WO1998025317A1 - Device for connecting a line with a fuel cell stack - Google Patents

Device for connecting a line with a fuel cell stack Download PDF

Info

Publication number
WO1998025317A1
WO1998025317A1 PCT/EP1997/006740 EP9706740W WO9825317A1 WO 1998025317 A1 WO1998025317 A1 WO 1998025317A1 EP 9706740 W EP9706740 W EP 9706740W WO 9825317 A1 WO9825317 A1 WO 9825317A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
recess
fuel cell
cell stack
temperature
Prior art date
Application number
PCT/EP1997/006740
Other languages
German (de)
French (fr)
Inventor
Uwe Diekmann
Dirk Grunwald
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1998025317A1 publication Critical patent/WO1998025317A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a device for connecting a line to a fuel cell stack.
  • a fuel cell stack has several fuel cells as an essential component.
  • a fuel cell is composed of a cathode, an electrolyte and an anode.
  • the cathode becomes an oxidizing agent, e.g. B. air and the anode becomes a fuel, e.g. B. supplied hydrogen.
  • Fuel and oxidizing agents are generally referred to below as operating resources.
  • fuel cells e.g. B. the SOFC fuel cell, which is also called high-temperature fuel cell, since its operating temperature is up to 1000 ° C.
  • Oxygen ions form on the cathode of a high-temperature fuel cell in the presence of the oxidizing agent.
  • the oxygen ions pass through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. Recombination releases electrons and thus generates electrical energy.
  • the connecting element of two fuel cells is known as an interconnector. It effects the electrical and mechanical coupling of two fuel cells. Furthermore, the connecting element serves to form cathode or anode spaces. A cathode is located in a cathode compartment. An anode is located in an anode compartment. Fuel cells stacked in this way are called fuel cell stacks.
  • Connecting elements are also arranged at both ends of the fuel cell stack, but are configured only on one side for guiding an operating medium flow. These items will be End plates called and are bordered by so-called cover plates, which are parts of a housing of the fuel cell stack. If the cover plates and other parts of the housing are electrically conductive, it is generally necessary to provide electrical insulation between the end plates and the cover plates.
  • the fuel cell stack is usually operated in cross flow.
  • two opposite sides each serve an inlet and outlet of an operating medium, while the other two sides represent the inlet and outlet of the other operating medium.
  • the connecting element serves as a guiding element that separates the two operating resources from one another.
  • Operating space is to be understood in the following to mean any space which is directly adjacent to a fuel cell stack and which serves for the supply or discharge of operating resources. Such equipment room must be tightly connected to the fuel cell stack.
  • Both electrical lines and equipment lines are necessary for the operation of a fuel cell stack, the assembly of the fuel cell stacks in a production area and the start-up thereof being carried out at the place of use, at different times and locations.
  • the power lines connected to the fuel cell stack are usually produced from connecting wires which are soldered to the end plates in the production area.
  • the disadvantage here is that a complex solder connection between the end plate and the connecting wire is necessary.
  • Another disadvantage is that the connecting wires have to be connected to supply lines on site. Because of the high operating temperatures, the connection point between the connecting wire and the supply line must be arranged outside the high temperature range. Long and un- Handy connecting wires are therefore required, which have an adverse effect on assembly and transport.
  • the equipment lines are usually connected by material connections, z. B. by soldering or welding, connected to the housing containing the resource rooms of the fuel cell stack. These operating lines, which are fastened in the production area during assembly, are then connected to the operating equipment supply and discharge lines at the place of use outside the high temperature range. Suitable seals and screw connections are generally used.
  • material connections z. B. by soldering or welding
  • These operating lines which are fastened in the production area during assembly, are then connected to the operating equipment supply and discharge lines at the place of use outside the high temperature range. Suitable seals and screw connections are generally used.
  • DE 43 08 780 Cl discloses an arrangement for connecting stacks of high-temperature fuel cells to feed lines to each stack for two reaction gases.
  • the arrangement has a central connecting tube, which is provided with flat connecting surfaces for the direct, gas-tight connection of the stacks and on which the stacks are arranged one behind the other.
  • the first reaction gas flows through this central connecting pipe, while the second reaction gas is supplied in a further space between the pipe and a filling pipe.
  • the arrangement described above for connecting fuel cell stacks to supply lines has the disadvantage that the supply lines have to be fastened to the central connecting pipe by means of an integral connection. Therefore, the arrangement known from DE 43 08 780 Cl also has the disadvantages that long and unwieldy connecting lines have to be installed in the factory, which then have a disadvantageous effect on assembly and transport.
  • the invention is therefore based on the technical problem of specifying a device for connecting a line to a fuel cell stack which reliably connects the line to enables the fuel cell stack and at the same time simplifies the transport and assembly of the fuel cell stack on site.
  • a recess is formed on a layer surrounding the fuel cell stack and in that one end of a line engages in the recess, the coefficient of thermal expansion of the material forming the recess being lower than the coefficient of thermal expansion of the material of the line is.
  • the depression which receives the end of the line is formed in the material of the layer.
  • the depression consists of a plug-in socket attached to the layer.
  • connection of the line to the fuel cell stack for example for testing the fuel cell stack
  • the cable can be removed from the recess for transport in the cooled state, so that, in addition to transport, assembly on site is also made easier. This is because the fuel cell stack no longer has any bulky lines projecting beyond the actual dimensions of the fuel cell stack.
  • the line is designed as an electrical line, which conducts the current generated by the fuel cell stack and supplies it to a consumer. It is therefore necessary for the depression to be in electrically conductive contact with an end plate of the fuel cell stack. The depression is thus formed on the one hand on the end plate or on the other hand on the cover plate.
  • the cover plate is in electrically conductive contact with the end plate, but is electrically insulated from the other cover plate. Therefore, in this case, for example, the part of the housing that connects the two cover plates is designed to be electrically insulating.
  • the line is preferably designed as a resource line.
  • the line is connected to one of the cover plates, which forms part of the housing.
  • the line is connected to the equipment room to be supplied or disposed of by the line.
  • the line serves both as an electrical line and as a resource line.
  • the line is connected to one of the cover plates and is both in electrical connection with the associated end plate and in a fluidic connection with the corresponding equipment room.
  • Fig. 1 in cross section a device for connecting an electrical line to a fuel cell stack, the recess being connected to the end plate
  • Fig. 2 shows the device shown in Fig. 1, in which the recess is formed in the material of the end plate, and Fig. 3 in cross section a device for connecting a
  • a fuel cell stack 1 which is bordered by two end plates 2 and 3 above and below.
  • the material of the end plates is, for example, a ferritic high-temperature alloy.
  • a sleeve 4 is integrally connected to the upper end plate 2, which preferably consists of the same material as the end plate 2.
  • the sleeve 4 thus forms the recess.
  • a line 5 is now inserted into the sleeve 4, which consists of an austenitic high-temperature alloy, for example a nickel-based alloy.
  • a sleeve 6 and a line 7 are arranged on the lower end plate 3.
  • the lines 5 and 7 are preferably designed as metal rods.
  • the depression is formed directly in the material of the end plate 2, the line 5 being arranged in the depression in the same way as described above.
  • the ferritic high-temperature alloy now has a lower coefficient of thermal expansion than the austenitic high-temperature alloy. Therefore, the outer dimensions of the lines 5 and 7 will expand more than the inner dimensions of the sleeves 4 and 6 when the temperature of the fuel cell stack 1 increases to the operating temperature of approximately 1000 ° C. This results in a firm mechanical contact, which thus leads to a highly conductive connection between the sleeves 4 and 6 and the lines 5 and 7.
  • FIG. 3 shows a fuel cell stack 1 with an operating medium space 8, which has a device according to the invention for connecting an operating medium line to the fuel cell stack 1.
  • a sleeve 9 is connected to the cover plate 12 of the fuel cell stack, into which a line 10 carrying an operating medium is inserted.
  • the arrangement of the sleeve 9 in the cover plate 11 is so chosen that the sleeve 9 forms a fluidic connection between the line 10 and the equipment room 8.
  • the same materials are preferably used for the sleeve 9 and the line 10 as were previously described for the device for connecting the electrical lines 5 and 7 to the fuel cell stack 1.
  • the sleeve 9 consists of a ferritic high-temperature alloy and the line 10 consists of an austenitic high-temperature alloy.
  • heating the fuel cell stack 1 to the operating temperature leads to a firm mechanical connection, which in this case is gas-tight and thus enables the flow of an operating medium.
  • the device shown in FIG. 3 for connecting an operating line 10 to a fuel cell stack 1 is also suitable for the power line. All that is required is that the cover plate 12 is electrically connected to the end plate 3 of the fuel cell stack 1. On the other hand, the housing parts 13, which connect the two cover plates 11 and 12 to one another, are electrically insulating, so that the fuel cell stack 1 is not closed briefly via the housing parts 13.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a device for connecting a line with a fuel cell stack, which solves the technical problem of developing a device which reliably connects a line with a fuel cell stack and simultaneously simplifies both transport and the assembly of said stack at the place of use. This is achieved by means of a device comprising a recess (4, 6; 9) formed in a layer of material (2, 3; 11, 12) surrounding the fuel cell stack (1), whereby one end of the line (5, 7; 10) enters the recess (4, 6; 9), and where the thermal expansion coefficient of the material forming the recess (4, 6; 9) is lower than the thermal expansion coefficient of the material forming the line (5, 7; 10).

Description

Vorrichtung zum Verbinden einer Leitung mit einem Brennstoffzellenstapel Device for connecting a line to a fuel cell stack
Die Erfindung betrifft eine Vorrichtung zum Verbinden einer Leitung mit einem Brennstoffzellenstapel.The invention relates to a device for connecting a line to a fuel cell stack.
Ein Brennstoffzellenstapel weist als wesentlichen Bestandteil mehrere Brennstoffzellen auf. Eine Brennstoffzelle wiederum ist aus einer Kathode, einem Elektrolyten sowie einer Anode zusammengesetzt. Der Kathode wird ein Oxidationsmittel, z. B. Luft und der Anode wird ein Brennstoff, z. B. Wasserstoff zugeführt. Brennstoff sowie Oxidations- mittel werden im folgenden allgemein Betriebsmittel genannt.A fuel cell stack has several fuel cells as an essential component. A fuel cell is composed of a cathode, an electrolyte and an anode. The cathode becomes an oxidizing agent, e.g. B. air and the anode becomes a fuel, e.g. B. supplied hydrogen. Fuel and oxidizing agents are generally referred to below as operating resources.
Es gibt verschiedene Brennstoffzellentypen, z. B. die SOFC-Brennstoff- zelle, die auch Hochtemperatur-Brennstoffzelle genannt wird, da ihre Betriebstemperatur bis zu 1000 °C beträgt.There are different types of fuel cells, e.g. B. the SOFC fuel cell, which is also called high-temperature fuel cell, since its operating temperature is up to 1000 ° C.
An der Kathode einer Hochtemperatur-Brennstoffzelle bilden sich in Anwesenheit des Oxidationsmittels Sauerstoffionen. Die Sauerstoffionen passieren den Elektrolyten und rekombinieren auf der Anodenseite mit dem vom Brennstoff stammenden Wasserstoff zu Wasser. Mit der Rekombination werden Elektronen freigesetzt und so elektri- sehe Energie erzeugt.Oxygen ions form on the cathode of a high-temperature fuel cell in the presence of the oxidizing agent. The oxygen ions pass through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. Recombination releases electrons and thus generates electrical energy.
Zur Erzielung großer Leistungen werden mehrere Brennstoffzellen aufeinander gestapelt und elektrisch seriell miteinander verbunden. Das verbindende Element zweier Brennstoffzellen ist unter der Bezeichnung Interkonnektor bekannt. Es bewirkt die elektrische sowie die mechanische Kopplung zweier Brennstoffzellen. Ferner dient das verbindende Element der Bildung von Kathoden- oder Anodenräumen. In einem Kathodenraum befindet sich eine Kathode. In einem Anodenraum befindet sich eine Anode. Derart gestapelte Brennstoffzellen werden Brennstoffzellenstapel genannt.To achieve high performance, several fuel cells are stacked on top of one another and electrically connected together in series. The connecting element of two fuel cells is known as an interconnector. It effects the electrical and mechanical coupling of two fuel cells. Furthermore, the connecting element serves to form cathode or anode spaces. A cathode is located in a cathode compartment. An anode is located in an anode compartment. Fuel cells stacked in this way are called fuel cell stacks.
An beiden Enden des Brennstoffzellenstapels sind ebenfalls verbindende Elemente angeordnet, die jedoch nur einseitig für die Führung eines Betriebsmittelstromes ausgestaltet sind. Diese Elemente werden Endplatten bezeichnet und werden von sogenannten Deckplatten eingefaßt, die Teile eines Gehäuses des Brennstoffzellenstapels darstellen. Sofern die Deckplatten und andere Teile des Gehäuses elektrisch leitend sind, ist in der Regel das Anbringen einer elektrischen Isolierung zwischen den Endplatten und den Deckplatten notwendig.Connecting elements are also arranged at both ends of the fuel cell stack, but are configured only on one side for guiding an operating medium flow. These items will be End plates called and are bordered by so-called cover plates, which are parts of a housing of the fuel cell stack. If the cover plates and other parts of the housing are electrically conductive, it is generally necessary to provide electrical insulation between the end plates and the cover plates.
Der Brennstoffzellenstapel wird üblicherweise im Kreuzstrom betrieben. Dabei dienen bei bspw. einem viereckigen Grundriß des Brennstoffzellenstapel jeweils zwei sich gegenüberliegende Seiten einen Ein- und Auslaß eines Betriebsmittels, während die beiden übrigen Seiten den Ein- und Auslaß des anderen Betriebsmittels darstellen. Somit kreuzen sich die beiden Betriebsmittelströme innerhalb des Brennstoffzellenstapels, ohne jedoch in direktem Kontakt miteinander zu stehen. Das verbindende Element dient dabei als die beiden Betriebsmittel voneinander trennendes und gleichzeitig führendes Element.The fuel cell stack is usually operated in cross flow. In this case, for example in a quadrangular plan of the fuel cell stack, two opposite sides each serve an inlet and outlet of an operating medium, while the other two sides represent the inlet and outlet of the other operating medium. Thus, the two flows of resources intersect within the fuel cell stack, but without being in direct contact with one another. The connecting element serves as a guiding element that separates the two operating resources from one another.
Unter Betriebsmittelraum ist nachfolgend jeder Raum zu verstehen, der an einen Brennstoffzellenstapel unmittelbar angrenzt und der der Zu- oder Abführung von Betriebsmitteln dient. Ein derartiger Betriebsmittelraum muß dicht mit dem Brennstoffzellenstapel verbunden sein.Operating space is to be understood in the following to mean any space which is directly adjacent to a fuel cell stack and which serves for the supply or discharge of operating resources. Such equipment room must be tightly connected to the fuel cell stack.
Für den Betrieb eines Brennstoffzellenstapels sind sowohl elektrische Leitungen als auch Betriebsmittelleitungen notwendig, wobei die Montage der Brennstoffzellenstapel in einem Fertigungsbereich und die Inbetriebnahme davon zeitlich und räumlich getrennt am Einsatzort erfolgt.Both electrical lines and equipment lines are necessary for the operation of a fuel cell stack, the assembly of the fuel cell stacks in a production area and the start-up thereof being carried out at the place of use, at different times and locations.
Die mit dem Brennstoffzellenstapel verbundenen Stromleitungen werden üblicherweise aus Anschlußdrähten hergestellt, die im Fertigungsbereich an die Endplatten angelötet werden. Nachteilig ist dabei, daß eine aufwendige Lötverbindung zwischen der Endplatte und dem Anschlußdraht notwendig ist. Weiter ist nachteilig, daß die Anschluß- drahte an Zuleitungen am Einsatzort angeschlossen werden müssen. Dabei müssen wegen der hohen Betriebstemperaturen die Verbindungsstelle zwischen dem Anschlußdraht und der Zuleitung außerhalb des Hochtemperaturbereiches angeordnet sein. Lange und un- handliche Anschlußdrähte sind somit erforderlich, die sich nachteilig auf die Montage und den Transport auswirken.The power lines connected to the fuel cell stack are usually produced from connecting wires which are soldered to the end plates in the production area. The disadvantage here is that a complex solder connection between the end plate and the connecting wire is necessary. Another disadvantage is that the connecting wires have to be connected to supply lines on site. Because of the high operating temperatures, the connection point between the connecting wire and the supply line must be arranged outside the high temperature range. Long and un- Handy connecting wires are therefore required, which have an adverse effect on assembly and transport.
Die Betriebsmittelleitungen werden üblicherweise durch stoffschlüssige Fügeverbindungen, z. B. durch Löten oder Schweißen, mit dem die Betriebsmittelräume enthaltenden Gehäuse des Brennstoffzellenstapels verbunden. Diese während der Montage im Fertigungsbereich befestigten Betriebsmittelleitungen werden anschließend am Einsatzort außerhalb des Hochtemperaturbereiches mit den Betriebsmit- telzu- und ableitungen verbunden. Dabei werden in der Regel ge- eignete Dichtungen und Schraubverbindungen angewendet. Auch hier ergibt sich der Nachteil, daß lange Betriebsmittelleitungen am Fertigungsort mit dem Brennstoffzellenstapel verbunden werden müssen, die den Transport und die weitere Montage erheblich beeinträchtigen.The equipment lines are usually connected by material connections, z. B. by soldering or welding, connected to the housing containing the resource rooms of the fuel cell stack. These operating lines, which are fastened in the production area during assembly, are then connected to the operating equipment supply and discharge lines at the place of use outside the high temperature range. Suitable seals and screw connections are generally used. Here, too, there is the disadvantage that long operating lines have to be connected to the fuel cell stack at the production site, which considerably impair the transport and the further assembly.
Die DE 43 08 780 Cl, von der die vorliegende Erfindung ausgeht, offenbart eine Anordnung zum Anschließen von Stapeln von Hochtemperaturbrennstoffzellen an Zuleitungen zu jedem Stapel für zwei Reaktionsgase. Die Anordnung weißt ein mit ebenen Anschlußflächen für den unmittelbaren, gasdichten Anschluß der Stacks versehenen zen- tralen Anschlußrohr auf, auf welchem die Stacks hintereinander angeordnet sind. Durch dieses zentrale Anschlußrohr strömt das erste Reaktionsgas, während das zweite Reaktionsgas in einem weiteren Raum zwischen dem Rohr und einem Füllrohr zugeführt wird. Wie bereits zuvor beschrieben worden ist, weist die zuvor beschriebene Anordnung zum Anschließen von Brennstoffzellenstapeln an Zuleitungen den Nachteil auf, daß mittels stoffschlüssiger Verbindung die Zuleitungen an dem zentralen Anschlußrohr befestigt werden müssen. Daher kommt es auch bei dem aus der DE 43 08 780 Cl bekannten Anordnung zu den Nachteilen, daß lange und unhandliche Anschluß- leitungen werksseitig montiert werden müssen, die sich dann nachteilig auf die Montage und den Transport auswirken.DE 43 08 780 Cl, from which the present invention is based, discloses an arrangement for connecting stacks of high-temperature fuel cells to feed lines to each stack for two reaction gases. The arrangement has a central connecting tube, which is provided with flat connecting surfaces for the direct, gas-tight connection of the stacks and on which the stacks are arranged one behind the other. The first reaction gas flows through this central connecting pipe, while the second reaction gas is supplied in a further space between the pipe and a filling pipe. As has already been described above, the arrangement described above for connecting fuel cell stacks to supply lines has the disadvantage that the supply lines have to be fastened to the central connecting pipe by means of an integral connection. Therefore, the arrangement known from DE 43 08 780 Cl also has the disadvantages that long and unwieldy connecting lines have to be installed in the factory, which then have a disadvantageous effect on assembly and transport.
Der Erfindung liegt daher das technische Problem zugrunde, eine Vorrichtung zum Verbinden einer Leitung mit einem Brennstoffzellenstapel anzugeben, die ein zuverlässiges Verbinden der Leitung mit dem Brennstoffzellenstapel ermöglicht und gleichzeitig den Transport und die Montage des Brennstoffzellenstapels am Einsatzort vereinfacht.The invention is therefore based on the technical problem of specifying a device for connecting a line to a fuel cell stack which reliably connects the line to enables the fuel cell stack and at the same time simplifies the transport and assembly of the fuel cell stack on site.
Das zuvor aufgezeigte technische Problem wird erfindungsgemäß da- durch gelöst, daß eine Vertiefung an einer den Brennstoffzellenstapel umgebenden Schicht ausgebildet ist und daß ein Ende einer Leitung in die Vertiefung eingreift, wobei der Temperaturausdehnungskoeffizient des die Vertiefung bildenden Materials niedriger als der Temperaturausdehnungskoeffizient des Materials der Leitung ist. Erfindungs- gemäß ist also erkannt worden, daß die - ansonsten in der Regel nachteiligen - hohen Unterschiede zwischen der Betriebstemperatur und der Ruhetemperatur und das damit verbundene unterschiedliche Temperaturausdehnungsverhalten verschiedener Materialien für das Erzeugen einer zuverlässigen Verbindung während des Betriebes aus- genutzt werden können.The technical problem indicated above is solved according to the invention in that a recess is formed on a layer surrounding the fuel cell stack and in that one end of a line engages in the recess, the coefficient of thermal expansion of the material forming the recess being lower than the coefficient of thermal expansion of the material of the line is. According to the invention, it has thus been recognized that the - otherwise usually disadvantageous - high differences between the operating temperature and the rest temperature and the associated different temperature expansion behavior of different materials can be used to produce a reliable connection during operation.
