaccine)
  • Figure 6 Diagram of the plasmid pEL158
  • Figure 9 Diagram of the plasmid pEL159
  • FIG. 12 Diagram of plasmid pEL160
  • FIG. 14 Diagram of the plasmid pEL106
  • FIG. 17 Diagram of plasmid pEL163
  • the virus used as parental virus can be chosen from the vaccine strains described in J.R. Andreasen et al. (Avion Diseases 1990. 34. 646-656) or the strain T-20 12-8-66 from Select laboratories 10026 Main Street P.O. Box 6 Berlin, Maryiand 21811, USA. It is also possible to use virulent strains such as the Lûtticken strain (see above), the N-71851 strain (ATCC VR-783) or the USDA strain 83-2, which can be attenuated by known techniques, for example that described in WO-A-95/08622.
  • Example 1 Culture of the ELTV virus:
  • the ILTV virus (strain T20 from Select Laboratories) is cultured on primary chicken kidney cells (CRP); these cells are cultured in MEM medium supplemented with 3% fetal calf serum (S VF) in culture flasks of 75 cm 2 (2 10 3 cells / cm 2 ) one or two days before inoculation.
  • CRP primary chicken kidney cells
  • S VF fetal calf serum
  • the culture of the ILTN virus can also be done on immortalized chicken liver cells, and in particular on the LMH line (.M. Schnitzlein et al. Avion Diseases 1994. 38. 211-217).
  • the culture of ILTV (2 flasks of 75 cm 2 ) is harvested and centrifuged at low speed (5000 rpm in a rotor 20, Beckman JA21 centrifuge, for 5 minutes) to remove large cellular debris. The supernatant is then ultracentrifuged (100,000 rpm TLA100.3 rotor, Beckman TL100 centrifuge, for 1 hour).
  • the pellet is then taken up in 1.6 ml of TE ⁇ -SDS (Tris pH 8.0 lOmM; EDTA ImM; ⁇ aCI 0.5M; sodium dodecyl sulfate 0.5%), and 35 ⁇ ⁇ of a proteinase K solution at 20 mg / mi are then added; the solution is incubated 3 to 4 hours in a water bath at 37 "C, and the AD ⁇ is then extracted 3 times with phenol / chloroform and 1 time with chloroform, then it is precipitated with emanol at -20 ⁇ C.
  • TE ⁇ -SDS Tris pH 8.0 lOmM; EDTA ImM; ⁇ aCI 0.5M; sodium dodecyl sulfate 0.5%
  • the pellet is rinsed with 70% ethanol, dried and resuspended in 200 ⁇ l TE (Tris pH8.0 10 mM; EDTA ImM).
  • the nucleic acid concentration is then determined using a spectrophotometer (DO 260 ). be directly digested with the appropriate restriction enzymes, and then be cloned into the plasmid pBlue Script II SIC; likewise, it can also be used in transfection experiments for obtaining a recombinant virus.
  • Example 3 Isolation and purification of recombinant ELTN virus
  • the donor plasmid composed of an expression cassette for a polypeptide inserted between two flanking regions of the insertion locus is digested with a restriction enzyme ⁇ ⁇ repet ⁇ , ⁇ O 98/27215
  • CRP cells are then transfected with the following mixture: 0.2 to 1 ⁇ g of linearized donor plasmid + 2 to 5 ⁇ g of ILTV viral DNA (prepared as in Example 2) in 300 ⁇ ⁇ of OptiMEM ' medium (Gibco BRL Cat # 041-01985H) and 100 ⁇ g of LipofectAMINE diluted in 300 ⁇ l of medium (final volume of the mixture ⁇ 600 ⁇ l). These 600 ⁇ l are then diluted in 3 ml (final volume) of medium and spread on 5.10 * CRP.
  • the mixture is left in contact with the cells for 5 hours, then eliminated and replaced with 5 ml of culture medium.
  • the cells are then left in culture for 3 to 8 days at + 37 ° C, and then, when cyropatho misleading effect appeared, they are frozen at -70 ° C.
  • the viral population is cloned dilution limit in microplates (96 wells) in order to isolate a homogeneous population of recombinant virus. These plates are left in culture for 1 to 3 days, then the supernatant is collected in an empty 96-well plate and the plate containing the supernatants is placed at 4 ⁇ C or at -70 ° C.
  • the cells remaining in the other plates are then fixed with 95% acetone for 20 to 30 minutes at -20 ° C., or for 5 minutes at room temperature.
  • An indirect immunofluoresce ⁇ ce (IFT) reaction is carried out with a monoclonal antibody directed against the expressed polypeptide to search for the ranges expressing this polypeptide.
  • a new cloning is then carried out in the same manner (in dilution limit in 96-well plates) from the supernatant present in the wells of the plates set at 4 e C or at -70 "C and corresponding to the wells having positive plaques in IFT
  • 4 successive isolation cycles are sufficient to obtain recombinant viruses whose entire progeny exhibit specific fluorescence.
  • the genomic DNA of these recombinant viruses is characterized at the molecular level by conventional PCR and Southern blot techniques using the appropriate oligonucleotides and DNA probes.
  • the isolation of recombinant virus can also be done by hybridization with a specific probe of the inserted expression cassette.
  • the viral population harvested after transfection is diluted and deposited on cells. s CRP (grown in Petri dish) so as to obtain isolated areas.
  • the medium of infection is removed and replaced with 5 ml of MEM medium containing 1% agarose, maintained molten at 42 ° C.
  • the dishes are incubated 48 to 72 hours at 37 ⁇ C in a CO 2 oven until the appearance of plaques, the agarose layer is then eliminated and a transfer of the viral plaques is carried out on a sterile membrane.
  • nitrocellulose of the same diameter as the Petri dish used for the culture This membrane is itself transferred to another nitrocellulose membrane so as to obtain an inverted "copy" of the first transfer.
  • the plaques transferred to this last copy are then hybridized, according to the usual techniques known to those skilled in the art, with a DNA fragment of the expression cassette labeled with digoxigenin (DNA Labeling Kit, Boehringer Mannheim, CAT # 1175033). After hybridization, washing and contact with the development substrate, the nitrocellulose membrane is brought into contact with an autoradiographic film. The positive hybridization images on this membrane indicate which plaques contain recombinant ILTV viruses which have inserted the expression cassette.
  • plaques corresponding to these positive plaques are cut sterile on the first nitrocellulose membrane, placed in an Eppendorf tube containing 0.5 ml of MEM medium and sonicated to release the virions from the membrane.
  • the medium contained in the Eppendorf tube is then diluted in MEM medium and the dilutions thus obtained are used to infect new cultures of CRP cells.
  • the AD ⁇ extracted from the ILTN virus was digested with the restriction enzyme Kpn1 for 2 hours at 37 ° C.
  • the restriction enzyme was then removed by extraction with phenol / chloroform, followed by precipitation with ethanol.
  • the fragments resulting from this digestion were then ligated (overnight at 14 ⁇ C) with the plasmid pBlueScriptlI SK + (pBS SK +; Stratagene) digested with Kpnl and treated with alkaline phosphatase; analysis of the clones obtained after transformation of bacteria E coli DH5 ⁇ and culture on dishes of medium supplemented with ampicilin made it possible to identify Kpnl-Kpnl inserts of different sizes, including a fragment of approximately 4.2 kb (plasmid pEL112). 15
  • the sequence between the COL B and C STOP codons can be used to insert polypeptide expression cassettes into the ILTV genome. This sequence is called the insertion locus.
  • the insertion can be done with or without deletion in the intergenic region (see example 5).
  • Example 5 Construction of the donor plasmid pEL157 for insertion into the intergenic region between COLs B and C
  • the plasmid pEL112 (7116 bp), was digested with the enzymes Not1 and Spel to isolate the fragment Notl-Spel of 4.5 kb.
  • the fragment thus digested was then treated with DNA poiymerase (Klenow fragment) in the presence of dNTP to make the ends blunt; after ligament and transformation of the E. coli bacteria, the clone pEL156 (4503 bp) was obtained.
  • the oligonucleotides EL001 (SEQ ID No: 2) and EL002 (SEQ ID No: 3) served as a primer for a first chain amplification by Taq poymerase (PCR).
  • EL002 (SEQ ID No: 3): 5 'ACGC ⁇ AATTCAAATACGAGCATTTAATTATTGCG 3'
  • EL003 (SEQ ID No: 4): 5 'TCTCCAGAATCGCTGGAGTGTCC 3'
  • PCRs were carried out in the presence of PCR buffer, of dNTP, of DNA of the plasmid pEL156, of Taq poymerase, and for the first PCR, of oligonucleotides EL001 and EL002, and for the second PCR, of oligonucleotides EL003 and EL004.
  • RI for 2 h at 37 ⁇ C to give a fragment p7i ⁇ I- £ ccRI DNA of 85 bp which was eluted after agarose gel electrophoresis.
  • the plasmid pEL156 was digested with the enzymes Xbal and Xhol.
  • the two fragments of PCR-XE ⁇ 1-EcoI (120 bp) and ⁇ 7 ⁇ oI -E> RI (85 bp) were ligated overnight at 14 ° C. with the plasmid pEL156 digested with Xbal and Xhol. mation of E.
  • the clone pEL157 (4531 bp), comprising an EcoRl - Hindlll - EcoRV - Sali polylinker was obtained (see diagram for obtaining pEL157 in FIG. 3 ).
  • VP2 gene from the Gumboro disease virus (IBDV) and construction of a VP2 expression cassette under the control of the HCMV IE promoter
  • the plasmid pEL004 (see FIG. 4; ⁇ plasmid pGH004 described in the patent application French 92.13109) containing the IBDV VP2 gene in the form of a BamHI-HindIII cassette was digested with BamHI and Xbal to isolate the BamHI-Xbal fragment (truncated VP2 gene) of 1104 bp.
  • This fragment was cloned into the vector pBS SK +, previously digested with Xbal and BamHI to give the plasmid pEL022 of 4052 bp (FIG. 4.
  • the vector pBS-SK-f- was digested with £ c ⁇ RV and Xbal, then ligated on itself to give pBS-SK * (modified)
  • the plasmid pEL004 was digested with Kpnl and Hindlll to isolate the Kpnl-Hindlll fragment of 1387 bp containing the complete IBDV VP2 gene.
  • Plasmid pEL022 was digested with BamKL and NotI to isolate the BamHI-NotI fragment of 1122 bp (fragment A). Plasmid pEL023 was digested with BamHI and NotI to isolate the fragment BamHI-NotI of 333 bp (fragment B).
  • Plasmid pEL024 was digested with NotI to isolate the f ragment Notl-Notl of 1445 bp. This fragment was ligated with the plasmid pCMV ⁇ (Clontech Ca 6177-1, FIG. 5), previously digested with Notl, to give the plasmid pEL026 of 5095 bp (FIG. 5).
  • the plasmid pEL026 was digested with JS ⁇ RI, Sali and Xmnl to isolate the EcoKl-SalI fragment of 2428 bp. This fragment was ligated with the vector pBS-SK +, previously digested with ⁇ c ⁇ RI and SalI, to give the plasmid pEL027 of 5379 bp (FIG. 5).
  • the plasmid pEL027 was digested with £ c ⁇ RI, S ⁇ and Xmnl to isolate the £? RI-Sall fragment of 2428 bp. This fragment was ligated into the plasmid pEL157 (see example 5 and FIG. 3), previously digested with £ c ⁇ RI and SalI, to give the plasmid pEL158 of 6950 bp (FIG. 6).
  • vILTV8 virus was isolated and purified after cotransfection of the DNA of the plasmid pEL158 previously linearized with the enzyme Kpnl and of the viral DNA, as described in Example 3.
  • This recombinant contains an HCMV-IE / IBDV VP2 cassette in the intergenic site between the COLs B and C of the ILTV virus (see example 5).
  • Example 7 Construction of the donor plasmid pEL159 for the insertion of an expression cassette for the VP2 gene of EBDV under the control of the MCMN EE promoter in the intergenic site between the COLs B and C and isolation of vELTN9:
  • the plasmid pCMV ⁇ (Clontech Catf 6177-1, FIG. 7) was digested with Sali and Smal to isolate the Sall-Smal ragment of 3679 bp containing the lacZ gene as well as the poiy-adenylation signal of the late gene of the SV40 virus. This fragment was inserted into the vector pBS-SK +, previously digested with SalI and Ec ⁇ RV, to give the plasmid pCD002 of 6625 bp (FIG. 7). This plasmid contains the lacZ reporter gene but no promoter is located upstream of this gene.
  • the MCMI virus Smiui strain was obtained from the American Type Culture Collection, Rockville, Maryland, USA (ATCC ⁇ "VR-194). This virus was cultured on Balb / C mouse embryo cells and viral AD of this virus was prepared as described by Ebeling A. et al. (J. Virol. 1983. 47. 421-433) This viral genomic DNA was digested with Pstl to isolate the Pstl-Pstl fragment of 2285 bp. fragment was cloned into the vector pBS-SK, previously digested with Pstl and treated with alkaline phosphatase, to give the plasmid pCD004 (FIG. 7).
  • the plasmid pCD004 was digested with Hpal and Pstl to isolate the Hpal-Pstl fragment from 1389 bp which contains the promoter / activator region of the Immediate-Early gene of the murine cytomegalovirus (Murine CytoMegalo Virus ⁇ MCMV) (Dorsch-Hâsler K. et al. Proc. Natl. Acad. Sci. 1985. 82. 8325-8329, and request WO-A-87/03905).
  • This fragment was cloned into the plasmid pCD002, previously digested with Pstl and Smal, p or give the plasmid pCD009 of 8007 bp ( Figure 7).
  • a double-stranded oligonucleotide was obtained by hybridization of the following two oligonucleotides:
  • the plasmid pEL024 (see example 6, paragraph 6.1 and FIG. 5) was digested with HindIII and NotI to isolate the HindIII-NotI fragment of 1390 bp (fragment A).
  • the plasmid pEL027 (see example 6, paragraph 6.1 and FIG. 5) was digested with HindIII and SalI to isolate the HindIII-SalI fragment of 235 bp (fragment B). Fragments A and B were ligated together with the plasmid pEL068, previously digested with NotI and SalI, to give the plasmid pEL070 of 5908 bp (FIG. 8).
  • This plasmid therefore contains a casse ⁇ e expression consisting of the IE promoter of MCMV, the VP2 gene and the polyA signal of SV40.
  • the plasmid pEL070 was digested with JE oRI, Sali and Xmnl to isolate the EcoTU.- Sali fragment of 3035 bp. This fragment was ligated into the plasmid pEL157 (see example 5 and FIG. 3), previously digested with EcoRL and SalI, to give the plasmid pEL159 of 7545 bp (FIG. 9). This plasmid allows the insertion of the MCMV-IE / IBDV-VP2 expression cassette into the intergenic site between the COLs B and C of the ILTV virus.
  • vILTN9 virus was isolated and purified after cotransfection of the AD ⁇ of the plasmid pEL159 previously linearized with the enzyme BgR and the viral DNA, as described in Example 3.
  • This recombinant contains an MCMV-IE / IBDV VP2 cassette in the intergenic site between the COLs B and C of the ILTN virus (see example 5).
  • Example 8 Construction of the donor plasmid pEL160 for the insertion of an expression cassette for the NDV HN gene into the intergenic site between COLs B and C and isolation of vELTN10:
  • NDV Newcastle disease virus
  • a pBR322 clone containing the end of the fusion (F) gene, the entire hemagglutinin- neuraminida.se (HN) gene and the start of the poiymerase gene was identified pHNOl.
  • the sequence of the NDV HN gene contained in this clone is presented in FIG. 10 (SEQ ID NO: 8).
  • the plasmid pHNOl was digested with Sphl and Xbal to isolate the Sphl-Xbal fragment of 2520 bp. This fragment was ligated with the vector pUC19, previously digested with Sphl and Xbal, to give the plasmid pHN02 of 5192 bp.
  • the plasmid pHN02 was digested with ClaI and Pstl to isolate the Cl ⁇ l-Pstl fragment of 700 bp (fragment A).
  • a PCR was carried out with the following oligonucleotides:
  • EL073 (SEQ ID NO: 10) 5 'GTATTCGGGACAATGC 3' and the pHN02 matrix to produce a PCR fragment of 270 bp.
  • This fragment was digested with HindIII and Pst1 to isolate a HindIII-Pst1 fragment of 220 bp (fragment B).
  • Fragments A and B were ligated together with the vector pBS-SK- previously digested with ClaI and HindIII, to give the plasmid pEL028 of 3872 bp (FIG. 11).
  • the plasmid pHN02 was digested with Bsphl and ClaI to isolate the Bsp l-ClaI fragment of 425 bp (fragment C).
  • a PCR was carried out with the following oligonucleotides: EL074 (SEQ ID NO: 11) 5 'GTGACATCACTAGCGTCATCC 3' EL075 (SEQ ID NO: 12)
  • fragment E 5 'CCGCATCATCAGCGGCCGCGATCGGTCATGGACAGT 3' and the pHN02 matrix to produce a PCR fragment of 465 bp.
  • This fragment was digested with Bsphl and Notl to isolate the Bsphl-Notl fragment of 390 bp (fragment D).
  • Fragments C and D were ligated together with the vector pBS-SK +, previously digested with ClaI and NotI, to give the plasmid pEL029bis of 3727 bp (FIG. 11).
  • the plasmid pEL028 was digested with ClaI and SacIl to isolate the ClaI-SacII fragment of 960 bp (fragment E).
  • the plasmid pEL029bis was digested with ClaI and NotI to isolate the ClaI-NotI fragment of 820 bp (fragment F). Fragments E and F were ligated together with the vector pBS-SK-, previously digested with NotI and Sacll, to give the plasmid pEL030 of 4745 bp (FIG. 11).
  • the plasmid pEL030 was digested with NotI to isolate the NotI-NotI fragment of 1780 bp (whole NDV HN gene) . This fragment was inserted into the NotI sites of the plasmid pEL159 (Example 7, FIG. 9) in place of the NotI-NotI fragment of 1405 bp containing the gene coding for the protein VP2 of IBDV; this cloning made it possible to isolate the plasmid pEL160 of 7921 bp (FIG. 12). This plasmid allows the insertion of the MCMV-IE / NDV-HN expression cassette into the intergenic site between the COLs B and C of the ILTN virus.
  • the vILTVIO virus was isolated and purified after cotransfection of the AD ⁇ of the plasmid pEL160 previously linearized with the enzyme BgH and of the AD virai, as described in Example 3.
  • This recombinant contains an MCMV-IE / ⁇ DV H ⁇ cassette in the intergenic site between COLs B and C of the ILTV virus (see example 5).
  • Example 9 Construction of the donor plasmid pEL161 for the insertion of an expression cassette for the ⁇ DV F gene into the intergenic site between COLs B and C and isolation of ylLTVll:
  • NDV Newcastle disease virus
  • pNDV81 A clone originating from the DNA bank complementary to the genome of the Newcastle disease virus (see example 8, paragraph 8.1) and containing the fusion gene (F ) in its entirety was called pNDV81.
  • This plasmid has been described previously and the sequence of the NDV F gene present on this clone has been published (Taylor J. et al. J. Virol., 1990, 64, 1441-1450).
  • the plasmid pNDV81 was digested with Narl and Pstl to isolate the Narl-Pstl fragment of 1870 bp (fragment A).
  • a PCR was carried out with the following oligonucleotides:
  • Plasmid pEL033 was digested with NotI to isolate the 1935 bp NotI-NotI fragment (whole F gene). This fragment was inserted into the NotI sites of the plasmid pEL159 (Example 7, FIG. 9) in place of the NotI-NotI fragment of 1405 bp containing the gene coding for the protein VP2 of ITBDV; this cloning made it possible to isolate the plasmid pEL161 from 8074 bp (FIG. 14). This plasmid allows the insertion of the MCMV-IE / NDV-F expression cassette into the intergenic site between the COLs B and C of the ILTN virus.
  • vILTVll 9.3 - Isolation and purification of the recombinant virus vILTVll
  • the vILT ll virus was isolated and purified after cotransfection of the AD ⁇ of the plasmid pEL161 previously linearized with the enzyme Bg ⁇ and of the viral AD ⁇ , as described in Example 3.
  • This recombinant contains an MCMV-IE / ⁇ DV F cassette in the intergenic site between the COLs B and C of the ILTV virus (see example 5).
  • Example 10 Construction of a donor plasmid for the insertion of a double cassette for expression of the H ⁇ and F genes of ⁇ DV in the intergenic site between the COLs B and C and isolation of a recombinant ELTN virus:
  • a double expression cassette for two genes for example the H ⁇ and F genes of the ⁇ DV virus, can be constructed.
  • Such a construction is shown schematically in Figure 15.
  • the 5 ′ end of the two promoters are adjacent so that the transcription of the two genes takes place in opposite directions.
  • One of the two promoters is the MCMV IE promoter and the other promoter (called associated promoter) is the SV40 promoter (present in the plasmid pSVbeta, Clontech Laboratories, Palo Alto, California 94303-4607, USA).
  • the associated promoter is activated by the activating region of the CMV IE promoter.
  • This double expression cassette can then be inserted into the donor plasmid described above (pEL157 described in Example 5 and represented in FIG. 3).
  • the isolation of the recombinant viruses is done in the same way as above (see example 3).
  • Example 11 Construction of the donor plasmid pEL163 for the insertion of an MDV gB gene expression cassette into the intergenic site between COLs B and C and isolation of vILTV12:
  • CD002 (SEQ ID NO: 16) 5 'T ⁇ CGGGACATTTTCGCGG 3' and the matrix pCD007 to produce a PCR fragment of 222 bp.
  • Another PCR was carried out with the following oligonucleotides:
  • CD003 (SEQ ID NO: 17) 5 'TATATGGCGTTAGTCTCC 3'
  • CD004 (SEQ ID NO: 18)
  • vILTV11 recombinant virus 11.3 - Isolation and purification of the vILTV11 recombinant virus
  • the vILTV12 virus was isolated and purified after cotransfection of the AD ⁇ of the plasmid pELl ⁇ l previously linearized with the enzyme BgH and of the viral AD ⁇ , as described in Example 3.
  • This recombinant contains an MCMV-IE / MDV gB cassette in the intergenic site between the COLs B and C of the ILTV virus (see example 5).
  • Example 13 Construction of Donor Plasmids for Insertion of Cassette Expression of Gene (s) of Other Avian Pathogens or Immunomodulatory Peptide into the Site Described and Isolation of Recombinant ELTV Viruses: According to the Same Strategy as That described above for the insertion of single cassettes (examples 6, 7, 8, 9 and 11) for the insertion of double cassettes (example 10), in the site described above (example 5), it is possible to make recombinant ILTV viruses expressing at a high level CAV immunogens (and in particular a double expression cassette for genes coding for VP1 and for VP2), chicken pneumovirus virus, or other avian pathogens, or still immunomodulatory peptides and in particular cytokines.
  • the recombinant viruses obtained according to the invention are produced on embryonated eggs.
  • the harvested viral solution is then diluted in a stabilizing solution for lyophilization, distributed at the rate of 1000 vaccine doses per vial, and finally lyophilized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Un vaccin vivant recombinant aviaire comprenant, comme vecteur, un virus ILTV comprenant et exprimant au moins une séquence nucléotide hétérologue, cette séquence nucléotidique étant insérée dans le locus d'insertion formé par l'intergène situé entre les codons stop des COL B et COL C d'ILTV et qui, dans une souche d'ILTV particulière, est défini entre les nucléotides 908 et 994 à la SEQ ID NO: 1.

Description

Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotrachéite infectieuse aviaire.
La présente invention a trait à des vaccins à usage aviaire à base de virus de la laryngotrachéite infectieuse (ILTV), dans lequei a été insérée, par recombinaison génétique, au moins une séquence nucléotidique hétέrologue, notamment codant pour, et exprimant, un polypeptide antigénique d'un agent pathogène aviaire, dans des conditions assurant une immunisation conduisant à une protection efficace de l'animal vacciné contre ledit agent pathogène.
Le virus de la laryngotrachéite infectieuse (ILTV) est un alphaherpèsvirus (B. Roizman, Arch. Virol. 1992. 123. 425-449) qui provoque une pathologie respiratoire importante (la laryngotrachéite infectieuse ou ILT) chez le poulet (L.E. Hanson et TJ. Bagust, Diseases of Poultry 9th edn 1991. pp 485-495. Ames, lowa State University Press). Les vaccins actuellement disponibles contre cette affection contiennent une souche atténuée administrable par différentes voies dont les voies intranasales, conjonctivales, cloacales, dans l'eau de boisson et par aérosol (L.E. Hanson et T . Bagust, Diseases of Poultry 9th Edition 1991. pp 485-495. Ames, lowa State University Press).
Les études de biologie moléculaire du virus ILTV ont permis de caractériser le génome viral (M. A. Johnson et al. , Arch. Vlrot. 1991. 119. 181-198) et d'identifier quelques gènes du virus (A.M. Griffin, J. Gen. Virol. 1989. 70. 3085-3089) dont les gènes codant pour la thy idine inase (UL23) (A.M. Griffin et M.E.G. Boursnell, /. Gen. Virol. 1990. 71. 841-850; CL. eeier ét al., Avion Dis. 1991. 35. 920-929), la glycoprotéine gB (UL27) (A.M. Griffin, /. Gen. Virol. 1991. 72. 393-398; . Kongsuwan et al., Virology 1991. 184. 404-410; D.J. Poulsen ét al.. Virus G nes 1991. 5. 335-347), la glycoprotéine gC (UL44) (D.H. Kingsley ét al., Virology 1994. 203. 336-343), la protéine de capside p40 (UL26) (A.M. Griffin, Nucl. Acids Res. 1990. 18. 3664), la protéine homologue de la protéine ICP4 de l'herpès simplex (HSV-l) (M. A. Johnson et al., Virus Research 1995. 35. 193-204), les protéines homologues aux protéines ICP27 (UL54), glycoprotéine gK (UL53) et DNA hélicase (UL52) de l' HSV-l (M. A. Johnson et ai, Arch. Virol. 1995. 140. 623-634), la ribonuciéotide réductase (A.M. Griffin, /. Gen. Virol. 1989. 70. 3085-3089, O-A-90/02802), les gène UL1 à UL5 (W. Fuchs et T.C. Mettentleiter, /. Gen. Virol. 1996. 77. 2221-2229), les gènes présents dans la séquence unique courte du génome (U,) (M. A. Johnson et ai, DNA S quence- The Journal of Sequencing and Mapping 1995. Vol. 5. pp 191-194; K. Kongsuwan et al., Arch. Virol. 1995. 140. 27-39; K. Kongsu an et ai. Virus Research 1993. 29. 125-140; K. Kongsuwan et ai. Virus G ne 1993. 7. 297-303; M.A. Wild et ai. Virus Gènes 1996. 12. 107-116; WO-A-92/03554; WO-A-95/08622).
La présente invendon a pour objectif de mettre au point un vaccin aviaire à base de virus ILTV recombinant exprimant un gène hétérologue, ce virus étant capable de se répliquer et d'induire une immunité chez l'hôte vacciné tout en conservant une bonne innocuité.
Un autre objectif de l'invention tst de proposer un tel vaccin qui soit en même temps particulièrement efficace contre la laryngotrachéite infectieuse (ILT).
Un autre objectif de l'invention est de proposer un tel vaccin qui soit utilisable dans la vaccination de masse par voie mucosale, par exemple par voie aérosol ou dans l'eau de boisson, de telle manière que la réplication du virus au niveau mucosal permette d' induire une immunité mucosale et systémique. Une telle immunité mucosale sera particulièrement efficace pour lutter contre les maladies respiratoires, ainsi que contre les autres maladies pour lesquelles la poπe d'entrée de l'agent pathogène est mucosale.
Un autre objectif de l'invention est de proposer un tel vaccin qui soit utilisable aussi bien chez les adultes que chez les jeunes animaux.
Un objectif spécifique est de proposer un tel vaccin utilisable dans la vaccination de masse par voie mucosale des tout jeunes animaux tels que les poussins d'un jour. Un autre objectif de l'invention est de proposer un vaccin contre l'ILT qui ait une efficacité accrue par rapport à la souche parentale et qui puisse même éventuellement permettre l' insertion et l'expression d'un gène hétérologue.
Au cours de leurs travaux sur le virus ILTV, les inventeurs ont trouvé une région génomique qui s'est révélée tout à fait appropriée comme site d'inseπion de gènes hétérologues. Cela a permis de mettre au point un vaccin vivant recombinant à base d'un vecteur ILTV dans lequel est insérée au moins une séquence codant pour un immunogène aviaire, en particulier les protéines HN et F du virus de la maladie de Newcastle (NDV), et/ou la glycoprotéine gB du virus de la maladie de Mare (MDV), et/ou la protéine VP2 du virus de la maladie de Gumboro (IBDV), et/ou les protéines S et M du virus de la bronchite infectieuse (IBV). Un tel vaccin incorporant une séquence codant pour des protéines du NDV, du MDV et/ou de l'IBV assure une protection satisfaisante des animaux contre la maladie de Newcastle, contre la maladie de Marek, contre la maladie de Gumboro, et contre la bronchite infectieuse respectivement.
La présente invention a donc pour objet un vaccin vivant recombinant aviaire comprenant, comme vecteur, le virus ILTV comprenant au moins une séquence nucléotidique hétérologue, notamment codant pour, et exprimant, un polypeptide antigénique d'un agent pathogène aviaire, insérée dans le locus d' inseπion formé de l' intergène situé entre les codons "stop" des COL-B et COL-C du virus ILTV et qui, dans une souche ILTV paπiculière, est défini entre les nucleotides 908 et 994 à la séquence SEQ ID NO: l. Si la séquence paπiculière décrite dans la demande (SEQ ID NO: 1) provient de la souche vaccinale d'ILTV T-20 12-8-66 provenant de Select Laboratories (10026 Main
Street P.O. Box 6 Berlin, Maryland 21811, USA), il est bien évident que l'homme du métier pourra utiliser les autres souches d'ILTV, compte-tenu des informations données dans la présente sur la souche vaccinale.
Les COL-B et COL-C correspondent respectivement aux gènes UL3.5 et UL4 décrits dans l'aπicle de W. Fuchs et T.C. Mettentleiter (/. Gen. Virol. 1996. 77. 2221-
2229) d'une souche pathogène provenant de D. Lutticken, Boxmeer, Pays-Bas. Cet aπicle ne suggère en aucune manière que cet intergène puisse être utilisé comme locus d'inseπion.
La séquence référencée SEQ ID NO: 19 reproduit pour cette souche pathogène, la séquence équivalente à SEQ ID NO: l. L' intergène servant de locus d'insertion conformément à l'invention est compris à la SEQ ID NO: 19 entre les nucleotides 908 et 994. Par séquence hétérologue, on entend une séquence qui ne provient pas de ce locus d'inseπion, c'est-à-dire aussi bien une séquence n'ayant pas pour origine le virus ILTV, qu'une séquence provenant d'une autre région génomique de ce virus, ou encore provenant d'une autre souche ILTV, notamment une souche virulente.
Par insertion dans la région d'inseπion, on entend notamment inseπion simple ou après délétion totale ou partielle du locus d'inseπion.
On peut insérer une ou plusieurs cassettes d'expression chacune comprenant au moins une séquence à exprimer.
Pour exprimer la séquence insérée, on préfère utiliser un promoteur eucaryote fort tel que le promoteur CMV immédiate early (IE), le LTR du virus du sarcome de Rous (RSV), et le promoteur précoce du virus SV40. Par promoteur CMV immédiate early (IE), on entend notamment le fragment donné dans les exemples ainsi que ses sous-fragments conservant la même activité promotrice. Le promoteur CMV IE peut être le promoteur humain (HCMV IE) ou le promoteur murin (MCMV IE), ou encore un promoteur CMV IE d'une autre origine, par exemple du singe, du rat, du cobaye ou du porc.
D'autres promoteurs d'origine virale ou cellulaire peuvent également être utilisés.
Parmi les promoteurs d'origine virale, on peut encore citer les promoteurs de gènes du virus ILTN (gènes considérés comme précoce-immédiats (ICP4, ICP27, ...), précoces fthymidine kinase, DΝA helicase, ribonucléotide réductase, ...), ou tardifs (gB, gD, gC, gK, ...)). du virus de la maladie de Marek (MDV) (gènes gB, gC, pp38, ppl4, ICP4, Meq, ...) ou du virus de l'hβ ès de la dinde (heφèsvirus of rurkey) (gènes gB, gC, ICP4, ...).
La séquence nucléotidique insérée dans le vecteur ILTN pour être exprimée peut être toute séquence codant pour un polypeptide antigénique, d'un agent pathogène aviaire, capable, une fois exprimé dans les conditions favorables procurées par l'invention, d'assurer une immunisation conduisant à une protection efficace de l'animal vacciné contre l'agent pathogène. On pourra donc insérer, dans les conditions de l' invention, les séquences nucléotidiques codant pour les antigènes d'intérêt pour une maladie donnée.
Cette séquence nucléotidique insérée dans le vecteur ILTV peut également coder pour un polypeptide immunomodulateur, et notamment une cytokine. De manière remarquable, les vaccins selon l'invention pourront être utilisés pour la vaccination in ovo, des poussins d'un jour ou plus et des adultes. Différentes voies d'administration pourront être utilisées: la voie parentérale, ou les voies mucosaies telles que oronasale (eau de boisson, aérosol), conjonctivale (goutte dans l'oeil) ou cloacale, avec une préférence pour les voies permettant une vaccination mucosale de masse (eau de boisson, aérosol).
L'invention se révèle paπiculièrement utile aussi bien pour la protection contre les pathologies respiratoires que contre les pathologies systέmiques en bloquant les voies d'entrée naturelles de l'agent pathogène.
L' invention peut notamment être utilisée pour l'inseπion d'une séquence nucléotidique codant convenablement pour une protéine antigénique du virus ΝDV et en paπiculier, la glycoprotéine HΝ ou la glycoprotéine F. On obtient ainsi un vaccin vivant recombinant assurant, en plus d'une protection contre la laryngotrachéite infectieuse, une protection satisfaisante contre la maladie de Νewcastle.
Le vaccin recombinant contre la maladie de Νewcastle contiendra de préférence de 10 à 104 PFU/dose.
D'autres cas préférés de l'invention sont l' inseπion de séquences nucléotidiques codant pour des antigènes d'autres agents pathogènes aviaires, et notamment, mais de manière non limitative, des antigènes du virus de la maladie de ïarek, en paπiculier gènes gB, gC, gD, et gH + gL (WO-A-90/02803), du virus de la maladie de Gumboro, en particulier gène VP2, du virus de la bronchite infectieuse (IBV), en paπiculier gènes S et M (M. Binns ét al., J. Gen. Virol. 1985. 66. 719-726 ; M. Boursnell ét al., Virus Research 1984. 1. 303-313), du virus de l'anémie du poulet (CAV), en paπiculier VP1 (52 kDa) + VP2 (24 Da) (N.H.M. Notebom ét al., J. Virol. 1991. 65. 3131-3139), du virus ILTN, en particulier les gènes codant pour gB (A.M. Griffin, /. Gen. Virol.
1991. 72. 393-398), ou pour gD (M.A. Johnson et al., DNA Sequence-The Journal of Sequencing and Mapping 1995. Vol. 5. ppl91-194. Harwood Académie Publishers
GmbH), ou pour gp60 (K.K. Kongsuwan ét al., Virus Gènes 1993. 7. 297-303), et du virus du syndrome infectieux du gonflement de la tête ("swollen head syndrome" ou pneumovirose du poulet ou turkey rhinotracheitis vires (TRTV) de la dinde; pneumovirus), en particulier la glycoprotéine de fusion F (Q. Yu ét al., J. Gen. Virol. 1991. 72. 75-81), ou la glycoprotéine d'attachement G (R. Ling et al., J. Gen. Virol.
1992. 73. 1709-1715; K. Juhasz et J. Easton, J. Gen. Virol. 1994. 75. 2873-2880). Les doses seront de préférence les mêmes que celles pour le vaccin de Νewcastie.
Dans le cadre de la présente invention, on peut bien entendu insérer plus d'une séquence hétérologue dans le même virus ILTV, notamment dans ce locus. On peut notamment y insérer des séquences provenant d'un même virus ou de virus différents, ce qui comprend également l'insertion de séquences d'ILTV et d'un autre virus aviaire. On peut également y associer des séquences codant pour des immunomodulateurs, et en paπicuiier des cytokines.
Par exemple, on associe au promoteur CMV IE un autre promoteur de façon que leurs extrémités 5' soient adjacentes (ce qui implique des transcriptions dans des sens opposés), ce qui permet d' insérer, dans la zone d'inseπion, deux séquences nucléotidiques, l'une sous la dépendance du promoteur CMV IE, l'autre sous celle du promoteur associé. Cette construction est remarquable par le fait que la présence du promoteur CMV IE, et notamment de sa paπie activatrice (enhancer), active la transcription induite par le promoteur associé. Le promoteur associé peut être en paπicuiier un promoteur d'un gène du virus ILTN ou du virus MDV ou HVT. Un cas intéressant de l'invention est un vaccin comprenant une séquence nucléotidique codant pour HN de NDV et une séquence nucléotidique codant pour F de
NDV ou un antigène d'une autre maladie aviaire, notamment celles citées plus haut, l'un des gènes étant sous le contrôle du promoteur CMV IE, et l'autre sous le contrôle du promoteur associé.
On peut aussi monter deux promoteurs CMV IE d'origines différentes avec leurs extrémités 5' adjacentes.
L'expression de plusieurs gènes hétérologues insérés dans le locus d'insertion peut également être rendu possible par insertion entre les cadres ouverts de lecture 'de ces gènes d'une séquence appelée "1RES" (Internai Ribosome Entry Site) provenant notamment d'un picomavirus tel le virus de la maladie vésiculaire du porc (swine vesicular disease virus, SVDV; B.-F. Chen ét al., J. Virology, 1993, 67, 2142-2148), le virus de i'encéphalomyocardite (EMCV; R.J. Kauftnan étal., NucleicAcids Research, 1991, 19, 4485-4490), le virus de la fièvre aphteuse (FMDV; N. Luz et E. Beck, J. Virology, 1991, 65, 6486-6494), ou encore d'une autre origine. Le contenu des 3 articles cités est incoφonî par référence. La cassette d'expression de deux gènes aurait donc la structure minimale suivante: promoteur - gène 1 - IRES - gène2 - signal de polyadénylation. Le vaccin vivant recombinant selon l'invention pourra donc comprendre, insérée dans le locus d'insertion,' une cassette d'expression comprenant successivement un promoteur, deux ou plusieurs gènes séparés deux à deux par un IRES, et un signal de polyadénylation.
En plus de l'insertion dans le locus selon l'invention, on peut réaliser une ou plusieurs autres insertions, une ou plusieurs mutations, ou une ou plusieurs délétions ailleurs dans le génome; si la souche parentale est virulente, on peut par exemple inactiver (par délétion, insertion ou mutation) des gènes impliqués dans la virulence tels que le gène thymidine kinase, le gène ribonucléotide réductase, le gène gE,... Dans tous les cas, l'insertion dans un autre locus que celui décrit dans l'invention, permet d'exprimer d'autres gènes,
La présente invention a aussi pour objet un vaccin contre l'ILT comprenant un virus ILTV recombinant dans lequel on a inséré en amont des gènes codant pour des immunogènes majeurs de l'ILTV, de préférence les gènes codant pour gB (A.M. Griffin, J. Gen. Virol. 1991. 72. 393-398), ou pour gD (M. A. Johnson et ai , DNA Séquence- Journal of Sequencing and Mapping 1995. Vol. 5. ppl91- 194. Harwood Académie Publishers GmbH), ou pour gp60 (K.K. Kongsuwan et ai , Virus Gènes 1993. 7. 297- 303), un promoteur exogène, en paπiculier un promoteur fort tel que décrit plus haut. Cela permet d'augmenter le niveau d'expression de l'un ou plusieurs de ces gènes et ainsi conduire à un vaccin à efficacité accrue contre l'ILT. On peut bien sûr combiner cela avec une construction telle que décrite plus haut comprenant l'insertion d'une séquence hétérologue dans le locus d'insertion.
La présente invention a aussi pour objet une formule de vaccin multivalent, comprenant, en mélange ou à mélanger, un vaccin tel que défini plus haut avec un autre vaccin, et notamment un autre vaccin vivant recombinant aviaire tel que défini plus haut, ces vaccins comprenant des séquences insérées différentes, notamment de pathogènes différents.
La présente invention a aussi pour objet une méthode de préparation des vaccins selon l'invention, telle qu'elle ressort de la description.
La présente invention a aussi pour objet une méthode de vaccination aviaire comprenant l'administration d'un vaccin vivant recombinant ou d'une formule de vaccin multivalent tel que défini plus haut Elle a notamment pour objet une telle méthode pour la vaccination in ovo, des poussins d'un jour ou plus et des adultes. Différentes voies d'administration du vaccin peuvent être utilisées (voir plus haut) avec une préférence pour les voies permettant une vaccination de masse par voie mucosale (aérosol, eau de boisson), la dose de vaccin étant choisie de préférence entre 10* et 10* par animal.
La présente invention a aussi pour objet un virus ILTV comprenant au moins une séquence nucléotidique hétérologue telle que décrite ci-dessus insérée dans le locus d'insertion tel que défini plus haut. La présente invention a aussi pour objet tout ou partie de la séquence SΞQ ID NO : 1 ; par parties de cette séquence, on entend non seulement les COL caractérisés pris isolément ou leurs fragments, mais aussi l' intergène situé entre les COL B et COL C et les fragments situés de part et d'autre de cet intergène, pouvant éventuellement inclure une partie de cet intergène, et qui pourront servir de bras flanquants pour une recombinaison homologue, technique par ailleurs parfaitement connue de l'homme du métier. De manière générale, mais sans que cela soit limitatif, les bras flanquants peuvent avoir de 100 à 800 paires de bases.
L'invention va être maintenant décrite plus en détail à. l'ai¬ de d'exemples de réalisation non limitatifs, pris en référen¬ ce au dessin, dans lequel :.
7215
- 10 -
Figure 1 Cane de restriction du fragment clone et position des COLs
Figure 2 : Séquence de 4161 pb et traduction des COLs A, B, C et D de la souche vaccinale T-20 de Select Laboratories (Vaccin LT BLEN)
Figure 3 : Schéma d'obtention du plasmide pEL157
Figure 4 : Schéma d'obtention du plasmide pEL024
Figure 5 : Schéma d'obtention du plasmide pEL027
Figure 6 : Schéma du plasmide pEL158
Figure 7 : Schéma d'obtention du plasmide pCD009
Figure 8 : Schéma d'obtention du plasmide pEL070
Figure 9 : Schéma du plasmide pEL159
Figure 10 séquence du gène HN du NDV
Figure 11 Schéma d'obtention du plasmide pEL030
Figure 12 Schéma du plasmide pEL160
Figure 13 Schéma du plasmide pEL033
Figure 14 Schéma du plasmide pELlôl
Figure 15 Schéma de double cassette d'expression
Figure 16 Schéma du plasmide pCDOll
Figure 17 Schéma du plasmide pEL163
Figure 18 Séquence de 4161 pb et traduction des UL3, 3.5, 4 et 5 de la souche pathogène de Lϋtticken
Liste des séquences
SEQ ID NO:l Séquence du fragment Kpnl-Kpnl (4161 pb, voir figure 2) SEQ ID NO:2 OHgonuciéotide EL001 SEQ ID NO:3 Oligonucléotide EL002 SEQ ID NO:4 Oligonuciéotide EL003 SEQ ID NO:5 Oligonucléotide EL004 SEQ ID NO:6 Oligonucléotide MB070 SEQ D NO:7 Oligonuciéotide MB071 215
- 11-
SEQ ED NO:8 Séquence du gène HN du NDV (voir figure 10) SEQ ED NO:9 Oligonuciéotide EL071 SEQ ED NO:10 Oligonucléotide EL073 SEQ ED NO: 11 Oligonucléotide EL074 SEQ ED NO: 12 Oligonucléotide EL075 SEQ ED NO:13 Oligonucléotide EL076 SEQ ED NO: 14 Oligonucléotide EL077 SEQ ED NO: 15 Oligonucléotide CD001 SEQ ED NO: 16 Oligonucléotide CD002 SEQ ED NO: 17 Oligonucléotide CD003 SEQ ED NO:18 Oligonucléotide CD004 SEQ ED NO: 19 Séquence du fragment Kpnl-Kpnl (4161 pb, voir figure 18)
EXEMPLES
Toutes les constructions de plasmides ont été réalisées en utilisant les techniques standards de biologie moléculaire décrites par Sambrook J. et al. (Molecular Cloning:
A Laboratory Manual. 2n Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor.
New York. 1989). Tous les fragments de restriction utilisés pour la présente invention ont été isolés en utilisant le kit "Geneciean" (BIO101 Inc. La Jolla, CA).
Le virus utilisé comme virus parental peut être choisi parmi les souches vaccinales décrites dans J.R. Andreasen et al. (Avion Diseases 1990. 34. 646-656) ou la souche T- 20 12-8-66 provenant de Select laboratories 10026 Main Street P.O. Box 6 Berlin, Maryiand 21811, USA. On peut également utiliser des souches virulentes telles que la souche de Lûtticken (voir ci-dessus), la souche N-71851 (ATCC VR-783) ou la souche 83-2 de l' USDA, que l'on peut atténuer par les techniques connues, par exemple celle décrite dans WO-A-95/08622.
Exemple 1: Culture du virus ELTV:
Le virus ILTV (souche T20 de Select Laboratories) est cultivé sur des cellules primaires de reins de poulets (CRP); ces cellules sont mises en culture en milieu MEM complémenté avec 3 % de sérum de veau foetal (S VF) dans des flacons de culture de 75 cm2 (2 103 cellules/cm2) un ou deux jours avant inoculation.
Le jour de l'inoculation, un flacon de 1000 doses de vaccin lyophilisé est resuspendu dans 10 ml de milieu MEM complémenté avec 1 % de SVF; environ 0,5 ml de cette solution est ensuite déposé sur la culture de CRP. Le lendemain, le milieu est changé, et le surlendemain, lorsque l'effet cytopathogène (ECP) se généralise, les flacons de culture sont congelés à -70" C.
La culture du virus ILTN peut également être faite sur des cellules immortalisées de foie de poulet, et notamment sur la lignée LMH ( .M. Schnitzlein ét al.. Avion Diseases 1994. 38. 211-217).
Exemple 2: Préparation de l'ADΝ génomique de l'ILTV:
Après 2 cycles de congélation/décongélation, la culture d'ILTV (2 flacons de 75 cm2) est récoltée et centrifugée à basse vitesse (5000 tr/min dans un rotor 20, centrifugeuse Beckman JA21, pendant 5 minutes) pour éliminer les gros débris cellulaires. Le surnageant sst ensuite ultracentrifugé (100000 tr/min rotor TLA100.3, centrifugeuse Beckman TL100, pendant 1 heure). Le culot est alors repris dans 1,6 ml de TEΝ-SDS (Tris pH 8,0 lOmM; EDTA ImM; ΝaCI 0,5M; sodium dodecyl sulfate 0,5 %), et 35 μ\ d'une solution de protéinase K à 20 mg/mi sont ensuite ajoutés; la solution est incubée 3 à 4 heures au bain marie à 37"C, et l'ADΝ est ensuite extrait 3 fois au phénol/chloroforme et 1 fois au chloroforme, puis il est précipité à l'émanol à -20βC. Après centrifugation, le culot est rincé i l'éthanol 70%, séché et resuspendu dans 200 μl TE (Tris pH8.0 lOmM; EDTA ImM). La concentration en acide nucléique est ensuite dosée au spectrophotomètre (DO260). L'ADΝ peut être directement digéré par les enzymes de restriction appropriées, pour être ensuite clone dans le plasmide pBlue Script II SIC ; de même, il pourra également être utilisé dans les expériences de transfection pour l'obtention d'un virus recombinant.
Exemple 3: Isolement et purification de virus recombinant ELTN
Le plasmide donneur composé d'une cassette d'expression d'un polypeptide inséré entre deux régions flanquantes du locus d'insertion est digéré par une enzyme de restriction Λ Λ^ ,^ O 98/27215
1 3
permettant la linéarisation du plasmide, puis il est extrait avec un mélange phénol/chloroforme, précipité avec de l'éthanol absolu, et repris dans de l'eau stérile. Des cellules CRP primaires de 24 heures sont ensuite transfectées avec le mélange suivant: 0,2 à 1 μg de plasmide donneur linéarisé + 2 à 5 μg d'ADN viral d'ILTV (préparé comme dans l'exemple 2) dans 300 μ\ de milieu OptiMEM' (Gibco BRL Cat# 041-01985H) et 100 μg de LipofectAMINE dilués dans 300 μl de milieu (volume final du mélange ≈ 600 μï). Ces 600μl sont ensuite dilués dans 3 ml (volume final) de milieu et étalés sur 5.10* CRP. Le mélange est laissé en contact avec les cellules pendant 5 heures, puis éliminé et remplacé par 5 mi de milieu de culture. Les cellules sont alors laissées en culture pendant 3 à 8 jours à + 37 *C, puis, lorsque l'effet cyropathogène est apparu, elles sont congelées à -70*C. Après décongélation et éventuellement sonication, cette population virale est clonée en dilution limite en microplaques (96 puits) afin d' isoler une population homogène de virus recombinant. Ces plaques sont laissées en culture pendant 1 à 3 jours, puis le surnageant est récolté dans une plaque 96 puits vide et la plaque contenant les surnageants est placée à 4βC ou à -70°C. Les cellules restant dans les autres plaques sont ensuite fixées à l'acétone 95% pendant 20 à 30 minutes à - 20°C, ou pendant 5 minutes à température ambiante. Une réaction d' immunofluoresceπce indirecte (IFT) est réalisée avec un anticorps monoclonal dirigé contre le polypeptide exprimé pour rechercher les plages exprimant ce polypeptide. Un nouveau clonage est ensuite effectué de la même manière (en dilution limite en plaques 96 puits) à partir du surnageant présent dans les cupules des plaques mises à 4e C ou à -70" C et correspondant aux cupules présentant des plages positives en IFT. En générai, 4 cycles d'isolement successifs (dilution limite, récoite du surnageant, contrôle des cellules par IFT, dilution limite à partir du surnageant...) suffisent pour obtenir des virus recombinants dont la totalité de la progénie présente une fluorescence spécifique. L' ADN génomique de ces virus recombinants est caractérisé au niveau moléculaire par des techniques classiques de PCR et de Southern blot en utilisant les oligonucléotides et les sondes d'ADN appropriés. L'isolement de virus recombinant peut également se faire par hybridation avec une sonde spécifique de la cassette d'expression insérée. Pour cela, la population virale récoltée après transfection est diluée et déposée sur des cellules CRP (cultivées en boîte de Pétri) de manière à obtenir des plages isolées. Après un contact d' 1 heure à 37βC, le milieu d'infection est éliminé et remplacé par 5 ml de milieu MEM à 1 % d'agarose, maintenu en surfusion à 42 °C. Lorsque l'agarose est solidifié, les boîtes sont incubées 48 à 72 heures à 37βC en étuve CO2 jusqu'à apparition de plages, la couche d'agarose est alors éliminée et un transfert des plages virales est réalisé sur une membrane stérile de nitrocellulose de même diamètre que la boîte de Pétri ayant servi à la culture. Cette membrane est elle-même transférée sur une autre membrane de nitrocellulose de manière à obtenir une "copie" inversée du premier transfert. Les plages transférées sur ceπe dernière copie sont alors hybridées, selon les techniques usuelles connues de l'homme de l'art, avec un fragment d'ADN de la cassette d'expression marqué à la digoxigénine (DNA Labelling Kit, Boehringer Mannheim, CAT # 1175033). Après hybridation, lavages et mise en contact avec le substrat de révélation, la membrane de nitrocellulose st mise en contact avec un film autoradiographique. Les images d'hybridation positive sur cette membrane indiquent quelles sont les plages qui contiennent des virus ILTV recombinants ayant inséré la cassette d'expression. Les plages correspondant à ces plages positives sont découpées stérilement sur la première membrane de nitrocellulose, placées dans un tube Eppendorf contenant 0,5 ml de milieu MEM et soniquées pour libérer les virions de la membrane. Le milieu contenu dans le tube Eppendorf est ensuite dilué en milieu MEM et les dilutions ainsi obtenues servent à infecter de nouvelles cultures de cellules CRP.
Exemple 4: Clonage et caractérisation d'une région génomique de l'ELTN
L'ADΝ extrait du virus ILTN a été digéré par l'enzyme de restriction Kpnl pendant 2 heures à 37"C. L' enzyme de restriction a ensuite été éliminé par une extraction au phénol/chloroforme, suivie d'une précipitation à Péthanol. Les fragments résultant de ceπe digestion ont ensuite été ligaturés (une nuit à 14βC) avec le plasmide pBlueScriptlI SK+ (pBS SK+ ; Stratagene) digéré par Kpnl et traité à la phosphatase alcaline ; l'analyse des clones obtenus après transformation de bactéries E. coli DH5α et culture sur boîtes de milieu complémenté en ampiciline a permis d'identifier des inserts Kpnl- Kpnl de tailles différentes, dont un fragment d'environ 4,2 kb (plasmide pEL112). 15
Le séquençage complet de l' insert présent dans pEL112 (voir figure 1) a permis de meπre en évidence deux cadres ouverts de lecture (COLs) complets (COL B et COL C), et une grande partie de deux autres COLs (COL A et COL D). La carte de restriction de cette région génomique cionée et séquencée, est montrée à la figure 1; la séquence de 4161 pb (SEQ ID NO: 1) est montrée à la figure 2. La position et la séquence en acides aminés des COLs A, B, C et D sont également montrées sur les figures 1 et 2 respectivement.
La séquence entre les codons STOP des COL B et C (position de 908 à 994 sur SEQ ID NO: 1), est utilisable pour insérer des cassettes d'expression de polypeptides dans le génome de i'ILTV. Cette séquence est appelée locus d'insertion. L'insertion peut se faire avec ou sans délétion dans la région intergénique (voir exemple 5).
Exemple 5: Construction du plasmide donneur pEL157 pour l'insertion dans la région intergénique entre les COLs B et C
Le plasmide pEL112 (7116 pb), a été digéré par les enzyme Notl et Spel pour isoler le fragment Notl-Spel de 4,5 kb. Le fragment ainsi digéré a ensuite été traité à l'ADN poiymérase (fragment de Klenow) en présence de dNTP pour rendre les bouts francs ; après ligamre et transformation des bactéries E. coli, le clone pEL156 (4503 pb) a été obtenu.
Les oligonucléotides EL001 (SEQ ID No:2) et EL002 (SEQ ID No:3) ont servi d'amorce pour une première amplification en chaîne par la Taq poiymérase (PCR). Les oligonucléotides EL003 (SEQ ID No:4) et EL004 (SEQ ID No:5) ont servi d'amorce pour une deuxième amplification en chaîne par la Taq poiymérase (PCR).
EL001 (SEQ ID No:2) : 5' TATTσCTTTCTACCσAAGTCGG 3'
EL002 (SEQ ID No:3) : 5' ACGCσAATTCAAATACGAGCATTTAATTATTGCG 3'
EL003 (SEQ ID No: 4) : 5' TCTCCAGAATCGCTGGAGTGTCC 3'
EL004 (SEQ IDNσ:5) : 5' TGCGCGAATCGTAAGCTTTGATATCCAGTCGACA ~ „ .,f.~ e O 98/27215
16
TAAτTTσGτσ TTATTACTTTTA 3'
Les PCR ont été effectuées en présence de tampon PCR, de dNTP, d'ADN du plasmide pEL156, de Taq poiymérase, et pour la première PCR, des oligonucléotides EL001 et EL002, et pour la deuxième PCR, des oligonucléotides EL003 et EL004.
Pour les deux PCR, 25 cycles ont été effectués (30 secondes à 94"C ; 30 secondes à 60 °C et 30 secondes à 72°C). Les produits des deux PCR ont été purifiés par une extraction au phénol/chloroforme, suivie d'une purification par l'éthaπol. Le produit de la première PCR (EL001/EL002) a ensuite été digéré par les enzymes de restriction Xbal et EcoRI pendant 2 h à 37βC pour donner un fragement d'ADN Xbal-EcoRl de 120 pb qui a été élue après électrophorèse en gel d'agarose. Le produit de la deuxième PCR (EL003/EL004) a ensuite été digéré par les enzymes de restriction Xhol et £ ?RI pendant 2 h à 37βC pour donner un fragment d'ADN Λ7iσI-£ccRI de 85 pb qui a été élue après électrophorèse en gel d'agarose. Le plasmide pEL156 a été digéré par les enzymes Xbal et Xhol. Les deux fragements de PCR-XEβl-EcoI (120 pb) et Λ7ιoI-.E >RI (85 pb) ont été ligaturés une nuit à 14°C avec le plasmide pEL156 digéré par Xbal et Xhol. Après transformation des bactéries E. coli, et culture sur boites de milieu complémenté en ampicilline, le clone pEL157 (4531 pb), comprenant un polylinker EcoRl - Hindlll - EcoRV - Sali a été obtenu (voir schéma d'obtention de pEL157 à la figure 3).
Exemple 6: Construction du plasmide donneur pEL158 pour l'insertion d'une cassette d'expression du gène VP2 de l'EBDV sous contrôle du promoteur HCMV EE dans le site intergénique entre les COLs B et C, et isolement de vELTV8:
6.1 - Clonage du gène VP2 du virus de la maladie de Gumboro (IBDV) et construction d'une cassette d'expression de VP2 sous contrôle du promoteur HCMV IE Le plasmide pEL004 (voir figure 4; ≈ plasmide pGH004 décrit dans la demande de brevet français 92.13109) contenant le gène IBDV VP2 sous forme d'une cassette BamHl- Hindlll a été digéré par Bamϋl et Xbal pour isoler le fragment BamHl-Xbal (gène VP2 tronqué) de 1104 pb. Ce fragment a été clone dans le vecteur pBS SK+ , préalablement digéré avec Xbal et BamHl pour donner le plasmide pEL022 de 4052 pb (figure 4. Le vecteur pBS-SK-f- a été digéré par £cσRV et Xbal, puis ligaturé sur lui- même pour donner pBS-SK* (modifié). Le plasmide pEL004 a été digéré par Kpnl et Hindlll pour isoler le fragment Kpnl-Hindlll de 1387 pb contenant le gène IBDV VP2 complet. Ce fragment a été clone dans le vecteur pBS-SK*, préalablement digéré par Kpnl et Hindlll, pour donner le plasmide pEL023 de 4292 pb (figure 4). Le plasmide pEL022 a été digéré par BamKL et Notl pour isoler le fragment BamHl-Notl de 1122 pb (fragment A). Le plasmide pEL023 a été digéré par BamHl et Notl pour isoler le fragment BamHl-Notl de 333 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK+, préalablement digéré par Notl et traité avec la phosphatase alcaline, pour donner le plasmide pEL024 de 4369 pb (figure 4). Le plasmide pEL024 a été digéré par Notl pour isoler le fragment Notl-Notl de 1445 pb. Ce fragment a été ligaturé avec le plasmide pCMVβ (Clontech Ca 6177-1, figure 5), préalablement digéré par Notl, pour donner le plasmide pEL026 de 5095 pb (figure 5).
Le plasmide pEL026 a été digéré par JS σRI, Sali et Xmnl pour isoler le fragment EcoKl-Sall de 2428 pb. Ce fragment a été ligaturé avec le vecteur pBS-SK+, préalablement digéré par ϋcσRI et Sali, pour donner le plasmide pEL027 de 5379 pb (figure 5).
6.1 - Construction du plasmide donneur p ELI 58 Le plasmide pEL027 a été digéré par £cσRI, S Λ et Xmnl pour isoler le fragment £ ?RI- Sall de 2428 pb. Ce fragment a été ligaturé dans le plasmide pEL157 (voir exemple 5 et figure 3), préalablement digéré par £cσRI et Sali, pour donner le plasmide pEL158 de 6950 pb (figure 6).
6.3 - Isolement et purification du virus recombinant vILTVS Le virus vILTV8 a été isolé et purifié après cotransfection de l'ADN du plasmide pEL158 préalablement linéarisé par l'enzyme Kpnl et de l'ADN viral, comme décrit dans l'exemple 3. Ce recombinant contient une cassette HCMV-IE/IBDV VP2 dans le site intergénique entre les COLs B et C du virus ILTV (voir exemple 5). Exemple 7: Construction du plasmide donneur pEL159 pour l'insertion d'une cassette d'expression du gène VP2 de l'EBDV sous contrôle du promoteur MCMN EE dans le site intergénique entre les COLs B et C et isolement de vELTN9:
7.1 • Construction de pEUOJO contenant une cassette d'expression du gène VP2 de l'IBDV sous contrôle du promoteur immédiate early (IE) du MCMV (Mouse CytoMegalo Virus)
Le plasmide pCMVβ (Clontech Catf 6177-1, figure 7) a été digéré par Sali et Smal pour isoler le ragment Sall-Smal de 3679 pb contenant le gène lacZ ainsi que le signal de poiy-adénylation du gène tardif du virus SV40. Ce fragment a été inséré dans le vecteur pBS-SK+, préalablement digéré par Salï et EcσRV, pour donner le plasmide pCD002 de 6625 pb (figure 7). Ce plasmide contient le gène reporter lacZ mais aucun promoteur n'est situé en amont de ce gène.
Le virus MCMV souche Smiui a été obtenu de l'American Type Culture Collection, Rockville, Maryland, USA (ATCC Ν" VR-194). Ce virus a été cultivé sur cellules d'embryon de souris Balb/C et l'AD viral de ce virus a été préparé comme décrit par Ebeling A. ét al. (J. Virol. 1983. 47. 421-433). Cet ADN génomique viral a été digéré par Pstl pour isoler le fragment Pstl-Pstl de 2285 pb. Ce fragment a été clone dans le vecteur pBS-SK , préalablement digéré par Pstl et traité avec la phosphatase alcaline, pour donner le plasmide pCD004 (figure 7). Le plasmide pCD004 a été digéré par Hpal et Pstl pour isoler le fragment Hpal-Pstl de 1389 pb qui contient la région promotrice/activatrice du gène Immediate-Early du cytomégalovirus murin (Murine CytoMegalo Virus ≈ MCMV) (Dorsch-Hâsler K. étal. Proc. Natl. Acad. Sci. 1985. 82. 8325-8329, et demande de brevet WO-A-87/03905). Ce fragment a été clone dans le plasmide pCD002, préalablement digéré par Pstl et Smal, pour donner le plasmide pCD009 de 8007 pb (figure 7).
Un oligonucléotide double brin a été obtenu par hybridation des deux oligonucléotides suivants :
MB070 (SEQ ID NO:6)
5 ' CG AATTCACTAGτGTGTGTCTGCAGGCGGCCσCGTGTGτσTCσ ACGGTAC 3'
MB071 (SEQ ID NO:7)
5 ' CGTCGACACACACGCGGCCGCCTGCAGAC ACAC ACTAGTGAATTCG AGCT 3' Cet oligonucléotide double brin a été ligaturé avec le vecteur pBS-SK-H, préalablement digéré par Kpnl et Sacl, pour donner le plasmide pEL067 (figure 8). Le plasmide pCD009 a été digéré par Pstl et Spel pour isoler le fragment Pstl-Spel de 1396 pb. Ce fragment a été ligaturé avec le plasmide pEL067, préalablement digéré par Pstl et Spel, pour donner le plasmide pEL068 de 4297 pb (figure 8). Le plasmide pEL024 (voir exemple 6, paragraphe 6.1 et figure 5) a été digéré par Hindlll et Notl pour isoler le fragment Hindlll-Notl de 1390 pb (fragment A). Le plasmide pEL027 (voir exemple 6, paragraphe 6.1 et figure 5) a été digéré par Hindlll et Sali pour isoler le fragment Hindlïl-Sall de 235 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le plasmide pEL068, préalablement digéré par Notl et Sali, pour donner le plasmide pEL070 de 5908 pb (figure 8). Ce plasmide contient donc une casseπe d'expression constituée du promoteur IE du MCMV, du gène VP2 et du signal polyA de SV40.
7.2 - Construction du plasmide donneur pELl 59
Le plasmide pEL070 a été digéré par JE oRI, Sali et Xmnl pour isoler le fragment EcoTU.- Sali de 3035 pb. Ce fragment a été ligaturé dans le plasmide pEL157 (voir exemple 5 et figure 3), préalablement digéré par EcoRL et Sali, pour donner le plasmide pEL159 de 7545 pb (figure 9). Ce plasmide permet l'insertion de la cassette d'expression MCMV-IE/IBDV-VP2 dans le site intergénique entre les COLs B et C du virus ILTV.
7.3 - Isolement et purification du virus recombinant vILTV9 Le virus vILTN9 a été isolé et purifié après cotransfection de l'ADΝ du plasmide pEL159 préalablement linéarisé par l'enzyme BgR et de l' ADN viral, comme décrit dans l'exemple 3. Ce recombinant contient une cassette MCMV-IE/IBDV VP2 dans le site intergénique entre les COLs B et C du virus ILTN (voir exemple 5). Exemple 8: Construction du plasmide donneur pEL160 pour l'insertion d'une cassette d'expression du gène HN du NDV dans le site intergénique entre les COLs B et C et isolement de vELTNlO:
8.1 - Clonage du gène HN du virus de la maladie de Newcastle (NDV) La constitution d'une banque d'ADN complémentaire du génome du virus de la maladie de Newcastle (NDV), souche Texas, a été réalisée comme décrit par Taylor J. et al. (J. Virol. 1990. 64. 1441-1450). Un clone pBR322 contenant la fin du gène fusion (F), la totalité du gène hemagglutinine-neuraminida.se (HN) et le début du gène de la poiymérase a été identifié pHNOl. La séquence du gène NDV HN contenue sur ce clone est présentée sur la figure 10 (SEQ ID NO:8). Le plasmide pHNOl a été digéré par Sphl et Xbal pour isoier le fragment Sphl-Xbal de 2520 pb. Ce fragment a été ligaturé avec le vecteur pUC19, préalablement digéré par Sphl et Xbal, pour donner le plasmide pHN02 de 5192 pb. Le plasmide pHN02 a été digéré par Clal et Pstl pour isoler le fragment Clάl-Pstl de 700 pb (fragment A). Une PCR a été réalisée avec les oligonucléotides suivants:
EL071 (SEQ ID NO:9) 5' CAGACCAAGCTTCTTAAATCCC 3'
EL073 (SEQ ID NO: 10) 5' GTATTCGGGACAATGC 3' et la matrice pHN02 pour prod -.-e un fragment PCR de 270 pb. Ce fragment a été digéré par Hindlll et Pstl pour isoler un fragment Hindïïl-Pstl de 220 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK- préalablement digéré par Clal et Hindlll, pour donner le plasmide pEL028 de 3872 pb (figure 11). Le plasmide pHN02 a été digéré par Bsphl et Clal pour isoler le fragment Bsp l-Clal de 425 pb (fragment C). Une PCR a été réalisée avec les oligonucléotides suivants: EL074 (SEQ ID NO: 11) 5' GTGACATCACTAGCGTCATCC 3' EL075 (SEQ ID NO: 12)
5' CCGCATCATCAGCGGCCGCGATCGGTCATGGACAGT 3' et la matrice pHN02 pour produire un fragment PCR de 465 pb. Ce fragment a été digéré par Bsphl et Notl pour isoler le fragment Bsphl-Notl de 390 pb (fragment D). Les fragments C et D ont été ligaturés ensemble avec le vecteur pBS-SK+, préalablement digéré par Clal et Notl, pour donner le plasmide pEL029bis de 3727 pb (figure 11). Le plasmide pEL028 a été digéré par Clal et Sacïl pour isoler le fragment Clal-Sacll de 960 pb (fragment E). Le plasmide pELÛ29bis a été digéré par Clal et Notl pour isoler le fragment Clal-Notl de 820 pb (fragment F). Les fragments E et F ont été ligaturés ensemble avec le vecteur pBS-SK- , préalablement digéré par Notl et Sacll, pour donner le plasmide pEL030 de 4745 pb (figure 11).
8.2 - Construction du plasmide pEL160 contenant une cassette d'expression de HN du NDV dans le site intergénique entre les COLs B et C Le plasmide pEL030 a été digéré par Notl pour isoler le fragment Notl-Notl de 1780 pb (gène NDV HN entier). Ce fragment a été inséré dans les sites Notl du plasmide pEL159 (exemple 7, figure 9) à la place du fragment Notl-Notl de 1405 pb contenant le gène codant pour la protéine VP2 de l'IBDV; ce clonage a permis d'isoier le plasmide pEL160 de 7921 pb (figure 12). Ce plasmide permet l'insertion de la cassette d'expression MCMV-IE/NDV-HN dans le site intergénique entre les COLs B et C du virus ILTN.
8.3 • Isolement et purification du virus recombinant vILTVIO
Le virus vILTVIO a été isolé et purifié après cotransfection de l'ADΝ du plasmide pEL160 préalablement linéarisé par l'enzyme BgH et de l'AD virai, comme décrit dans l'exemple 3. Ce recombinant contient une cassette MCMV-IE/ΝDV HΝ dans le site intergénique entre les COLs B et C du virus ILTV (voir exemple 5).
Exemple 9: Construction du plasmide donneur pEL161 pour l'insertion d'une cassette d'expression du gène F du ΝDV dans le site intergénique entre les COLs B et C et isolement de ylLTVll:
9.1 - Clonage du gène F du virus de la maladie de Newcastle (NDV) Un clone provenant de la banque d'ADN complémentaire du génome du virus de la maladie de Newcastle (voir exemple 8, paragraphe 8.1) et contenant le gène fusion (F) en entier a été appelé pNDV81. Ce plasmide a été décrit précédemment et la séquence du gène NDV F présent sur ce clone a été publiée (Taylor J. et al. J. Virol., 1990, 64, 1441- 1450). Le plasmide pNDV81 a été digéré par Narl et Pstl pour isoler le fragment Narl-Pstl de 1870 pb (fragment A). Une PCR a été réalisée avec les oligonucléotides suivants:
EL076 (SEQ ID N° 13) 5' TGACCCTGTCTGGGATGA 3' EL077 (SEQ ID N" 14)
5' GGATCCCGGTCGACACATTGCGGCCGCAAGATGGGC 3' et la matrice pNDVδl pour produire un fragment de 160 pb. Ce fragment a été digéré par Pstl et Sali pour isoler le fragment Pstl-Sall de 130 pb (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pBS-SK+, préalablement digéré par Clal et Sali, pour donner le plasmide pEL033 de 4846 pb (figure 13).
9.2 - Construction du plasmide pELl 61 contenant une cassette d'expression du gène F du NDV dans le site intergénique entre les COLs B et C
Le plasmide pEL033 a été digéré par Notl pour isoler le fragment Notl-Notl de 1935 pb (gène F entier). Ce fragment a été inséré dans les sites Notl du plasmide pEL159 (exemple 7, figure 9) i la place du fragment Notl-Notl de 1405 pb contenant le gène codant pour la protéine VP2 de ITBDV; ce clonage a permis d'isoler le plasmide pEL161 de 8074 pb (figure 14). Ce plasmide permet l'insertion de la cassette d'expression MCMV-IE/NDV-F dans le site intergénique entre les COLs B et C du virus ILTN.
9.3 - Isolement et purification du virus recombinant vILTVll Le virus vILT ll a été isolé et purifié après cotransfection de l'ADΝ du plasmide pEL161 préalablement linéarisé par l'enzyme BgΛ et de l'ADΝ viral, comme décrit dans l'exemple 3. Ce recombinant contient une cassette MCMV-IE/ΝDV F dans le site intergénique entre les COLs B et C du virus ILTV (voir exemple 5).
Exemple 10: Construction d'un plasmide donneur pour l'insertion d'une double cassette d'expression des gènes HΝ et F du ΝDV dans le site intergénique entre les COLs B et C et isolement d'un virus recombinant ELTN:
Une double cassette d'expression de deux gènes, par exemple les gènes HΝ et F du virus ΝDV, peut être construite. Une telle construction est schématisée à la figure 15. Dans cette construction, l'extrémité 5' des deux promoteurs sont adjacentes de manière que la transcription des deux gènes se fasse en sens opposés. Un des deux promoteurs est le promoteur MCMV IE et l'autre promoteur (appelé promoteur associé) est le promoteur SV40 (présent dans le plasmide pSVbeta, Clontech Laboratories, Palo Alto, California 94303-4607, USA). Dans cette configuration, le promoteur associé est activé par la région activatrice du promoteur CMV IE.
Ceπe double cassette d'expression peut ensuite être insérée dans le plasmide donneur décrit ci-dessus (pEL157 décrit dans l' exemple 5 et représenté dans la figure 3). L' isolement des virus recombinants se fait de la même manière que ci-dessus (voir exemple 3).
Exemple 11: Construction du plasmide donneur pEL163 pour l'insertion d'une cassette d'expression du gène gB du MDV dans le site intergénique entre les COLs B et C et isolement de vILTV12:
11.1 • Clonage du gène gB du virus de la maladie de Marek Le fragment EcoRl-Scuï de 3,9 kpb de l'ADN génomique du virus MDV souche RB1B contenant le gène MDV gB (séquence publiée par Ross N. et al. J. Gen. Virol. 1989. 70, 1789-1804) a été ligaturé avec le vecteur pUC13, préalablement digéré par £ ?RI et Sali, pour donner le plasmide pCD007 de 6543 pb (figure 16). Ce plasmide a été digéré par Sacl et Xbal pour isoler le fragment Sacl-Xbal de 2260 pb (partie centrale du gène gB ≈ fragment A). Une PCR a été réalisée avec les oligonucléotides suivants: CD001 (SEQ ID O:15)
5' GACΓGGTACCGCGGCCGCATGCACΠTΠΆGGCGGAATTG y
CD002 (SEQ ID NO: 16) 5' TτCGGGACATTTTCGCGG 3' et la matrice pCD007 pour produire un fragment PCR de 222 pb. Ce fragment a été digéré par Kpnl et Xbal pour isoler un fragment Kpnl-Xbal de 190 pb (extrémité 5' du gène gB = fragment B). Une autre PCR a été réalisée avec les oligonucléotides suivants:
CD003 (SEQ ID NO: 17) 5' TATATGGCGTTAGTCTCC 3'
CD004 (SEQ ID NO: 18)
5' TTσcσAGCTCGCGGCCGCTTATTACACAGCATCATCTTCτG 3' et la matrice pCD007 pour produire un fragment PCR de 195 pb. Ce fragment a été digéré par Sacl et Sacll pour isoler le fragment Sacl-Sacll de 162 pb (extrémité 3' du gέne gB ≈ fragment C). Les fragments A, B et C ont été ligaturés ensemble avec le vecteur pBS-SK+, préalablement digéré par Kpnl et Sacl. pour donner le plasmide pCDOi l de 5485 pb (figure 16).
11.2 • Construction du plasmide pEÎΛ 63 contenant une cassette d'expression du gène gB du MDV dans le site intergénique entre les COLs B et C du virus ILTV Le plasmide pCDOil a été digéré par Notl pour isoler le fragment Notl-Notl de 2608 pb (gène gB MDV entier). Ce fragment a été inséré dans les sites Notl du piasmide pEL159 (exemple 7, figure 9) à la place du fragment Notl-Notl de 1405 pb contenant le gène codant pour la protéine VP2 de l'EBDV; ce clonage a permis d'isoler le plasmide pEL163 de 8749 pb (figure 17). Ce plasmide permet l'insertion de la cassette d'expression MCMV-IE/MDV-gB dans le site intergénique entre les COLs B et C du virus ILTN.
11.3 - Isolement et purification du virus recombinant vILTVll Le virus vILTV12 a été isolé et purifié après cotransfection de l'ADΝ du plasmide pELlόl préalablement linéarisé par l'enzyme BgH et de l'ADΝ viral, comme décrit dans l'exemple 3. Ce recombinant contient une cassette MCMV-IE/MDV gB dans le site intergénique entre les COLs B et C du virus ILTV (voir exemple 5).
Exemple 12: Construction d'un plasmide donneur pour l'Insertion d'une cassette d'expression de gène(s) de l'EBV dans le site Intergénique entre les COLs B et C et isolement de virus recombinant ILTV:
Selon la même stratégie que celle décrite plus haut pour l'insertion de simples cassenes (exemples 6, 7, 8, 9 et 11) ou pour l'insertion de doubles cassettes (exemple 10), dans le site décrit ci-dessus (exemple 5), il est possible de réaliser des virus ILTV recombinants exprimant à un niveau élevé les protéines Membrane (M) ou Spike (S), ou partie de Spike (SI ou S2), ou Nucléocapside (N) du virus de la bronchite infectieuse aviaire (IBV). On réalise notamment une double cassette d'expression avec le gène S sous contrôle du promoteur CMV IETet le gène M sous contrôle du promoteur associé. 215
25
Exemple 13: Construction de plasmides donneurs pour l'insertion de cassettes d' expression de gène(s) d'autres agents pathogènes aviaires ou de peptide immunomoduiateur dans le site , décrit, at isolement de virus recombinants ELTV: Selon la même stratégie que celle décrite plus haut pour l'insertion de simples cassettes (exemples 6, 7, 8, 9 et 11) pour l'insertion de doubles cassettes (exemple 10), dans le site décrit ci-dessus (exemple 5), il est possible de réaliser des virus ILTV recombinants exprimant à un niveau élevé des immunogènes du CAV (et notamment une double cassette d'expression des gènes codant pour VPl et pour VP2), du virus de la pneumovirose du poulet, ou d'autres agents pathogènes aviaires, ou encore des peptides immunomodulateurs et notamment des cytokines.
Exemple 1 : Production de vaccins:
Les virus recombinants obtenus selon l'invention sont produits sur oeufs embryonnés.
La solution virale récoltée est ensuite diluée dans une solution stabilisatrice pour la lyophilisation, répartie à raison de 1000 doses vaccinales par flacon, et enfin lyophilisée.

Claims

REVENDICATIONS
1 - Vaccin vivant recombinant aviaire comprenant, comme vecteur, un virus ILTN comprenant et exprimant au moins une séquence nucléotidique hétérologue, cette séquence nucléotidique étant insérée dans le locus d'insertion formé par l' intergène situé entre les codons stop des COL B et COL C d'ILTV et qui, dans une souche d'ILTN particulière, est défini entre les nucleotides 908 et 994 à la SEQ ID ΝO: l.
2 - Vaccin vivant recombinant selon la revendication 1, caractérisé en ce que la ou les séquences nucléotidiques sont insérées par insertion simple, ou après délé ion totale ou partielle du locus d'insertion.
3 - Vaccin vivant recombinant selon l'une quelconque des revendications 1 à 2, caractérisé en ce que, pour exprimer la séquence nucléotidique insérée, le vecteur comprend un promoteur eucaryote fort.
4 - Vaccin vivant recombinant selon la revendication 3, caractérisé en ce que le promoteur fort est choisi parmi le groupe consistant en: promoteur CMV immediate- early, de préférence le promoteur CMV immediate-early murin ou humain, promoteur LTR du virus du Sarcome de Rous (RSV), promoteur précoce du virus SV40.
5 - Vaccin vivant recombinant selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend au moins deux séquences nucléotidiques insérées dans le locus d'insertion sous le contrôle de promoteurs eucaryotes différents.
6 - Vaccin vivant recombinant selon la revendication 5, caractérisé en ce que les promoteurs eucaryotes sont des promoteurs CMV immediate-early d'origines animales différentes.
7 - Vaccin vivant recombinant selon la revendication 5, caractérisé en ce qu' il comprend une première séquence nucléotidique associée au promoteur CMV immédiate early et un autre promoteur sous la dépendance duquel se trouve une autre séquence nucléotidique, ces deux promoteurs étant disposés de manière que leurs extrémités 5' soient adjacentes.
8 - Vaccin vivant recombinant selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend, insérée dans le locus d'insertion, une cassette d'expression comprenant successivement un promoteur, deux ou plusieurs gènes séparés deux à deux par un IRES, et un signal de polyadénylation.
9 - Vaccin vivant recombinant selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend une séquence nucléotidique codant pour un polypeptide antigénique d'un agent pathogène aviaire, cette séquence étant insérée dans le locus d'insertion.
10 - Vaccin vivant recombinant selon la revendication 9, caractérisé en ce qu'il comprend une séquence codant pour un antigène d'un agent pathogène aviaire choisi parmi le groupe consistant en le virus de la maladie de Newcastle (NDV), le virus de la maladie de Gumboro (IBDV), le virus de la maladie de Marek (MDV), le virus de la bronchite infectieuse (EBV), le virus de l'anémie du poulet (CAV), le virus de la pneumovirose du poulet
11 - Vaccin vivant recombinant selon la revendication 10, caractérisé en ce qu'il comprend une séquence nucléotidique, choisie parmi les séquences nucléotidiques codant pour les polypeptides F et HN du virus NDV.
12 • Vaccin vivant recombinant selon la revendication 10, caractérisé en ce qu'il comprend une séquence nucléotidique, choisie parmi les séquences nucléotidiques codant pour les polypeptides gB, gC, gD, gH+gL du virus MDV.
13 - Vaccin vivant recombinant selon la revendication 10, caractérisé en ce qu' il comprend au moins une séquence nucléotidique choisie parmi le groupe des séquences correspondant aux antigènes VP2 de l'IBDV, aux antigènes S, ou partie de S, M et N du virus IBV, aux antigènes VPl et VP2 du CAV, aux antigènes G et F du virus de la pneumovirose du poulet.
14 - Vaccin vivant recombinant seion l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend une séquence nucléotidique codant pour un polypeptide immunomodulateur, cette séquence étant insérée dans le locus d'insertion.
15 - Vaccin vivant recombinant seion la revendication 14, caractérisé en ce que cette séquence nucléotidique est choisie parmi le groupe des séquences codant pour des cytokines.
16 - Formule de vaccin multivalent comprenant, en mélange ou à mélanger, au moins deux vaccins vivants recombinants tels que définis dans l'une quelconque des revendications 1 à 15, ces vaccins comprenant des séquences insérées différentes.
17 - Un virus ELTV comprenant au moins un séquence nucléotidique hétérologue insérée dans le locus d'insertion formé par l' intergène situé entre les codons stop des COL B et COL C d'ILTV et qui, dans une souche d'ILTV particulière, est défini entre les nucleotides 908 et 994 à la SEQ ID NO:l.
PCT/FR1997/002307 1996-12-16 1997-12-15 Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire WO1998027215A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97952066A EP0948637A1 (fr) 1996-12-16 1997-12-15 Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
AU55627/98A AU734085B2 (en) 1996-12-16 1997-12-15 Recombinant live avian vaccine, using as vector the avian infectious laryngotracheitis virus.
JP52739498A JP2001510338A (ja) 1996-12-16 1997-12-15 ベクターとして鳥類の感染性喉頭気管炎ウイルスを用いた鳥類用組換え生ワクチン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/15687 1996-12-16
FR9615687A FR2757061B1 (fr) 1996-12-16 1996-12-16 Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire

Publications (1)

Publication Number Publication Date
WO1998027215A1 true WO1998027215A1 (fr) 1998-06-25

Family

ID=9498887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/002307 WO1998027215A1 (fr) 1996-12-16 1997-12-15 Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire

Country Status (11)

Country Link
US (1) US6033670A (fr)
EP (1) EP0948637A1 (fr)
JP (1) JP2001510338A (fr)
AR (1) AR010086A1 (fr)
AU (1) AU734085B2 (fr)
CO (1) CO4650231A1 (fr)
FR (1) FR2757061B1 (fr)
MA (1) MA24422A1 (fr)
TN (1) TNSN97207A1 (fr)
WO (1) WO1998027215A1 (fr)
ZA (1) ZA9711247B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026246A1 (fr) * 1997-10-03 2000-08-09 Nippon Zeon Co., Ltd. Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers
EP1241177A1 (fr) * 2001-03-15 2002-09-18 Akzo Nobel N.V. Virus recombinant de la laryngotrachéite infectieuse et vaccin

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206705A (ja) * 1993-11-03 1995-08-08 American Cyanamid Co 生インオボ(in ovo)ワクチン
AR031405A1 (es) * 2000-11-21 2003-09-24 Wyeth Corp Metodos y vacunas para conferir proteccion in ovo contra la rinotraqueitis del pavo
EP1360310A2 (fr) * 2001-02-13 2003-11-12 University Of Florida Double complexe promoteur bidirectionnel a activite promotrice amelioree dans le cadre de l'expression transgenique dans les eucaryotes
US20030157641A1 (en) * 2001-11-16 2003-08-21 Idec Pharmaceuticals Corporation Polycistronic expression of antibodies
IL161988A0 (en) 2001-11-16 2005-11-20 Corporation Idec Pharmaceutica Polycistronic expression of antibodies
US20040241723A1 (en) * 2002-03-18 2004-12-02 Marquess Foley Leigh Shaw Systems and methods for improving protein and milk production of dairy herds
AU2003238767A1 (en) * 2002-05-31 2003-12-19 Penn State Research Foundation Dot-elisa for the detection of animal viruses
EP1606419A1 (fr) 2003-03-18 2005-12-21 Quantum Genetics Ireland Limited Systemes et procedes pour accroitre la production de proteines et de lait chez des bovins laitiers
US7468273B2 (en) 2003-05-01 2008-12-23 Meial Limited Canine GHRH gene, polypeptides and methods of use
WO2005049794A2 (fr) 2003-11-13 2005-06-02 University Of Georgia Research Foundation, Inc. Procedes de caracterisation du virus de la bursite infectieuse
EP1696831B1 (fr) * 2003-12-05 2014-01-15 Innolene LLC Procede de fabrication d'une lentille refractive oculaire
JP2007525217A (ja) 2004-02-19 2007-09-06 ザ ガバナーズ オブ ザ ユニバーシティー オブ アルバータ レプチンプロモーター多型及びその使用
RS51324B (sr) 2005-04-25 2010-12-31 Merial Ltd. Vakcine protiv nipah virusa
US20080241184A1 (en) 2005-08-25 2008-10-02 Jules Maarten Minke Canine influenza vaccines
JP2009515529A (ja) 2005-11-14 2009-04-16 メリアル リミテッド 腎不全のための遺伝子療法
US7771995B2 (en) 2005-11-14 2010-08-10 Merial Limited Plasmid encoding human BMP-7
US7862821B2 (en) 2006-06-01 2011-01-04 Merial Limited Recombinant vaccine against bluetongue virus
US8871220B2 (en) 2009-04-03 2014-10-28 Merial Limited Newcastle disease virus vectored avian vaccines
WO2012018813A2 (fr) * 2010-08-02 2012-02-09 University Of Georgia Research Foundation, Inc. Virus de laryngotrachéite infectieuse (vlti) modifié et ses utilisations
JP5913316B2 (ja) 2010-08-31 2016-04-27 メリアル リミテッド ニューカッスル病ウイルスをベクターとするヘルペスウイルスワクチン
WO2012090073A2 (fr) 2010-12-30 2012-07-05 The Netherlands Cancer Institute Procédés et compositions pour prédire la sensibilité à la chimiothérapie
US20140296248A1 (en) 2011-04-04 2014-10-02 Stichting het Nederlands Kanker Instiuut-Antoni van Leeuwenhoek ziekenhuis Methods and compositions for predicting resistance to anticancer treatment
WO2012138789A2 (fr) 2011-04-04 2012-10-11 Netherlands Cancer Institute Procédés et compositions pour prédire une résistance à un traitement anti-cancéreux
US9216213B2 (en) 2011-04-20 2015-12-22 Merial, Inc. Adjuvanted rabies vaccine with improved viscosity profile
WO2012149038A1 (fr) 2011-04-25 2012-11-01 Advanced Bioscience Laboratories, Inc. Protéines tronquées d'enveloppe (env) du vih, procédés et compositions associés à celles-ci
EP2714077B1 (fr) 2011-06-01 2018-02-28 Merial, Inc. Administration sans aiguille de vaccins contre le vsrrp
DK2741740T3 (en) 2011-08-12 2017-06-06 Merial Inc VACUUM-SUPPORTED CONSERVATION OF BIOLOGICAL PRODUCTS, IN PARTICULAR OF VACCINES
CN103874508A (zh) 2011-10-21 2014-06-18 英特维特国际股份有限公司 提供多价免疫的重组非致病性mdv载体
WO2013057236A1 (fr) 2011-10-21 2013-04-25 Intervet International B.V. Produits de recombinaison d'un virus non pathogène de la maladie de marek qui codent des antigènes du virus infectieux de la laryngotrachéite et du virus de la maladie de newcastle
WO2013093629A2 (fr) 2011-12-20 2013-06-27 Netherlands Cancer Institute Vaccins modulaires, procédés et compositions qui y sont liés
WO2013138776A1 (fr) 2012-03-16 2013-09-19 Merial Limited Nouveaux procédés pour fournir une immunité de protection à long terme contre la rage chez des animaux, basés sur l'administration d'un flavivirus défectueux en termes de réplication, exprimant la rage g
US10709341B2 (en) 2012-11-21 2020-07-14 St. Jude Medical Luxembourg Holdings II S.a.r.l. Devices, systems, and methods for pulmonary arterial hypertension (PAH) assessment and treatment
US9556419B2 (en) 2013-03-12 2017-01-31 Merial Inc. Reverse genetics Schmallenberg virus vaccine compositions, and methods of use thereof
WO2014145712A1 (fr) 2013-03-15 2014-09-18 Cardiomems, Inc. Méthodes de traitement d'états cardiovasculaires
MX2017005687A (es) 2014-11-03 2017-08-21 Merial Inc Metodos para usar formulaciones para vacuna con microagujas para elicitar en animales inmunidad protectora contra virus de la rabia.
JP2018523993A (ja) 2015-06-23 2018-08-30 メリアル インコーポレイテッド Prrsv微量タンパク質含有組換えウイルスベクター並びにその作製及び使用方法
PE20180463A1 (es) 2015-06-30 2018-03-06 Ceva Sante Animale Virus de la enteritis del pato y usos del mismo
EP3263129A1 (fr) 2016-06-29 2018-01-03 Ceva Sante Animale Entérite virale du canard et son utilisation
CN113652406B (zh) * 2021-09-01 2023-05-02 青岛易邦生物工程有限公司 一种鸡传染性喉气管炎重组病毒株及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002803A2 (fr) * 1988-09-13 1990-03-22 Rhone-Merieux S.A. Vaccins antiviraux
EP0477056A1 (fr) * 1990-09-07 1992-03-25 Rhone Merieux S.A. Virus herpès recombinants, vaccins les comprenant, procédé de préparation et gènes US 3
EP0719864A2 (fr) * 1994-12-30 1996-07-03 Rhone Merieux Vaccin vivant recombinant aviaire, utilisant comme vecteur un virus herpès aviaire
FR2728794A1 (fr) * 1994-12-30 1996-07-05 Rhone Merieux Vaccin recombinant aviaire a base de virus herpes aviaire, notamment contre la maladie de gumboro
WO1996021034A1 (fr) * 1994-12-30 1996-07-11 Rhone Merieux Vaccin vivant recombinant aviaire
WO1996029396A1 (fr) * 1995-03-23 1996-09-26 Syntro Corporation Virus de la laryngotracheite infectieuse recombine et ses utilisations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2220941B (en) * 1988-06-24 1991-09-11 Nat Res Dev Fowlpox virus non-essential regions
WO1992003554A1 (fr) * 1990-08-24 1992-03-05 Arthur Webster Pty. Ltd. Vaccin contre le virus de la laryngotracheite infectieuse
CA2172387A1 (fr) * 1993-09-24 1995-03-30 Martha A. Wild Virus recombinant de la laryngotracheite infectieuse aviaire; applications
AU2946395A (en) * 1994-06-30 1996-01-25 Board of Regents of the University of Illinois, The Recombinant infectious laryngotracheitis virus and vaccine
FR2722208B1 (fr) * 1994-07-05 1996-10-04 Inst Nat Sante Rech Med Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002803A2 (fr) * 1988-09-13 1990-03-22 Rhone-Merieux S.A. Vaccins antiviraux
EP0477056A1 (fr) * 1990-09-07 1992-03-25 Rhone Merieux S.A. Virus herpès recombinants, vaccins les comprenant, procédé de préparation et gènes US 3
EP0719864A2 (fr) * 1994-12-30 1996-07-03 Rhone Merieux Vaccin vivant recombinant aviaire, utilisant comme vecteur un virus herpès aviaire
FR2728794A1 (fr) * 1994-12-30 1996-07-05 Rhone Merieux Vaccin recombinant aviaire a base de virus herpes aviaire, notamment contre la maladie de gumboro
WO1996021034A1 (fr) * 1994-12-30 1996-07-11 Rhone Merieux Vaccin vivant recombinant aviaire
WO1996029396A1 (fr) * 1995-03-23 1996-09-26 Syntro Corporation Virus de la laryngotracheite infectieuse recombine et ses utilisations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN,B.-F., ET AL.: "CHARACTERIZATION OF A BICISTRONIC RETROVIRAL VECTOR COMPOSED OF THE SWINE VESICULAR DISEASE VIRUS INTERNAL RIBOSOME ENTRY SITE", JOURNAL OF VIROLOGY, vol. 67, no. 4, April 1993 (1993-04-01), pages 2142 - 2148, XP002041412 *
FUCHS,W. AND METTENLEITNER,T.C.: "DNA SEQUENCE AND TRANSCRIPTIONAL ANALYSIS OF THE UL1 TO UL5 GENE CLUSTER OF INFECTIOUS LARYNGOTRACHEITIS VIRUS", JOURNAL OF GENERAL VIROLOGY, vol. 77, 1996, pages 2221 - 2229, XP002041411 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026246A1 (fr) * 1997-10-03 2000-08-09 Nippon Zeon Co., Ltd. Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers
EP1026246A4 (fr) * 1997-10-03 2002-11-20 Nippon Zeon Co Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers
US6632664B1 (en) 1997-10-03 2003-10-14 Nippon Zeon Co., Ltd. Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same
EP1241177A1 (fr) * 2001-03-15 2002-09-18 Akzo Nobel N.V. Virus recombinant de la laryngotrachéite infectieuse et vaccin

Also Published As

Publication number Publication date
AU734085B2 (en) 2001-05-31
ZA9711247B (en) 1999-06-17
CO4650231A1 (es) 1998-09-03
US6033670A (en) 2000-03-07
TNSN97207A1 (fr) 2005-03-15
AR010086A1 (es) 2000-05-17
JP2001510338A (ja) 2001-07-31
EP0948637A1 (fr) 1999-10-13
FR2757061A1 (fr) 1998-06-19
MA24422A1 (fr) 1998-07-01
FR2757061B1 (fr) 1999-03-26
AU5562798A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
EP0968297B1 (fr) Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
EP0948637A1 (fr) Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
EP0719864B1 (fr) Vaccin vivant recombinant aviaire, utilisant comme vecteur un virus herpès de dindes
WO1997049826A1 (fr) Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
EP0910657B1 (fr) Vaccin vivant recombinant a base d'herpesvirus canin, notamment contre la maladie de carre, la rage ou le virus parainfluenza de type 2
EP0728842B1 (fr) Vaccin vivant recombinant aviaire à base de virus herpès aviaire, notamment contre la maladie de gumboro
EP0870046B1 (fr) Vaccin vivant recombinant a base d'herpesvirus felin de type 1, notamment contre la peritonite infectieuse feline
US5853733A (en) Recombinant herpesvirus of turkeys and uses thereof
EP0517292B1 (fr) Virus de l'Avipox recombinant
US6913751B2 (en) Recombinant avian herpesvirus useful in vaccine production
US20100008948A1 (en) Recombinant herpesvirus useful in vaccine production
WO1996021034A1 (fr) Vaccin vivant recombinant aviaire
AU7838694A (en) Recombinant infectious laryngotracheitis virus and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997952066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 55627/98

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 527394

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997952066

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 55627/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1997952066

Country of ref document: EP