US3447073A - Paramagnetic fluid analyzer utilizing toroidal fluid containers and an inductance bridge - Google Patents

Paramagnetic fluid analyzer utilizing toroidal fluid containers and an inductance bridge Download PDF

Info

Publication number
US3447073A
US3447073A US589641A US3447073DA US3447073A US 3447073 A US3447073 A US 3447073A US 589641 A US589641 A US 589641A US 3447073D A US3447073D A US 3447073DA US 3447073 A US3447073 A US 3447073A
Authority
US
United States
Prior art keywords
fluid
paramagnetic
sample
bridge
inductance bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US589641A
Inventor
George W Gamble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3447073A publication Critical patent/US3447073A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids

Definitions

  • the present invention relates to a paramagnetic fluid analyzer such as for example an oxygen analyzer.
  • the oxygen analyzer of the present invention provides a method for analyzing the oxygen content of a process gas. Results of this analysis can be used in combustion or process control, product control, safety (0 in inert or explosive gases), or other applications.
  • FIG. 1 is a circuit diagram of an embodiment of the oxygen analyzer of the present invention
  • FIG. 2 is a view of a toroid and winding of the embodiment of FIG. 1;
  • FIG. 3 is a winding diagram of the embodiment of FIG. 1;
  • FIG. 4 is a circuit diagram ofa modification of the embodiment of FIG. 1;
  • FIG. 5 is a circuit diagram of another embodiment of the oxygen analyzer of the present invention.
  • NO and N0 oxygen and two oxides of nitrogen, NO and N0 are unique in that they are paramagnetic (attracted by a magnetic field); other gases are slightly diamagnetic (repelled by a magnetic field).
  • NO and N0 seldom occur as constituents of industrial gases and the magnetic property of diamagnetic gases is so small as to be insignificant.
  • T is a toroid container adapted for receiving through an inlet 5 the sample fluid to be analyzed.
  • T is a reference toroid whose core is non-magnetic. They are not field coupled. Windings 1, 2, 3 and 4 form a bridge circuit such that opposite legs are associated with the same toroid. The bridge is balanced without sample.
  • FIG. 4 The configuration of FIG. 4 is a somewhat dilferent approach to the balance and compare idea and is an instrument which provides good stability and calibration.
  • T and T are again sample and reference toroids wound as in FIG. 2, but note the sense of the Windings.
  • the primaries are in series so that the same current flows through them and the primary of the reference transformer T T and T cores are magnetized in the same direction by primary current.
  • S and S are Wound or connected (it makes no dilference) so that their induced voltages tend to cancel each other in the external circuit.
  • E is a measure of the primary current change.
  • the ratio of inputs to the compare circuit is E volts peak then with pure oxygen as the sample:
  • the difference in toroid core flux density may be determined in a manner similar to the aforedescribed manner, but not utilizing a bridge technique, to determine the presence of oxygen in the sample fluid.
  • the difference o-f'the outputs of the two toroids T and T is compared with a sample of the magnetizing force, provided by the reference transformer T to provide the relative difference of the permeability of the toroid cores.
  • a single secondary winding enclosing both toroids T and T pro prises a voltage which varies in magnitude as the difference in the rate of change of magnetic flux in both said toroids. This is shown in FIG. 5.
  • a paramagnetic fluid analyzer comprising a sample container having a toroid configuration, a sample winding wound around said sample container; a reference container having a toroidal configuration whose core is nonmagnetic; a reference winding wound around said reference container; a third and fourth winding wound respectively around said'sample container and said reference container; circuit means connecting said sample winding,
  • said reference Winding, and said third and fourth windings as legs of an inductance bridge, for supplying the same magnitude of electrical current through said windings, and for indicating any unbalance of said bridge; and fluid supply means for supplying a sample fluid to said sample container; so that When said windings are energized by said current therethrough and said sample fluid contains a paramagnetic fluid the electrical impedance of said sample winding and said third winding increases thereby unbalancing said bridge to an extent corresponding to the amount of paramagnetic fluid in said sample fluid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

r 3,447,073 OIDAL FLUID DGE May 27, 1969 5. w. GAMBLE PARAMAGNETIC FLUID ANALYZER UTILIZING TOR CONTAINERS AND AN INDUCTANCE BRI Flled Oct 26 1966 Sheet Tllc i RNEYS May 27, 1969 w, GAMBLE Y 3,447,073
' PARAMAGNETIC FLUID ANALYZER UTILIZING TOROIDAL FLUID CONTAINERS AND AN INDUCTANCE BRIDGE Filed Oct. 26. 1966 Sheet 3 of 2 comp/1 RE INV TOR 750295 74 M846 ATTO NEYS United States Patent US. Cl. 32436 2 Claims ABSTRACT OF THE DISCLOSURE Paramagnetic fluid is supplied to a hollow toroid container and magnetized together with a separate non-magnetizable reference toroid; The difference of magnetic fluxes in the two toroids is detected by an inductance bridge circuit.
The present invention relates to a paramagnetic fluid analyzer such as for example an oxygen analyzer. The oxygen analyzer of the present invention provides a method for analyzing the oxygen content of a process gas. Results of this analysis can be used in combustion or process control, product control, safety (0 in inert or explosive gases), or other applications.
In order that the present invention may be readily carried into effect, it will now be described with reference to the accompanying drawing, wherein:
FIG. 1 is a circuit diagram of an embodiment of the oxygen analyzer of the present invention;
FIG. 2 is a view of a toroid and winding of the embodiment of FIG. 1;
FIG. 3 is a winding diagram of the embodiment of FIG. 1;
FIG. 4 is a circuit diagram ofa modification of the embodiment of FIG. 1; and
FIG. 5 is a circuit diagram of another embodiment of the oxygen analyzer of the present invention.
Among the more common process gases, oxygen and two oxides of nitrogen, NO and N0 are unique in that they are paramagnetic (attracted by a magnetic field); other gases are slightly diamagnetic (repelled by a magnetic field). However, NO and N0 seldom occur as constituents of industrial gases and the magnetic property of diamagnetic gases is so small as to be insignificant.
In FIG. 1, which is an embodiment of the magnetic oxygen analyzer of the present invention, T is a toroid container adapted for receiving through an inlet 5 the sample fluid to be analyzed. T is a reference toroid whose core is non-magnetic. They are not field coupled. Windings 1, 2, 3 and 4 form a bridge circuit such that opposite legs are associated with the same toroid. The bridge is balanced without sample.
Presence of oxygen in T will cause an increase in inductance and therefore its impedance to time varying currents. Windings are as shown in FIG. 2. The detector records the unbalance which is double that which would result from sample in only one leg. The cross coupling shown in the equivalent circuit represents the transformer action between windings on the same core. The remaining analysis follows conventional impedance bridge theory.
The configuration of FIG. 4 is a somewhat dilferent approach to the balance and compare idea and is an instrument which provides good stability and calibration.
In FIG. 4, T and T are again sample and reference toroids wound as in FIG. 2, but note the sense of the Windings. The primaries are in series so that the same current flows through them and the primary of the reference transformer T T and T cores are magnetized in the same direction by primary current. However, S and S are Wound or connected (it makes no dilference) so that their induced voltages tend to cancel each other in the external circuit.
The windings are adjusted for E E =0 without sample and a high primary current rate of change.
E is a measure of the primary current change. The ratio of inputs to the compare circuit is E volts peak then with pure oxygen as the sample:
E --E =0.00002 volts (approximately) =20 microvolts Measuring circuits to a few microvolts are available or it should be practical to produce higher secondary voltages to ease the detection problem.
The difference in toroid core flux density may be determined in a manner similar to the aforedescribed manner, but not utilizing a bridge technique, to determine the presence of oxygen in the sample fluid. In FIG. 4, the difference o-f'the outputs of the two toroids T and T is compared with a sample of the magnetizing force, provided by the reference transformer T to provide the relative difference of the permeability of the toroid cores. A single secondary winding enclosing both toroids T and T pro duces a voltage which varies in magnitude as the difference in the rate of change of magnetic flux in both said toroids. This is shown in FIG. 5.
What is claimed is:
1. A paramagnetic fluid analyzer, comprising a sample container having a toroid configuration, a sample winding wound around said sample container; a reference container having a toroidal configuration whose core is nonmagnetic; a reference winding wound around said reference container; a third and fourth winding wound respectively around said'sample container and said reference container; circuit means connecting said sample winding,
said reference Winding, and said third and fourth windings as legs of an inductance bridge, for supplying the same magnitude of electrical current through said windings, and for indicating any unbalance of said bridge; and fluid supply means for supplying a sample fluid to said sample container; so that When said windings are energized by said current therethrough and said sample fluid contains a paramagnetic fluid the electrical impedance of said sample winding and said third winding increases thereby unbalancing said bridge to an extent corresponding to the amount of paramagnetic fluid in said sample fluid.
2. An analyzer according to claim 1 wherein said paramagnetic fluid is oxygen.
References Cited UNITED STATES PATENTS 2,608,621 8/1952 Peterson 324-34 2,867,118 1/1959 Cavanagh 324-34 3,076,929 2/ 1963 Gillerman 32436 3,271,664 9/1966 Mountz et a1 324-37 RUDOLPH V. ROLINEC, Primary Examiner.
10 R. J. CORCORAN, Assistant Examiner.
U.S. Cl. X.R. 73-23
US589641A 1966-10-26 1966-10-26 Paramagnetic fluid analyzer utilizing toroidal fluid containers and an inductance bridge Expired - Lifetime US3447073A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US58964166A 1966-10-26 1966-10-26

Publications (1)

Publication Number Publication Date
US3447073A true US3447073A (en) 1969-05-27

Family

ID=24358869

Family Applications (1)

Application Number Title Priority Date Filing Date
US589641A Expired - Lifetime US3447073A (en) 1966-10-26 1966-10-26 Paramagnetic fluid analyzer utilizing toroidal fluid containers and an inductance bridge

Country Status (1)

Country Link
US (1) US3447073A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312036A1 (en) * 1975-05-23 1976-12-17 Siemens Ag Determination of oxygen percentage in gas - from differential pressure magnetic analysis with gas flow compensation
DE3145542A1 (en) * 1981-11-17 1983-05-26 Drägerwerk AG, 2400 Lübeck PARAMAGNETIC O2 SENSOR
EP0161776A1 (en) * 1984-04-03 1985-11-21 The Babcock & Wilcox Company Detecting oxygen concentration in a gas
EP0667525A1 (en) * 1994-02-14 1995-08-16 Eastman Kodak Company Method and apparatus for measurement of a magnetic saturation flux density
US5932794A (en) * 1996-09-18 1999-08-03 Hartman & Braun Gmbh & Co. Kg Instrument for magnetic measurement of oxygen
US20150348701A1 (en) * 2014-05-29 2015-12-03 R-Water Llc Conductivity and impedance sensor
WO2016162287A1 (en) * 2015-04-09 2016-10-13 Aixtron Se Device and method for determining the concentration or partial pressure of a vapor having magnetic properties
WO2019002280A1 (en) 2017-06-29 2019-01-03 Aixtron Se Method for determining the vapour concentration using the magnetic properties of the vapour

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2608621A (en) * 1949-10-08 1952-08-26 Bell Telephone Labor Inc Magnetic record detector
US2867118A (en) * 1955-09-19 1959-01-06 Ontario Research Foundation Transducer and stress measuring means
US3076929A (en) * 1959-08-21 1963-02-05 Shampaine Ind Inc Means and methods for electrically measuring the amount of oxygen in a gas
US3271664A (en) * 1961-12-04 1966-09-06 Magnaflux Corp Combined leakage field and eddy current detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2608621A (en) * 1949-10-08 1952-08-26 Bell Telephone Labor Inc Magnetic record detector
US2867118A (en) * 1955-09-19 1959-01-06 Ontario Research Foundation Transducer and stress measuring means
US3076929A (en) * 1959-08-21 1963-02-05 Shampaine Ind Inc Means and methods for electrically measuring the amount of oxygen in a gas
US3271664A (en) * 1961-12-04 1966-09-06 Magnaflux Corp Combined leakage field and eddy current detection system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312036A1 (en) * 1975-05-23 1976-12-17 Siemens Ag Determination of oxygen percentage in gas - from differential pressure magnetic analysis with gas flow compensation
DE3145542A1 (en) * 1981-11-17 1983-05-26 Drägerwerk AG, 2400 Lübeck PARAMAGNETIC O2 SENSOR
EP0161776A1 (en) * 1984-04-03 1985-11-21 The Babcock & Wilcox Company Detecting oxygen concentration in a gas
EP0667525A1 (en) * 1994-02-14 1995-08-16 Eastman Kodak Company Method and apparatus for measurement of a magnetic saturation flux density
US5932794A (en) * 1996-09-18 1999-08-03 Hartman & Braun Gmbh & Co. Kg Instrument for magnetic measurement of oxygen
US10607772B2 (en) * 2014-05-29 2020-03-31 R-Water Llc Conductivity and impedance sensor
US20150348701A1 (en) * 2014-05-29 2015-12-03 R-Water Llc Conductivity and impedance sensor
EP3149463A4 (en) * 2014-05-29 2017-12-06 R-Water LLC Conductivity and impedance sensor
AU2015266877B2 (en) * 2014-05-29 2020-05-07 R-Water Llc Conductivity and impedance sensor
WO2016162287A1 (en) * 2015-04-09 2016-10-13 Aixtron Se Device and method for determining the concentration or partial pressure of a vapor having magnetic properties
CN107580678A (en) * 2015-04-09 2018-01-12 艾克斯特朗欧洲公司 For determining the concentration of steam or the apparatus and method of partial pressure with magnetic properties
DE102017114566A1 (en) 2017-06-29 2019-01-03 Aixtron Se Method for determining the vapor concentration using the magnetic properties of the vapor
WO2019002280A1 (en) 2017-06-29 2019-01-03 Aixtron Se Method for determining the vapour concentration using the magnetic properties of the vapour

Similar Documents

Publication Publication Date Title
US3218547A (en) Flux sensing device using a tubular core with toroidal gating coil and solenoidal output coil wound thereon
US2418553A (en) Flux measuring system
ATE40604T1 (en) CURRENT DETECTOR CIRCUIT.
US3447073A (en) Paramagnetic fluid analyzer utilizing toroidal fluid containers and an inductance bridge
US2856581A (en) Magnetometer
US3007106A (en) Current meter and probe therefor
US2441380A (en) Magnetic analysis
US2788486A (en) Electrical testing apparatus
US2258837A (en) Electrical testing
US2098064A (en) Magnetic testing device
US2202884A (en) Magnetic analysis
US2245568A (en) Method of and apparatus for examining ferromagnetic articles
US3209246A (en) Magnetic field detector with a twocore flux gate magnetometer for a d.c. permeameter
US3821637A (en) Automatically compensated permeameter
US3448376A (en) Fundamental frequency ring core flux gate magnetometer
USH471H (en) Remnant field detector
SU868540A1 (en) Eddy-current testing device
US3284710A (en) A.c. or pulsating d.c. input signal current measuring transformer system with transformer output ratios corresponding to the input signal
Kašpar et al. DC compensated permeameter-the accuracy study
JPH0250421B2 (en)
Leehey et al. DC current transformer
Kelkar Nondestructive Magnetic Measurements on Prefabricated Parts
SU920591A1 (en) Method of measuring residual moments in open loop-shaped ferromagnetic specimens (its versions)
JPH0210151A (en) Magnetic flaw detector
SU1627969A1 (en) Method for adjusting defectoscope to test ferromagnetic tube