WO1998026266A1 - Judgement method of acceptance/rejection of pressure sensor - Google Patents

Judgement method of acceptance/rejection of pressure sensor Download PDF

Info

Publication number
WO1998026266A1
WO1998026266A1 PCT/JP1996/003601 JP9603601W WO9826266A1 WO 1998026266 A1 WO1998026266 A1 WO 1998026266A1 JP 9603601 W JP9603601 W JP 9603601W WO 9826266 A1 WO9826266 A1 WO 9826266A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
voltage
sensor
vacuum
discharge
Prior art date
Application number
PCT/JP1996/003601
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihisa Matsui
Tomio Matsui
Masahiro Ueda
Atsuo Irisa
Original Assignee
Hokkei Industries L.T.D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkei Industries L.T.D. filed Critical Hokkei Industries L.T.D.
Priority to PCT/JP1996/003601 priority Critical patent/WO1998026266A1/en
Priority to PCT/JP1997/001627 priority patent/WO1998026267A1/en
Publication of WO1998026266A1 publication Critical patent/WO1998026266A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/40Investigating fluid-tightness of structures by using electric means, e.g. by observing electric discharges

Definitions

  • a strain gauge type pressure sensor is indispensable as a vacuum sensor for, for example, increasing the efficiency of an automobile engine.
  • This type of normal pressure sensor detects the pressure difference between the internal high vacuum area and the external pressure introduction pipe by means of a piezoelectric element installed in a vacuum insulated manner between the two. The value is amplified as an electrical signal and extracted.
  • the degree of vacuum inside the container during manufacturing is usually 6.7 Pa (0.05 Torr) or less, and the durability of the vacuum sensor is 20 years or more. That is, it is said that the maximum permissible vacuum leak rate of this kind of pressure sensor that is put into practical use must be less than 1.0 X 10 ⁇ —5 ⁇ Pa ⁇ ccZ seconds.
  • the current general inspection method is to enclose the pressure sensor in a radioactive material autoclave for several days, and if a vacuum leak occurs, the radioactive gas is sucked. It is usually referred to as the “radicro method,” in which measurements are made at power supply or the like to determine the quality or vacuum leak rate.
  • the present invention has been made in view of the above-mentioned conventional problems, and has been made in consideration of the conventional determination method using radioactivity. Instead, it is possible to estimate practically a wide range from both discharge and electrical output characteristics for vacuum leaks and electrical circuit defects, and to determine the quality of pressure sensors easily, safely, accurately, non-polluting and economically.
  • the purpose is to provide. Disclosure of the invention
  • the present invention proposes a new method for measuring the internal pressure of a pressure sensor container as described above, and the present invention is based on, in principle, Paschen's law that the firing voltage depends on the degree of vacuum inside the container. Based on (Paschen's Law), it is possible to instantaneously measure the degree of vacuum inside a sensor container from the discharge starting voltage of the first pulse, and pass / fail without giving any change to the state inside the sensor container It proposes a method that can judge.
  • the method for judging the quality of a pressure sensor according to the present invention is based on a strain gauge type pressure sensor that measures pressure by a strain voltage generated from a difference between a degree of vacuum inside a sensor and a pressure applied to a pressure introducing unit. This is a method for determining whether or not leakage has occurred.
  • the positive electrode side of a power supply that generates a DC high voltage is connected to a terminal having all electrodes short-circuited through a resistor having a high resistance value, the sensor-one container is grounded, and the terminal and the cell are connected to each other.
  • the resistance value of this resistor is selected so that the discharge current does not destroy the circuit in the sensor-one container.
  • the principle adopted by the present invention for measuring the vacuum pressure of such a pressure sensor is Paschen's law as described above. As is well known, this law defines the minimum voltage required to cause a spark discharge as a function of the product of the distance between the electrodes and the pressure of the gas when the electric field is uniform and the temperature and humidity of the gas are constant. Is to be done. Use this rule Then, the vacuum leak rate is measured from the relationship between the discharge phenomenon and the pressure.
  • the pass / fail judgment method of the pressure sensor according to the present invention requires a certain period of time until the judgment can be made, but the degree of vacuum can be instantaneously measured from the discharge starting voltage of one discharge pulse. It is a completely new method that can measure without changing the internal state.
  • FIG. 1 is a plan sectional view (A) and a partial side sectional view (B) showing the structure of a pressure sensor 1 to be measured.
  • FIG. 2 is a conceptual diagram showing a measurement system according to the present invention of the pressure sensor of FIG.
  • FIG. 3 is a cross-sectional view conceptually showing a configuration of an experimental apparatus for verifying the present invention.
  • FIG. 4 is a graph showing a result of discharging by applying a voltage in the experimental apparatus of FIG.
  • FIG. 5 is a graph showing an enlarged part of FIG.
  • FIG. 6 is a waveform diagram showing a discharge pulse waveform due to voltage application in the experimental apparatus of FIG.
  • FIG. 7 is a graph showing the relationship between the number of days and the pressure change when a leak occurs at the allowable maximum leak rate.
  • the pressure sensor 11 includes a base 1a, a plurality of electrodes 2 and a pressure introduction pipe 3 provided electrically insulated from each other, a metal diaphragm 4 attached to a tip of the pressure introduction pipe 3, and a diaphragm 4
  • IC piezoelectric element and an IC circuit
  • wiring between the IC circuit 5 and the electrode 2, and the upper part of them is covered with the metal container 6.
  • the principle adopted by the present invention for measuring the vacuum pressure of the pressure sensor 1 is to measure the vacuum leak rate from the relationship between the discharge phenomenon and the pressure according to Paschen's law as described above. That is, since the vacuum pressure P 1 can be estimated from the discharge starting voltage or discharge current caused by the difference in vacuum pressure, the internal pressure P 1 at a certain time T 1 is measured, and after a certain period T (seconds), By measuring the pressure P 2 at this point, the average rate of pressure change R during this period is
  • a terminal 2a in which all the electrodes 2 of the pressure sensor 11 of FIG. 1 are short-circuited, is connected to a DC high-voltage power supply 8 via an external resistor 7,
