WO1998022999A1 - Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung - Google Patents

Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung Download PDF

Info

Publication number
WO1998022999A1
WO1998022999A1 PCT/EP1997/006219 EP9706219W WO9822999A1 WO 1998022999 A1 WO1998022999 A1 WO 1998022999A1 EP 9706219 W EP9706219 W EP 9706219W WO 9822999 A1 WO9822999 A1 WO 9822999A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
solid
frequency
amplifier
semiconductor
Prior art date
Application number
PCT/EP1997/006219
Other languages
English (en)
French (fr)
Other versions
WO1998022999A9 (de
Inventor
Nikolaus Schmitt
Max KÖNIGER
Peter Unger
Klaus Pribil
Original Assignee
Daimler-Benz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler-Benz Ag filed Critical Daimler-Benz Ag
Priority to JP52315898A priority Critical patent/JP2001518235A/ja
Priority to EP97951154A priority patent/EP0939978B1/de
Priority to US09/308,393 priority patent/US6188708B1/en
Publication of WO1998022999A1 publication Critical patent/WO1998022999A1/de
Publication of WO1998022999A9 publication Critical patent/WO1998022999A9/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking

Definitions

  • the invention relates to a single-frequency laser and amplifier system.
  • lasers are required for many applications of lasers in communication tasks. While laser diodes in the wavelength range around 1.3 ⁇ m or 1.5 ⁇ m are particularly common in communication via glass fibers in order to achieve a particularly high transmission or a particularly low dispersion in the glass fibers, lasers are also used for free-beam laser communication links in space between satellites, for example used at a shorter wavelength, for example at 1.06 ⁇ m. Here the specific requirements are less for the wavelength of the laser radiation.
  • the spectral narrowband nature of the laser sources is much more important here, since coherent transmission systems are used to transmit very high data rates (typically 650 Mbit / s and more).
  • Typical line width requirements here are ⁇ 10 kHz or even less and a correspondingly low frequency noise (jitter), which is generally not achieved with semiconductor lasers with constant operation.
  • Solid-state lasers are used here, preferably diode-pumped solid-state lasers for reasons of efficiency. These have a coefficient for the change in the optical resonator length and thus the frequency of the laser radiation with the temperature which is about two orders of magnitude lower. The coefficient is typically 0.3 nm / ° C for semiconductor laser diodes, corresponding to 130 GHz / ° C for 830 nm compared to typically 3.5 GHz / ° C for Nd: YAG lasers.
  • a transmission laser for such an inter-satellite transmission link requires an output power of typically> 1 W continuous power while at the same time meeting the line width specification.
  • the laser must also be phase-modulated.
  • State-of-the-art modulators only work up to powers of a few 100 mW, so that the transmission laser power must initially be limited to this value and, after the modulation, must be increased to the required nominal power.
  • diode-pumped solid-state amplifier arrangements are also used here, which are constructed similarly to diode-pumped solid-state lasers, but are operated below the laser threshold. However, these amplifier arrangements are relatively complex and inefficient.
  • gain factors of typically 1.5-2 W. Seelert et al. OSA Proc. On Advanced Solid-State Lasers (Hilton Head, 1991), Vol. 10 (1991) 261) are achieved here, so that four or more amplifier stages are required to achieve an output power of 1 W from 100 mW oscillator power from the phase modulator.
  • Semiconductor laser amplifiers which, like semiconductor laser diodes, are constructed from an epitaxial layer sequence of, for example, GaAs, GaAlAs, InGaAs or InGaAsP, are particularly simple. Compared to laser diodes, such semiconductor amplifiers have anti-reflective coatings on both end faces, so that the semiconductor element is operated far below the threshold power required for laser operation as an oscillator. If you now couple laser radiation on one side of the semiconductor element, it is amplified in the electrically pumped semiconductor material. Such arrangements have also been known for many years and are described, for example, in R. Waarts et. al., Electron. Lett. 26 (1990) 1926.
  • FIG. 1 shows the basic scheme of an arrangement according to the invention of diode-pumped single-frequency solid-state lasers - here: micro-crystal laser and semiconductor amplifiers,
  • 3 shows a diagram for assigning the suitable semiconductor materials for the respective wavelength range of diode-pumped solid-state lasers
  • FIG. 7 shows the relationship of spectral gain center of gravity and carrier density for the structure from FIG. 6 (taken from ibid.)
  • 8a shows an arrangement according to the invention of solid-state lasers and semiconductor amplifiers on the same heat sink
  • 8b shows an arrangement according to the invention of tunable solid-state lasers and semiconductor amplifiers on thermally separated heat sinks or temperature levels using a Peltier element as an example
  • 8c shows an arrangement according to the invention of tunable solid-state lasers and semiconductor amplifiers on thermally separated heat sinks or temperature levels using, for example, a thermally poorly conductive material
  • FIG. 9 shows an arrangement according to the invention of a solid-state laser and a semiconductor amplifier with a modulator introduced between the two elements
  • FIG. 11 shows an arrangement according to the invention of a pump laser diode, solid-state laser, possibly modulator and semiconductor amplifier and possibly necessary lenses on the same base plate.
  • the radiation from a low-power, diode-pumped solid-state laser (approximately Nd: YAG), especially a narrow-band one to continuously emit solid-state lasers such as micro-crystal lasers (or monolithic ring lasers) by means of a semiconductor amplifier.
  • microcrystalline lasers which inherently emit single-frequency due to their short resonator length (see, for example, Demtröder, Laser Spectroscopy, Springer-Verlag 1982, p. 286, or N. Schmitt, Tunable Microcrystal Lasers, Shaker- Verlag 1995).
  • the output power of such lasers is typically 30-50 mW.
  • the line widths are extremely narrow here.
  • the basic idea of the invention is based on the amplification of the laser radiation of a narrow-band, diode-pumped solid-state laser, for example a micro-crystal laser, preferably consisting of rare earth or transition metal-doped crystal or glass materials, by means of a semiconductor amplifier element, which is selected by the choice of the epitaxial material and its structuring is adapted to the emission wavelength of the solid-state laser.
  • solid-state lasers which emit in the range between 900 and 1100 nm are particularly suitable for material combinations of GaAlAs, GaAlAs, InGaAs and / or GaAsP.
  • the dots indicate the binary connections, along the line the wavelength and the lattice constant of the tertiary connection change according to the respective percentage of the two binary connections.
  • the areas between these lines identify the quaternary compounds (ie two elements from group III plus two compounds from group V, example InGaAsP).
  • the horizontal lines here mark the connections with the same lattice constant, with the non-horizontal lines the structure of the composition is strained (strained layer).
  • the thin connecting lines for example between GaP and AIP and AIP and AlAs, characterize indirect semiconductor junctions.
  • GaAlAs or InGaAsP structures are preferably used, over 900 nm to approx. 1120 nm InAsP, InGaAs or InGaAsP materials.
  • GaAsP is particularly suitable for amplification in the wavelength range around 630 nm.
  • the selection of the semiconductor amplifier materials is based on the specific wavelength range of the laser radiation to be generated. Both material combinations of the ternary connections (i.e. along the lines) and quaternary connections (i.e. in the intermediate area between the lines) are interesting here.
  • the amplification curve of such semiconductor amplifiers is typically 50-60 nm wide (FIG. 4, taken from Ebeling / Unger, summary of the 2nd interim report R&D funding code 13 N 6374/3, Ulm University), its focus can be chosen by choosing the thickness of the Epitaxial layer (width of the quantum film QW) and doping of the materials are adjusted accordingly. 5 (taken from ibid.) Shows a typical layer sequence for an InGaAs amplifier.
  • the width of the quantum film QW also has an influence in particular on the carrier density (carrier concentration), which influences the gain focus (FIG. 6, taken from the same).
  • the amplification of such semiconductor structures which are preferably pumped electrically by charge injection, is generally extremely efficient and is typically 50%, and the saturation intensity required to generate laser radiation in the watt range is typically 5-10 mW (FIG. 7, taken from the same place).
  • Fig. 1 shows such an embodiment of a diode-pumped solid-state laser, consisting of a pump laser diode (1) (whose radiation may be transmitted via an optical fiber (3)) and solid-state laser material (4), in this example designed as a monolithic microcrystallized with the required mirror layers whose radiation is coupled into a semiconductor amplifier unit (5).
  • the optical elements (lenses) 2a-c used for the respective coupling are also shown.
  • the optical fiber shown for transmitting the pump light to the microcrystalline laser, as well as all lenses, are optional here and can optionally be omitted.
  • the semiconductor amplifier (5) is preferably pumped electrically via a corresponding feed line (7) by injecting charge carriers into the pn boundary layer.
  • the spatial structure (6) of the amplifier can preferably either be cuboid (broad stripe) or as shown in the figure by way of example. drawn trapezoidal, the latter with the advantage of better beam quality at the amplifier output.
  • Lenses or other elements with lens-like properties can be used for focusing.
  • Miniaturized diode-pumped solid-state lasers such as micro-crystal lasers, monolithic ring lasers or generally longitudinally pumped lasers are preferably used as solid-state lasers.
  • the semiconductor element Since the semiconductor element is only operated as an amplifier, ie not in resonance, the narrow-band nature of the laser line is maintained in the first order.
  • a miniaturized, efficient laser system is created that generates output power in the watt range with an extremely small laser line width.
  • the micro-crystal laser as an oscillator represents a particularly preferred embodiment according to the invention, since, in addition to excellent laser properties, such as are required for external frequency doubling (narrow line width up to 40 Hz, excellent beam profile M2 typically ⁇ 1.2, see Schmitt), in particular has also been greatly miniaturized.
  • Typical dimensions of the entire micro-crystal laser (without pump diode and coupling optics), which consists for example of a monolithically vapor-deposited crystal piece, are 2-3 mm in diameter and typically 200-700 ⁇ m in thickness; the diameter can be further reduced to 1 mm.
  • the microcrystalline laser is in the order of magnitude of the semiconductor amplifier structures (typically a few 100 ⁇ m in two lateral dimensions and 50-100 ⁇ m in thickness) and can thus be easily brought into a common housing with it, which both reduces costs in the Manufacturing as well as the miniaturization of the laser system.
  • the pump laser diode (which also typically measures a few 100 ⁇ m in each dimension and 50-100 ⁇ m in thickness) and the coupling optics can either also be introduced into the housing or the131m laser diode can be coupled via an optical fiber and arranged in a separate and housing, the latter improving interchangeability.
  • micro-crystal laser as well as the co-optics can be metallized on the side and thus, like the semiconductor amplifier and possibly the pump laser diode, can be soldered into a hybrid housing.
  • micro-crystal laser can (4) and the semiconductor amplifier (5) for example, are mounted on the same heat sink (16) (Fig. 8a), which is then kept together by a tempering element (16) and resulting in a substantial increase in the mechanical stability.
  • the microcrystalline laser whose principle of operation is that the resonator of length L is sufficiently short so that only a single longitudinal resonator mode lies in the amplification range ⁇ v of the laser material, written as L ⁇ c / (- n- ⁇ v) (n is the refractive index of the resonator-internal medium; see N. Schmitt, tunable solid-state lasers), but in principle other miniaturized, frequency-stable single-frequency lasers can also be used.
  • These can be, for example, diode-pumped lasers with highly doped materials which are attached in the vicinity of that of a mirror and thus avoid the spatial "hole burning" (cf. GJ Kintz et. Al, IEEE J. Quant. Electron. 26 (1990) 1457) .
  • it can also be monolithic ring lasers, such as in T. J. Kane, Opt. Lett. 10 (1985) 65.
  • Tunable microcrystalline lasers offer a decisive advantage here, since a single-frequency tuning range of over 130 GHz can be achieved (see N. Schmitt, Tunable Microcrystalline Lasers, p. 143).
  • the tuning can take place either thermally, the temperature of the microcrystal being changed accordingly, or by means of a movable mirror element of the laser.
  • thermal tuning it is advisable, depending on the arrangement of the heating / cooling element, to mount the microcrystalline, which is provided with a heating and / or cooling element, on a heat sink or a different temperature level (for example in 8b and 8c using a thermally poorly conductive material (17) or a Peltier element (18) outlined).
  • a common basis must then be created which enables the microcrystals to be fixed with respect to the semiconductor chip.
  • For coherent communication it is necessary to modulate the laser signal in terms of its frequency, amplitude or phase, in particular, conventional modulators currently do not allow modulation of laser powers in the watt range.
  • the modulator (10) for reducing the size is preferably an integrated optical modulator, for example a waveguide (11) provided with electrodes (12a.b) in LiNb ⁇ 3, or a fiber modulator.
  • a particularly miniaturized, mechanically stable and inexpensive to manufacture solution is obtained by both the laser diode (1), the (microcrystalline) laser (4), optionally the modulator (10) and the semiconductor amplifier (5) on a common basis (13). (Mounting plate) are housed (Fig. 1 1).
  • the Sfrom for pumping the semiconductor amplifier or the pump diode can also be modulated, at least for some types of modulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Bei einem einfrequenten Laser- und Verstärker-System wird vorgeschlagen, dass die Strahlung eines einfrequenten, diodengepumpten Festkörperlasers (4), vorzugsweise eines Mikrokristall-Lasers oder monolithischen Ringlasers geringer Leistung, vorzugsweise aus Seltenerd- oder Übergangsmetall-dotierten Kristall- oder Glasmaterialien bestehend, eingekoppelt wird, in einen Halbleiter-Verstärker-Chip (5), welcher vorzugsweise aus GaA1As, InGaAs oder InGaAsP besteht, und welcher durch Wahl des Materialsystems sowie der epitaktischen Strukturierung auf die Emissionswellenlänge des Festkörperlasers (4) angepasst die einfrequente Strahlung des Festkörperlasers verstärkt und somit einen gegenüber der eingekoppelten Laserstrahlung verstärkten Ausgangsstrahl erzeugt.

Description

Laser- und Verstärkersystem zur Erzeugung einfrequenter Laserstrahlung
Die Erfindung betrifft ein einfrequentes Laser- und Verstärker-System.
Für viele Anwendungen von Lasern in Kommunikationsaufgaben werden heute einfrequente Laser benötigt. Während in der Kommunikation über Glasfasern insbesondere Laserdioden im Wellenlängenbereich um 1.3 μm oder 1,5 μm üblich sind, um eine besonders hohe Transmission bzw. eine besonders geringe Dispersion in der Glasfaser zu erlangen, werden für Freistrahl- Laserkommunikationsstrecken beispielsweise im Weltraum zwischen Satelliten auch Laser bei kürzere Wellenlänge, beispielsweise bei 1.06 μm verwendet. Hier liegen die spezifischen Anforderungen weniger bei der Wellenlänge der Laserstrahlung. Wesentlich wichtiger ist hier die spektrale Schmalbandig- keit der Laserquellen, da hier zur Übetragung sehr hoher Datenraten (typisch 650 MBit/s und mehr) kohärente Übertragunsgsysteme verwendet werden.
Typische Linienbreitenanforderungen liegen hier bei < 10 kHz oder noch weniger und einem entsprechend geringem Frequenzrauschen (Jitter), was mit Halbleiterlasern bei konstantem Betrieb im allgemeinen nicht erreicht wird. Hier werden hingegen Festkörperlaser, und zwar aus Effizienzgründen vorzugsweise diodengepumpte Festkörperlaser eingesetzt. Diese verfügen über einen um etwa zwei Größenordnungen geringeren Koeffizienten für die Änderung der optischen Resonatorlänge und damit der Frequenz der Laserstrahlung mit der Temperatur. Der Koeffizient beträgt bei Halbleiter-Laserdioden beispielsweise typisch 0,3 nm/° C , entsprechend bei 830 nm von 130 GHz/°C gegenüber typisch 3,5 GHz/° C bei Nd:YAG-Lasern.
Ein Sendelaser für eine solche Intersatelliten-Übertragungsstrecke benötigt eine Ausgangsleistung von typisch > 1 W kontinuierlicher Leistung bei gleichzeitiger Erfüllung der Linienbreiten- Spezifikation. Weiter muß der Laser phasenmoduliert werden. Modulatoren nach dem Stande der Technik arbeiten jedoch nur bis zu Leistungen von wenigen 100 mW, so daß die Sendelaserleistung zunächst auf diesen Wert beschränkt bleiben muß und nach der Modulation auf die geforderte Nennleistung verstärkt werden muß. Nach dem Stande der Technik werden hier ebenfalls diodengepumpte Festkörper-Verstärkeranordnungen verwendet, die ähnlich wie diodengepumpte Festkröperlaser aufgebaut sind, jedoch unterhalb der Laserschwelle betrieben werden. Diese Verstärkeranordnungen sind jedoch relativ aufwendig und ineffizient.
Bei einfachen Verstärkeranordnungen mit nur einem oder zwei Durchgängen werden hier Verstärkungsfaktoren von typisch 1.5-2 (W. Seelert et al. OSA Proc. on Advanced Solid-State Lasers (Hilton Head, 1991), Bd.10 (1991) 261) erreicht, so daß zur Erzielung einer Ausgangsleistung von 1 W aus 100 mW Oszillatorleistung aus dem Phasenmodulator vier oder mehr Verstärkerstufen benötigt werden.
Eine wesentlich höhere Verstärkungen von bis über 50 dB konnten dagegen nur mit Multipath- Verstärkeranordnungen erreicht werden ( Kane et. al., SPIE Vol 2381, S. 273; vergl. Fig 2). Diese Anordnungen sind relativ aufwendig und unterliegen aufgrund der komplizierten StraWfuhrung starken thermischen Fluktuationen. Auch ist die Energiebilanz für solche Verstärkeranordnungen relativ schlecht (hier ~ 9.4 W elektrischer Eingangsleistung + 30 mW Oszillatorleistung führte zu 835 mW Ausgangsleistung, elektrisch- zu optische Verstärkereffizeinz von kleiner 9 %W). Diese Anordnungen lassen sich weiter auch nicht wesentlich miniaturisieren.
Besonders einfach sind Halbleiter-Laserverstärker, die ähnlich wie Halbleiter- Laserdioden aus einer epitaktischen Schichtfolge von beispielsweise GaAs, GaAlAs, InGaAs oder InGaAsP aufgebaut sind. Gegenüber Laserdioden verfügen solche Halbleiterverstärker auf beiden Endflächen über Antireflex- Beschichtungen, so daß das Halbleiterelement weit unter der für Laserbetrieb als Oszillator erforderlichen Schwellenleistung betrieben wird. Koppelt man nun auf einer Seite des Halbleiterelementes Laserstrahlung ein, so wird diese im elektrisch gepumpten Halbleitermaterial verstärkt. Solche Anordnungen sind ebenfalls seit vielen Jahren bekannt und beispielsweise in R. Waarts et. al., Electron. Lett. 26 (1990) 1926 beschrieben. Zur Erzeugung von Strahlung hoher Strahlqualität sind besondere Stmkturierungen des Halbleiterverstärkers üblich, beispielsweise Breitstreifen- oder Trapezstrukturen, vergl. J. N. Walpole et. al., SPIE Bd. 1850, Laser Diode Technology and Applications V (1993) 51. Üblicherweise werden alsXaseroszillator, dessen Strahlung verstärkt werden soll, ebenfalls Halbleiterlaserdioden aus gleichem Material eingesetzt. Solche Oszillator- Verstärker-Strukturen (MOPA von Master-Oscillator- Power Amplifier) sind vorzugsweise auf demselben epitaktischen Substrat aufgebaut und durch entsprechende Strukturierung in ihrer Funktion getrennt. Derartige Bauteile sind beispielsweise in R. Parke, CLEO 93, Tech. Digest, Beitrag CTuI4 (1993) 108 beschrieben und werden kommerziell angeboten. Diese Elemente erfüllen jedoch nicht die Spezifikationen bezüglich Linienbreite und Frequenzrauschen (Jitter).
Diese MOPA- Strukturen sind jedoch für die genannten Aufgaben der kohärenten Kommunikation ungeeignet. Sowohl die räumliche Strahlqualität als auch insbesondere die hohe Linienbreiten lassen ein kohärentes Phasenrasten (phase locking) nicht zu.
Es ist Aufgabe der Erfindung, ein einfaches, effizientes und miniaturisiertes Laser und Verstärkersystem aufzuzeigen, welches die Erzeugung schmalban- diger Laserstrahlung im Wattbereich ermöglicht.
Diese Aufgabe wird durch die in den Ansprüchen und den Figuren aufgezeigte Maßnahmen gelöst.
Es zeigen
Fig. 1 das grundlegendes Schema einer erfindungsgemäßen Anordnung von diodengepumptem Einfrequenz-Festkörperlaser - hier: Mikro- kristall-Laser- und Halbleiter- Verstärker,
Fig. 2 einen Multipath-Festkörperverstärker nach dem Stande der Technik mit einer Verstärkung von 52 dB (entnommen aus Kane et. al., SPIE Vol. 2381, S. 273 f),
Fig. 3 ein Schema zur Zuordnung der geeigneten Halbleiter-Materialien für die jeweiligen Wellenlängenbereich diodengepumpter Festkörperlaser,
Fig. 4 ein typisches Verstärkungsprofil eines InGaAs-Halbleiterverstärkers nach dem Stande der Technik, hier mit Verstärkungsschwerpunkt um 960 nm (entnommen aus Ebeling /Unger, Zusammenfassung zum 2. Zwischenbericht F+E-Förderkennzeichen 13 N 6374/3, Universität Ulm),
Fig. 5 eine typische Verstärkungskurve eines Halbleiterverstärkers nach dem Stande der Technik (entnommen ebenda),
Fig. 6 eine typische Schichtenfolge einer InGaAs- Verstärkerstruktur,
Fig. 7 die Beziehung von spektralem Verstärlαmgsschwerpunkt und Trägerdichte für die Struktur aus Fig. 6 (entnommen ebenda)
Fig. 8a eine erfindungsgemäße Anordnung von Festkörperlaser und Halbleiterverstärker auf derselben Wärmesenke
Fig. 8b eine erfindunsgemäße Anordnung von abstimmbarem Festkörperlaser und Halbleiterverstärker auf thermisch getrennten Wärmesenken bzw. Temperaturniveaus unter beispielhafter Verwendung eines Peltierelementes
Fig. 8c eine erfindungsgemäße Anordnung von abstimmbarem Festkörperlaser und Halbleiterverstärker auf thermisch getrennten Wärmesenken bzw. Temperaturniveaus unter beispielhafter Verwendung eines thermisch schlecht leitenden Materialies
Fig. 9 eine erfindungsgemäße Anordnung von Festkörperlaser und Halbleiterverstärker mit zwischen die beiden Elemente eingebrachtem Modulator,
Fig. 10 eine erfindungsgemäße Anordnung von Festkörperlaser, Modulator und Halbleiterverstärker auf derselben Grundplatte, und
Fig. 11 eine erfindungsgemäße Anordnung von Pumplaserdiode, Festkörperlaser, ggfs. Modulator und Halbleiterverstärker und ggfs. erforderlichen Linsen auf derselben Grundplatte.
Es wird vorgeschlagen, die Strahlung eines leistungsschwachen diodengepumpten Festkörperlasers (etwa Nd:YAG), vorzüglich eines schmalbandigen kontinuierlich emittierenden Festkörperlasers wie etwa Mikrokristall-Laser (oder auch monolithischer Ringlaser), mittels eines Halbleiter- Verstärkers zu verstärken.
Besonders einfache einfrequente diodengepumpte Festkörperlaser stellen dabei Mikrokristall-Laser dar, welche aufgrund ihrer geringen Resonatorlänge inhärent einfrequent emittieren (vergl. z.B. Demtröder, Laser Spectroscopy, Springer- Verlag 1982, S. 286, oder N. Schmitt, Abstimmbare Mikrokristall- Laser, Shaker- Verlag 1995). Die Ausgangsleistung solcher Laser liegt typisch bei 30-50 mW. Die Linienbreiten sind hier jedoch ausgesprochen schmal.
Der grundlegende Erfindungsgedanke beruht auf der Verstärkung der Laserstrahlung eines schmalbandigen, diodengepumpten Festkörperlasers, beispielsweise eines Mikrokristall-Lasers vorzugsweise aus Seltenerd- oder Übergangsmetall-dotierten Kristall- oder Glasmaterialien bestehend, durch ein Halbleiter- Verstärkerelement, welches durch die Wahl des Epitaxiemateriales wie auch dessen Stmkturierung auf die Emissionswellenlänge des Festkörperlasers angepaßt ist. So eignen sich beispielsweise für Festkörperlaser , welche im Bereich zwischen 900 und 1100 nm emittieren, insbesondere Materialkombinationen aus GaAlAs, GaAlAs, InGaAs und/oder GaAsP. Fig. 3 veranschaulicht, welches Materialsystem hierbei für welchen Wellenlängenbereich besonders geeignet ist: Die (dicken) Verbindungslinien zwischen den III-V- Materialverbindungen (binäre Verbindungen der Elemente der Gruppe III und V des Periodensystemes) bezeichnen hier die sogenannten tertiären Verbindungen (also Verbindungen aus zwei Elementen der Gruppe III und einem Element der Gruppe V, Beispiel InAs + GaAs => InGaAs); die Punkte kennzeichnen die binären Verbindungen, entlang der Linie ändert sich die Wellenlänge und die Gitterkonstante der tertiären Verbindung entsprechend dem jeweiligen prozentualen Anteil der beiden binären Verbindungen. Die Bereiche zwischen diesen Linien kennzeichnen die quaternären Verbindungen (also zwei Elemente der Gruppe III plus zwei Verbindungen der Gruppe V, Beispiel InGaAsP). Die waagerechten Linien kennzeichnen hier die Verbindungen mit gleicher Gitterkonstante, bei den nicht waagerechten Linien sind die Gitte der Komposition verspannt (strained-layer). Die dünnen Verbindungslinien beispielsweise zwischen GaP und AIP und AIP und AlAs kennzeichnen indirekte Halbleiterübergänge. Zur Verstärkung von Laserstrahlung beispielsweise im Wellenlängenbereich von 750 - 900 nm werden so vorzugsweise GaAlAs oder InGaAsP-Strukturen verwendet, über 900 nm bis ca. 1120 nm InAsP, InGaAs oder InGaAsP-Materialien. GaAsP ist besonders auch zur Verstärkung im Wellenlängenbereich um 630 nm geeignet. Die Auswahl der Halbleiter- Verstärkermaterialien richtet sich nach dem konkreten Wellenlängenbereich der zu erzeugenden Laserstrahlung. Interessant sind hier sowohl Materialkombinationen der ternären Verbindungen (also entlang der Linien) wie auch quarternärer Verbindungen (also im Zwischenbereich zwischen den Linien).
Die Verstärlαmgskurve solcher Halbleiterverstärker ist typisch 50-60 nm breit (Fig. 4, entnommen aus Ebeling /Unger, Zusammenfassung zum 2. Zwischenbericht F+E-Förderkennzeichen 13 N 6374/3, Universität Ulm), ihr Schwerpunkt kann durch Wahl der Dicke der Epitaxieschicht (Breite des Quanten- films QW) und Dotierung der Materialien entsprechend eingestellt werden. Fig. 5 (entnommen ebenda) zeigt eine typische Schichtenfolge für einen InGaAs- Verstärker. Durch die Breite des Quantenfilms QW wird insbesondere auch auf die Trägerdichte (Carrier Concentration) Einfluß genommen, welche den Verstärkungschweφunkt beeinflußt (Fig. 6, entnommen ebenda). Die Verstärkung solcher Halbleiterstrukturen, welche vorzugsweise elektrisch durch Ladungsträger-Injektion gepumpt werden, ist im allgemeinen ausgesprochen effizient und beträgt typisch 50%, die erforderliche Sättigungsintensität zur Erzeugung von Laserstrahlung im Wattbereich typisch 5-10 mW (Fig 7, entnommen ebenda).
Fig. 1 zeigt eine solches Ausführungsbeispiel eines diodengepumpten Festkörperlasers, bestehend aus Pumplaserdiode (1) (deren Strahlung gegebenenfalls über eine Lichtleitfaser (3) übertragen wird) und Festkörper- Lasermaterial (4), in diesem Beispiel als monolithisch mit den erforderlichen Spiegelschichten bedampfter Mikrokristall ausgeführt, dessen Strahlung in eine Halbleiter- Verstärkereinheit (5) eingekoppelt wird. Die für die jeweilige Ankopplung verwendeten optischen Elemente (Linsen) 2a-c sind ebenfalls eingezeichnet. Die eingezeichnete Lichtleitfaser zur Übertragung des Pumplichts zum Mikrokristall-Laser wie auch alle Linsen sind hier optional und können gegebenenfalls weggelassen werden.
Der Halbleiterverstärker (5) wird vorzugsweise elektrisch über eine entsprechende Zuleitung (7) gepumpt durch Injektion von Ladungsträgern in die pn- Grenzschicht. Die räumliche Struktur (6) des Verstärkers kann vorzugsweise entweder quaderförmig (Breitstreifen) oder wie in der Figur beispielhaft ein- gezeichnet trapezförmig sein, letzteres mit dem Vorteil einer besseren Strahlqualität am Verstärkerausgang. Zur Fokussierung können hier Linsen oder andere Elemente mit linsenähnlichen Eigenschaften (Hologramme, Stablinsen etc.) verwendet werden. Als Festkörperlaser werden vorzugsweise miniaturisierte diodengepumpte Festkörperlaser wie Mikrokristall-Laser, monolithische Ringlaser oder generell longitudinal gepumpte Laser verwendet. Da das Halbleiterelement nur als Verstärker, also nicht in Resonanz betrieben wird, bleibt die Schmalbandigkeit der Laserlinie in erster Ordnung erhalten. Somit wird durch die Kombination der guten Lasereigenschaften von Festkörperlasern mit der hohen und effizienten Verstärkung elektrisch gepumpter Halbleiterelemente ein miniaturisiertes, effizientes Lasersystem geschaffen, das Ausgangsleistungen im Wattbereich bei ausgesprochen geringer Laserlinienbreite erzeugt.
Der Mikrokristall-Laser als Oszillator stellt hierbei eine besonders bevorzugte erfidnungsgemäße Ausführung dar, da er neben ausgeziechneten Lasereigenschaften, wie sie gerade für die externe Frequenzverdopplung erforderlich sind (schmale Linienbreite bis zu 40 Hz, ausgezeichnetes Strahlprofil M2 typisch < 1.2, vergl. Schmitt) , insbesonders auch bereist stark miniaturisiert ist. Typische Abmesungen des gesamten Mikrokristall-Lasers (ohne Pumpdiode und Ankopplungsoptik), welcher beispielsweise aus einem monolithisch bedampften Kristallstück besteht, betragen 2-3 mm Durchmesser und typsich 200-700 μm Dicke; der Durchmesser kann weiter auf 1 mm reduziert werden. Damit ist der Mikrokristall-Laser in der Größenordnung der Halbleiter- Verstärkerstrukturen (typisch eineige 100 μm in zwei lateralen Dimensionen und 50-100 μm in der Dicke) und kann so leicht mit diesem in ein gemeinsames Gehäuse gebracht werden, was sowohl der Kostenreduktion bei der Herstellung als auch der Miniaturisierung des Lasersystems entgegenkommt. Die Pumplaserdiode (die typsich ebenfalls einige 100 μm in jeder Dimension sowie 50-100 μm in der Dicke mißt) sowie die Koppeloptiken können entweder ebenfalls in das Gehäuse eingebracht werden oder aber die Puimlaserdiode wird über eine Lichtleitfaser gekoppelt in einem separaten und Gehäuse angeordnet sein, wobei letzteres die Austauschbarkeit verbessert. Der Mikrokristall-Laser wie auch die Koopeloptiken können seitlich metallisiert sein und somit ebenso wie der Halbleiter- Verstärker sowie gegebenenfalls die Pumplaserdiode in ein Hybridhgehäuse gelötet werden. In besonderen Ausfuhrung'e können auch Mikrokristall-Laser (4) und Halbleiterverstärker (5) beispielsweise auf diesselbe Wärmesenke (16) montiert werden (Fig. 8a), welche dann durch ein Temperierelement (16) gemeinsam temperiert wird und was eine wesentliche Erhöhung der mechanischen Stabilität ermöglicht.
Anstatt des Mikrokristall-Lasers, dessen Funktionsprinzip darin besteht, daß der Resonator der Länge L hinreichend kurz ist, so daß nur eine einzige longi- tudinale Resonatormode im Verstärkungsbereich δv des Lasermateriales liegt liegt, geschrieben als L < c/(-n-δv) (n ist der Brechungsindex des resonatorinternen Mediums; vergl. N. Schmitt, Abstimmbare Festkörperlaser), können aber prinzipiell auch andere miniaturisierte, frequenzstabile Einfrequenzlaser verwendet werden. Dies können beispielsweise diodengepumpte Laser mit hochdotierten Materialien sein, welche in der Nähe des eines Spiegels angebracht sind und so das räumliche "Lochbrennen" vermieden wird (vergl. G. J. Kintz et. al, IEEE J. Quant. Electron. 26 (1990) 1457). Weiter können es auch monolithische Ringlaser sein, wie etwa in T. J. Kane, Opt. Lett. 10 (1985) 65, beschrieben.
Für die Anwendungen der kohärenten Kommunikation beispielsweise zwischen Satelliten ist es in der Regel erforderlich, den Laser über mehrere 10 GHz einfrequent abzustimmen, um die Dopplerverschiebung zwischen den sich gegeneinander bewegenden Satelliten auszugleichen. Hier bieten abstimmbare Mikrokristall-Laser entscheidende Vorteil, da hier einfrequente Abstimmbereich von über 130 GHz erreicht werden können (vergl. N. Schmitt, Abstimmbare Mikrokristall-Laser, S. 143). Hier kann die Abstimmung entweder thermisch erfolgen, wobei die Temperatur des Mikrokristalles entsprechend verändert wird, oder durch ein bewegliches Spiegelelement des Lasers. Im Falle der thermischen Abstimmung empfiehlt es sich, den Mikro- kristall, welcher mit einem Heiz- und/oder Kühlelement versehen ist, je nach Anordnung des Heiz-/Kühlelementes auf eine vom Halbleiterverstärker getrennte Wärmesenke bzw. ein unterschiedliches Temperaturniveaus zu montieren (beispielhaft in Fig. 8b und 8c unter Verwendung eines thermisch schlecht leitenden Materialies (17) bzw. eines Peltierelementes (18) skizziert). Es muß dann eine gemeinsame Basis geschaffen werden, welche eine Fixierung des Mikrokristalles in Bezug auf den Halbleiterchip ermöglicht. Zur kohärenten Kommunikation ist es erforderlich, das Lasersignal in seiner Frequenz, Amplitude oder insbesondere Phase zu modulieren, herkömmliche Modulatoren erlauben es derzeit nicht, Laserleistungen im Wattbereich zu modulieren. Hier ermöglicht das vorgeschlagene Konzept, den Modulator zwischen Festkörperlaser und Halbleiterverstärker anzuordnen, was einen weiteren wesentlichen Vorteil desselben darstellt. Dies ist in Fig .9 dargestellt. Bei dem Modulator (10) handelt es sich zur Reduktion der Baugröße vorzugsweise um einen integriert-optischen Modulator, beispielsweise als Wellenleiter (11) mit Elektroden (12a.b) versehen in LiNbθ3 ausgebildet, oder um einen Fasermodulator.
Hierbei ist es vorteilhaft, Festkörperlaser (4), Modulator (10) und Halbleiterverstärker (5) auf eine einzige Grundplatte (13) anzubringen, um eine Deju- stage zu vermeiden (Fig. 10). Die einzelnen Elemente können dabei auf Montagesockeln, Temperierelementen und oder Lotschichten (14a...) (bzw. aus Kombinationen hieraus) sitzen, welche ggfs. auch die für eine lineare optische Kooplung erforderliche Höhenangleichung vornehmen.
Eine besonders miniaturisierte, mechanisch stabile und kostengünstig fertigbare Lösung erhält man, indem sowohl die Laserdiode (1), der (Mikrokristall- )Laser (4), gegegbenenfalls der Modulator (10) und der Halbleiterverstärker (5) auf einer gemeinsamen Basis (13) (Montageplatte) untergebracht sind ( Fig. 1 1).
Statt der Verwendung eines externen Modulators (10) kann zumindest für manche Modulationsarten auch der Sfrom zum Pumpen des Halbleiterverstärkers oder der Pumpdiode moduliert werden.
Zusammenfassend wird ein System vorgestellt, welches
• durch Verwendung eines diodengepumpten Festkörperlasers die Erzeugung sehr schmalbandiger Laserstrahlung,
durch Verwendung eines Halbleiterverstärkers im Wattbereich ermöglicht, weiter
• durch Verwendung des Halbleiterverstärkers (und vorzugsweise eines Mi- krokristall-Lasers) ausgesprochen effizient und miniaturisiert ist und durch Verwendung eines Modulators zwischen Festkörperlaser und Halbleiterlaser eine Amplituden-, Phasen und/oder Frequenzmodulation erlaubt.

Claims

Patentansprüche
1. Einfrequentes Laser- und Verstärker-System, dadurch gekennzeichnet, daß die Strahlung eines einfrequenten, diodengepumpten Festkörperlasers, vorzugsweise eines Mikrokristall-Lasers oder monolithischen Ringlasers geringer Leistung, vorzugsweise aus Seltenerd- oder Übergangsmetall-dotierten Kristall- oder Glasmaterialien bestehend, eingekoppelt wird in einen Halbleiter-Verstärker-Chip, welcher vorzugsweise aus GaAlAs, InGaAs oder InGaAsP besteht, und welcher durch Wahl des Materialsystems sowie der epitaktischen Strukturierung auf die Emissionswellenlänge des Festkörperlasers angepaßt die einfrequente Strahlung des Festkörperlasers verstärkt und somit einen gegenüber der eingekoppelten Laserstrahlung verstärkten Ausgangsstrahl erzeugt.
2. Einfrequentes Laser- und Verstärkersystem nach Anspruch 1, dadurch gekennzeichnet, daß der Halbleiterverstärker elektrisch gepumpt ist.
2. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Halbleiterverstärker eine quaderförmige verstärkende Struktur aufweist.
3. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Halbleiterverstärker eine trapezförmige verstärkende Struktur aufweist.
4. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß zwischen Festkörperlaser und Halbleiterlaser ein Modulator eingebracht ist, welcher die Phase, Frequenz oder Amplitude der Festkörperlaserstrahlung moduliert.
5. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß zur Einkopplung des Laserstrahles in den Modulator und/oder den Halbleiterchip Linsen oder ähnliche Elemente zur Fokussierung angeordnet sind.
6. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß eine Phasen-, Frequenz oder Amplitudenmodulation des Festkörperlasersystemes durch eine Strommodulation der Pumpdiode erzeugt wird.
7. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß eine Modulation der verstärkten Laserstrahlung durch eine Sfrommodulation des Halbleiterverstärkers erzeugt wird.
8. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Festkörperlaser fest mit dem Halbleiterverstärker kontaktiert ist.
9. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Festkörperlaserkristall und der Halbleiterverstärker auf derselben Wärmesenke angebracht sind
10. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Festkörperlaser auf einer vom Halbleiterverstärker getrennten Wärmesenke angebracht ist und am Festkörperlaser und Wärmesenke ein Heiz- und/oder Kühlelement angebracht ist, welches eine thermisch induzierte Frequenzabstimmung der Festkörperlaserstrahlung erlaubt.
11. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß der Festkörperlaser der Halbleiterverstärker, ggfs. ein zwischen Festkörperlaserund Halbleiterverstärker befindlicher Modulator sowie die zur Kopplung erfoderlichen Linsen auf einer gemeinsamen Basis angeordnet sind, wobei zwischen den einzelnen Elementen und der Basis mechanische Halter, Temperierelemente und oder Lotschichten angeordnet sein können.
11. Einfrequentes Laser- und Verstärkersystem nach einem oder mehreren der obigen Ansprüche, dadurch gekennzeichnet, daß zusätzlich zum Festkörperlaser, Halbleiterverstärker, ggfs. ein zwischen Festkörperlaserund Halbleiterverstärker befindlicher Modulator sowie die zur Kopplung erfoderlichen Linsen auch die Pumplaserdiode nebst erforderlichen Kopplungslinsen auf einer gemeinsamen Basis angeordnet sind, wobei zwischen den einzelnen Elementen und der Basis mechanische Halter, Temperierelemente und oder Lotschichten angeordnet sein können.
PCT/EP1997/006219 1996-11-19 1997-11-10 Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung WO1998022999A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52315898A JP2001518235A (ja) 1996-11-19 1997-11-10 単周波レーザ光線を発生するレーザおよび増幅器装置
EP97951154A EP0939978B1 (de) 1996-11-19 1997-11-10 Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung
US09/308,393 US6188708B1 (en) 1996-11-19 1997-11-10 Laser system and amplifying system to produce single-frequency laser irradiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19647677A DE19647677A1 (de) 1996-11-19 1996-11-19 Laser- und Verstärkersystem zur Erzeugung einfrequenter Laserstrahlung
DE19647677.1 1996-11-19

Publications (2)

Publication Number Publication Date
WO1998022999A1 true WO1998022999A1 (de) 1998-05-28
WO1998022999A9 WO1998022999A9 (de) 1998-09-17

Family

ID=7812028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006219 WO1998022999A1 (de) 1996-11-19 1997-11-10 Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung

Country Status (5)

Country Link
US (1) US6188708B1 (de)
EP (1) EP0939978B1 (de)
JP (1) JP2001518235A (de)
DE (1) DE19647677A1 (de)
WO (1) WO1998022999A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502875A (ja) * 1999-06-24 2003-01-21 ロッキード マーティン コーポレイション 超音波の高速レーザを検出するシステムと方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839371B1 (en) 1999-05-04 2005-01-04 Sarnoff Corporation Combined single-frequency laser and linear amplifier
US7756172B2 (en) * 2002-05-29 2010-07-13 Osram Opto Semiconductors Gmbh Optically pumped semi-conductive laser
DE10223879A1 (de) * 2002-05-29 2003-12-11 Univ Stuttgart Strahlwerkzeuge Laserverstärkersystem
KR100575966B1 (ko) * 2003-12-18 2006-05-02 삼성전자주식회사 광대역 광원
US8743916B2 (en) * 2009-02-05 2014-06-03 Mitsubishi Electric Corporation Plane waveguide type laser and display device
JP2017208393A (ja) * 2016-05-17 2017-11-24 オムロンオートモーティブエレクトロニクス株式会社 固体レーザ装置、固体レーザ装置の製造方法
CN112636184B (zh) * 2020-12-16 2022-05-10 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种混合型高功率单频激光器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425083A (ja) * 1990-05-16 1992-01-28 Mitsubishi Electric Corp 固体レーザ装置
JPH0513891A (ja) * 1991-07-01 1993-01-22 Mitsubishi Electric Corp レーザ装置及びレーザ出力光生成方法
JPH05235441A (ja) * 1992-02-21 1993-09-10 Sony Corp レーザ光発生装置
JPH06152014A (ja) * 1992-11-16 1994-05-31 Sony Corp レーザ光発生装置
JPH0738202A (ja) * 1993-07-19 1995-02-07 Fuji Photo Film Co Ltd 高出力半導体レーザー
US5446750A (en) * 1993-11-12 1995-08-29 Fuji Photo Film Co., Ltd. Laser diode pumped solid laser
US5530582A (en) * 1995-04-24 1996-06-25 Clark Mxr, Inc. Fiber source for seeding an ultrashort optical pulse amplifier
US5539571A (en) * 1992-09-21 1996-07-23 Sdl, Inc. Differentially pumped optical amplifer and mopa device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260822A (en) * 1992-01-31 1993-11-09 Massachusetts Institute Of Technology Tapered semiconductor laser gain structure with cavity spoiling grooves

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425083A (ja) * 1990-05-16 1992-01-28 Mitsubishi Electric Corp 固体レーザ装置
JPH0513891A (ja) * 1991-07-01 1993-01-22 Mitsubishi Electric Corp レーザ装置及びレーザ出力光生成方法
JPH05235441A (ja) * 1992-02-21 1993-09-10 Sony Corp レーザ光発生装置
US5539571A (en) * 1992-09-21 1996-07-23 Sdl, Inc. Differentially pumped optical amplifer and mopa device
JPH06152014A (ja) * 1992-11-16 1994-05-31 Sony Corp レーザ光発生装置
JPH0738202A (ja) * 1993-07-19 1995-02-07 Fuji Photo Film Co Ltd 高出力半導体レーザー
US5446750A (en) * 1993-11-12 1995-08-29 Fuji Photo Film Co., Ltd. Laser diode pumped solid laser
US5530582A (en) * 1995-04-24 1996-06-25 Clark Mxr, Inc. Fiber source for seeding an ultrashort optical pulse amplifier
US5530582C1 (en) * 1995-04-24 2001-07-31 Clark Mxr Inc Fiber source for seeding an ultrashort optical pulse amplifier

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BALL G A ET AL: "60 MW 1.5 M SINGLE-FREQUENCY LOW-NOISE FIBER LASER MOPA", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 6, no. 2, 1 February 1994 (1994-02-01), pages 192 - 194, XP000439747 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 188 (E - 1198) 7 May 1992 (1992-05-07) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 276 (E - 1372) 27 May 1993 (1993-05-27) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 687 (E - 1478) 16 December 1993 (1993-12-16) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 464 (E - 1598) 29 August 1994 (1994-08-29) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 005 30 June 1995 (1995-06-30) *
ZYSSET B ET AL: "HIGH REPETITION RATE FEMTOSECOND DYE AMPLIFIER USING A LASER DIODE PUMPED NEODYMIUM:YAG LASER", APPLIED PHYSICS LETTERS, vol. 54, no. 6, 6 February 1989 (1989-02-06), pages 496 - 498, XP000027416 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502875A (ja) * 1999-06-24 2003-01-21 ロッキード マーティン コーポレイション 超音波の高速レーザを検出するシステムと方法

Also Published As

Publication number Publication date
EP0939978B1 (de) 2001-10-10
JP2001518235A (ja) 2001-10-09
US6188708B1 (en) 2001-02-13
DE19647677A1 (de) 1998-05-20
EP0939978A1 (de) 1999-09-08

Similar Documents

Publication Publication Date Title
DE60006416T2 (de) Optisch gepumpter halbleiterlaser mit resonatorinterner frequenzumwandlung
Streifer et al. Advances in diode laser pumps
DE60026071T2 (de) Abstimmbare laserquelle mit integriertem optischen verstärker
DE60120651T2 (de) Optisch gepumpter passiv modengekoppelter oberflächenemittierender halbleiterlaser mit externem resonator
US5802084A (en) Generation of high power optical pulses using flared mode-locked semiconductor lasers and optical amplifiers
EP0409177B1 (de) Optisch gegengekoppelter Verstärker
DE69826088T2 (de) Lasersender mit verminderter Verzerrung
DE10214120B4 (de) Optisch pumpbare oberflächenemittierende Halbleiterlaservorrichtung
DE10043896B4 (de) Laservorrichtung
DE112011102431B4 (de) Elektronische Einrichtung, flächenemittierender Laser, flächenemittierendes Laser-Array, Lichtquelle, optisches Modul
DE10147353A1 (de) Halbleiterlaser
EP0939978B1 (de) Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung
DE60014074T2 (de) Diodenlasergepumpter festkörperlaser
WO1998022999A9 (de) Laser- und verstärkersystem zur erzeugung einfrequenter laserstrahlung
DE60205745T2 (de) Frequenzstabilisierte laserquelle
US5455836A (en) Optical Q-switching to generate ultra short pulses in diode lasers
CN112421357B (zh) 一种用于高功率光纤激光器的调频式半导体种子源
DE10353960B4 (de) Oberflächenemittierender Halbleiterlaser mit strukturiertem Wellenleiter
DE60110409T2 (de) Laser mit externem resonator
US4380075A (en) Mode stable injection laser diode
DE10135958B4 (de) Elektroabsorptionsmodulator, Modulator-Laser-Vorrichtung und Verfahren zum Herstellen eines Elektroabsorptionsmodulators
EP0939979A1 (de) Laser- und verstärkersystem zur erzeugung von laserstrahlung im sichtbaren wellenlängenbereich
EP2036171A2 (de) Oberflächenemittierender halbleiterkörper mit vertikaler emissionsrichtung und stabilisierter emissionswellenlänge
Sun et al. Short Cavity Single-Mode DBR Lasers Based on HighOrder Slotted Surface-Gratings Using Narrow Slot-Width
WO2020166530A1 (ja) 高出力直接変調型レーザ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
COP Corrected version of pamphlet

Free format text: PAGES 11-13, CLAIMS, REPLACED BY NEW PAGES 11-13; PAGES 2/7-4/7, DRAWINGS, REPLACED BY NEW PAGES 2/7-4/7

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 523158

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997951154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997951154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09308393

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1997951154

Country of ref document: EP