Die Vertiefung, die das Ende der Leitung aufnimmt, ist bei einer ersten Ausgestaltung im Material der Schicht ausgebildet. Bei einer zweiten Ausgestaltung besteht die Vertiefung aus einer an der Schicht befestigten Einsteckbuchse. Jedenfalls ist es vorteilhaft, wenn die Abmessun- gen der Leitung und der Vertiefung so ausgestaltet sind, daß das Ende der Leitung im abgekühlten Zustand mit Passung in der Vertiefung angeordnet ist. Dadurch wird schon bei geringen temperaturbedingten Ausdehnungsunterschieden zwischen der Leitung und der Vertiefung eine feste Verbindung erzeugt.In a first embodiment, the depression which receives the end of the line is formed in the material of the layer. In a second embodiment, the depression consists of a plug-in socket attached to the layer. In any case, it is advantageous if the dimensions of the line and the recess are designed such that the end of the line is arranged with a fit in the recess in the cooled state. As a result, a firm connection is produced even with slight differences in expansion due to temperature between the line and the depression.
Ein Vorteil der vorliegenden Erfindung besteht also darin, daß bei der Montage im Fertigungsbereich die Verbindung der Leitung mit dem Brennstoffzellenstapel bspw. zum Testen des Brennstoffzellenstapels hergestellt werden kann, ohne daß die Verbindung dauerhaft ist. Denn zum Transport im abgekühlten Zustand kann die Leitung aus der Ver- tiefung entfernt werden, so daß neben dem Transport auch die Montage vor Ort erleichtert wird. Denn der Brennstoffzellenstapel weist nunmehr keine sperrigen, über die eigentlichen Abmessungen des Brennstoffzellenstapels hinausragenden Leitungen mehr auf. In einer ersten Ausgestaltung ist die Leitung als elektrische Leitung ausgebildet, die den vom Brennstoffzellenstapel erzeugten Strom leitet und einem Verbraucher zuführt. Daher ist es notwendig, daß die Vertiefung mit einer Endplatte des Brennstoffzellenstapels in elektrisch leitenden Kontakt steht. Die Vertiefung ist also einerseits an der Endplatte oder andererseits an der Deckplatte ausgebildet. Im letzteren Fall ist es erforderlich, daß die Deckplatte in elektrisch leitenden Kontakt mit der Endplatte steht, jedoch gegenüber der anderen Deckplatte elektrisch isoliert ist. Daher ist in diesem Fall bspw. der Teil des Gehäuses, der die beiden Deckplatten verbindet, elektrisch isolierend ausgebildet.An advantage of the present invention is thus that the connection of the line to the fuel cell stack, for example for testing the fuel cell stack, can be established during assembly in the production area without the connection being permanent. The cable can be removed from the recess for transport in the cooled state, so that, in addition to transport, assembly on site is also made easier. This is because the fuel cell stack no longer has any bulky lines projecting beyond the actual dimensions of the fuel cell stack. In a first embodiment, the line is designed as an electrical line, which conducts the current generated by the fuel cell stack and supplies it to a consumer. It is therefore necessary for the depression to be in electrically conductive contact with an end plate of the fuel cell stack. The depression is thus formed on the one hand on the end plate or on the other hand on the cover plate. In the latter case, it is necessary that the cover plate is in electrically conductive contact with the end plate, but is electrically insulated from the other cover plate. Therefore, in this case, for example, the part of the housing that connects the two cover plates is designed to be electrically insulating.
Weiterhin vorzugsweise ist die Leitung als Betriebsmittelleitung ausgestaltet. Dazu ist die Leitung mit einer der Deckplatten verbunden, die einen Teil des Gehäuses bildet. Die Leitung steht dabei in Verbindung mit dem von der Leitung zu ver- oder entsorgenden Betriebsmittel- räum.Furthermore, the line is preferably designed as a resource line. For this purpose, the line is connected to one of the cover plates, which forms part of the housing. The line is connected to the equipment room to be supplied or disposed of by the line.
Schließlich ist in bevorzugter Weise vorgesehen, daß die Leitung sowohl als elektrische Leitung als auch als Betriebsmittelleitung dient. In diesem Fall ist die Leitung mit einer der Deckplatten verbunden und steht sowohl mit der zugeordneten Endplatte in elektrischer Ver- bindung als auch in strömungstechnischer Verbindung mit dem entsprechenden Betriebsmittelraum. In dieser Variante ist es in vorteilhafter Weise möglich, weiteren Raumbedarf einzusparen, da die An¬ zahl der elektrischen Leitungen und Betriebsmittelleitungen auf ein Minimum begrenzt wird.Finally, it is preferably provided that the line serves both as an electrical line and as a resource line. In this case, the line is connected to one of the cover plates and is both in electrical connection with the associated end plate and in a fluidic connection with the corresponding equipment room. In this variant, it is possible advantageously to save further space requirements, as to ¬ number of electric lines and equipment lines is limited to a minimum.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, wobei auf die Zeichnung Bezug genommen wird. In der Zeichnung zeigtThe invention is explained in more detail below with the aid of exemplary embodiments, reference being made to the drawing. In the drawing shows
Fig. 1 im Querschnitt eine Vorrichtung zum Verbinden einer elektrischen Leitung mit einem Brennstoffzellenstapel, wobei die Vertiefung als mit der Endplatte verbundeneFig. 1 in cross section a device for connecting an electrical line to a fuel cell stack, the recess being connected to the end plate
Einsteckbuchse ausgebildet ist,Socket is formed,
Fig. 2 die in Fig. 1 dargestellte Vorrichtung, bei der die Vertiefung im Material der Endplatte ausgebildet ist, und Fig. 3 im Querschnitt eine Vorrichtung zum Verbinden einerFig. 2 shows the device shown in Fig. 1, in which the recess is formed in the material of the end plate, and Fig. 3 in cross section a device for connecting a
Betriebsmittelleitung mit einem Brennstoffzellenstapel.Resource management with a fuel cell stack.
In den Fig. 1 und 2 ist ein Brennstoffzellenstapel 1 dargestellt, der von zwei Endplatten 2 und 3 oben und unten eingefaßt wird. Das Material der Endplatten ist beispielsweise eine ferritische Hochtemperaturlegierung.1 and 2, a fuel cell stack 1 is shown, which is bordered by two end plates 2 and 3 above and below. The material of the end plates is, for example, a ferritic high-temperature alloy.
Wie in Fig. 1 dargestellt ist, ist eine Hülse 4 mit der oberen Endplatte 2, die vorzugsweise aus demselben Material wie die Endplatte 2 besteht, stoffschlüssig verbunden. Die Hülse 4 bildet somit die Vertiefung. Von oben ist nun eine Leitung 5 in die Hülse 4 eingeführt, die aus einer austhenitischen Hochtemperaturlegierung besteht, beispielsweise aus einer Nickel-Basis-Legierung. In gleicher Weise sind an der unteren Endplatte 3 eine Hülse 6 und eine Leitung 7 angeordnet. Die Leitungen 5 und 7 sind dabei vorzugsweise als Metallstäbe ausgebildet.As shown in Fig. 1, a sleeve 4 is integrally connected to the upper end plate 2, which preferably consists of the same material as the end plate 2. The sleeve 4 thus forms the recess. From above, a line 5 is now inserted into the sleeve 4, which consists of an austenitic high-temperature alloy, for example a nickel-based alloy. In the same way, a sleeve 6 and a line 7 are arranged on the lower end plate 3. The lines 5 and 7 are preferably designed as metal rods.
In einer weiteren in Fig. 2 dargestellten Ausgestaltung ist die Vertiefung direkt im Material der Endplatte 2 ausgebildet, wobei in gleicher Weise - wie zuvor beschrieben - die Leitung 5 in der Vertiefung angeordnet ist.In a further embodiment shown in FIG. 2, the depression is formed directly in the material of the end plate 2, the line 5 being arranged in the depression in the same way as described above.
Erfindungsgemäß weist nun die ferritische Hochtemperaturlegierung eine niedrigeren Temperaturausdehnungskoeffizienten als die austhenitische Hochtemperaturlegierung auf. Daher werden sich die äußeren Abmessungen der Leitungen 5 und 7 bei der Erhöhung der Temperatur des Brennstoffzellenstapels 1 auf die Betriebstemperatur von ungefähr 1000°C stärker als die inneren Abmessungen der Hülsen 4 und 6 ausdehnen. Dadurch kommt es zu einem festen mechanischen Kontakt, der somit zu einer gut leitenden Verbindung zwischen den Hülsen 4 bzw. 6 und den Leitungen 5 bzw. 7 führt.According to the invention, the ferritic high-temperature alloy now has a lower coefficient of thermal expansion than the austenitic high-temperature alloy. Therefore, the outer dimensions of the lines 5 and 7 will expand more than the inner dimensions of the sleeves 4 and 6 when the temperature of the fuel cell stack 1 increases to the operating temperature of approximately 1000 ° C. This results in a firm mechanical contact, which thus leads to a highly conductive connection between the sleeves 4 and 6 and the lines 5 and 7.
In Fig. 3 ist ein Brennstoffzellenstapel 1 mit einem Betriebsmittelraum 8 dargestellt, der eine erfindungsgemäße Vorrichtung zum Verbinden einer Betriebsmittelleitung mit dem Brennstoffzellenstapel 1 aufweist. Dazu ist eine Hülse 9 mit der Deckplatte 12 des Brennstoffzellenstapels verbunden, in die eine ein Betriebsmittel führende Leitung 10 eingeführt ist. Die Anordnung der Hülse 9 in der Deckplatte 11 ist dabei so gewählt, daß die Hülse 9 eine strömungstechnische Verbindung zwischen der Leitung 10 und dem Betriebsmittelraum 8 bildet.FIG. 3 shows a fuel cell stack 1 with an operating medium space 8, which has a device according to the invention for connecting an operating medium line to the fuel cell stack 1. For this purpose, a sleeve 9 is connected to the cover plate 12 of the fuel cell stack, into which a line 10 carrying an operating medium is inserted. The arrangement of the sleeve 9 in the cover plate 11 is so chosen that the sleeve 9 forms a fluidic connection between the line 10 and the equipment room 8.
Für die Hülse 9 und die Leitung 10 werden vorzugsweise dieselben Materialien verwendet, wie sie zuvor für die Vorrichtung zum Ver- binden der elektrischen Leitungen 5 und 7 mit dem Brennstoffzellenstapel 1 beschrieben worden sind. Die Hülse 9 besteht aus einer ferritischen Hochtemperaturlegierung und die Leitung 10 besteht aus einer austhenitischen Hochtemperaturlegierung. Auch bei dieser Ausführungsform führt also das Erhitzen des Brennstoffzellenstapels 1 auf die Betriebstemperatur zu einer festen mechanischen Verbindung, die in diesem Fall gasdicht ist und somit das Leiten eines Betriebsmittelstromes ermöglicht.The same materials are preferably used for the sleeve 9 and the line 10 as were previously described for the device for connecting the electrical lines 5 and 7 to the fuel cell stack 1. The sleeve 9 consists of a ferritic high-temperature alloy and the line 10 consists of an austenitic high-temperature alloy. In this embodiment too, heating the fuel cell stack 1 to the operating temperature leads to a firm mechanical connection, which in this case is gas-tight and thus enables the flow of an operating medium.
Die in Fig. 3 dargestellte Vorrichtung zum Verbinden einer Betriebsmittelleitung 10 mit einem Brennstoffzellenstapel 1 ist darüber hinaus auch für die Stromleitung geeignet. Dazu ist lediglich erforderlich, daß die Deckplatte 12 zum einen mit der Endplatte 3 des Brennstoffzellenstapels 1 elektrisch leitend verbunden ist. Zum anderen sind die Gehäuseteile 13, die die beiden Deckplatten 11 und 12 miteinander verbinden, elektrisch isolierend, damit nicht über die Gehäuseteile 13 der Brennstoffzellenstapel 1 kurz geschlossen wird. The device shown in FIG. 3 for connecting an operating line 10 to a fuel cell stack 1 is also suitable for the power line. All that is required is that the cover plate 12 is electrically connected to the end plate 3 of the fuel cell stack 1. On the other hand, the housing parts 13, which connect the two cover plates 11 and 12 to one another, are electrically insulating, so that the fuel cell stack 1 is not closed briefly via the housing parts 13.

Claims

Patentansprüche: Claims:
1. Vorrichtung zum Verbinden einer Leitung mit einem Brennstoffzellenstapel1. Device for connecting a line to a fuel cell stack
- mit einer Vertiefung (4, 6; 9), die an einer den Brennstoffzellenstapel (1) umgebenden Schicht (2, 3; 11, 12) ausgebildet ist, und- With a recess (4, 6; 9) which is formed on a layer (2, 3; 11, 12) surrounding the fuel cell stack (1), and
- mit einem in die Vertiefung (4, 6; 9) eingreifenden Ende der Leitung (5, 7; 10),- With one end of the line (5, 7; 10) engaging in the recess (4, 6; 9),
- wobei der Temperaturausdehnungskoeffizient des die Vertiefung (4, 6; 9) bildenden Materials niedriger als der Temperaturausdehnungskoeffizient des Materials der Leitung (5, 7; 10) ist.- The temperature expansion coefficient of the recess (4, 6; 9) forming material is lower than the temperature expansion coefficient of the material of the line (5, 7; 10).
- wobei bei der Ruhetemperatur das Ende der Leitung (5, 7; 10) aus der Vertiefung (4, 6; 9) lösbar ist und- The end of the line (5, 7; 10) from the recess (4, 6; 9) being detachable at the rest temperature and
- wobei bei der Betriebstemperatur wegen der größeren thermischen Ausdehnung des Endes der Leitung (5, 7; 10) gegenüber der Vertiefung- Wherein at the operating temperature because of the greater thermal expansion of the end of the line (5, 7; 10) relative to the recess
(4, 6; 9) eine feste mechanische Verbindung zwischen dem Ende der Leitung (5, 7; 10) und der Vertiefung (4, 6; 9) entsteht.(4, 6; 9) a firm mechanical connection between the end of the line (5, 7; 10) and the recess (4, 6; 9) is created.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vertiefung (4, 6; 9) als an der Schicht (2, 3; 11, 12) befestigte Einsteckbuchse ausgebildet ist.2. Apparatus according to claim 1, characterized in that the recess (4, 6; 9) is designed as a plug-in socket attached to the layer (2, 3; 11, 12).
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vertiefung im Material der Schicht (2, 3; 11, 12) ausgebildet ist.3. Apparatus according to claim 1, characterized in that the recess is formed in the material of the layer (2, 3; 11, 12).
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß die Leitung (5, 7; 10) bei niedriger Temperatur mit Passung in der Vertiefung (4, 6; 9) angeordnet ist. 4. The apparatus is characterized according to one of claims 1 to 3, characterized ¬ marked in that the line (5, 7; 10); disposed at low temperature with fit in the recess (9 4, 6).
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Leitung (5, 7) eine elektrische Leitung ist und die Vertiefung (4, 6) mit einer Endplatte (2, 3) des Brennstoffzellenstapels (1) elektrisch leitend verbunden ist.5. Device according to one of claims 1 to 4, characterized in that the line (5, 7) is an electrical line and the recess (4, 6) with an end plate (2, 3) of the fuel cell stack (1) electrically connected is.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Vertiefung (4, 6) an der Endplatte (2, 3) ausgebildet ist.6. The device according to claim 5, characterized in that the recess (4, 6) on the end plate (2, 3) is formed.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Vertiefung an einer mit einer Endplatte (2, 3) elektrisch leitend verbundenen Deckplatte (11, 12) ausgebildet ist und daß die die Deckplatten (11, 12) miteinander verbindenden Gehäuseteile (13) elektrisch isolierend ausgebildet sind.7. The device according to claim 5, characterized in that the recess is formed on a cover plate (11, 12) which is electrically conductively connected to an end plate (2, 3) and that the cover plates (11, 12) interconnecting housing parts (13) are electrically insulating.
8. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Leitung (10) eine mit einem Betriebsmittelraum (8) in Verbindung stehende Betriebsmittelleitung ist und daß die Vertiefung (9) an der einen Teil des Gehäuses bildenden Deckplatte (11, 12) ausge- bildet ist.8. Device according to one of claims 1 to 4, characterized in that the line (10) is a with an operating medium space (8) in connection operating line and that the recess (9) on the part of the housing forming the cover plate (11, 12) is trained.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Leitung (10) als Betriebsmittelleitung und als elektrische Leitung dient. 9. Device according to one of claims 1 to 8, characterized in that the line (10) serves as a resource line and as an electrical line.
PCT/EP1997/006740 1996-12-07 1997-12-02 Device for connecting a line with a fuel cell stack WO1998025317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19650901A DE19650901C2 (en) 1996-12-07 1996-12-07 Device for connecting a line to a fuel cell stack
DE19650901.7 1996-12-07

Publications (1)

Publication Number Publication Date
WO1998025317A1 true WO1998025317A1 (en) 1998-06-11

Family

ID=7813990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006740 WO1998025317A1 (en) 1996-12-07 1997-12-02 Device for connecting a line with a fuel cell stack

Country Status (2)

Country Link
DE (1) DE19650901C2 (en)
WO (1) WO1998025317A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1045082A (en) * 1950-11-16 1953-11-24 Westdeutsche Mannesmannrohren Multi-layer pipe for high pressures at high temperatures
US3505114A (en) * 1967-03-18 1970-04-07 Bbc Brown Boveri & Cie Electric battery comprising a plurality of series connected fuel cells with solid electrolyte
DE3139957A1 (en) * 1981-10-08 1983-04-21 Dornier System Gmbh, 7990 Friedrichshafen Metal/ceramic bond
JPH01251562A (en) * 1988-03-31 1989-10-06 Agency Of Ind Science & Technol Flat plate type solid electrolyte fuel cell
DE3907528A1 (en) * 1989-03-08 1990-09-20 Siemens Ag Device for bonding two parts of different expansion behaviour which can be joined to each other
JPH0334258A (en) * 1989-06-30 1991-02-14 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte type fuel battery
EP0460629A1 (en) * 1990-06-06 1991-12-11 Murata Manufacturing Co., Ltd. Solid oxide fuel cell
JPH05114416A (en) * 1991-10-24 1993-05-07 Sanyo Electric Co Ltd Fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308780C1 (en) * 1993-03-19 1994-11-17 Daimler Benz Ag Arrangement for connecting stacks of high-temperature fuel cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1045082A (en) * 1950-11-16 1953-11-24 Westdeutsche Mannesmannrohren Multi-layer pipe for high pressures at high temperatures
US3505114A (en) * 1967-03-18 1970-04-07 Bbc Brown Boveri & Cie Electric battery comprising a plurality of series connected fuel cells with solid electrolyte
DE3139957A1 (en) * 1981-10-08 1983-04-21 Dornier System Gmbh, 7990 Friedrichshafen Metal/ceramic bond
JPH01251562A (en) * 1988-03-31 1989-10-06 Agency Of Ind Science & Technol Flat plate type solid electrolyte fuel cell
DE3907528A1 (en) * 1989-03-08 1990-09-20 Siemens Ag Device for bonding two parts of different expansion behaviour which can be joined to each other
JPH0334258A (en) * 1989-06-30 1991-02-14 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte type fuel battery
EP0460629A1 (en) * 1990-06-06 1991-12-11 Murata Manufacturing Co., Ltd. Solid oxide fuel cell
JPH05114416A (en) * 1991-10-24 1993-05-07 Sanyo Electric Co Ltd Fuel cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 002 (E - 868) 8 January 1989 (1989-01-08) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 161 (E - 1060) 23 April 1991 (1991-04-23) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 473 (E - 1423) 27 August 1993 (1993-08-27) *

Also Published As

Publication number Publication date
DE19650901C2 (en) 1999-03-25
DE19650901A1 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
EP2111668A2 (en) Media supply plate for a fuel cell stack
DE4234093A1 (en) Component for installation in a process engineering facility
EP0432381A1 (en) Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
DE19705874A1 (en) Interconnector for SOFC fuel cell stacks
DE2746172B2 (en) Composite of electrochemical solid electrolyte cells
DE102014210358A1 (en) FUEL CELL STACK WITH A DUMMY CELL
DE1671705A1 (en) Battery consisting of fuel cells connected electrically in series with solid electrolyte
DE10337233B4 (en) Fuel cell and associated operating method
DE102014202215A1 (en) Fuel cell stack and method for its assembly
EP0551054A1 (en) Centrally symmetric fuel cell battery
DE69627139T2 (en) METHOD FOR ARRANGING A BUSBAR SYSTEM AND A BUSBAR SYSTEM
DE102005014077B4 (en) Interconnector for high-temperature fuel cells and method for its production and method for operating a fuel cell
DE3918115A1 (en) Sold electrolyte high temperature fuel cell - has cell formed with plates with slots for passage of oxygen and gases
DE19650901C2 (en) Device for connecting a line to a fuel cell stack
DE102022121234A1 (en) Electrochemical reaction cell stack
EP2406847B1 (en) Fuel cell assembly and method for operating a fuel cell assembly
DE102021109158A1 (en) Electrochemical reaction cell stack
AT523315B1 (en) Fuel cell system and method for operating a fuel cell system
EP0947026A1 (en) Fuel cell module with a gas supply device
EP1665443B1 (en) Fuel cell and fuel cell module therefor
DE19808859C2 (en) Fuel cell stack with conductor
DE60317424T2 (en) Capillary seal for a combustion chamber
DE10125776A1 (en) poetry
DE102018202630B4 (en) Contact arrangement and method of connecting two conductors
DE4213728A1 (en) Fuel cell system with cells packed on single plane - and having respectively gas tight ceramic solid state electrolytes with porous anode and cathode electrodes coated respectively on two main surfaces

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase