Magnetische Sauerstoffmeßeinrichtung
Beschreibung
Die Erfindung betrifft eine Einrichtung für die Ermittlung des Sauerstoffgehaltes in einer Gasmischung bzw. Gasmatrix gemäß Oberbegriff des Patentanspruches 1.
Der Sauerstoff bzw. die Sauerstoffmoleküle besitzen die Eigenschaft paramagnetisch zu sein. Dies bedeutet, daß auf Sauerstoffmoleküle im inhomogenen Magnetfeld eine Kraft ausgeübt wird. Dieser physikalische Effekt wird bekanntermaßen dazu benutzt, den Sauerstoffgehalt zu bestimmen. Hierbei wird proportional zur Gasmenge im inhomogenen Magnetfeld eine gerichtete Kraft erzeugt, der proportional zum Gehalt bzw. Menge an Sauerstoff ist. Im allgemeinen besteht der sensorische Teil aus einer hanteiförmig ausgebildeten, in einem inhomogenen Magnetfeld auslenkbaren drehbaren Funktionseinheit. Die Sauerstoffmoleküle erfahren im Magnetfeld, wie oben bereits ausgeführt eine Ablenkung, die zu einer Drehauslenkung der hanteiförmigen Anordnung führt. Durch einen Strom durch eine Kompensationsspule wird diese Drehung kompensiert. Über einen Spiegel wird die Stellung oder Auslenkung der Hantel ermittelt und die Spiegelstellung ist somit proportional zum ermittelbaren Gehalt an Sauerstoff. Solche Sauerstoffmeßeinrichtungen, die sich der o. g. magnetomechanischen Methode bedienen, weisen, wie oben bereits ausgeführt, eine hanteiförmige Anordnung mit entsprechenden Gasvolumina auf. Diese genannte Hantel befindet sich im Einfluß eines inhomogenen magnetischen Feldes und ist über ein Spannband drehbar aufgehängt. Bei entsprechender Anwesenheit von Sauerstoff wird die Hantel im Magnetfeld mehr oder weniger gedreht; proportional zum Anteil an Sauerstoff, wobei über die optische Erfassung des Drehwinkels in der oben angegebenen Weise der Anteil an Sauerstoff ermittelbar ist.
Einrichtungen dieser Art werden zumeist im Kompensationsbetrieb betrieben, was bedeutet, daß eine Kompensationsspule vorgesehen ist, durch die ein Strom geleitet wird, der die o.g. magnetomechanisch erzeugte Drehung kompensieren soll. Dazu wird ein Lichtstrahl auf einen mit der Hantel verbundenen Spiegel geworfen und auf einen lichtsensitiven Sensor abgebildet. Die Stärke der
Auslenkung ist dem Strom und der Sauerstoffkonzentration proportional. Somit kann über die Größe, d. h. den Betrag des Stromes der notwendig ist, die Drehung wieder zu kompensieren, auf die Sauerstoffkonzentration geschlossen werden.
In bekannter Bauweise werden die o.g. Bauteile im wesentlichen bestehend aus
Hantel, Magnetelementen, drehbarer Funktionseinheit sowie elektrischer Kompensationseinrichtung samt Spiegel und Sensoren, diskret aufgebaut und montiert. Diese Technik ist aufwendig, weil nicht nur die Montage aufwendig ist, sondern auch die Justage der einzelnen diskret aufgebauten Elemente
Der Erfindung liegt daher die Aufgabe zugrunde, eine magnetische Sauerstoffmeßeinrichtung der gattungsgemäßen Art dahingehend weiterzubilden, daß die Justage erheblich vereinfacht wird.
Die gestellte Aufgabe ist bei einer magnetischen Sauerstoffmeßeinrichtung der gattungsgemäßen Art erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Das Wesen der Erfindung besteht im Prinzip darin, die wesentlichen Teile der Anordnung baulich zusammenzufassen und dies mit Hilfe der Mikromechanik zu realisieren. Dabei sind in erfindungsgemäßer Weise Spiegel, elektrische Verteiler, Kompensationsspule. Korrosionsschutz und Hantel in einem mikromechanischen
Aufbau zusammengefaßt, der durch einfache Fertigungsschritte hergestellt werden kann.
In einer ersten Ausführungsform sind die zu verbindenden Elemente zum größten Teil aus Silizium, und in einem zweiten Ausführungsbeispiel ist weitgehend Glas verwendet.
Das verwendete Glas hat optisch aktive Eigenschaften und besteht z.B. aus Foturan. Dieses Material wird als Glaswafer z. B. 1-2mm geliefert und in den
Konturen entsprechend den Ausnehmungen der Hantel belichtet. Durch Ätzprozesse wird der Hantelgrundkörper herausgearbeitet. Mit einer Deckplatte von z.B. 0,1mm werden die Ausnehmungen zugebondet, so daß hermetisch abgeschlossene Hantelvolumina entstehen. In der Mitte wird ein Loch für den Zuführungsdraht eingearbeitet.
Auf eine Deckplatte wird nun ein Spulenleiter z.B. durch Sputtern oder Aufdampfen (PVD) aufgebracht. Mit dem gleichen Verfahren wird auf eine senkrechte Seite ein Spiegel aufgebracht. Die Materialien sind aus korrosionsfestem Material, z.B. aus Platin.
Die Zuführungsdrähte erfüllen einmal die Funktion der Stromzuleitung und weiter die mechanische Halterung für die Hantel. Sie werden mittels Laserschweißens befestigt.
Die Vorteile hiervon sind, daß der Gesamtaufbau einfacher zu justieren ist, da ein erheblicher Teil der bisherigen Bauelemente nun nicht mehr diskret, sondern mechanisch zu einer Baueinheit zusammengefaßt sind. Dadurch brauch es lediglich bei der Erstellung einer Fertigungsmatrix zu einer Einjustierung und Einprägung geometrischer Abmessungen. Sobald diese einmal als optimal befunden sind, können sie in Großserie reproduziert werden und weisen dabei stets dieselben gleichbleibenden Genauigkeiten auf. Dadurch wird die gesamte Anordnung kostengünstiger insbesondere durch mechanisierbare Fertigungsschritte. Fertigungsfehler werden dadurch reduziert, daß nicht mehr jedes Einzelgerät bzw. die hier zusammengefaßten ursprünglich diskret verteilten Bauelemente aufeinander abgestimmt werden müssen.
Die Erfindung ist in der Zeichnung dargestellt und im nachfolgenden näher erläutert.
Es zeigt:
Figur 1 : Erste Ausführungsform der Erfindung in Silizium-Technik.
Figur 2: Draufsicht auf Schnitt AB aus Figur 1.
Figur 3: Konventionelle Bauform in rein funktionaler ungegenständlicher Darstellung.
Figur 4: Zweite Ausführungsform der Erfindung in Glas-Technik.
Figur 5: Draufsicht auf Schnitt AB aus Figur 4.
Figur 1 zeigt die erfindungsgemäße Ausführungsform. Diese weist, wie auch die konventionelle Bauart gemäß Figur 3 vorgibt, alle Komponenten auf die auch herkömmlich verwendet werden. Die einzelnen Komponenten wie Gasvolumina 1 und 2 bzw. die entsprechende hanteiförmige Anordnung zweier Gasvolumina sowie weitere Funktionselemente wie Spiegel 3, elektrische Anschlüsse, Kompensationsspule 4 usw. sind jedoch nunmehr in erfindungsgemäßer Weise integriert in eine mikromechanische Baueinheit zusammengefaßt. Die Gasvolumina sind aus Halbschalen gebildet, die in Silizium-Technik gefertigt sind und über eine Grundplatte 10 miteinander verbunden werden. Somit entsteht eine mikromechanische Aufbauweise mit geschlossenen Gasvolumina. Die Gasvolumina 1 und 2 bzw. die Grundplatte, mit welcher die Halbschalen verbunden sind, werden aus einer brillenförmig konturierten zusammenhängenden Grundplatte 10 gebildet, wie sie in Figur 2 dargestellt ist. Die beiden Außenbereiche der Grundplatte bilden dann die besagten ring- oder brillenförmigen Bereiche, auf welchen die Halbschalen oberhalb und unterhalb gebondet werden. Auf oder in dieser brillenförmigen Grundplatte 10 ist die Kompensationsspule 4 integriert. Durch das Zentrum der Grundplatte, nämlich an der verjüngten Stelle in der Mitte ist eine oberflächenbeschichtete Glasfaser als Torsionsband 8 befestigt. An den beiden Enden der Glasfaser sind die elektrischen Anschlüsse der Kompensationsspule angeordnet. Über die Glasfaser wird die Kompensationsspule 4 über integrierte Leitungsführungen an eine Stromquelle anschließbar. Dies wird z. B. dadurch erreicht, daß die Glasfaser beispielsweise metallisch bzw. elektrisch leitend
oberflächenbeschichtet ist z. B. aus Gründen der chemischen Resistenz mit Platin. Das Torsionsband 8 bzw. lediglich deren Oberflächenbeschichtung ist etwa in der Mitte ihrer Längserstreckung unterbrochen, so daß zwei Anschlußpfade für die Polaritäten Plus und Minus der Kompensationsspule 4 entstehen.
Figur 2 zeigt die in Figur 1 bereits beschriebene brillenförmige Grundplatte 10, mit deren Hilfe die beiden sich gegenüberliegenden Halbschalen durch anodisches Bonden verbunden werden. Der mittlere verjüngte Steg faßt die Grundplatte und damit die später darauf angeordneten Halbschalen zu der beschriebenen drehbaren Hantel zusammen. Um die Volumina für den Sauerstoff bzw. die entsprechende
Meßgaskomponente zu bilden, ist die Grundplatte 10 gemäß Figur 1 mittig angeordnet und enthält jeweils auf jeder Seite eine Halbschale oben und eine Halbschale unten, die auf den dort gebildeten Rand der Grundplatte gebondet sind. Die Grundplatte enthält dann, wie bereits ausgeführt, die integrierte Kompensationsspule. Mittig, d. h. dort, wo die Öffnung ist, um das Torsionsband 8 hindurchzuführen und zu befestigen, ist in diesem Bereich gemäß Figur 1 die Fläche des Steges verspiegelt, so daß sich der Spiegel in integrierter Weise ergibt. Spiegel und Kompensationsspule sind entweder durch Abscheideverfahren, durch Sputtern oder durch Dickschichttechnik aufgetragen. Das genannte Torsionsband besteht hierbei in erfindungsgemäßer Weise aus einer Glasfaser, die ggf. oberflächenbeschichtet ist. Die Oberflächenbeschichtung kann dabei sowohl zur elektrischen Leitung als auch zur Bewerkstelligung einer chemischen Resistenz aus Platin bestehen Die übrigen Bauteile können darüber hinaus auch für sich jeweils oberflächenvergütet sein, um eine entsprechende chemische Resistenz für jedwede Gasmischung zu erreichen.
Figur 3 zeigt noch einmal eine Anordnung aus dem Stand der Technik, wobei sämtliche Eiπzeletemente die für diese Meßtechnik notwendig sind, dargestellt sind. Spiegel 3, sowie Steg zur Befestigung der Glaskörper 5, die als Hantel ausgebildet sind, sowie der Umlegedraht als Kompensationspule 4, das Spannband 8, die
Aufhängevorrichtung 9, sind hierbei alles diskrete Einzelelemente, die in justierter Form zueinander gebracht und befestigt werden müssen. Bei der erfindungsgemäßen Bauform gemäß Figur 1 sind die wesentlichen Elemente auf der genannten Grundplatte gemäß Figur 2 integriert angeordnet und bedürfen somit nur bei der Erstellung der Fertigungsvorlage einer Justage. Fortan können bei der
Fertigung weitergehende Justageschritte entfallen, da die erfindungsgemäße Anordnung beliebigerweise reproduziert werden kann.
Figur 4 zeigt eine weitere Ausführungsform der Erfindung, jedoch in Glastechnik. Hierbei besteht die hanteiförmige Gasvoluminaanordnung aus einem Grundkörper
10 welcher in diesem Falle aus Glas besteht. Das gewählte Glas ist vorteilhafterweise Foturan. Der hier überdimensional dargestellte Grundkörper ist real 1 bis 2 mm dick. Der Grundkörper wird aus einem Glaswafer gefertigt, der entsprechend den Ausnehmungen 1 und 2 welche die hanteiförmig angeordneten Gasvolumina bilden belichtet und anschließend geätzt wird. Diese nun brillenförmige Form des Grundkörpers wird beiseitig mit jeweils einer dünnen Deckplatte 6,7 zugebondet, so daß zwei hermetisch abgeschlossene Gasvolumina 1 und 2 entstehen. Diese werden zuvor mit der später zu messenden Meßgaskomponente gefüllt.
Auf eine der Deckplatten wird nun ein Spulenleiter z.B. durch Sputtern oder Aufdampfen (PVD-Technik) aufgebracht. Mit dem gleichen Verfahren wird auf eine senkrechte Seite ein Spiegel 3 aufgebracht. Das Material aus dem Spulenleiter und Spiegel besteht ist korrosionsfest und vorteihafterweise aus Platin.
Das Torsionsband 8 wird an der Hantel oben und unten befestigt und dient sowohl zur mechanischen Drehaufhängung der Hantel als auch zur Kontaktierung der Kompensationsspule 4.
Figur 5 zeigt eine Schnittdarstellung gemäß der Schnittlinie AB aus Figur -4. Die hier gezeigte Draufsicht von oben in den Grundkörper mit seinen hanteiförmig angeordneten Gasvolumina 1 und 2, welche durch die Ausnehmungen 1 1 und 12 gebildet sind, zeigt auch den Verlauf der Kompensationsspule 4. Diese ist auf der unteren Deckplatte 7, d.h. auf deren Innenseite aufgebracht.
Bezugszeichenliste
1 Gasvolumen
2 Gasvolumen
3 Spiegel
4 Kompensationsspule
5 Glaskörper
6 Deckplatte
7 Deckplatte
8 Torsionsband
9 Aufhängevorrichtung 0 Grundplatte 1 Ausnehmung 2 Ausnehmung