  • the metal container 6 is grounded via an external resistor 9 and an ammeter (A meter) 10, and a storage oscilloscope 11 is connected so that the voltage at both ends of the external resistor 9 can be observed and the discharge starting voltage can be recorded.
  • the voltmeter 12 is connected so as to indicate the applied voltage V0 from the power supply 8.
  • the power supply 8 sets the maximum applied voltage so as to generate an actual discharge voltage Vs (usually several hundred to several thousand) between the electrodes 2 and 2 of the pressure sensor 1.
  • a computer 13 is connected to the power supply 8 as means for varying the output voltage.
  • an electromagnetic relay 14 that is turned off by one discharge current is connected to the negative electrode side of the power supply 8, and this is grounded.
  • the present invention makes it possible to estimate the internal pressure of one sensor and one container from one discharge pulse without affecting the inside of the pressure sensor as much as possible.
  • the discharge voltage and discharge current are detected as early as possible so that the discharge can be stopped instantaneously.
  • a high resistance value of about 50 ⁇ is used as the external resistance 7.
  • the discharge voltage between the terminal 2a and the metal container 6 drops by 500 V, and the discharge stops.
  • the discharge current Id naturally stops flowing, so that the voltage V 0 applied by the power supply 8 is applied again between the terminal 2 a and the metal container 6, and the next discharge can be started.
  • the discharge starting voltage itself does not depend at all on the size of the external resistor 7, and therefore, in practicing the present invention, it is necessary to actually connect and check resistors having various resistance values.
  • the output voltage of the power supply 8 can be changed in a desired form by the computer 13, and the voltage application from the power supply 8 is turned on and off by the electromagnetic relay 14.
  • a sharp rise in the applied voltage V 0 from the power supply 8 leads to large current discharge, that is, generation of a plurality of pulses in a short time.
  • the next discharge is performed.
  • the circuit is automatically opened by the electromagnetic relay 14 before a pulse occurs. If the electromagnet used for the electromagnetic relay 14 has, for example, a dead time of about 0.5 ms and a rise time of about 1 ms, a delay of 1.5 ms occurs before operation starts.
  • the increase control of the applied voltage V 0 from the power supply 8 is controlled by the computer 13 so as to correspond to this time delay.
  • the shape of the electron emitting surface is like a needle tip having a diameter of about several i ⁇ m, the above-described strength can be easily reached even at a voltage of several hundred V.
  • the end of the pin-shaped electrode 2 and the IC surrounded by the plurality of electrodes 2 and arranged at the center thereof are several 10 m or so. Since the metal wires are connected by a thin metal wire and the distance between such a metal wire and the inner surface of the metal container 6 is 1 mm or less, there is a high possibility that the field emission as described above will occur.
  • the electric field strength may be sufficiently different by an order of magnitude, and the electron emission is an exponential function of the electric field strength. Differently.
  • the metal container 6 is grounded, and a positive electrode is connected to the terminal 2 a where the electrode 2 is short-circuited so that electrons are emitted from the metal container 6 to the electrode 2. Is applied. That is, by stabilizing the discharge start state, in other words, stabilizing the discharge start voltage by causing the electron emission to occur on the inner surface of the flat metal container 6.
  • FIGS. 3 and 4 showing measurement results of the discharge starting voltage Vd and the discharge current Id when the pressure P1 in the metal container 6 is changed.
  • the pressure measurement experimental device is configured as shown in FIG. First, the metal container 6 is removed, and the electrode 2, the pressure introducing pipe 3, the diaphragm 4, and the IC circuit 5 are mounted on the base la. It is attached to an acrylic plate 20 with holes as shown in the figure using an adhesive such as an arral die, covered with a vacuum bell jar 21, and inserted into one through hole of the vacuum bell jar 21. A Pirani vacuum gauge 22 is connected, a rotary pump (not shown) is connected to the other through-hole via a cock 23, and another one of the through-holes is connected to outside air through a cock 24. To allow the internal pressure of the pressure sensor to be adjusted freely.
  • reference numeral 25 denotes an insulating silicone agent
  • reference numeral 26 denotes a lead wire.
  • FIG. 4 shows a wide range from Equation 1 OPa to Equation 1 00 Pa
  • FIG. 5 shows a range from practical 50 Pa to 200 Pa in FIG. It is shown enlarged.
  • the results shown in these figures show that the relationship between the discharge starting voltage and the internal pressure of the sensor vessel changes according to Passen's law, which can be the basis for estimating the internal pressure of the pressure sensor according to the present invention. Is well shown.
  • the peak value of the current in one-pulse discharge is about 2.5 mA (25 V / 10 X 10 13 ⁇ ⁇ ), and the average time is about 5 mA. // seconds. This was converted to an average current of 12.5 nA. Naturally, no needle touch was observed even when measured with a 10-meter full-scale ammeter. Conversely, if pulses of the same waveform occur intermittently, for example, a discharge current of 1 mm is observed, then 80 discharge pulses are generated per second, and the average pulse in that case The interval time, that is, the period T was 12.5 milliseconds, and the next pulse discharge was almost certainly stopped by an electromagnetic relay with an operation time of 1.5 milliseconds. By the way, the energy per pulse at this time is 0.313 J, which is about this level. It is unlikely that the energy will damage the IC circuit.
  • the permissible maximum leak rate Sm is about 1.0X 10 ⁇ —5P (P a 'c cZ seconds) due to the life of this type of pressure sensor (about 20 years).
  • Fig. 7 shows the relationship between the number of days and pressure change when a leak occurs at this allowable maximum leak rate Sm. From FIG. 7, it can be seen that if the internal volume V of the pressure sensor is, for example, 0.5 cc, there is a pressure rise of about 25 Pa or more in two weeks.
  • the pressure measurement range it is desirable to set the pressure measurement range to about 20 Pa to 100 Pa. If the pressure is 20 Pa or less, the internal pressure of one sensor does not reach 50 Pa even after about 2 weeks, and even if a high voltage of about 1500 V is applied, no discharge occurs, and the vacuum leakage rate is reduced. Estimation may not be possible. Conversely, if the pressure is 100 Pa or more, even if the internal pressure of one sensor container becomes 125 Pa after about two weeks, the change in the firing voltage at that time is small and within the error range. However, there is a possibility that the vacuum leak rate cannot be estimated.

Abstract

A method of judging acceptance/rejection of strain gauge type pressure sensors (1) depending on leakage, wherein the pressure sensor (1) measures the pressure by a strain voltage occurring from the difference between the vacuum inside the sensor container and a pressure applied to a pressure introduction portion. When inspection is carried out for judgement, a high D.C. voltage is applied between a terminal (2a) for short-circuiting all the electrodes (2) and a metallic container (6) by a power supply (8) for generating a high D.C. voltage. A resistor (7) having a high resistance value selected to keep discharge current from destroying an IC circuit inside the metallic container (6) is inserted between the positive terminal of the power supply (8) and the terminal (2a). The high D.C. voltage from the power supply (8) is controlled by a computer (13). The voltage is slowly changed in the beginning, and is turned OFF after a discharge of one pulse. The vacuum pressure inside the metallic container (6) is measured from the discharge current Id of one pulse in accordance with the Paschen's law. This measurement is repeated at two-week intervals, for example, and a mean pressure change ratio during this period is determined. If this pressure change ratio exceeds a predetermined value, the product is rejected because of leakage.

Description

明細書  Specification
圧力センサ一の良否判定方法 技術分野  Quality judgment method of pressure sensor
本発明は、 歪みゲージ式の圧力センサーの真空漏れについての良否判定方法に 関する。 背景技術  The present invention relates to a method for judging the quality of a vacuum leak of a strain gauge type pressure sensor. Background art
歪みゲージ式の圧力センサ一は、 例えば自動車用のエンジンの高効率化等のた めの真空センサ一として必要不可欠のものである。 通常のこの種の圧力センサ一 は、 内部の高真空領域と外部からの圧力導入管との間の圧力差を、 両者の間に真 空的に絶縁して設置した圧電素子により検出し、 検出値を電気信号として増幅し て取り出している。 製造時における容器内部の真空度は、 通常は 6 . 7 P a ( 0 . 0 5 T o r r ) 以下であり、 真空センサ一としての耐久年数は 2 0年以上とされ る。 即ち、 実用化されているこの種の圧力センサ一の最大許容真空漏れ率として は、 1 . 0 X 1 0†— 5† P a · c c Z秒以下が必要であるといわれている。 ところで、 このようなセンサー構造では、 容器内部の真空度がある値まで低下 すると圧電素子の出力電気信号が外部からの圧力変化に比例しなくなる。 この真 空漏れは、 圧力センサーとしては致命傷である。 このため種々の真空漏れ検査が 行われている。 現行の一般的な検査方法は、 圧力センサーを放射性物質の加圧釜 中に数日間封入し、 真空漏れが生じていれば放射能ガスを吸引してしまうので、 それを取り出して放射能強度をガイガー力ゥン夕一等で測定し、 良否や真空漏れ 率を判定するという、 通常ラジクロ法と称されるものである。  A strain gauge type pressure sensor is indispensable as a vacuum sensor for, for example, increasing the efficiency of an automobile engine. This type of normal pressure sensor detects the pressure difference between the internal high vacuum area and the external pressure introduction pipe by means of a piezoelectric element installed in a vacuum insulated manner between the two. The value is amplified as an electrical signal and extracted. The degree of vacuum inside the container during manufacturing is usually 6.7 Pa (0.05 Torr) or less, and the durability of the vacuum sensor is 20 years or more. That is, it is said that the maximum permissible vacuum leak rate of this kind of pressure sensor that is put into practical use must be less than 1.0 X 10 † —5 † Pa · ccZ seconds. By the way, in such a sensor structure, when the degree of vacuum inside the container is reduced to a certain value, the electric signal output from the piezoelectric element is not proportional to an external pressure change. This vacuum leak is fatal for a pressure sensor. For this reason, various vacuum leak inspections have been conducted. The current general inspection method is to enclose the pressure sensor in a radioactive material autoclave for several days, and if a vacuum leak occurs, the radioactive gas is sucked. It is usually referred to as the “radicro method,” in which measurements are made at power supply or the like to determine the quality or vacuum leak rate.
しかしながら、 このようなラジクロ法による良否判定では、 放射能物質の取り 扱いが大変困難で、 作業環境、 作業者の就労性が大変に悪い等の放射能汚染によ る公害、 環境問題がつきまとう。 このようなラジクロ法の他にも種々の判定方法 が知られているが、 いずれも手法が複雑で、 使用する機器、 装置が高価であり、 しかも判定に時間が掛かる等の問題がある。  However, in the quality judgment by the radio method, it is very difficult to handle radioactive materials, and there is a problem of pollution and environmental problems due to radioactive contamination such as extremely poor working environment and poor workability of workers. Various determination methods are known in addition to such a radiography method. However, all of them have problems that the method is complicated, equipment and devices to be used are expensive, and the determination takes time.
本発明はこのような従来の諸問題点に鑑み、 従来の放射能利用による判定方法 に代わって、 真空漏れ及び電気回路的な欠陥について放電と電気出力特性の両者 から広範囲にわたって実用的に推定でき、 しかも簡易かつ安全で、 かつ正確、 無 公害かつ経済的な圧力センサーの良否判定方法を提供することを目的とする。 発明の開示 The present invention has been made in view of the above-mentioned conventional problems, and has been made in consideration of the conventional determination method using radioactivity. Instead, it is possible to estimate practically a wide range from both discharge and electrical output characteristics for vacuum leaks and electrical circuit defects, and to determine the quality of pressure sensors easily, safely, accurately, non-polluting and economically. The purpose is to provide. Disclosure of the invention
本発明は、 上述のような圧力センサー容器の内部圧力測定の新しい方法を提案 するものであり、 本発明は、 原理的には、 放電開始電圧が容器内部の真空度に依 存するというパッシェンの法則 (Paschen's Law) を基に、 最初の 1個のパルス の放電開始電圧からセンサ一容器内部の真空度を瞬時に測定することが可能で、 センサー容器内部の状態に何の変化も与えずに良否を判定し得る方法を提案する ものである。  The present invention proposes a new method for measuring the internal pressure of a pressure sensor container as described above, and the present invention is based on, in principle, Paschen's law that the firing voltage depends on the degree of vacuum inside the container. Based on (Paschen's Law), it is possible to instantaneously measure the degree of vacuum inside a sensor container from the discharge starting voltage of the first pulse, and pass / fail without giving any change to the state inside the sensor container It proposes a method that can judge.
本発明に係る圧力センサ一の良否判定方法は、 センサ一容器内部の真空度と圧 力導入部に印加される圧力との差から生じる歪電圧によって圧力を測定する歪み ゲージ式の圧力センサーについて真空漏れの良否を判定する方法である。 本発明 では、 直流高電圧を発生させる電源の正極側を、 高抵抗値の抵抗を介してすベて の電極を短絡した端子に接続し、 上記センサ一容器を接地し、 上記端子と上記セ ンサ一容器との間に直流高電圧を印加し、 上記センサー容器内の真空度により生 じる放電電流から上記センサー容器内部の真空圧を測定し、 該測定を所定の期間 をおいて繰り返し、 該期間での平均的な圧力変化率が所定値を上回れば真空漏れ が生じているものとして不良品と判断するものである。 上記直流高電圧の印加は、 上記放電が 1パルスだけ行われる時間となるように制御する。 そのために、 電圧 印加開始の際には上記印加電圧をゆつくりと可変させるとともに、 上記 1パルス の放電で上記電圧印加をオフとする。 また上記電源の正極側と上記すベての電極 を短絡した端子との間には、 高抵抗値の抵抗を介在させる。 この抵抗の抵抗値は、 上記放電電流が上記センサ一容器内の回路を破壊しない値となるように選定する。 このような圧力センサーの真空圧の測定に本発明が採用する原理は、 上述のよ うにパッシェンの法則である。 この法則は、 周知のように、 電場が一様で気体の 温度、 湿度が一定ならば、 火花放電を起こすのに必要な最小電圧を、 電極間距離 と気体の圧力との積の関数として定められるというものである。 この法則を利用 して、 放電現象と圧力の関係から、 真空漏れ率を測定する。 即ち、 真空圧の違い によって生じる 1個の放電パルスの放電開始電圧または放電電流からその真空圧 が推定できるので、 ある時刻でのセンサー容器の内部圧力を測定し、 つぎにある 期間後での内部圧力を測定すれば、 この期間での平均的な圧力変化率を求め、 さ らに同じデ一夕によりその期間での漏れ率をセンサ一容器の内部容積とも関係さ せて求めることができる。 The method for judging the quality of a pressure sensor according to the present invention is based on a strain gauge type pressure sensor that measures pressure by a strain voltage generated from a difference between a degree of vacuum inside a sensor and a pressure applied to a pressure introducing unit. This is a method for determining whether or not leakage has occurred. In the present invention, the positive electrode side of a power supply that generates a DC high voltage is connected to a terminal having all electrodes short-circuited through a resistor having a high resistance value, the sensor-one container is grounded, and the terminal and the cell are connected to each other. A high DC voltage is applied between the sensor container and the sensor, the vacuum pressure inside the sensor container is measured from a discharge current generated by the degree of vacuum in the sensor container, and the measurement is repeated after a predetermined period. If the average rate of change in pressure during the period exceeds a predetermined value, it is determined that a vacuum leak has occurred and is determined to be defective. The application of the DC high voltage is controlled such that the discharge is performed for one pulse. Therefore, at the start of voltage application, the applied voltage is slowly varied, and the voltage application is turned off by the discharge of one pulse. In addition, a resistor having a high resistance value is interposed between the positive electrode side of the power supply and the terminal in which all the electrodes are short-circuited. The resistance value of this resistor is selected so that the discharge current does not destroy the circuit in the sensor-one container. The principle adopted by the present invention for measuring the vacuum pressure of such a pressure sensor is Paschen's law as described above. As is well known, this law defines the minimum voltage required to cause a spark discharge as a function of the product of the distance between the electrodes and the pressure of the gas when the electric field is uniform and the temperature and humidity of the gas are constant. Is to be done. Use this rule Then, the vacuum leak rate is measured from the relationship between the discharge phenomenon and the pressure. That is, since the vacuum pressure can be estimated from the discharge starting voltage or discharge current of one discharge pulse caused by the difference in vacuum pressure, the internal pressure of the sensor container at a certain time is measured, and the internal pressure after a certain period of time is measured. If the pressure is measured, the average rate of change in pressure during this period can be determined, and the leak rate during that period can be determined in relation to the internal volume of the sensor and the container using the same data.
従って、 本発明に係る圧力センサ一の良否判定方法は、 判定を下せるまである 程度の期間が必要となるが、 1個の放電パルスの放電開始電圧からその真空度を 瞬時に測定することが可能で、 内部状態に何の変化も与えずに測定し得る全く新 しい方法である。 図面の簡単な説明  Therefore, the pass / fail judgment method of the pressure sensor according to the present invention requires a certain period of time until the judgment can be made, but the degree of vacuum can be instantaneously measured from the discharge starting voltage of one discharge pulse. It is a completely new method that can measure without changing the internal state. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 測定対象となる圧力センサ一の構造を示す平面断面図 (A) 及び側面 部分断面図 (B ) である。  FIG. 1 is a plan sectional view (A) and a partial side sectional view (B) showing the structure of a pressure sensor 1 to be measured.
図 2は、 図 1の圧力センサ一の本発明による測定系を示す概念図である。  FIG. 2 is a conceptual diagram showing a measurement system according to the present invention of the pressure sensor of FIG.
図 3は、 本発明を実証するための実験装置の構成を概念的に示す断面図である。 図 4は、 図 4の実験装置での電圧印加による放電結果を示すグラフである。 図 5は、 図 5の一部を拡大して示すグラフである。  FIG. 3 is a cross-sectional view conceptually showing a configuration of an experimental apparatus for verifying the present invention. FIG. 4 is a graph showing a result of discharging by applying a voltage in the experimental apparatus of FIG. FIG. 5 is a graph showing an enlarged part of FIG.
図 6は、 図 4の実験装置での電圧印加による放電パルス波形を示す波形図であ る。  FIG. 6 is a waveform diagram showing a discharge pulse waveform due to voltage application in the experimental apparatus of FIG.
図 7は、 許容最大漏れ率で漏れたときの日数と圧力変化との関係を示すグラフ である。 発明を実施するための最良の形態  FIG. 7 is a graph showing the relationship between the number of days and the pressure change when a leak occurs at the allowable maximum leak rate. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず本発明で判定対象となる歪みゲージ式の圧力センサ一の構造例を図 1によ り説明する。 この圧力センサ一 1は、 ベース 1 aに複数本の電極 2 · · ·と圧力 導入管 3を互いに電気的に絶縁して設け、 圧力導入管 3の先端に金属ダイアフラ ム 4を取り付け、 ダイアフラム 4の面上に圧電素子及び I C回路 (以下単に I C 回路という。 ) 5 · · 'を設け、 I C回路 5と電極 2との間を配線し、 それらの 上部を金属容器 6で覆って構成してある。 First, a structural example of a strain gauge type pressure sensor to be determined in the present invention will be described with reference to FIG. The pressure sensor 11 includes a base 1a, a plurality of electrodes 2 and a pressure introduction pipe 3 provided electrically insulated from each other, a metal diaphragm 4 attached to a tip of the pressure introduction pipe 3, and a diaphragm 4 A piezoelectric element and an IC circuit (hereinafter simply IC) It is called a circuit. 5), wiring between the IC circuit 5 and the electrode 2, and the upper part of them is covered with the metal container 6.
このような圧力センサー 1の真空圧の測定に本発明が採用する原理は、 上述の ようにパッシェンの法則で、 放電現象と圧力の関係から、 真空漏れ率を測定する。 即ち、 真空圧の違いによって生じる放電開始電圧または放電電流からその真空圧 P 1が推定できるので、 ある時刻 T 1での内部圧力 P 1を測定し、 つぎにある期 間 T (秒) 後での圧力 P 2を測定すれば、 この期間での平均的な圧力変化率 Rが、 The principle adopted by the present invention for measuring the vacuum pressure of the pressure sensor 1 is to measure the vacuum leak rate from the relationship between the discharge phenomenon and the pressure according to Paschen's law as described above. That is, since the vacuum pressure P 1 can be estimated from the discharge starting voltage or discharge current caused by the difference in vacuum pressure, the internal pressure P 1 at a certain time T 1 is measured, and after a certain period T (seconds), By measuring the pressure P 2 at this point, the average rate of pressure change R during this period is
R= (P 2 -P 1) /T (P a ' c cZ秒) R = (P 2 -P 1) / T (P a 'c cZ seconds)
として求められる。 またそのときの漏れ率 Sは、 センサーの内部容積を VとしてIs required. In addition, the leak rate S at that time is expressed assuming that the internal volume of the sensor is V
S= (P 2 -P 1) v/T (P a · c cZ秒) S = (P 2 -P 1) v / T (P a · c cZ seconds)
として、 求められる。 Is required.
そこで図 2に示すように、 図 1の圧力センサ一 1のすベての電極 2 · · ·を短 絡した端子 2 aを、 外部抵抗 7を介して直流高電圧の電源 8と接続し、 金属容器 6を外部抵抗 9と電流計 ( A計) 10を介して接地し、 外部抵抗 9の両端の電 圧を観察及び放電開始電圧の記録が可能となるようにストレージオシロスコープ 11を接続する。 電圧計 12は、 電源 8からの印加電圧 V0を示すように接続す る。 電源 8は、 圧力センサー 1の電極 2、 2間での実際の放電電圧 Vs (通常数 100〜数1000 ) を生じさせ得るように最大印加電圧を設定する。 また電 源 8には、 その出力電圧を可変させる手段としてコンピュータ 13を接続する。 さらに、 電源 8の負極側には、 1個の放電電流でオフとなる電磁リレー 14を接 続し、 これを接地する。  Therefore, as shown in FIG. 2, a terminal 2a, in which all the electrodes 2 of the pressure sensor 11 of FIG. 1 are short-circuited, is connected to a DC high-voltage power supply 8 via an external resistor 7, The metal container 6 is grounded via an external resistor 9 and an ammeter (A meter) 10, and a storage oscilloscope 11 is connected so that the voltage at both ends of the external resistor 9 can be observed and the discharge starting voltage can be recorded. The voltmeter 12 is connected so as to indicate the applied voltage V0 from the power supply 8. The power supply 8 sets the maximum applied voltage so as to generate an actual discharge voltage Vs (usually several hundred to several thousand) between the electrodes 2 and 2 of the pressure sensor 1. Further, a computer 13 is connected to the power supply 8 as means for varying the output voltage. Further, an electromagnetic relay 14 that is turned off by one discharge current is connected to the negative electrode side of the power supply 8, and this is grounded.
既に述べたように、 本発明は、 圧力センサ一 1の内部にできる限り影響を与え ないで、 1個の放電パルスからセンサ一容器の内部圧力を推定することを可能と するもので、 そのために、 できるだけ早い時期に放電電圧や放電電流を検出し、 瞬時に放電を止めてしまえるようにしている。  As described above, the present invention makes it possible to estimate the internal pressure of one sensor and one container from one discharge pulse without affecting the inside of the pressure sensor as much as possible. However, the discharge voltage and discharge current are detected as early as possible so that the discharge can be stopped instantaneously.
そのための第 1の手段として、 外部抵抗 7として 50ΜΩ程度の高抵抗値のも のを用いている。 このようにすると、 例えば I d= 10 の放電電流が流れた とすると、 外部抵抗 7の両端で VR= 500 V (VR = R I dの関係から、 50 X 1 0† 6† X 1 0 X 1 0† -6† = 500V) の電圧降下が生じ、 V s = V 0 一 V Rの関係から端子 2 aと金属容器 6間での放電電圧が 5 0 0 V降下して放電 が停止する。 放電が停止すると、 当然に放電電流 I dが流れなくなるので、 再 び電源 8による印加電圧 V 0が端子 2 aと金属容器 6間に加わり、 次の放電が開 始し得る状態となる。 なお当然ながら、 放電開始電圧そのものは外部抵抗 7の大 きさには全く依存しないので、 本発明の実施にあたっては、 実際に各種の抵抗値 の抵抗を接続して確認する必要がある。 As a first measure for this purpose, a high resistance value of about 50ΜΩ is used as the external resistance 7. In this case, for example, if a discharge current of Id = 10 flows, VR = 500 V at both ends of the external resistor 7 (from the relation of VR = RI d, 50 X 10 0 6 X 10 0 X 1 0 † -6 † = 500V), V s = V 0 Due to the relationship of one VR, the discharge voltage between the terminal 2a and the metal container 6 drops by 500 V, and the discharge stops. When the discharge stops, the discharge current Id naturally stops flowing, so that the voltage V 0 applied by the power supply 8 is applied again between the terminal 2 a and the metal container 6, and the next discharge can be started. Needless to say, the discharge starting voltage itself does not depend at all on the size of the external resistor 7, and therefore, in practicing the present invention, it is necessary to actually connect and check resistors having various resistance values.
一方、 このようなパルス放電の繰り返しは、 電源 8からの印加電圧 V 0によつ て大きく異なる。 1パルスのみでは電流計 1 0の針の触れは全く観察されないが、 このパルスがかなり頻繁に生じるようになると数; Aの電流が平均値として観測 される。 ところが、 たとえ 1〜数; Aの微小な電流でも、 この電流計 1 0で観測 されてしまえば、 本発明者等の行った実験では、 この時には少なくても数十〜数 百個のパルスが電流計 1 0を通過しており、 その後に圧力センサ一 1の動作確認 を行ってみると、 I C回路 5が完全に損傷を受け、 センサーとしての機能を失つ ていることがわかった。 したがって、 1個の放電パルスを検出したならば次の放 電パルスの発生を確実に止める必要があり、 そのためには、 電源 8からの印加電 圧 V 0をゆつくりと上昇させなければならない。  On the other hand, the repetition of such a pulse discharge greatly differs depending on the applied voltage V 0 from the power supply 8. No touch of the needle of the ammeter 10 is observed at all with only one pulse, but when this pulse becomes quite frequent, the current of the number; A is observed as an average value. However, even if the current is as small as 1 to several; A, if it is observed by the ammeter 10, the experiments conducted by the present inventors show that at least several tens to several hundreds of pulses are obtained at this time. After passing through the ammeter 10 and then checking the operation of the pressure sensor 11, it was found that the IC circuit 5 was completely damaged and lost its function as a sensor. Therefore, when one discharge pulse is detected, it is necessary to surely stop the generation of the next discharge pulse, and for that purpose, the voltage V 0 applied from the power supply 8 must be slowly increased.
そこで第 2の手段として、 コンピュータ 1 3により電源 8の出力電圧を所望の 形態で変化させ得るものとし、 電源 8からの電圧印加を電磁リレー 1 4によりォ ン、 オフさせるようにしている。  Therefore, as a second means, the output voltage of the power supply 8 can be changed in a desired form by the computer 13, and the voltage application from the power supply 8 is turned on and off by the electromagnetic relay 14.
即ち、 電源 8からの印加電圧 V 0の急激な上昇は、 大電流放電、 すなわち短時 間での複数個のパルス発生につながるので、 本実施形態では 1パルスのみ放電を 検出したら、 次の放電パルスが生じる前に電磁リレー 1 4により自動的に回路を 開く。 電磁リレー 1 4に使用する電磁石を、 例えば不感時間約 0 . 5ミリ秒、 立 ち上がり時間約 1ミリ秒のものとすると、 動作開始までに 1 . 5ミリ秒の時間遅 れが生じるので、 電源 8からの印加電圧 V 0の上昇制御をコンピュータ 1 3によ りこの時間遅れに見合うように制御する。  That is, a sharp rise in the applied voltage V 0 from the power supply 8 leads to large current discharge, that is, generation of a plurality of pulses in a short time. In this embodiment, if only one pulse is detected, the next discharge is performed. The circuit is automatically opened by the electromagnetic relay 14 before a pulse occurs. If the electromagnet used for the electromagnetic relay 14 has, for example, a dead time of about 0.5 ms and a rise time of about 1 ms, a delay of 1.5 ms occurs before operation starts. The increase control of the applied voltage V 0 from the power supply 8 is controlled by the computer 13 so as to correspond to this time delay.
なお、 本発明者等の行った実験では、 1パルス放電では放電間隔を例えば 1〜 2分間にすれば、 何度放電させても I C回路 5は何らの損傷も受けないことが確 認され、 実験の再現性も向上した。 ところで、 放電のきっかけとなる電極からの電子放出は、 電界、 すなわち電極 構造が決まっていれば放電電圧に大きく依存することは明らかであるが、 時には 空間を飛び回つている宇宙線等のために生じることもある。 電界による電子放出、 すなわちフィールドエミッションは通常 1 0† 8† VZm以上の電解強度で生じ る。 電子放出面の形状が数 i^ m径程度の針先のような形状であれば、 たとえ数 1 0 0 Vの電圧でも容易に上述のような強度に達する。 特に、 圧力センサ一 1の金 属容器 6の内部では、 ピン状の電極 2端部と、 複数の電極 2に囲まれてそれらの 中央部に配置される I Cとが、 数 1 0; m程度の細い金属線で接続されており、 かつそのような金属線と金属容器 6の内面間の距離が 1 mm以下であるので、 上 述のようなフィールドェミッションが生じる可能性が十分にある。 しかも、 金属 線と金属容器 6の内面間の距離がたとえ 1 0 %程度の誤差であっても、 電界強度 は 1桁ぐらいは十分異なる可能性があり、 電子放出は電界強度に対して指数関数 的に異なる。 In experiments performed by the present inventors, it was confirmed that if the discharge interval is set to, for example, 1 to 2 minutes in one-pulse discharge, the IC circuit 5 does not suffer any damage regardless of the number of discharges. The reproducibility of the experiment was also improved. By the way, it is clear that the electron emission from the electrode that triggers the discharge greatly depends on the electric field, that is, the discharge voltage if the electrode structure is determined. May also occur. Electron emission due to an electric field, ie, field emission, usually occurs at an electric field strength of 10 † 8 † VZm or more. If the shape of the electron emitting surface is like a needle tip having a diameter of about several i ^ m, the above-described strength can be easily reached even at a voltage of several hundred V. In particular, inside the metal container 6 of the pressure sensor 11, the end of the pin-shaped electrode 2 and the IC surrounded by the plurality of electrodes 2 and arranged at the center thereof are several 10 m or so. Since the metal wires are connected by a thin metal wire and the distance between such a metal wire and the inner surface of the metal container 6 is 1 mm or less, there is a high possibility that the field emission as described above will occur. In addition, even if the distance between the metal wire and the inner surface of the metal container 6 has an error of about 10%, the electric field strength may be sufficiently different by an order of magnitude, and the electron emission is an exponential function of the electric field strength. Differently.
そこで、 このようなフィールドェミッションの可能性を取り除くために、 金属 容器 6をアース (グラウンド) にとり、 金属容器 6から電極 2へ電子が放出する ように、 電極 2を短絡した端子 2 aに正の高電圧を印加するようにしている。 即 ち、 電子放出が平坦な金属容器 6の内面で生じるようにして、 放電開始状態の安 定化、 換言すれば放電開始電圧の安定化を図っている。  Therefore, in order to eliminate the possibility of such field emission, the metal container 6 is grounded, and a positive electrode is connected to the terminal 2 a where the electrode 2 is short-circuited so that electrons are emitted from the metal container 6 to the electrode 2. Is applied. That is, by stabilizing the discharge start state, in other words, stabilizing the discharge start voltage by causing the electron emission to occur on the inner surface of the flat metal container 6.
なお本発明との比較例として、 外部抵抗 7の抵抗値を、 通常のこの種の実験、 観察に用いられる数 Κ Ω程度のものすると、 放電によって数 1 0 0; A程度の電 流が流れても、 外部抵抗 7による電圧降下はせいぜい数 V程度である。 このため、 圧力センサー 1の電極 2、 2間での実際の放電電圧 V sはほとんど変化せず、 こ のため連続的な放電となり、 圧力センサ一 1内部の I C回路 5が損傷してしまい、 正常に動作しなくなる。  As a comparative example with the present invention, when the resistance value of the external resistor 7 is about several ΩΩ used for ordinary experiments and observations of this kind, a current of about 100; However, the voltage drop due to the external resistor 7 is at most about several volts. As a result, the actual discharge voltage Vs between the electrodes 2 and 2 of the pressure sensor 1 hardly changes, resulting in a continuous discharge, and the IC circuit 5 inside the pressure sensor 11 is damaged. It does not work properly.
次に本発明の実験例として、 金属容器 6内の圧力 P 1を変化させたときの放電 開始電圧 V dおよび放電電流 I dの測定結果を示す図 3、 図 4を参照して説明す る。  Next, an experimental example of the present invention will be described with reference to FIGS. 3 and 4 showing measurement results of the discharge starting voltage Vd and the discharge current Id when the pressure P1 in the metal container 6 is changed. .
圧力測定実験装置を図 3に示すように構成する。 まず、 金属容器 6を取り外し てべ一ス l aに電極 2、 圧力導入管 3、 ダイアフラム 4及び I C回路 5が搭載し てあるだけの状態とし、 これを図示のように穴の開いたアクリル板 2 0にァラル ダイ卜等の接着材により接着し、 真空ベルジャー 2 1で覆い、 真空ベルジャー 2 1の一つの通孔にピラニー真空計 2 2を接続し、 他の一の通孔にコック 2 3を介 してロータリ一ポンプ (図示せず) を接続し、 さらに他の一の通孔をコック 2 4 を介して外気に接続し、 疑似的に圧力センサーの内圧を自由に調整できるように する。 なお図中 2 5は絶縁用シリコン剤、 2 6はリード線である。 The pressure measurement experimental device is configured as shown in FIG. First, the metal container 6 is removed, and the electrode 2, the pressure introducing pipe 3, the diaphragm 4, and the IC circuit 5 are mounted on the base la. It is attached to an acrylic plate 20 with holes as shown in the figure using an adhesive such as an arral die, covered with a vacuum bell jar 21, and inserted into one through hole of the vacuum bell jar 21. A Pirani vacuum gauge 22 is connected, a rotary pump (not shown) is connected to the other through-hole via a cock 23, and another one of the through-holes is connected to outside air through a cock 24. To allow the internal pressure of the pressure sensor to be adjusted freely. In the figure, reference numeral 25 denotes an insulating silicone agent, and reference numeral 26 denotes a lead wire.
次に、 既に述べた図 2の測定回路を用いて、 センサー内圧 Pと放電開始電圧 V 0の関係を調べた。 電流計 1 0には、 1 0 フルスケールのものを用いた。 この実験の結果と検討内容を説明する。 まず、 本実験による放電開始電圧とセ ンサ一容器の内圧との関係を図 4、 図 5に、 またそのときのパルス波形例を図 6 に示す。 図 4は、 数 1 O P a〜数 1 0 0 0 0 P aまでの広い範囲を示し、 図 5は、 図 4中の、 実用的な 5 0 P a〜2 0 0 P aまでの範囲を拡大して示している。 こ れらの図に示す結果は、 放電開始電圧とセンサー容器の内圧との関係が、 パッシ ェンの法則の通り推移し、 これが本発明による圧力センサ一の内部圧力推定の基 準となり得ることをよく示している。  Next, the relationship between the sensor internal pressure P and the firing voltage V 0 was examined using the measurement circuit of FIG. 2 described above. As the ammeter 10, a 10 full-scale ammeter was used. The results of this experiment and the details of the study will be described. First, the relationship between the firing voltage and the internal pressure of the sensor vessel in this experiment is shown in Figs. 4 and 5, and Fig. 6 shows an example of the pulse waveform at that time. FIG. 4 shows a wide range from Equation 1 OPa to Equation 1 00 Pa, and FIG. 5 shows a range from practical 50 Pa to 200 Pa in FIG. It is shown enlarged. The results shown in these figures show that the relationship between the discharge starting voltage and the internal pressure of the sensor vessel changes according to Passen's law, which can be the basis for estimating the internal pressure of the pressure sensor according to the present invention. Is well shown.
なお、 この実験結果によれば、 同一のセンサーで、 同一の圧力であっても約 1 0 %程度の誤差が認められる。 これは、 印加電圧を上昇させる速度にバラツキが あつたためで、 コンピュータ等の制御手段により自動的に電圧上昇を調整すれば 改良できる。 もちろん、 このような誤差範囲が狭いほど短期間でかつ広範囲の圧 力を推定できる。  According to the results of this experiment, an error of about 10% is recognized even with the same sensor and the same pressure. This is because the speed at which the applied voltage is increased varies, and can be improved by automatically adjusting the voltage increase by control means such as a computer. Of course, the narrower the error range is, the shorter the pressure and the wider the pressure can be estimated.
そして、 図 6の波形を観察すると、 1パルス放電における電流の尖頭値は約 2 . 5 mA ( 2 5 V/ 1 0 X 1 0† 3† Ω ) であり、 その時間は平均で約 5 //秒であ る。 これを平均電流に換算すると、 1 2 . 5 n Aとなり、 当然のことながら 1 0 Αフルスケールの電流計で計測しても、 針の触れは全く観察されなかった。 逆 に、 同じ波形のパルスが間欠的に生じて、 例えば 1 Αの放電電流が観察された とすると、 1秒間に 8 0個の放電パルスが発生したことになり、 その場合の平均 的なパルス間隔時間、 即ち周期 Tは 1 2 . 5ミリ秒となり、 動作時間 1 . 5ミリ 秒の電磁リレーで、 ほとんど確実に次のパルス放電を止めることができた。 ちな みに、 この時の 1パルス当たりのエネルギーは 0 . 3 1 3 Jで、 この程度のェ ネルギ一で I C回路が損傷を受けるとは考えられない。 Observing the waveform in Fig. 6, the peak value of the current in one-pulse discharge is about 2.5 mA (25 V / 10 X 10 13 † Ω), and the average time is about 5 mA. // seconds. This was converted to an average current of 12.5 nA. Naturally, no needle touch was observed even when measured with a 10-meter full-scale ammeter. Conversely, if pulses of the same waveform occur intermittently, for example, a discharge current of 1 mm is observed, then 80 discharge pulses are generated per second, and the average pulse in that case The interval time, that is, the period T was 12.5 milliseconds, and the next pulse discharge was almost certainly stopped by an electromagnetic relay with an operation time of 1.5 milliseconds. By the way, the energy per pulse at this time is 0.313 J, which is about this level. It is unlikely that the energy will damage the IC circuit.
上述のような圧力センサ一の良否判定方法を、 圧力センサーの真空漏れ測定に 実際に用いる場合について説明する。  A description will be given of a case where the above-described method of determining the quality of the pressure sensor is actually used for measuring a vacuum leak of the pressure sensor.
既に述べたように、 通常のこの種の圧力センサ一の寿命 (約 20年) 等の関係 で、 許容最大漏れ率 Smは 1. 0X 10†— 5† (P a ' c cZ秒) 程度である が、 この許容最大漏れ率 S mで漏れたときの日数と圧力変化との関係を図 7に示 す。 図 7からは、 圧力センサ一の内部容積 Vを、 例えば 0. 5 c cとすると、 2 週間で約 25 P a強の圧力上昇があることがわかる。  As already mentioned, the permissible maximum leak rate Sm is about 1.0X 10 † —5P (P a 'c cZ seconds) due to the life of this type of pressure sensor (about 20 years). However, Fig. 7 shows the relationship between the number of days and pressure change when a leak occurs at this allowable maximum leak rate Sm. From FIG. 7, it can be seen that if the internal volume V of the pressure sensor is, for example, 0.5 cc, there is a pressure rise of about 25 Pa or more in two weeks.
即ち、 実際の圧力センサーの真空漏れ測定においては、 この 25 Paの圧力変 化を放電開始電圧で検出できればよい。 換言すれば、 約 2週間放置した後の放電 開始電圧が誤差を含めて重複しなければそれだけの圧力変化があつたかどうか、 即ちセンサーの良否が判定できる。  That is, in the actual vacuum leak measurement of the pressure sensor, it is sufficient that this 25 Pa pressure change can be detected by the discharge starting voltage. In other words, if the discharge starting voltage after leaving it for about two weeks does not overlap with an error, it is possible to judge whether or not the pressure has changed so much, that is, the quality of the sensor.
一方、 これも既に述べた式  On the other hand, this is also the expression
S= (P 2 -P 1) v/T (P a ' c cZ秒)  S = (P 2 -P 1) v / T (P a 'c cZ seconds)
と図 5の関係から、 漏れ率を推定するためには、 圧力の測定対象範囲を約 20P a〜l 00 P a程度とすることが望ましい。 圧力が 20 P a以下では 2週間ほど 経過しても、 センサ一容器の内圧が 50 P aに到達せず、 たとえ 1500V程度 の高電圧を印加しても放電を生ぜず、 従って真空漏れ率を推定できない可能性が ある。 また逆に、 圧力が 100 P a以上では、 2週間ほど経過してセンサ一容器 の内圧が 125 P aになったとしても、 そのときの放電開始電圧変化が小さくて 誤差範囲内になってしまい、 やはり真空漏れ率を推定できない可能性がある。 なお、 ある一定圧力での放電開始電圧の誤差が小さければ、 上述した圧力の測 定対象範囲をもう少し広げられる可能性がある。 1つの可能性は、 真空に封じ込 んである圧力センサーの内圧がボイル ·シャルルの法則、 即ち From the relationship between Fig. 5 and Fig. 5, in order to estimate the leak rate, it is desirable to set the pressure measurement range to about 20 Pa to 100 Pa. If the pressure is 20 Pa or less, the internal pressure of one sensor does not reach 50 Pa even after about 2 weeks, and even if a high voltage of about 1500 V is applied, no discharge occurs, and the vacuum leakage rate is reduced. Estimation may not be possible. Conversely, if the pressure is 100 Pa or more, even if the internal pressure of one sensor container becomes 125 Pa after about two weeks, the change in the firing voltage at that time is small and within the error range. However, there is a possibility that the vacuum leak rate cannot be estimated. Note that if the error in the firing voltage at a certain pressure is small, the measurement range of the above-mentioned pressure may be slightly wider. One possibility is that the internal pressure of the pressure sensor, which is sealed in a vacuum, is due to Boyle-Charles law,
P V=nRT  P V = nRT
(P :圧力、 V:センサー内容積、 n:モル数、 R:気体定数、 T:絶対温度) に従い、 この場合 V、 n、 Rは一定であるので、 意識的に温度 Tを変えて圧力 P を都合の良い方に移動させることである。 例えば、 室温 27°C (T=30 OK) で封じ込んだとすれば、 57°C (T=33 OK) まで加熱すれば、 10%の温度 上昇があるから圧力も 10%上昇し、 センサ一封入圧力の最低値を 1 OP aまで、 また 0°C (T=273 Κ) まで冷やせば、 測定対象圧力の最大値を約 1 1 OP a まで広げることが可能になる。 (P: Pressure, V: Sensor internal volume, n: Number of moles, R: Gas constant, T: Absolute temperature) In this case, V, n, and R are constant. Move P to the more convenient one. For example, if it is sealed at room temperature 27 ° C (T = 30 OK), heating to 57 ° C (T = 33 OK) will give a 10% temperature The pressure rises by 10% because of the rise, and if the minimum value of the sealed pressure per sensor is reduced to 1 OPa, and if it is cooled down to 0 ° C (T = 273 Κ), the maximum value of the pressure to be measured will be about 11 OPa It is possible to expand to.
本発明は以上説明してきたとおりのものであるが、 請求の範囲に記載の事項の 範囲内において種々の変形例を実施することが可能であり、 また、 図示した回路 構成要素等は一例であって、 種々の代替手段を採用できる。  Although the present invention has been described above, various modifications can be made within the scope of the claims, and the circuit components and the like shown in the drawings are merely examples. Thus, various alternatives can be employed.

Claims

請求の範囲 The scope of the claims
1 . センサー容器内部の真空度と圧力導入部に印加される圧力との差から生じる 歪電圧によって圧力を測定する歪みゲージ式の圧力センサーについて、 該圧力セ ンサ一の良否を真空漏れの有無によって判定する方法であって、 直流高電圧を発 生させる電源の正極側をすベての電極を短絡した端子に接続し、 上記センサ一容 器を接地し、 上記端子と上記センサ一容器との間に直流高電圧を印加し、 上記セ ンサ一容器内の真空度により生じる放電電流から上記センサー容器内部の真空圧 を測定し、 該測定を所定の期間をおいて繰り返し、 該期間での平均的な圧力変化 率が所定値を上回れば真空漏れが生じているものとして不良品と判断するもので あり、 上記電源の正極側と上記端子との間には、 上記放電電流が上記センサ一容 器内の電子回路を破壊しない値となるように選定した高い抵抗値を有する抵抗を 介在させ、 上記直流高電圧の印加開始の際には、 上記印加電圧をゆっくりと可変 させ、 上記 1パルスの放電で上記電圧印加をオフとするように制御することを特 徵とする圧力センサ一の良否判定方法。 1. For a strain gauge type pressure sensor that measures pressure by a strain voltage generated from the difference between the degree of vacuum inside the sensor container and the pressure applied to the pressure introducing unit, the quality of the pressure sensor is determined by the presence or absence of vacuum leakage. A method for determining, comprising: connecting the positive electrode side of a power supply that generates a DC high voltage to all the short-circuited terminals, grounding the sensor container, and connecting the terminal to the sensor container. DC high voltage is applied during the period, the vacuum pressure inside the sensor container is measured from the discharge current generated by the degree of vacuum in the sensor container, and the measurement is repeated after a predetermined period, and the average during the period is measured. If the actual pressure change rate exceeds a predetermined value, it is determined that a vacuum leak has occurred and is determined to be defective.The discharge current between the positive electrode side of the power supply and the terminal is the same as that of the sensor. Electricity in the vessel A high-resistance resistor selected so as not to destroy the slave circuit is interposed.When starting the application of the DC high voltage, the applied voltage is slowly varied, and the one-pulse discharge is performed. A method for judging the quality of a pressure sensor, which is characterized in that the voltage application is controlled to be turned off.
PCT/JP1996/003601 1996-12-09 1996-12-09 Judgement method of acceptance/rejection of pressure sensor WO1998026266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/003601 WO1998026266A1 (en) 1996-12-09 1996-12-09 Judgement method of acceptance/rejection of pressure sensor
PCT/JP1997/001627 WO1998026267A1 (en) 1996-12-09 1997-05-14 Method of determining a defective pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003601 WO1998026266A1 (en) 1996-12-09 1996-12-09 Judgement method of acceptance/rejection of pressure sensor

Publications (1)

Publication Number Publication Date
WO1998026266A1 true WO1998026266A1 (en) 1998-06-18

Family

ID=14154214

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1996/003601 WO1998026266A1 (en) 1996-12-09 1996-12-09 Judgement method of acceptance/rejection of pressure sensor
PCT/JP1997/001627 WO1998026267A1 (en) 1996-12-09 1997-05-14 Method of determining a defective pressure sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001627 WO1998026267A1 (en) 1996-12-09 1997-05-14 Method of determining a defective pressure sensor

Country Status (1)

Country Link
WO (2) WO1998026266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501830A (en) * 1996-10-10 2001-02-13 ライフ テクノロジーズ,インコーポレイテッド Animal cell culture medium containing plant-derived nutrients

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352656A (en) * 2014-07-30 2016-02-24 无锡华润上华半导体有限公司 Test device and test method for pressure sensor
CN113050172B (en) * 2021-03-12 2022-05-24 中国电建集团贵阳勘测设计研究院有限公司 Current field test method for slag storage leakage channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104846A (en) * 1977-02-24 1978-09-12 Fujitsu Ltd Leakage check method for reed switch
JPS5723833A (en) * 1980-07-18 1982-02-08 Hitachi Ltd Pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104846A (en) * 1977-02-24 1978-09-12 Fujitsu Ltd Leakage check method for reed switch
JPS5723833A (en) * 1980-07-18 1982-02-08 Hitachi Ltd Pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501830A (en) * 1996-10-10 2001-02-13 ライフ テクノロジーズ,インコーポレイテッド Animal cell culture medium containing plant-derived nutrients

Also Published As

Publication number Publication date
WO1998026267A1 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
EP2006699B1 (en) Test method and apparatus for spark plug insulator
US6592253B2 (en) Precision temperature probe having fast response
CN103575465B (en) For the thermal diagnosis of monocrystalline process fluid pressure sensor
JP4008173B2 (en) Capacitor insulation resistance measuring method and insulation resistance measuring device
JPH0146833B2 (en)
WO1998026266A1 (en) Judgement method of acceptance/rejection of pressure sensor
JPH076795A (en) Device for detecting internal condition of battery
CA1161114A (en) Non-destructive testing method and apparatus for spot welds
JP3341393B2 (en) Welding strength measuring device
CN111103506B (en) Method for detecting breakdown voltage of special-shaped plate
JP2011028931A (en) Battery insulation testing device
Ueda et al. A new method for detecting vacuum leakage of a pressure sensor using a pulse discharge technique
RU2176396C1 (en) Process of remote periodic test of conversion factor of piezoelectric accelerometer
CN111665420A (en) Ultrasonic partial discharge detection device and detection method thereof
KR101787876B1 (en) A method and system for measuring plasma density using capacitance, and a prove therefor
JP2005166268A (en) Static eliminator
US9638664B2 (en) Method of analyzing a material
JPS6050461A (en) Method of non-destructive insulation test
US3559460A (en) Method and apparatus for detecting gross leaks
JPH09178590A (en) Method for deciding go/no-go of pressure sensor
SU195168A1 (en) ELECTRIC DISCHARGE SENSOR FOR LOW PRESSURE MEASUREMENT
JP2009103683A (en) Device and method for testing electrostatic charge
JPS6257094B2 (en)
JPS6031152Y2 (en) Gas ratio testing device for electron tube
JP3664002B2 (en) Gas pressure measuring method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase