WO1998016622A1 - Procede de predissolution de compositions detergentes - Google Patents

Procede de predissolution de compositions detergentes Download PDF

Info

Publication number
WO1998016622A1
WO1998016622A1 PCT/US1997/013728 US9713728W WO9816622A1 WO 1998016622 A1 WO1998016622 A1 WO 1998016622A1 US 9713728 W US9713728 W US 9713728W WO 9816622 A1 WO9816622 A1 WO 9816622A1
Authority
WO
WIPO (PCT)
Prior art keywords
bleach
detergent
acid
container
detergent composition
Prior art date
Application number
PCT/US1997/013728
Other languages
English (en)
Inventor
Kenji Shindo
Ayako Muramatsu
Susumu Murata
Nabil Yaqub Sakkab
Harry Leroy Coleman, Jr.
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1996/016403 external-priority patent/WO1998016437A1/fr
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU39077/97A priority Critical patent/AU3907797A/en
Priority to JP10518311A priority patent/JP2000504064A/ja
Priority to PCT/US1997/013728 priority patent/WO1998016622A1/fr
Publication of WO1998016622A1 publication Critical patent/WO1998016622A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L25/00Domestic cleaning devices not provided for in other groups of this subclass 
    • A47L25/08Pads or the like for cleaning clothes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • D06F39/024Devices for adding soap or other washing agents mounted on the agitator or the rotating drum; Free body dispensers

Definitions

  • the present invention relates to a method for predissolving a detergent composition in a container which can be hand-held.
  • Consumers may hand scrub a certain area of the garment using a toilet or laundry soap bar, or directly apply to certain fabric areas other commercially available pre-treatment products.
  • Such pre-treatment products exist in various physical forms such as a liquid, gel or paste detergent composition.
  • Consumers also commonly pre-soak garments which have hard to remove soils and stains on the fabric. For example, consumers pre-soak the fabrics in a detergent or bleach-containing detergent solution in a small wash basin or in the washing machine tub for a period of time, e.g. one hour to overnight. Then the consumer takes the pre-soaked garments and washes the garments in the normal machine wash process.
  • Detergent compositions sometimes do not adequately dissolve during the washing cycle in the washing machine, leaving deposits of detergent on the fabric even after the washing process has been completed. This is especially true with granular detergent compositions and is a particular problem when the water temperature used in the machine is low, e.g. 20°C and below. Detergent compositions also do not dissolve adequately in washing machines which have short wash cycles, e.g. about 10 minutes. Remaining deposits of detergent left on washed garments are highly undesirable to consumers, since consumers must re-wash the garments.
  • Detergent compositions which do not adequately dissolve during the washing cycle, or are used in adverse washing conditions such as a short wash cycle and low water temperature, also do not deliver satisfactory cleaning performance. For example, bleaching performance is hindered in such adverse washing conditions.
  • bleach containing detergent compositions with bleach activators liberate peracid to bleach the fabric.
  • bleach performance is limited because adverse wash conditions limit the generation of peracid.
  • Such bleach-containing compositions perform inefficiently in wash solutions when they come in contact with the wash solution prior to complete peracid generation. Based on the foregoing there is a need for an improved means for introducing detergent composition to the washing and/or cleaning process.
  • the present invention is directed to a method for predissolving a detergent composition having the steps of providing a hand-held container; and combining a detergent composition and a solvent in the container to form a concentrated detergent solution.
  • alkyl means a hydrocarbyl moiety which is straight or branched, saturated or unsaturated. Unless otherwise specified, alkyls are preferably saturated or unsaturated with double bonds, preferably with one or two double bonds.
  • the term "detergent composition” or “detergent” is intended to designate any of the agents conventionally used for removing soil, such as general household detergents or laundry detergents of the synthetic or soap type. The term is intended to also include other cleaning compositions, such as dishwashing liquid, hard surface cleaners, and so forth.
  • the present invention relates to a method for predissolving a detergent composition having the following steps: (1) providing a hand-held container; and (2) combining a detergent composition and a solvent in the container to form a concentrated detergent solution.
  • a predetermined amount of the detergent composition and the solvent are combined in the container.
  • the mixture is agitated in order to help facilitate the mixing and dissolving of the mixture of the detergent composition and solvent.
  • the resultant solution is a concentrated detergent solution which can be introduced to the fabric in various ways, such as for pre-treating the fabric, pre-soaking the fabric, and/or for use in hand washing or in a washing machine.
  • the container and concentrated detergent solution described herein are applicable to many types of cleaning operations, such as cleaning and/or pre- treating surfaces such as hard surfaces, dishes, walls, carpets, wallpaper, and other items.
  • the cleaning of "fabrics" is mentioned, the invention is also meant to include the cleaning of other surfaces besides "fabrics” such as mentioned above.
  • a concentrated detergent composition made by the method of the present invention has improved overall cleaning performance, especially on particularly soiled areas. In addition, it obviates the need to use a separate pre-treating or pre-soaking product in addition to the detergent composition for use in the washing machine; thereby resulting in saving time and additional cost.
  • the method of the present invention also effectively predissolves the detergent composition, resulting in many benefits. For example, there are less deposits of undissolved detergent onto fabric, cleaning performance is increased, and for bleach-containing compositions, better bleaching performance is observed. Even for machine washing conditions which are adverse, such as short washing cycles and/or the use of low temperature water, overall cleaning performance is surprisingly improved using a concentrated detergent composition made by the method of the present invention.
  • a hand-held container is provided.
  • the container is of a size which can be hand-held.
  • the term "hand- held" with respect to the container is used herein to indicate that the size of the container is such that the container could be held in one or both hands. However, it does not mean that the container must be hand-held to practice the present invention.
  • the predissolving takes place within the container when the detergent composition and the solvent are combined to form a concentrated detergent solution.
  • One embodiment of the hand-held container is a reusable container.
  • the container can be of the single-use (i.e. disposable) variety.
  • the container preferably has space within the container for "overflow" (see discussion below).
  • a preferred hand-held container for predissolving is described herein.
  • the container has a housing, a resilient side wall, and a dispensing passage with an applicator at the distal end.
  • the container is intended for use with fluids of greater than about 500 centipoise (cp) at 21 °C viscosity.
  • fluid flows out of the dispensing passage at a rate of from about 0 ml/min to about 300 ml/min, unless manual pressure is exerted on the resilient side wall.
  • the flow rate can increase beyond 300 ml/min.
  • the term "dispensing orientation" is defined as a position such that the applicator is touching the surface to be cleaned, or the applicator is parallel to the plane of the item to be cleaned.
  • FIG. 1 A preferred embodiment of a hand-held container is shown in Figure 1.
  • the housing, 1 contains a wide mouth, 2.
  • the diameter of the mouth is 55 mm.
  • the cross section of housing, 1 changes from a circle, at the mouth, 2, to an oval with flattened ends at the bottom of the housing, 30.
  • Lip, 33 provides added structural rigidity and further serves to catch drips of solution.
  • the housing, 1, also has multiple level indicators, 4, a resilient side wall, 32, and a frictional surface, 8.
  • Figure 1 also illustrates a filter, 6, which removably attaches to the cap member, 7, via a plurality of filter ridges (not shown), and substantially covers the neck base, 22.
  • the cap member, 7, also has a curved neck portion, 12, topped with a distal end, 29, to which is attached an aperture, 11 , surrounded by a brush-type applicator, 43.
  • Removably connected to the neck portion, 12, is a water-tight aperture cover, 18.
  • the cap member, 7, and the housing, 1 form a water-tight seal via a fastener, 3, which is a 180 degree closure, which insures that when the container is assembled for use, the applicator, 10, and the aperture, 11, lie in the plane of symmetry formed by the container.
  • the neck angle is about 135 degrees, and a filter has a mesh size of about 180 microns.
  • B Concentrated Detergent Solution
  • a detergent composition and a solvent are combined in the container to form a concentrated detergent solution.
  • the concentrated detergent solution has a surface tension value of from about 10 to about 50 dyne/cm. Even a more preferred surface tension value of the concentrated detergent solution of the present invention is from about 20 to about 40 dyne/cm, and more preferably still from about 25 to about 35 dyne/cm.
  • the concentrated detergent solution preferably has the following relationship: (1) the weight ratio of the detergent composition to the weight ratio of the solvent is from about 10:1 to 1 :1000, and (2) the volume ratio of the solvent to the volume of the container is from about 1 :1 to 1 :100.
  • a more preferred range is a weight ratio of the detergent composition to solvent from about 10:1 to 1 :100 and wherein the volume ratio of the solvent volume to the container volume is from about 1 :1 to 1 :10.
  • An even more preferred range is a weight ratio of the detergent composition to solvent from about 5:1 to 1 :10 and wherein the volume ratio of the solvent volume to the container volume is from about 1:1 to 1 :5
  • volume ratio of the solvent to the volume of the container is important so that there is sufficient "overflow” volume in the container.
  • overflow volume, it is meant to describe the volume in the container which is not taken up by the volume of the concentrated detergent solution. If there is not enough “overflow” volume in the container, the agitating by shaking (see below) does not work as efficiently to accelerate the dissolving process of the detergent composition in the solvent.
  • Table 1 lists examples of concentrated detergent solutions of the present invention: Table 1
  • the detergent composition comprises a bleach and/or a bleach activator.
  • the preferred bleach is a preformed peracid bleach and/or a peroxygen bleach.
  • the detergent composition also preferably contains a surfactant, but this is not a required component. If the user desires to wash hard surfaces such as tables, dishes, and floors, hard surface cleaners are most preferable. Conventional detergent composition ingredients are described in detail below.
  • the detergent composition can be in any physical form, such as a granule, paste, liquid, gel, tablet, or solid detergent composition.
  • the detergent compositions herein can optionally include one or more detergent materials or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition (e.g., perfumes, colorants, dyes, etc.).
  • the following are illustrative examples of such optional detergent materials.
  • the list of components is non-limiting.
  • JL Detersive Surfactant The detergent composition optionally comprises a detersive surfactant.
  • the detergent composition comprises at least about 0.01% of a detersive surfactant; more preferably at least about 0.1%; more preferably at least about 1%; more preferably still, from about 1% to about 55%.
  • Anionic Surfactants include the conventional C11-C18 a 'kyl benzene sulfonates ("LAS") and primary, branched-chain and random C10-C20 a'W sulfates ("AS”), the C-10-C18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH2) ⁇ (CHOSO 3 " M + ) CH3 and CH3 (CH2)y(CHOS03 " M + ) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as o
  • LAS C11-C18 a 'kyl benzene sulfonates
  • AS primary
  • C12-C18 betaines and sulfobetaines can also be included in the overall compositions.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used.
  • Other conventional useful anionic surfactants are listed in standard texts.
  • Other suitable anionic surfactants that can be used are alkyl ester sulfonate surfactants including linear esters of C8-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C8-C22 primary of secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
  • C8-C22 primary of secondary alkanesulfonates C8-C24 olefinsulfonates
  • sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C18 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-C12 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are described in "Surface Active Agents and Detergents” (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference). A preferred disulfate surfactant has the formula
  • R is an alkyl, substituted alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length Ci to C28. preferably C3 to C24, most preferably Q to C20. or hydrogen;
  • a and B are independently selected from alkyl, substituted alkyl, and alkenyl groups of chain length Ci to C28.
  • Ci to C5 preferably Ci to C5, most preferably C-j or C2, or a covalent bond
  • a and B in total contain at least 2 atoms
  • A, B, and R in total contain from 4 to about 31 carbon atoms
  • X and Y are anionic groups selected from the group consisting of sulfate and sulfonate, provided that at least one of X or Y is a sulfate group
  • M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.
  • the disulfate surfactant is typically present at levels of incorporation of from about 0.1% to about 50%, preferably from about 0.1% to about 35%, most preferably from about 0.5% to about 15% by weight of the detergent composition.
  • the laundry detergent compositions typically comprise from about 0.1% to about 50%, preferably from about 1% to about 40% by weight of an anionic surfactant.
  • Nonionic Surfactants include the alkoxylated alcohols (AE's) and alkyl phenols, polyhydroxy fatty acid amides (PFAA's), alkyl polyglycosides (APG's), C-
  • condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide (AE) are suitable for use as the nonionic surfactant in the detergent composition.
  • AE ethylene oxide
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.
  • nonionic surfactants of this type include: Tergitol ⁇ M 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide) and TergitolTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodofM 45_g ⁇ he condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-3 (the condensation product of C12-C13 linear alcohol with 3 moles of ethylene oxide), NeodofM 45.7 ( he condensation product of C-14-C15 linear alcohol with 7 moles of ethylene oxide) and Neodol ⁇ M 45-5 (the condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company; KyroTM EOB (the condensation product of C ⁇ -C-J S alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamb
  • Another class of preferred nonionic surfactants for use herein are the polyhydroxy fatty acid amide surfactants of the formula.
  • R 2 C — N — Z, II I , O R
  • R1 is H, or C-
  • R2 is C5.3-1 hydrocarbyl
  • Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • Typical examples include the C-12-C18 and C12-C14 N-methylgiucamides. See U.S. 5,194,639 and 5,298,636. N-alkoxy polyhydroxy fatty acid amides can also be used; see U.S. 5,489,393.
  • alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21 , 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21 , 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to
  • Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are also suitable for use as the nonionic surfactant of the surfactant systems of the detergent composition, with the polyethylene oxide condensates being preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight- chain or branched-chain configuration with the alkylene oxide.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in the detergent composition.
  • the hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility. Examples of compounds of this type include certain of the commercially-available PluronicT surfactants, marketed by BASF.
  • PluronicT surfactants also suitable for use as a nonionic surfactant in the detergent composition, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11 ,000.
  • Examples of this type of nonionic surfactant include certain of the commercially available TetronicT compounds, marketed by BASF.
  • Nonionics are amine oxide surfactants.
  • the detergent compositions may comprise amine oxide in accordance with the general formula I:
  • the structure (I) provides one long-chain moiety R 1 (EO) x (PO) y (BO) z and two short chain moieties, CH2R'.
  • R' is preferably selected from hydrogen, methyl and -CH2OH.
  • R 1 is a primary or branched hydrocarbyl moiety which can be saturated or unsaturated, preferably, R1 is a primary alkyl moiety.
  • R ⁇ is a hydrocarbyl moiety having chainlength of from about 8 to about 18.
  • R1 may be somewhat longer, having a chainlength in the range C-12- C24.
  • Nonlimiting examples of cationic surfactants useful herein typically at levels from about 0.1% to about 50%, by weight include the choline ester-type quats and alkoxylated quaternary ammonium (AQA) surfactant compounds, and the like.
  • AQA alkoxylated quaternary ammonium
  • Cationic surfactants useful as a component of the surfactant system is a cationic choline ester-type quat surfactant which are preferably water dispersible compounds having surfactant properties and comprise at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
  • Suitable cationic ester surfactants, including choline ester surfactants have for example been disclosed in U.S. Patents Nos. 4,228,042, 4,239,660 and 4,260,529.
  • Preferred cationic ester surfactants are those having the formula:
  • R1 is a 05-03-1 linear or branched alkyl, alkenyl or alkaryl chain or M ⁇ N + (R6R7R8)(CH2)s;
  • X and Y independently, are selected from the group consisting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;
  • R2, R3, R4, Re, R7 and Rs are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxyalkenyl and alkaryl groups having from 1 to 4 carbon atoms; and
  • R5 is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and
  • R2, R3 and R4 are independently selected from CH3 and -CH2CH2OH.
  • M is selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, more preferably methyl sulfate, chloride, bromide or iodide.
  • AQA compounds alkoxylated quaternary ammonium surfactant compounds having the formula:
  • R ⁇ is a linear or branched alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms;
  • R2 is an alkyl group containing from one to three carbon atoms, preferably methyl;
  • R 3 and R 4 can vary independently and are selected from hydrogen (preferred), methyl and ethyl;
  • X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality.
  • a and A * can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy (i.e., -CH2CH2O-), propoxy, butoxy and mixed ethoxy/propoxy; p is from 0 to about 30, preferably 1 to about 4 and q is from 0 to about 30, preferably 1 to about 4, and most preferably to about 4; preferably both p and q are 1. See also: EP 2,084, published May 30, 1979, by The Procter & Gamble Company, which describes cationic surfactants of this type which are also useful herein..
  • the levels of the AQA surfactants used to prepare finished laundry detergent compositions can range from about 0.1% to about 5%, typically from about 0.45% to about 2.5%, by weight.
  • the preferred bis-ethoxylated cationic surfactants herein are available under the trade name ETHOQUAD from Akzo Nobel Chemicals Company.
  • Highly preferred bis-AQA compounds for use herein are of the formula wherein R 1 is C10-C18 hydrocarbyl and mixtures thereof, preferably C ⁇
  • R1 is derived from coconut (C12-C14 alkyl) fraction fatty acids
  • R2 is methyl and ApR ⁇ and A'qR 4 are each monoethoxy
  • this preferred type of compound is referred to herein as "CocoMeE02" or "AQA-1" in the above list.
  • cationic surfactants are described, for example, in the "Surfactant Science Series, Volume 4, Cationic Surfactants” or in the “Industrial Surfactants Handbook".
  • Classes of useful cationic surfactants described in these references include amide quats (i.e., Lexquat AMG & Schercoquat CAS), glycidyl ether quats (i.e., Cyostat 609), hydroxyalkyl quats (i.e., Dehyquart E), alkoxypropyl quats (i.e., Tomah Q-17-2), polypropoxy quats (Emcol CC-9), cyclic alkylammonium compounds (i.e., pyridinium or imidazolinium quats), and/or benzalkonium quats.
  • amide quats i.e., Lexquat AMG & Schercoquat CAS
  • glycidyl ether quats i.e.,
  • Typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives or their corresponding amine precursor, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.
  • Preferred cationic softeners among these include the following:
  • DTDMAC ditallow dimethylammonium chloride
  • DSOEDMAC di(stearoyloxyethyl) dimethylammonium chloride
  • Biodegradable quaternary ammonium compounds have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates. Such quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0,239,910.
  • the quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below :
  • Q is selected from -O-C(O)-, -C(0)-0-, -0-C(0)-0-, -NR -C(0)-,
  • R1 is (CH 2 ) n -Q-T 2 or T 3 ;
  • R2 is (CH 2 ) m -Q-T 4 or T 5 or R3;
  • R 3 is C1-C4 alkyl or C1-C4 hydroxyalkyl or H;
  • R 4 is H or C1-C4 alkyl or C1-C4 hydroxyalkyl
  • T 1 , T 2 , T 3 , T 4 , T 5 are independently Ci 1-C22 alkyl or alkenyl; n and m are integers from 1 to 4; and X" is a softener-compatible anion.
  • Softener-compatible anions include chloride or methyl sulfate.
  • the alkyl, or alkenyl, chain ⁇ 1 , ⁇ 2, T 3 , T 4 , T ⁇ must contain at least 11 carbon atoms, preferably at least 16 carbon atoms.
  • the chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material.
  • the compounds wherein T "1 , T 2 , ⁇ 3 , T 4 , T ⁇ represents the mixture of long chain materials typical for tallow are particularly preferred.
  • quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
  • Detergent builders can optionally be included in the detergent compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • the level of builder can vary widely depending upon the end use of the composition and its desired physical form.
  • the compositions will typically comprise at least about 1% builder.
  • Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder.
  • Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder.
  • Lower or higher levels of builder are not meant to be excluded.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Hoechst commonly abbreviated herein as "SKS-6”
  • the Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na2SiOs morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 ⁇ +-
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the detergent composition. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
  • Organic detergent builders suitable for the purposes of the detergent composition include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1 ,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581 to Diehl, issued December 1 , 1964; 3,213,030 to Diehl, issued October 19, 1965; 3,400,148 to Quimby, issued September 3, 1968; 3,422,021 to Roy, issued January 14, 1969; and 3,422,137 to Quimby, issued January 14, 1969) can also be used.
  • Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq.. Chemically, these materials comprise polyacrylates having one ethoxy side- chain per every 7-8 acrylate units.
  • the side-chains are of the formula -(CH2CH2 ⁇ ) m (CH2)nCH3 wherein m is 2-3 and n is 6-12.
  • the side-chains are ester-linked to the polyacrylate "backbone” to provide a "comb" polymer type structure.
  • the molecular weight can vary, but is typically in the range of about 2000 to about " 50,000.
  • Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10% of the compositions herein. 4 ⁇ Bleaching Compounds - Bleaching Agents and Bleach Activators
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • Preferred detergent compositions comprise, as part or all of the laundry or cleaning adjunct materials, an oxygen bleaching agent.
  • Oxygen bleaching agents useful in the detergent composition can be any of the oxidizing agents known for laundry, hard surface cleaning, automatic dishwashing or denture cleaning purposes. Oxygen bleaches or mixtures thereof are preferred, though other oxidant bleaches, such as oxygen, an enzymatic hydrogen peroxide producing system, or hypohalites such as chlorine bleaches like hypochlorite, may also be used.
  • Oxygen bleaches deliver "available oxygen” (AvO) or "active oxygen” which is typically measurable by standard methods such as iodide/thiosulfate and/or eerie sulfate titration.
  • oxygen bleach is a peroxygen compound
  • it contains -O-O- linkages with one O in each such linkage being "active".
  • AvO content of such an oxygen bleach compound is equal to 100 * the number of active oxygen atoms * (16 / molecular weight of the oxygen bleach compound).
  • an oxygen bleach will be used herein, since this benefits directly from combination with the transition-metal bleach catalyst.
  • the oxygen bleach herein can have any physical form compatible with the intended application; more particularly, liquid-form and solid-form oxygen bleaches as well as adjuncts, promoters or activators are included.
  • Liquids can be included in solid detergents, for example by adsorption onto an inert support; and solids can be included in " liquid detergents, for example by use of compatible suspending agents.
  • Common oxygen bleaches of the peroxygen type include hydrogen peroxide, inorganic peroxohyd rates, organic peroxohydrates and the organic peroxyacids, including hydrophilic and hydrophobic mono- or di- peroxyacids.
  • These can be peroxycarboxylic acids, peroxyimidic acids, amidoperoxycarboxylic acids, or their salts including the calcium, magnesium, or mixed-cation salts.
  • Peracids of various kinds can be used both in free form and as precursors known as “bleach activators” or “bleach promoters" which, when combined with a source of hydrogen peroxide, perhydrolyze to release the corresponding peracid.
  • oxygen bleaches are the inorganic peroxides such as Na2 ⁇ 2, superoxides such as KO2, organic hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide, and the inorganic peroxoacids and their salts such as the peroxosulfuric acid salts, especially the potassium salts of peroxodisulfuric acid and, more preferably, of peroxomonosulfuric acid including the commercial triple-salt form sold as OXONE by DuPont and also any equivalent commercially available forms such as CUROX from Akzo or CAROAT from Degussa.
  • inorganic peroxides such as Na2 ⁇ 2
  • superoxides such as KO2
  • organic hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide
  • the inorganic peroxoacids and their salts such as the peroxosulfuric acid salts, especially the potassium salts of perox
  • Certain organic peroxides such as dibenzoyl peroxide, may be useful, especially as additives rather than as primary oxygen bleach.
  • Mixed oxygen bleach systems are generally useful, as are mixtures of any oxygen bleaches with the known bleach activators, organic catalysts, enzymatic catalysts and mixtures thereof; moreover such mixtures may further include brighteners, photobleaches and dye transfer inhibitors of types well-known in the art.
  • Preferred oxygen bleaches include the peroxohydrates, sometimes known as peroxyhydrates or peroxohydrates. These are organic or, more commonly, inorganic salts capable of releasing hydrogen peroxide readily.
  • peroxohydrates deliver hydrogen peroxide readily enough that it can be extracted in measurable amounts into the ether phase of an ether/water mixture. Peroxohydrates are characterized in that they fail to give the Riesenfeld reaction, in contrast to certain other oxygen bleach types described hereinafter. Peroxohydrates are the most common examples of "hydrogen peroxide source” materials and include the perborates, percarbonates, perphosphates, and persilicates. Other materials which serve to produce or release hydrogen peroxide are, of course, useful.
  • peroxohydrates include sodium carbonate peroxyhydrate and equivalent commercial "percarbonate” bleaches, and any of the so-called sodium perborate hydrates, the "tetrahydrate” and “monohydrate” being preferred; though sodium pyrophosphate peroxyhydrate can be used.
  • Many such peroxohydrates are available in processed forms with coatings, such as of silicate and/or borate and/or waxy materials and/or surfactants, or have particle geometries, such as compact spheres, which improve storage stability.
  • urea peroxyhydrate can also be useful herein.
  • Percarbonate bleach includes, for example, dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1 ,250 micrometers.
  • Percarbonates and perborates are widely available in commerce, for example from FMC, Solvay and Tokai Denka.
  • Organic percarboxylic acids useful herein as the oxygen bleach include magnesium monoperoxyphthalate hexahydrate, available from Interox, -chloro perbenzoic acid and its salts, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid and their salts.
  • Patent 4,634,551 issued January 6, 1987 to Burns et al, and include those having formula HO-0-C(0)-R-Y wherein R is an alkylene or substituted alkylene group containing from 1 to about 22 carbon atoms or a phenylene or substituted phenylene group, and Y is hydrogen, halogen, alkyl, aryl or -C(0)-OH or -C(0)-0-OH.
  • Organic percarboxylic acids usable herein include those containing one, two or more peroxy groups, and can be aliphatic or aromatic.
  • the organic percarboxylic acid is aliphatic, the unsubstituted acid suitably has the linear formula: HO-0-C(0)-(CH2) n -Y where Y can be, for example, H, CH3, CH2CI, COOH, or C(0)OOH; and n is an integer from 1 to 20. Branched analogs are also acceptable.
  • the unsubstituted acid suitably has formula: HO-0-C(0)-C6H4-Y wherein Y is hydrogen, alkyl, alkyhalogen, halogen, or -COOH or -C(0)OOH.
  • Monoperoxycarboxylic acids useful as oxygen bleach herein are further illustrated by alkyl percarboxylic acids and aryl percarboxylic acids such as peroxybenzoic acid and ring-substituted peroxybenzoic acids, e.g., peroxy-alpha- naphthoic acid; aliphatic, substituted aliphatic and arylalkyl monoperoxy acids such as peroxylauric acid, peroxystearic acid, and N,N- phthaloylaminoperoxycaproic acid (PAP); and 6-octylamino-6-oxo- peroxyhexanoic acid.
  • alkyl percarboxylic acids and aryl percarboxylic acids such as peroxybenzoic acid and ring-substituted peroxybenzoic acids, e.g., peroxy-alpha- naphthoic acid
  • aliphatic, substituted aliphatic and arylalkyl monoperoxy acids such as per
  • Monoperoxycarboxylic acids can be hydrophilic, such as peracetic acid, or can be relatively hydrophobic.
  • the hydrophobic types include those containing a chain of six or more carbon atoms, preferred hydrophobic types having a linear aliphatic C8-C14 chain optionally substituted by one or more ether oxygen atoms and/or one or more aromatic moieties positioned such that the peracid is an aliphatic peracid. More generally, such optional substitution by ether oxygen atoms and/or aromatic moieties can be applied to any of the peracids or bleach activators herein. Branched-chain peracid types and aromatic peracids having one or more C3-C16 linear or branched long-chain substituents can also be useful.
  • the peracids can be used in the acid form or as any suitable salt with a bleach-stable cation. Very useful herein are the organic percarboxylic acids of formula:
  • R is alkyl, aryl, or alkaryl containing from about 1 to
  • R is alkylene, arylene or alkarylene containing from
  • R is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms.
  • hydrophobic peracids for bleaching a variety of relatively hydrophobic or "lipophilic" stains, including so- called “dingy” types.
  • Calcium, magnesium, or substituted ammonium salts may also be useful.
  • Other useful peracids and bleach activators herein are in the family of imidoperacids and imido bleach activators. These include phthalqylimidoperoxycaproic acid and related arylimido-substituted and acyloxynitrogen derivatives. For listings of such compounds, preparations and their incorporation into laundry compositions including both granules and liquids, See U.S. 5,487,818; U.S. 5,470,988, U.S.
  • diperoxyacids include, for example, 1,12-diperoxydodecanedioic acid (DPDA); 1 ,9-diperoxyazelaic acid; diperoxybrassilic acid; diperoxysebasic acid and diperoxyisophthalic acid; 2-decyldiperoxybutane-1 ,4-dioic acid; and 4,4'-sulphonylbisperoxybenzoic acid.
  • DPDA 1,12-diperoxydodecanedioic acid
  • 1 ,9-diperoxyazelaic acid diperoxybrassilic acid
  • diperoxysebasic acid and diperoxyisophthalic acid diperoxysebasic acid and diperoxyisophthalic acid
  • 2-decyldiperoxybutane-1 ,4-dioic acid 2-decyldiperoxybutane-1 ,4-dioic acid
  • 4,4'-sulphonylbisperoxybenzoic acid
  • diperacids are hydrophobic in a quite literal sense, especially when they have a long-chain moiety separating the peroxyacid moieties. More generally, the terms "hydrophilic” and “hydrophobic” used herein in connection with any of the oxygen bleaches, especially the peracids, and in connection with bleach activators, are in the first instance based on whether a given oxygen bleach effectively performs bleaching of fugitive dyes in solution thereby preventing fabric graying and discoloration and/or removes more hydrophilic stains such as tea, wine and grape juice - in this case it is termed "hydrophilic".
  • hydrophobic When the oxygen bleach or bleach activator has a significant stain removal, whiteness-improving or cleaning effect on dingy, greasy, carotenoid, or other hydrophobic soils, it is termed "hydrophobic". The terms are applicable also when referring to peracids or bleach activators used in combination with a hydrogen peroxide source.
  • the current commercial benchmarks for hydrophilic performance of oxygen bleach systems are: TAED or peracetic acid, for benchmarking hydrophilic bleaching. NOBS or NAPAA are the corresponding benchmarks for hydrophobic bleaching.
  • hydrophilic “hydrophobic” and “hydrotropic” with reference to oxygen bleaches including peracids and here extended to bleach activator have also been used somewhat more narrowly in the literature.
  • This reference provides a chromatographic retention time and critical micelle concentration-based set of criteria, and is useful to identify and/or characterize preferred sub-classes of hydrophobic, hydrophilic and hydrotropic oxygen bleaches and bleach activators that can be used in the detergent composition.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • Another suitable hydrogen peroxide generating system is a combination of a Ci - C4 alkanol oxidase and a Ci -C4 alkanol, especially a combination of methanol oxidase (MOX) and ethanol.
  • a Ci - C4 alkanol oxidase oxidases
  • Ci -C4 alkanol especially a combination of methanol oxidase (MOX) and ethanol.
  • MOX methanol oxidase
  • Other enzymatic materials related to bleaching such as peroxidases, haloperoxidases, oxidases, superoxide dismutases, catalases and their enhancers or, more commonly, inhibitors, may be used as optional ingredients in the instant compositions.
  • Oxygen bleaches preferably used in conjunction with such oxygen transfer agents or precursors include percarboxylic acids and salts, percarbonic acids and salts, peroxymonosulfuric acid and salts, and mixtures thereof. See also U.S. 5,360,568; U.S. 5,360,569; and U.S. 5,370,826.
  • the detergent composition incorporates a transition-metal bleach catalyst and an organic bleach catalyst such as one named hereinabove, a primary oxidant such as a hydrogen peroxide source, and at least one additional detergent, hard-surface cleaner or automatic dishwashing adjunct.
  • a transition-metal bleach catalyst such as one named hereinabove
  • a primary oxidant such as a hydrogen peroxide source
  • at least one additional detergent, hard-surface cleaner or automatic dishwashing adjunct are those which further include a precursor for a hydrophobic oxygen bleach, such as NOBS.
  • oxygen bleach systems and/or their precursors may be susceptible to decomposition during storage in the presence of moisture, air (oxygen and/or carbon dioxide) and trace metals (especially rust or simple salts or colloidal oxides of the transition metals) and when subjected to light, stability can be improved by adding common sequestrants (chelants) and/or polymeric dispersants and/or a small amount of antioxidant to the bleach system or product. See, for example, U.S. 5,545,349.
  • Antioxidants are often added to detergent ingredients ranging from enzymes to surfactants. Their presence is not necessarily inconsistent with use of an oxidant bleach; for example, the introduction of a phase barrier may be used to stabilize an apparently incompatible combination of an enzyme and antioxidant, on one hand, and an oxygen bleach, on the other.
  • antioxidants include phenol-based antioxidants such as 3,5-di-tert-butyl-4-hydroxytoluene and 2,5-di-tert- butylhydroquinone; amine-based antioxidants such as N,N'-diphenyl-p- phenylenediamine and phenyl-4-piperizinyl-carbonate; sulfur-based antioxidants such as didodecyl-3,3'-thiodipropionate and ditridecyl-3,3'-thiodipropionate; phosphorus-based antioxidants such as tris(isodecyl)phosphate and triphenylphosphate; and, natural antioxidants such as L-ascorbic acid, its sodium salts and DL- alpha -tocopherol.
  • phenol-based antioxidants such as 3,5-di-tert-butyl-4-hydroxytoluene and 2,5-di-tert- butylhydroquinone
  • amine-based antioxidants such
  • antioxidants may be used independently or in combinations of two or more. From among these, 3,5-di-tert-butyl-4- hydroxytoluene, 2,5-di-tert-butylhydroquinone and D,L-alpha -tocopherol are particularly preferable.
  • antioxidants are blended into the bleaching composition preferably at a proportion of 0.01-1.0 wt % of the organic acid peroxide precursor, and particularly preferably at a proportion of 0.05-0.5 wt %.
  • the hydrogen peroxide or peroxide that produces hydrogen peroxide in aqueous solution is blended into the mixture during use preferably at a proportion of 0.5- 98 wt %, and particularly preferably at a proportion of 1-50 wt %, so that the effective oxygen concentration is preferably 0.1-3 wt %, and particularly preferably 0.2-2 wt %.
  • the organic acid peroxide precursor is blended into the composition during use, preferably at a proportion of 0.1-50 wt % and particularly preferably at a proportion of 0.5-30 wt %.
  • antioxidants operating to inhibit or shut down free radical mechanisms may be particularly desirable for controlling fabric damage. While the combinations of ingredients used with the transition-metal bleach catalysts can be widely permuted, some particularly preferred combinations include:
  • transition metal bleach catalyst + hydrogen peroxide source alone e.g., sodium perborate or percarbonate
  • bleach activator selected from (i) hydrophilic bleach activators, such as TAED;
  • hydrophobic bleach activators such as NOBS or activators capable, on perhydrolysis, of releasing NAPAA or a similar hydrophobic peracid, and (iii) mixtures thereof;
  • transition metal bleach catalyst + peracid alone e.g., (i) hydrophilic peracid, e.g., peracetic acid; (ii) hydrophobic peracid, e.g., NAPAA or peroxylauric acid;
  • inorganic peracid e.g., peroxymonosulfuric acid potassium salts
  • any of (a) - (d) can be further combined with one or more detersive surfactants, especially including mid-chain branched anionic types having superior low- temperature solubility, such as mid-chain branched sodium alkyl sulfates, though high-level incorporation of nonionic detersive surfactants is also very useful, especially in compact-form heavy-duty granular detergent embodiments; polymeric dispersants, especially including biodegradable, hydrophobically modified and/or terpolymeric types; sequestrants, for example certain penta(methylenephosphonates) or ethylenediamine disuccinate; fluorescent whitening agents; enzymes, including those capable of generating hydrogen peroxide; photobleaches; and/or dye transfer inhibitors.
  • detersive surfactants especially including mid-chain branched anionic types having superior low- temperature solubility, such as mid-chain branched sodium alkyl sulfates, though high-level incorporation of nonionic detersive surfactants is also very useful, especially
  • the transition metal bleach catalyst will preferably be at levels in a range suited to provide wash (in-use) concentrations of from about 0.1 to about 10 ppm (weight of catalyst); the other components typically being used at their known levels, which may vary widely.
  • transition metal catalysts can be used in combination with heretofore-disclosed transition metal bleach or dye transfer inhibition catalysts, such as the Mn or Fe complexes of triazacyclononanes, the Fe complexes of N,N-bis(pyridin-2-yl-methyl)-bis(pyridin- 2-yl)methylamine (U.S. 5,580,485) and the like.
  • transition metal bleach catalyst is one disclosed to be particularly effective for solution bleaching and dye transfer inhibition, as is the case for example with certain transition metal complexes of porphyrins, it may be combined with one better suited for promoting interfacial bleaching of soiled substrates.
  • Bleach activators useful herein include amides, imides, esters and anhydrides. Commonly at least one substituted or unsubstituted acyl moiety is present, covalently connected to a leaving group as in the structure R-C(0)-L.
  • bleach activators are combined with a source of hydrogen peroxide, such as the perborates or percarbonates, in a single product. Conveniently, the single product leads to in situ production in aqueous solution (i.e., during the washing process) of the percarboxylic acid corresponding to the bleach activator.
  • the product itself can be hydrous, for example a powder, provided that water is controlled in amount and mobility such that storage stability is acceptable.
  • the product can be an anhydrous solid or liquid.
  • the bleach activator or oxygen bleach is incorporated in a pretreatment product, such as a stain stick; soiled, pretreated substrates can then be exposed to further treatments, for example of a hydrogen peroxide source.
  • a pretreatment product such as a stain stick
  • soiled, pretreated substrates can then be exposed to further treatments, for example of a hydrogen peroxide source.
  • the atom in the leaving group connecting to the peracid-forming acyl moiety R(C)0- is most typically O or N.
  • Bleach activators can have non-charged, positively or negatively charged peracid-forming moieties and/or noncharged, positively or negatively charged leaving groups.
  • One or more peracid-forming moieties or leaving- groups can be present. See, for example, U.S.
  • Bleach activators can be substituted with electron-donating or electron-releasing moieties either in the leaving-group or in the peracid-forming moiety or moieties, changing their reactivity and making them more or less suited to particular pH or wash conditions.
  • electron-withdrawing groups such as NO2 improve the efficacy of bleach activators intended for use in mild-pH (e.g., from about 7.5- to about 9.5) wash conditions.
  • Cationic bleach activators include quaternary carbamate-, quaternary carbonate-, quaternary ester- and quaternary amide- types, delivering a range of cationic peroxyimidic, peroxycarbonic or peroxycarboxylic acids to the wash.
  • An analogous but non-cationic palette of bleach activators is available when quaternary derivatives are not desired.
  • cationic activators include quaternary ammonium-substituted activators of WO 96-06915, U.S.
  • EP-A-284292, EP-A-331 ,229 and EP-A-03520 including 2- (N,N,N-trimethyl ammonium) ethyl-4-sulphophenyl carbonate-(SPCC); N- octyl,N,N-dimethyl-N 10-carbophenoxy decyl ammonium chloride-(ODC); 3- (N,N,N-trimethyl ammonium) propyl sodium-4-sulphophenyl carboxylate; and N,N,N-trimethyl ammonium toluyloxy benzene sulfonate.
  • SPCC 2- (N,N,N-trimethyl ammonium) ethyl-4-sulphophenyl carbonate-(SPCC); N- octyl,N,N-dimethyl-N 10-carbophenoxy decyl ammonium chloride-(ODC); 3- (N,N,N-trimethyl ammonium) propyl sodium-4-sulph
  • cationic nitriles as disclosed in EP-A-303,520 and in European Patent Specification 458,396 and 464,880.
  • Other nitrile types have electron-withdrawing substituents as described in U.S. 5,591 ,378; examples including 3,5-dimethoxybenzonitrile and 3,5-dinitrobenzonitrile.
  • bleach activator disclosures include GB 836,988; 864,798; 907,356; 1,003,310 and 1,519,351; German Patent 3,337,921; EP-A-0185522; EP-A- 0174132; EP-A-0120591 ; U.S. Pat. Nos. 1,246,339; 3,332,882; 4,128,494; 4,412,934 and 4,675,393, and the phenol sulfonate ester of alkanoyl aminoacids disclosed in U.S. 5,523,434.
  • Suitable bleach activators include any acetylated diamine types, whether hydrophilic or hydrophobic in character.
  • preferred classes include the esters, including acyl phenol sulfonates, acyl alkyl phenol sulfonates or acyl oxybenzenesulfonates (OBS leaving-group); the acyl-amides; and the quaternary ammonium substituted peroxyacid precursors including the cationic nitriles.
  • esters including acyl phenol sulfonates, acyl alkyl phenol sulfonates or acyl oxybenzenesulfonates (OBS leaving-group); the acyl-amides; and the quaternary ammonium substituted peroxyacid precursors including the cationic nitriles.
  • Preferred bleach activators include N.N.N'N'-tetraacetyl ethylene diamine (TAED) or any of its close relatives including the triacetyl or other unsymmetrical derivatives.
  • TAED and the acetylated carbohydrates such as glucose pentaacetate and tetraacetyl xylose are preferred hydrophilic bleach activators.
  • acetyl triethyl citrate a liquid, also has some utility, as does phenyl benzoate.
  • Preferred hydrophobic bleach activators include sodium nonanoyloxybenzene sulfonate (NOBS or SNOBS), substituted amide types described in detail hereinafter, such as activators related to NAPAA, and activators related to certain imidoperacid bleaches, for example as described in U.S. Patent 5,061 ,807, issued October 29, 1991 and assigned to Hoechst Aktiengesellschaft of Frankfurt, Germany.
  • Japanese Laid-Open Patent Application (Kokai) No. 4-28799 for example describes a bleaching agent and a bleaching detergent composition comprising an organic peracid precursor described by a general formula and illustrated by compounds which may be summarized more particularly as conforming to the formula:
  • L is sodium p-phenolsulfonate
  • R1 is CH3 or C12H25 and R2 is H.
  • Analogs of these compounds having any of the leaving-groups identified herein and/or having R1 being linear or branched C6-C16 are also useful.
  • peracids and bleach activators herein are those derivable from acyclic imidoperoxycarboxylic acids and salts thereof of the formula:
  • n is from 0 to about 4
  • Rl and E are said terminal hydrocarbyl groups, R2, R3 and R 4 are independently selected from H, C1-C3 saturated alkyl, and C1-C3 unsaturated alkyl; and wherein said terminal hydrocarbyl groups are alkyl groups comprising at least six carbon atoms, more typically linear or branched alkyl having from about 8 to about 16 carbon atoms.
  • bleach activators include sodium-4-benzoyloxy benzene sulfonate (SBOBS); sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoyloxy benzoate (SPCC); trimethyl ammonium toluyloxy-benzene sulfonate; or sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (STHOBS).
  • SBOBS sodium-4-benzoyloxy benzene sulfonate
  • SPCC sodium-4-methyl-3-benzoyloxy benzoate
  • STHOBS sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate
  • Bleach activators may be used in an amount of up to 20%, preferably from 0.1-10% by weight, of the composition, though higher levels, 40% or more, are acceptable, for example in highly concentrated bleach additive product forms or forms intended for appliance automated dosing.
  • Highly preferred bleach activators useful herein are amide-substituted and have either of the formulae:
  • R is alkyl, aryl, or alkaryl containing from about 1 to about 14 carbon atoms including both hydrophilic types (short R 1 ) and hydrophobic types (R 1 is especially from about 8 to about 12), R is alkylene, arylene or alkarylene containing from about 1 to about 14 carbon atoms, R is H, or an alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is a leaving group.
  • a leaving group as defined herein is any group that is displaced from the bleach activator as a consequence of attack by perhydroxide or equivalent reagent capable of liberating a more potent bleach from the reaction.
  • Perhydrolysis is a term used to describe such reaction.
  • bleach activators perhydrolyze to liberate peracid.
  • Leaving groups of bleach activators for relatively low-pH washing are suitably electron-withdrawing.
  • Preferred leaving groups have slow rates of reassociation with the moiety from which they have been displaced.
  • Leaving groups of bleach activators are preferably selected such that their removal and peracid formation are at rates consistent with the desired application, e.g., a wash cycle.
  • the pK of the conjugate acid of the leaving group is a measure of suitability, and is typically from about 4 to about 16, or higher, preferably from about 6 to about 12, more preferably from about 8 to about 11.
  • Preferred bleach activators include those of the formulae, for example the
  • R is a linear or branched alkyl, aryl, or alkaryl group containing from about 1 to about 14 carbon atoms
  • R is an alkyl chain containing from 1 to about 8 carbon atoms
  • R is H or R
  • Y is H or a solubilizing group.
  • Preferred solubilizing groups include -S03 " M + , -C02 " M + , -S04 " M + , -N + (R)
  • any of the above bleach activators are preferably solids having crystalline character and melting-point above about 50 deg.
  • branched alkyl groups are preferably not included in the oxygen bleach or bleach activator; in other formulation contexts, for example heavy-duty liquids with bleach or liquid bleach additives, low-melting or liquid bleach activators are preferred. Melting- point reduction can be favored by incorporating branched, rather than linear alkyl moieties into the oxygen bleach or precursor.
  • the activator can have good water-solubility or dispersibility while still being capable of delivering a relatively hydrophobic peracid.
  • M is alkali metal, ammonium or substituted ammonium, more preferably Na or K
  • X is halide, hydroxide, methylsulfate or acetate.
  • Solubilizing groups can, more generally, be used in any bleach activator herein.
  • Bleach activators of lower solubility for example those with leaving group not having a solubilizing group, may need to be finely divided or dispersed in bleaching solutions for acceptable results.
  • Preferred bleach activators also include those of the above general formula wherein L is selected from the group consisting of:
  • R is as defined above and Y is -S03 " M + or -C02 " M + wherein M is as defined above.
  • bleach activators of the above formulae include: (6-octanamidocaproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof.
  • bleaching results can be obtained from bleaching systems having with in-use pH of from about 6 to about 13, preferably from about 9.0 to about 10.5.
  • activators with electron-withdrawing moieties are used for near-neutral or sub- neutral pH ranges.
  • Alkalis and buffering agents can be used to secure such pH.
  • Acyl lactam activators are very useful herein, especially the acyl caprolactams (see for example WO 94-28102 A) and acyl valerolactams (see U.S. 5,503,639) of the formulae:
  • R6 is H, alkyl, aryl, alkoxyaryl, an alkaryl group containing from 1 to about 12 carbon atoms, or substituted phenyl containing from about 6 to about 18 carbons.
  • R6 is H, alkyl, aryl, alkoxyaryl, an alkaryl group containing from 1 to about 12 carbon atoms, or substituted phenyl containing from about 6 to about 18 carbons.
  • NOBS NOBS
  • lactam activators imide activators or amide-functional activators, especially the more hydrophobic derivatives
  • hydrophilic activators such as TAED
  • TAED typically at weight ratios of hydrophobic activator : TAED in the range of 1 :5 to 5:1 , preferably about 1 :1.
  • Other suitable lactam activators are alpha-modified, see WO 96-22350 A1 , July 25, 1996.
  • Lactam activators especially the more hydrophobic types, are desirably used in combination with TAED, typically at weight ratios of amido-derived or caprolactam activators : TAED in the range of 1:5 to 5:1 , preferably about 1 :1. See also the bleach activators having cyclic amidine leaving-group disclosed in U.S. 5,552,556.
  • Nonlimiting examples of additional activators useful herein are to be found in U.S. 4,915,854, U.S. 4,412,934 and 4,634,551.
  • the hydrophobic activator nonanoyloxybenzene sulfonate (NOBS) and the hydrophilic tetraacetyl ethylene diamine (TAED) activator are typical, and mixtures thereof can also be used.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED hydrophilic tetraacetyl ethylene diamine
  • the superior bleaching/cleaning action of the detergent compositions is also preferably achieved with safety to natural rubber machine parts, for example of certain European washing appliances (see WO 94-28104) and other natural rubber articles, including fabrics containing natural rubber and natural rubber elastic materials. Complexities of bleaching mechanisms are legion and are not completely understood.
  • Additional activators useful herein include those of U.S. 5,545,349.
  • Examples include esters of an organic acid and ethylene giycol, diethylene glycol or glycerin, or the acid imide of an organic acid and ethylenediamine; wherein the organic acid is selected from methoxyacetic acid, 2-methoxypropionic acid, p-methoxybenzoic acid, ethoxyacetic acid, 2-ethoxypropionic acid, p- ethoxybenzoic acid, propoxyacetic acid, 2-propoxypropionic acid, p- propoxybenzoic acid, butoxyacetic acid, 2-butoxypropionic acid, p-butoxybenzoic acid, 2-methoxyethoxyacetic acid,2-methoxy-1-methylethoxyacetic acid, 2- methoxy-2-methylethoxyacetic acid,2-ethoxyethoxyacetic acid, 2-(2- ethoxyethoxy)propionic acid, p-(2-ethoxyethoxy)
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include MnlV2(u-0)3(1,4,7-trimethyl-1 ,4,7- triazacyclononane)2(PF6)2 > Mn"l2(u-0) ⁇ (u-OAc)2( ,4,7-trimethyl-1 ,4,7- triazacyclononane)2-(CI04)2, Mn' V 4(u-0)6(1,4,7-triazacyclononane)4(CI04)4, Mn"lMn' V 4(u-0) ⁇ (u-OAc)2-(1 ,4,7-trimethyl-1 ,4,7-triazacyclononane)2(CI04)3, MnlV(l ,4,7-trimethyl-1 ,4,7-triazacyclononane)- (OCH3)3(PF6), and mixtures thereof.
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161 ; and 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • bleach reducing agent Any bleach reducing agent known in the art can be incorporated at levels typically from about 0.01% to about 10%, by weight, into the detergent compositions herein.
  • Non limiting examples of bleach reducing agents include sulfurous acid or its salt (i.e., sulfite), hydrosulfite (Na2S2 ⁇ 4 dihydrates), rongalite (mixture of hydrosulfite + formalin), and thioureadioxide. 5 ⁇ Bri htener
  • optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the detergent composition can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982). 6L Chelating Agents
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy-3,5-disulfobenzene.
  • EDDS ethylenediamine disuccinate
  • [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.
  • MGDA water-soluble methyl glycine diacetic acid
  • these chelating agents will generally comprise from about 0.1% to about 15% by weight of the detergent compositions herein.
  • Clay Soil Removal / Anti-redeposition Agents will generally comprise from about 0.1% to about 15% by weight of the detergent compositions herein.
  • the detergent compositions can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
  • Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain about 0.01% to about 5%.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine.
  • Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898 to VanderMeer, issued July 1 , 1986.
  • Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111 ,965, Oh and Gosselink, published June 27, 1984.
  • Clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111 ,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985.
  • Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein.
  • Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art. * Dve Transfer Inhibiting Agents
  • the detergent compositions may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
  • dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N- vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%, and " more preferably from about 0.05% to about 2%.
  • the most preferred polyamine N-oxide useful as dye transfer inhibiting polymers in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a class as "PVPVI") are also suitable for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis.
  • the PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1 , more preferably from 0.8:1 to 0.3:1 , most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched.
  • the detergent composition also may employ as a dye transfer inhibitor a polyvinylpyrrolidone (“PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
  • PVP polyvinylpyrrolidone
  • compositions containing PVP dye transfer inhibitors can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1 ,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1 , and more preferably from about 3:1 to about 10:1.
  • Enzymes can be included in the detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
  • Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders and the like.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition.
  • Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
  • Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases.
  • Highly preferred for automatic dishwashing are amylases and/or proteases, including both current commercially available types and improved types which, though more and more bleach compatible though successive improvements, have a remaining degree of bleach deactivation susceptibility.
  • Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
  • cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware and the like.
  • typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition.
  • the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01 %-1% by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • Enzyme-containing including but not limited to, liquid compositions, herein may comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%, most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
  • Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition. 11, Fabric Softeners
  • SRA polymeric soil release agent
  • SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
  • Preferred SRA's include oligomeric terephthalate esters. Suitable SRA's also include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451 , November 6, 1990 to J.J. Scheibel and E.P. Gosselink. Other SRA's include the nonionic end-capped 1 ,2-propylene/polyoxyethylene terephthalate polyesters of U.S.
  • SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721 ,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
  • Gosselink for example produced from DMT, methyl (Me)- capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me- capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
  • SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S.
  • methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution.
  • Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
  • Suitable SRA's characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C-
  • Another preferred SRA is an oligomer having empirical formula (CAP)2(EG/PG)5(T)5(SIP) ⁇ which comprises terephthaloyl (T), sulfoisophthaloyl (SIP), oxyethyleneoxy and oxy-1 ,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isethionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1 ,2-propyleneoxy units in a defined ratio, preferably about 0.5:1 to about 10:1, and two end-cap units derived from sodium 2-(2- hydroxyethoxyj-ethanesulfonate.
  • CAP empirical formula
  • oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from the group consisting of dihydroxysulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1 ,2- oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isethionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof.
  • SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201 ,824, Violland et al. and U.S. 4,240,918 to Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters.
  • Other classes include: (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S.
  • Still other classes include: (VI) grafts of vinyl monomers such as acrylic acid and vinyl acetate onto proteins such as caseins, see EP 457,205 A to BASF (1991); and (VII) polyester-polyamide SRA's prepared by condensing adipic acid, caprolactam, and polyethylene glycol, especially for treating polyamide fabrics, see Bevan et al., DE 2,335,044 to Unilever N. V., 1974. Other useful SRA's are described in U.S. Patents 4,240,918, 4,787,989 and 4,525,524.
  • the detergent composition can optionally contain a polyamine soil release agent related to modified polyamines. See U.S. 5,565,145 issued October 15, 1996 to Watson et al.
  • the preferred polyamine soil release agents that comprise the backbone of the compounds are generally polyalkyleneamines (PAA's), polyalkyleneimines (PAI's), preferably polyethyleneamine (PEA's), polyethyleneimines (PEI's), or PEA's or PEI's connected by moieties having longer R units than the parent PAA's, PAI's, PEA's or PEI's.
  • a common polyalkyleneamine (PAA) is tetrabutylenepentamine.
  • the common PEA's obtained are triethylenetetramine (TETA) and teraethylenepentamine (TEPA).
  • the cogenerically derived mixture does not appear to separate by distillation and can include other materials such as cyclic amines and particularly piperazines. There can also be present cyclic amines with side chains in which nitrogen atoms appear. See U.S. Patent 2,792,372 to Dickinson, issued May 14, 1957, which describes the preparation of PEA's.
  • the polyamine soil release agents if included in the detergent composition is included from about 0.01% to about 5%; preferably about 0.3% to about 4%; more preferably about 0.5% to about 2.5%, by weight of the detergent composition.
  • Polymeric dispersing agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 :1 , more preferably from about 10:1 to 2:1.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1 ,000 to about 50,000, more preferably from about 1 ,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000. 14. Suds Suppressors
  • suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
  • One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • the detergent compositions herein may also contain non-surfactant suds suppressors.
  • non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g., stearone), etc.
  • suds inhibitors include N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters.
  • N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate
  • Non-surfactant suds suppressors comprises silicone suds suppressors.
  • This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica.
  • silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
  • Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • the silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1 ,000, preferably between about 100 and 800.
  • the polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
  • suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
  • the secondary alcohols include the CQ-C ⁇ Q alkyl alcohols having a C-
  • suds should not form to the extent that they overflow the washing machine.
  • Suds suppressors when utilized, are preferably present in a "suds suppressing amount.
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
  • the compositions herein will generally comprise from 0% to about 5% of suds suppressor. 15.
  • compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc.
  • suds boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
  • the C-jg-Ci4 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • soluble magnesium salts such as MgCl2, MgS04, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
  • Liquid detergent compositions can contain water and other detergent solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
  • the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11 , preferably between about 7.5 and 10.5.
  • Liquid dishwashing product formulations preferably have a pH between about 6.8 and about 9.0.
  • Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • detergent compositions for use in the present invention are described in detail below.
  • the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the total compositions.
  • the abbreviated component identifications therein have the following meanings:
  • LAS Sodium linear C-
  • CxyAS Sodium C ⁇
  • CxyEz C-
  • CxyEzS C ⁇
  • Nonionic C-j 3-C15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5.
  • TPKFA C12-C14 topped whole cut fatty acids.
  • SDASA 1 :2 ratio of stearyldimethyl amine:triple-pressed stearic acid.
  • 2(A1 ⁇ 2Si ⁇ 2)i2- 27H20 having a primary particle size in the range from 0.1 to 10 micrometers (Weight expressed on an anhydrous basis).
  • Citric Anhydrous citric acid Citric Anhydrous citric acid.
  • Bicarbonate Anhydrous sodium hydrogen carbonate with a particle size distribution between 400 and 1200 micrometres.
  • Sulphate Anhydrous sodium sulphate.
  • STPP Sodium tripolyphosphate.
  • TSPP Tetrasodium pyrophosphate.
  • TAED Tetraacetylethylenediamine.
  • NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
  • DTPA Diethylene triamine pentaacetic acid.
  • DETPMP Diethyltriamine penta (methylene) phosphonate marketed by Monsanto under the Trade name Dequest 2060.
  • Amylase Amylolytic enzyme sold under the tradename Purafact Ox Am R described in WO 94/18314, WO96/05295 sold by Genencor; Termamyl®, Fungamyl® and Duramyl®, all available from Novo Nordisk A/S and those described in W095/26397.
  • Lipase Lipolytic enzyme sold under the tradename Lipolase, Lipolase Ultra by Novo Nordisk A/S and Lipomax by Gist- Brocades.
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl) stilbene-2:2'-disulfonate.
  • Opacifier Water based monostyrene latex mixture, sold by BASF Aktiengesellschaft under the tradename Lytron 621.
  • SRP 1 Anionically end capped poly esters.
  • SRP 2 Diethoxylated poly (1,2 propylene terephtalate) short block polymer.
  • liquid detergent composition can be used in the present invention (Levels are given in parts per weight, enzyme are expressed in pure enzyme):
  • liquid detergent composition can be used in the present invention (Levels are given in parts per weight, enzyme are expressed in pure enzyme):
  • liquid detergent compositions can be used in the present invention (Levels are given in parts by weight, enzyme are expressed in pure enzyme) :
  • nil-bleach containing detergent compositions of particular use in the washing of coloured clothing can be used in the present invention :
  • detergent additive compositions can be used in the present invention :
  • liquid hard surface cleaning compositions can be used in the present invention :
  • non-aqueous liquid detergent composition with bleach can be used in the present invention.
  • the following tablet composition can be used in the present invention.
  • Nonionic agglomerates2 5.93
  • Anionic agglomerates comprise 38% anionic surfactant, 22% zeolite and 40% carbonate.
  • Nonionic agglomerates comprise 26% nonionic surfactant, 48% zeolite and 26% carbonate.
  • Bleach activator agglomerates comprise 81% TAED, 17% acrylic/maleic copolymer (acid form) and 2% water.
  • Zinc phthalocyanine sulphonate encapsulates are 10% active.
  • Suds suppressor comprises 11.5% silicone oil (ex. Dow Corning) and 88.5 % starch.
  • Layered silicate comprises 78% SKS-6 (ex Hoechst) and 22% citric acid.
  • Dye transfer inhibitor agglomerates comprise 21% PVNO/PVPVI, 61% zeolite and 18% carbonate.
  • Nonionic paste spray-on comprises 67% C12-C15 AE5 (alcohol with an average of 5 ethoxy groups per molecule), 24% N-methyl glucose amide and 9% water.
  • One preferred solvent is water.
  • the water can be from any available source, such as tap water from the faucet. If the solvent is water, the temperature at the time of use in the method of the present invention is preferably from about 5°C to about 60°C, most preferably from about 10°C to about 50°C. In one alternative embodiment of the invention wherein the detergent composition does not contain any bleach or enzymes, very hot, or boiling water (about 60°C - 100°C) can be used to quickly dissolve the detergent composition in the hand-held container, with little or no agitation.
  • a suitable organic solvent for this invention is an organic solvent which has a flash point of 10°C and above.
  • Non limiting examples of solvents include alcohols such as ethanol, propanol, glycerol, polyethylene glycol, propanediol, dipropylene glycol n-butyl ether, or any compound such as benzene sulfonic acid or its salt, toluene sulfonic acid or its salt, or xylene sulfonic acid or its salt. Mixtures of solvents can also be used to make the concentrated detergent solution of the present invention. E. Agitation
  • the contents of the hand-held container are preferably agitated after the addition of the detergent composition and the solvent.
  • This step is preferred, but not required.
  • agitation accelerates the dissolving process of the detergent composition in the solvent.
  • the agitation helps accelerate the liberation of peracids in the solution to provide better bleaching performance.
  • the user of the container shakes the secured container, containing the concentrated detergent solution. It is not critical to the method of the present invention as to how the container is shaken.
  • the user shakes the container in an up-and-down motion by holding the container in one hand and then shaking the container in an up- and-down vertical motion.
  • the user can shake the container many times, but it is sufficient to shake it vertically for about 20 times before use of the solution in laundering fabrics.
  • One vertical shake is defined as one up plus one down vertical motion.
  • the preferred shaking speed is about 2 shakes per second.
  • Another example of manual agitation is stirring the contents in the container with a rod or other apparatus.
  • mechanical means can be used to agitate the concentrated detergent solution in the container.
  • a mechanical mixer having rotating blades can be used to agitate the contents.
  • the mechanical agitator can optionally be a physical part of the container or can be a separate apparatus.
  • the method of the present invention provides an indicator which indicates when the detergent composition in the solvent is sufficiently dissolved.
  • an indicator which indicates when the detergent composition in the solvent is sufficiently dissolved.
  • the concentrated detergent solution changes its appearance which indicates to the user when the concentrated detergent solution is ready for use.
  • an appearance indicator it is preferred to have a sufficiently transparent or opaque hand-held container so that the user can see the appearance change.
  • the solution changes from one color to another (or clear) upon a change of pH of the concentrated detergent solution. This color change will indicate to the user when the solution is ready for use.
  • the detergent composition comprises a dye that becomes nearly colorless when the dye decomposes via a chemical reaction of the dye with a reducing bleach.
  • an indicator system is used in a detergent composition in order to signal the minimum predissolving time of the concentrated detergent solution.
  • the indicator system includes a dye particle and a bleach particle, wherein the bleach particle has at least one first binder coating, wherein the dye particle initially colors the solvent and upon dissolution of the binder coating, the solvent subsequently decolorizes by oxidation.
  • the binder coating on the bleach delays the initiation of the oxidation process, thus controlling the length of time it takes to decolorize the dye particle. Examples of useful dye and binder material are described below. It is preferred that the decolorization takes place after about 10 seconds.
  • the detergent composition comprises a dye that becomes nearly colorless when oxidized in an aqueous solution containing a peroxide bleach.
  • a dye that becomes nearly colorless when oxidized in an aqueous solution containing a peroxide bleach is selected from a triphenylmethane- or diphenylmethane-based dye having the following partial structure:
  • dyes include CI. Acid Green 9, CI. Acid Violet 49, and CI. Acid Blue 7. These dyes are added in an amount of 0.01 to 2000 ppm to the bleach composition and detergent bleach composition, with 20 to 1000 ppm being particularly favorable.
  • the dye is added in a form in which it has been stabilized by being granulated separately from the peroxide. Examples of granulation methods include a dry granulation method in which polyethylene glycol is used as a binder, and a wet granulation method in which carboxymethyl cellulose or the like is used as a binder.
  • the amount in which the dye is added to the granulation product is 1 to 100,000 ppm, with 100 to 5000 ppm being preferable. See JP Laid Open application No. 5-25493, published on February 2, 1993.
  • a particulate colored composition for addition to an oxygen-based bleach composition, wherein the particulate composition contains a water-soluble binder and a water-soluble dye that loses its color upon decomposition in an aqueous solution of the oxygen bleach.
  • the water-soluble dye used to make a particulate colored composition is the same as the dyes discussed above.
  • the dyes are used in an amount of 0.0005 to 5% per 100 weights parts of the particulate colored composition.
  • the water soluble binder used acts as a protective layer for the dye and examples of such suitable binders include any water-soluble polymer or other material of comparatively high molecular weight that acquires adhesive properties when containing water.
  • Non limiting examples include methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, sodium alginate, guaiac gum, gum arabic, gelatin, casein, collagen, chitin, chitosan, polyvinyl alcohol, sodium polyacrylate, polyethylene oxide, polyoxyethylene oxypropylene copolymers, polyvinyl pyrrolidone, and other such water-soluble macromolecules; propyl naphthalenesulfonate, butyl naphtalenesulfonate, formaldehyde " condensates of naphthalenesulfonates, other naphthalenesulfonate-based surfactants, linear alkylbenzenesulfonates with carbon number of 8 to 22, ⁇ -olefinsulfonates with carbon number of 8 to 22, polyoxyethylene alkyl ether sulfuric acid esters with carbon numbers of 8 to 22, alkylphosphoric acid esters with carbon numbers of 8 to
  • Such water-soluble macromolecules or surfactants may be used individually or jointly, and they may also be used singly or as combinations of two or more components.
  • Such water-soluble binders should be used in an amount ranging from 0.1 to 20 wt%, and preferably 0.5 to 10 wt%, per 100 weight parts of the particulate colored composition. See JP Kokoku Publication No. 7-21158, published on March 8, 1995.
  • Dyes can also decolorize by hydrolyzation of the dye, which decomposes the chromophore of the dye. This is preferred in non-bleach containing detergent compositions since an oxidation reaction is not required.
  • Preferred dyes for hydrolyzation are dyes with a functional group that can be hydrolyzed such as phenolphthalein and phenol red. Such dyes are preferably used in quantities such as 0.001% to 0.5% of the detergent composition.
  • the concentrated detergent solution generates heat so that when the container with the solution becomes warm, the user will know that it is ready to use due to the change in temperature.
  • Combination of acidic and basic compounds in the composition can be used to generate a heat of neutralization (e.g. citric acid and carbonate) or heat of hydration (e.g. carbonate).
  • the detergent composition further contains bicarbonate and citric acid in order to generate bubbles in the concentrated detergent solution. The bubbles can be used as an indicator to the consumer of when the solution is ready for use.
  • the user combines a pre-determined amount of detergent composition and solvent in the container to form a concentrated detergent solution.
  • concentrated detergent solutions are made to be used, at least partly, in the washing machine, there are preferred dosage levels of detergent compositions in relation to the volume of water in the tub of the washing machine. For example, for a tub that will use about 70 liters of water for its washing cycle, the recommended dosage of the granular detergent composition is about 70 grams. Table 2 below lists the preferred dosage levels: Table 2
  • the concentrated detergent solution of the present invention can be used to pre-treat particularly soiled areas such as collars, cuffs, and stains.
  • the solution can be poured into the washing machine at the beginning of the wash cycle.
  • the solution can also be used to pre-soak fabric.
  • Another use is to place the hand-held container having the concentrated detergent solution into the tub of the washing machine so that the solution gradually empties into the tub upon the mechanical agitation of the washing machine. Any combinations of the uses mentioned above are also possible.
  • the user can optionally rinse the container with the water that is being released by the washing machine during the filling of the machine tub at the beginning of the wash cycle.
  • the user can also rinse the container in a sink. It is preferred to have a reusable container.
  • the user combines 30 grams of a granular detergent composition and 180 milliliters of water in the hand-held container.
  • the user fills the container with water up to the appropriate line indicated on the container.
  • the user preferably adds lukewarm water that is about 40°C
  • the user secures the container and then agitates the contents in the container with an up and down shaking motion. After about 20 vertical shaking motions, a concentrated detergent solution having a surface tension of about 25 dyne/cm is formed.
  • the user pre-treats particular areas of the fabric with the concentrated detergent solution.
  • the user places the pre-treated fabric into the washing machine tub and pours the remaining concentrated detergent solution into the tub. The contents of the machine tub are then washed by the washing machine.
  • the user combines 30 grams of a granular detergent composition and 180 milliliters of water in the hand-held container.
  • the user preferably adds water that is about 20°C
  • the user secures the container and then agitates the container with an up and down shaking motion. After about 20 vertical shaking motions, a concentrated detergent solution having a surface tension of about 30 dyne/cm is formed.
  • the user pre-treats particular areas of the fabric, opens the container, and then places the container containing the remaining solution into the machine tub. The user finally washes the fabric in the washing machine.
  • the user scoops about 60 grams of a granular detergent composition and combines 150 milliliters of water having a temperature of about 95°C in the hand- held container.
  • the detergent composition does not contain bleach or enzymes.
  • the container's contents are not agitated.
  • a concentrated detergent solution having a surface tension of about 20 dyne/cm is formed.
  • the user then pre- treats and washes the fabric as in Example 18 above.
  • Example 21 The user combines about 60 grams of a granular detergent composition,
  • Example 22 50 milliliters of ethanol, and 100 milliliters of water in the hand-held container. The user then secures the container and then agitates the container with an up and down shaking motion. After about 15 vertical shaking motions, a concentrated detergent solution having a surface tension of about 25 dyne/cm is formed. The user then directly pours the contents of the container in the washing machine tub without performing any pre-treatment steps before washing the fabric.
  • Example 22 Example 22
  • the user combines 30 grams of a heavy duty liquid laundry detergent composition and 180 milliliters of water in the hand-held container. The user then secures the container and then agitates the container with an up and down shaking motion. After about 10 vertical shaking motions, a concentrated detergent solution having a surface tension of about 30 dyne/cm is formed. The user then pre-treats and washes the fabric as in Example 18 above.
  • Example 23
  • Example 24 The user combines about 60 grams of a paste laundry detergent composition and 150 milliliters of water in the hand-held container. The user then secures the container and then agitates the container with an up and down shaking motion. After about 20 vertical shaking motions, a concentrated detergent solution having a surface tension of about 25 dyne/cm is formed. The user then pre-treats and washes the fabric as in Example 18 above.
  • Example 24
  • the user combines one tablet having about 60 grams and 200 milliliters of water in the hand-held container.
  • the tablet comprises citric acid and sodium bicarbonate.
  • the contents are not agitated.
  • the bubbles that were initially generated upon contact of the tablet and the water subsides, indicating that the concentrated detergent solution is ready for use.
  • a concentrated detergent solution having a surface tension of about 35 dyne/cm is formed.
  • the user then pre-treats and washes the fabric as in Example 18 above.
  • Example 25
  • the user combines about 30 grams of a granular detergent composition and 180 milliliters of water in the hand-held container.
  • the user fills the container with water up to the appropriate line indicated on the container.
  • the user preferably adds lukewarm water that is about 40°C
  • the user secures the container and then agitates the container with an up and down shaking motion.
  • the solution turns a noticeable, bluish color as soon as the water and detergent composition are mixed together.
  • a concentrated detergent solution having a surface tension of about 30 dyne/cm is formed.
  • the dye particle is made of a core, including inorganic builder material and surfactant.
  • the core is coated with a nonionic surfactant binder.
  • a pre-mixture of zeolite powder and dye (C I. Acid Green 5) is made.
  • the pre-mixture is used to cover the coated core in order to form a free-flowing dye particle.
  • the bleach is made of a sodium percarbonate.
  • the bleach has three layers of nonionic surfactant binder. There is a thin layer of zeolite between each binder layer. Finally, the bleach is covered with a zeolite powder in order to form a free-flowing bleach particle.
  • the user then pre-treats particular areas of the fabric with the concentrated detergent solution. Then the user places the pre-treated fabric into the washing machine tub and pours the remaining concentrated detergent solution into the tub. The contents of the machine tub are then washed by the washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention porte sur un procédé de prédissolution d'une composition détergente, ce procédé consistant à produire un réceptacle portatif, et à combiner une composition détergente et un solvant dans le réceptacle de façon à obtenir une solution détergente concentrée. Cette solution détergente concentrée a de préférence une valeur de tension superficielle comprise entre environ 10 et environ 50 dyne/cm.
PCT/US1997/013728 1996-10-15 1997-08-05 Procede de predissolution de compositions detergentes WO1998016622A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU39077/97A AU3907797A (en) 1996-10-15 1997-08-05 A method for predissolving detergent compositions
JP10518311A JP2000504064A (ja) 1996-10-15 1997-08-05 洗剤組成物を前溶解させるための方法
PCT/US1997/013728 WO1998016622A1 (fr) 1996-10-15 1997-08-05 Procede de predissolution de compositions detergentes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USPCT/US96/16403 1996-10-15
PCT/US1996/016403 WO1998016437A1 (fr) 1996-10-15 1996-10-15 Emballage et combinaison de produit lessiviel moussant
PCT/US1997/013728 WO1998016622A1 (fr) 1996-10-15 1997-08-05 Procede de predissolution de compositions detergentes

Publications (1)

Publication Number Publication Date
WO1998016622A1 true WO1998016622A1 (fr) 1998-04-23

Family

ID=40091329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/013728 WO1998016622A1 (fr) 1996-10-15 1997-08-05 Procede de predissolution de compositions detergentes

Country Status (3)

Country Link
JP (1) JP2000504064A (fr)
AU (1) AU3907797A (fr)
WO (1) WO1998016622A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068794A1 (fr) * 2000-03-14 2001-09-20 The Procter & Gamble Company Compositions detergentes
WO2011163457A1 (fr) * 2010-06-23 2011-12-29 The Procter & Gamble Company Produit pour le prétraitement et le blanchissage de tissu taché
WO2018083094A1 (fr) * 2016-11-01 2018-05-11 Koninklijke Philips N.V. Nécessaire portatif d''élimination de taches
WO2022033857A1 (fr) * 2020-08-12 2022-02-17 Unilever Ip Holdings B.V. Composition de détergent à lessive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE423838T1 (de) * 2005-04-15 2009-03-15 Reckitt Benckiser Nv Verfahren zum behandeln von wäschestücken
JP6591278B2 (ja) * 2015-12-15 2019-10-16 花王株式会社 食器用固体洗浄剤組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508008A1 (fr) * 1981-06-17 1982-12-24 Otk Keskusosuusliike Distributeur de fluide a bec verseur
US5316054A (en) * 1993-04-30 1994-05-31 The Procter & Gamble Company Self-contained package for housing, dispensing and diluting concentrated liquid
WO1996011855A1 (fr) * 1994-10-14 1996-04-25 Unilever Plc Bouchon distributeur pour detergent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508008A1 (fr) * 1981-06-17 1982-12-24 Otk Keskusosuusliike Distributeur de fluide a bec verseur
US5316054A (en) * 1993-04-30 1994-05-31 The Procter & Gamble Company Self-contained package for housing, dispensing and diluting concentrated liquid
WO1996011855A1 (fr) * 1994-10-14 1996-04-25 Unilever Plc Bouchon distributeur pour detergent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068794A1 (fr) * 2000-03-14 2001-09-20 The Procter & Gamble Company Compositions detergentes
WO2011163457A1 (fr) * 2010-06-23 2011-12-29 The Procter & Gamble Company Produit pour le prétraitement et le blanchissage de tissu taché
WO2018083094A1 (fr) * 2016-11-01 2018-05-11 Koninklijke Philips N.V. Nécessaire portatif d''élimination de taches
KR20180097754A (ko) * 2016-11-01 2018-08-31 코닌클리케 필립스 엔.브이. 휴대용 얼룩 제거 키트
KR101928889B1 (ko) 2016-11-01 2019-03-12 코닌클리케 필립스 엔.브이. 휴대용 얼룩 제거 키트
RU2696210C1 (ru) * 2016-11-01 2019-07-31 Конинклейке Филипс Н.В. Портативный набор для выведения пятен
US20190242053A1 (en) * 2016-11-01 2019-08-08 Koninklijke Philips N.V. Portable stain removal kit
US11021835B2 (en) 2016-11-01 2021-06-01 Koninklijke Philips N.V. Portable stain removal kit
WO2022033857A1 (fr) * 2020-08-12 2022-02-17 Unilever Ip Holdings B.V. Composition de détergent à lessive

Also Published As

Publication number Publication date
AU3907797A (en) 1998-05-11
JP2000504064A (ja) 2000-04-04

Similar Documents

Publication Publication Date Title
US5853430A (en) Method for predissolving detergent compositions
JP6945937B2 (ja) 脂肪酸転換酵素を含む洗剤組成物
CN109072137B (zh) 包含油酸转化酶的洗涤剂组合物
JP2000501773A (ja) カラーセーフブリーチ増強剤、それを用いた組成物および洗濯方法
WO1998016623A1 (fr) Kit de predissolution de compositions detergentes
JPH11511797A (ja) 洗剤組成物
JPH11511787A (ja) 洗剤組成物
WO1995027772A1 (fr) Procede pour blanchir le linge faisant appel a un catalyseur de blanchiment contenant du manganese
JP2019513878A (ja) 脂肪酸デカルボキシラーゼ酵素を含む洗剤組成物
JP7381740B2 (ja) 液体洗濯洗剤組成物
WO1999036494A1 (fr) Compositions granulees presentant une aptitude amelioree a la dissolution
JP2974786B2 (ja) 改善された汚れ分散性を有するポリアミン重合体を含む洗剤組成物
JP2000503723A (ja) アルコキシル化した四級化ジアミン洗剤成分
WO1998016622A1 (fr) Procede de predissolution de compositions detergentes
WO1998045395A1 (fr) Composition detergente granulaire a faible pouvoir moussant contenant des enzymes et une quantite optimale d'un agent de moussage
JPH10501566A (ja) オレオイルサルコシネート界面活性剤を含む漂白組成物
WO1998016613A1 (fr) Procede pour laver les textiles au moyen d'une composition detergente contenant un copolymere triple
WO1998016612A1 (fr) Composition detergente contenant un copolymere triple
WO2000040686A1 (fr) Compositions detergentes contenant une proteine
WO2000017311A1 (fr) Materiaux encapsules et compositions en barre contenant ces materiaux
JPH11511793A (ja) 洗剤組成物
MXPA00006905A (en) Granular compositions having improved dissolution
JPH11512146A (ja) 洗剤組成物
WO2020193101A1 (fr) Procédé de lavage d'un vêtement porté sur la tête
WO2001046366A1 (fr) Compositions detergentes contenant un sel polyphosphate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA