WO1998011507A1 - Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact - Google Patents

Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact Download PDF

Info

Publication number
WO1998011507A1
WO1998011507A1 PCT/FR1997/001549 FR9701549W WO9811507A1 WO 1998011507 A1 WO1998011507 A1 WO 1998011507A1 FR 9701549 W FR9701549 W FR 9701549W WO 9811507 A1 WO9811507 A1 WO 9811507A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
screen printing
integrated circuit
coupling
ink
Prior art date
Application number
PCT/FR1997/001549
Other languages
English (en)
Inventor
René Rose
Original Assignee
Schlumberger Systemes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Systemes filed Critical Schlumberger Systemes
Priority to DE69706427T priority Critical patent/DE69706427D1/de
Priority to EP97938972A priority patent/EP0925553B1/fr
Publication of WO1998011507A1 publication Critical patent/WO1998011507A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07743External electrical contacts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07783Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being planar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07784Antenna details the antenna being of the inductive type the inductive antenna consisting of a plurality of coils stacked on top of one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to a method of manufacturing a set of electronic modules for electronic memory cards capable of exchanging, without electrical contact, information with a reading device.
  • the invention finds an advantageous application in the field of manufacturing contactless cards, in particular those which can be used as transport tickets, as badges for access to protected premises, or even as means of payment for telephone communications. More particularly, the invention is intended for contactless cards which must operate within a short interaction distance with the reading device ("close coupling" in English).
  • the exchange of information between a contactless card and the reading device with which it is associated is carried out, very generally, by remote electromagnetic coupling between a first antenna housed in the contactless card and a second antenna located in said reading device.
  • the card is also provided with an integrated circuit connected to said first antenna and comprising a semiconductor chip, or chip, which contains, among other things, a memory in which the information to be supplied to the reading device is stored, as well as means, a microprocessor for example, provided for developing the information to be transmitted and processing the information received.
  • the coupling antenna and the integrated circuit are most often embedded in the card body, while, in the case of so-called hybrid cards, which can also operate with contact, the integrated circuit is placed in said card body so that contact pads arranged on the circuit are flush with the surface of one of the faces of the card body.
  • a first difficulty lies in the need to provide a housing intended to accommodate the antenna of the card. For this, one can simply machine an annular groove in the mass of a sheet of a plastic material such as PVC. In addition to machining, which is costly in time, this process also requires, after positioning the antenna, injections of resin into the housing in order to give a mechanical consistency to the assembly. If the antenna housing is not machined, it can be obtained by rolling at least three elements, namely a flat sheet serving as a base, a frame in one or two parts, and a central core. This assembly requires several operations and leads to a low productivity card-to-card manufacturing flow.
  • Another known method consists in overmolding the antenna and the semiconductor patch in a resin sheet, polyurethane for example, then laminating this sheet between two sheets of PVC.
  • the disadvantage of this process is that it results in a heterogeneous structure due to the use of different plastic materials.
  • a second difficulty encountered with current manufacturing processes is that they all use cold rolling or, at least, low temperature. Indeed, in the case for example of inhomogeneous structures such as those mentioned above, the materials used have different melting points, which requires working at the lowest temperature accepted by all of the constituents. However, low temperature adhesives (60-70 °) do not always give good results, the mechanical strength of the layers being greatly reduced.
  • the technical problem to be solved by the object of the present invention is to propose a method which would make it possible to produce contactless cards according to an implementation which would be distinguished from the known methods by its simplicity and its low cost, while ensuring excellent mechanical strength of the various components of the card.
  • the solution to the technical problem posed consists, according to the present invention, in a method of manufacturing a set of electronic modules for electronic memory cards capable of exchanging, without electrical contact, information with a reading device, said cards comprising, each one, a coupling antenna with said reading device and an integrated circuit connected to said antenna, remarkable in that said method comprises the following steps: a) at least a first screen printing consisting in carrying out, on an insulating sheet substrate, a plurality of coupling antennas, regularly distributed, by depositing a conductive ink on at least one face of said substrate in the form of coils delimited, each, by a first and a second antenna terminals, internal to said coils, b) mounting an integrated circuit with protuberances on the first and second antenna terminals, c) cutting of said sheet e of insulating substrate in electronic modules each formed by the assembly constituted by said coupling antenna and said integrated circuit with protuberances.
  • the method according to the invention makes it possible to obtain in a very simple and inexpensive manner a large number of electronic modules for simple contactless cards, for example one hundred on a sheet of 152.4 mm (6 inches) on one side.
  • the electronic modules thus produced can then be integrated into the card bodies according to standard insertion techniques in the field of electronic memory cards, for example by insertion and bonding in a machined or molded cavity in the card body, or even by molding of the card body, the electronic module being present in the mold.
  • the method of the invention also has the advantage of being easily amenable to any modification of the size of the coupling antenna. Similarly, it is possible to use integrated circuits of all dimensions, unlike the process known under the term “coil on chip” for which the size of the integrated circuit is a function of the size of the antenna. It will also be noted that the method according to the invention uses integrated circuits with protuberances, according to a technology for mounting and interconnecting integrated circuits commonly designated by the English term "flip chip".
  • This technique consists in forming on the input / output metallizations of the integrated circuit protuberances made of one or more electrically conductive materials. After mounting on the substrate, these protuberances perform the functions of electrical connection, mechanical maintenance and thermal conduction.
  • the advantages of this technology are: reduction in the number of assembly operations, - elimination of the cabling wires which are fragile, a single weld by metallization of input / output, an improvement in the level of reliability.
  • the invention provides a method of manufacturing a set of electronic modules for electronic memory cards capable of exchanging, without electrical contact, information with a reading device, said cards each comprising , an antenna coupled to said reading device and an integrated circuit connected to said antenna, remarkable in that said method comprises the following steps: a) production, on an insulating sheet substrate, of a plurality of regularly distributed groups of through holes, each group of holes being associated with an electronic module, and said through holes being intended to be filled with a conductive material in order to ensure electrical continuity between a first and a second face of the insulating substrate, provided for receiving respectively , for each electronic module, on the one hand, electrical contacts of li aison with an external connector and, on the other hand, interconnection patterns on which the protuberance integrated circuit is intended to be mounted, b) a first screen printing consisting in making said electrical contacts by depositing a conductive ink on the first face of the insulating sheet substrate, said holes being partially filled with said ink, c) at least a
  • thermoplastic material can be ABS, polycarbonate or a material of the polyester family.
  • the insulating sheet substrate will be chosen so as to create molecular bonds during the injection, between said substrate and the injected thermoplastic material.
  • step c) of second screen printing and step d) of mounting there is interposed a step of depositing around said interconnection patterns, a material for assembling the electronic modules in body of electronic memory card.
  • the deposit can be made by screen printing, collage or any other process.
  • said assembly material is a thermally reactivable epoxy resin, a fusible adhesive
  • thermoplastic for ultrasonic welding.
  • the dimensions of the pattern must allow sufficient concentration of the ultrasonic energy.
  • Figures la to ld are top views illustrating the different stages of a process for manufacturing electronic modules for simple contactless cards.
  • FIG. 2 is a top view showing a coupling antenna formed by two half-antennas on each side of a sheet of insulating substrate.
  • Figure 3 is a top view of an insulating substrate sheet perforated with through holes for the implementation of a method of manufacturing electronic modules for hybrid contactless cards.
  • Figure 4 is a top view of the first face of the sheet of Figure 3 after screen printing of the electrical contacts.
  • FIG. 5 is a top view of an electrical contact from FIG. 4.
  • FIG. 6 is a top view of an interconnection pattern and of a coupling antenna screen printed on the second face of the sheet of insulating substrate of FIG. 3.
  • Figure 7 is a bottom view of an electronic module for hybrid contactless cards.
  • Figure 8a is a side view of an integrated circuit with protuberances.
  • FIG. 8b is a side view of the integrated circuit of FIG. 8a mounted on the second face of the insulating substrate of FIG. 3.
  • a method of manufacturing a set of electronic modules for simple contactless cards will now be described with reference to Figures la to ld.
  • These cards are capable of exchanging, without electrical contact, information with a reading device, not shown.
  • they each comprise an antenna 1 10 for coupling with said reading device and an integrated circuit 30 connected to said antenna 110.
  • Said method comprises a first screen printing step which consists in producing on an insulating substrate 10 in sheet form , a plurality of coupling antennas 110, such as that shown in FIG. 1a, regularly distributed, by depositing a conductive ink on one face of said sheet 10 in the form of turns delimited, at each end, by a terminal 1 1 1 inside the turns, said first internal antenna terminal, and a terminal 1 12 outside the turns.
  • the insulating material constituting the substrate sheet 10 must be compatible with the firing temperature of the inks which will be used by screen printing and with the type of integrated circuits with protuberances chosen to equip the electronic modules and also with the embodiment of the map.
  • the following materials are among those which may be suitable for producing the sheet of insulating substrate: glass fabric impregnated with epoxy, polycarbonate, polyester, polyimide, polyacrylate, polyetherimide.
  • the turns of the coupling antenna 1 10 can be screen printed with a conductive ink loaded with silver, or copper or gold, over a thickness of 25 to 40 ⁇ m.
  • the second step of the process which is the subject of the invention consists, in accordance with FIG. 1b, of screen printing, on each coupling antenna 110, an isolation bridge 14 by depositing a dielectric ink in the form of an insulating strip. extending over the turns of the antenna between the first internal terminal 1 1 1 of the antenna and the external terminal 1 12.
  • Said dielectric ink is, for example, an alumina-charged polymer ink deposited on a thickness of 25 to 40 ⁇ m.
  • FIG. 1 illustrates a third step of the process during which a closing conductor 115 is screen printed by depositing a conductive ink in the form of a track connecting, via said isolation bridge 114, the external terminal 112 to a second internal terminal 1 13 of the antenna 110.
  • the conductive ink used to make said closing conductor 1 15 may, of course, be identical to the conductive ink constituting the antenna 110.
  • an integrated circuit 30 of the protuberance type is mounted on the first 1 1 1 and second 113 antenna terminals, in accordance with FIG. 1d according to the "flip chip" method referred to in the preamble of the description, the protrusions being in direct contact with the antenna terminals.
  • the sheet 120 of insulating substrate is cut into a plurality of electronic modules 100 each formed from the assembly constituted by the antenna 110 for coupling and the integrated circuit 30 with protuberances.
  • said assembly material 16 is deposited around the antenna 1 10 coupling.
  • the nature of the material itself can be a thermally reactivable epoxy resin or a hot melt adhesive.
  • a thermoplastic can also be printed, the dimensions of the antenna being determined in order to define a concentrator sufficient energy for the ultrasonic assembly of the modules in the card bodies.
  • the material of the module substrate is preferably a thermoplastic capable of promoting the creation of molecular bonds between the insulating substrate and the card body.
  • FIG. 2 shows an alternative embodiment in which each coupling antenna 1 10 is made of two half-antennas 1 10a, 1 10b by depositing conductive ink on each side of the sheet 10 of insulating substrate, the two half -Antennas being connected by conductive through holes 1 16, 1 17.
  • a method of manufacturing a set of electronic modules for hybrid memory cards that is to say capable of exchanging information with or without electrical contact, will now be described with a reading device.
  • a sheet 10 of large insulating substrate for example 152.4 mm on a side, is first supplied for the production of 100 modules.
  • the sheet 10 has a thickness of between 0.1 and 0.2 mm and has the same compatibility characteristics as those mentioned above with reference to the electronic modules for simple contactless cards.
  • the insulating substrate is pierced with holes passing through the thickness of the sheet 10.
  • This machining is carried out by a programmable machine, preferably on a stack of sheets clamped between two metal plates.
  • holes 1 1 of large diameter have the function of serving as centering and indexing.
  • holes 12 of smaller diameter arranged in groups 20 regularly distributed, each group 20 being associated with an electronic module.
  • the holes 12 are intended, during the course of the process, to be filled with a conductive material in order to ensure electrical continuity between a first face (FIG. 4) and a second face (FIGS. 6 and 7) of the insulating substrate.
  • FIG. 4 the first face of the substrate sheet 10 is designed to receive, for each electronic module, electrical contacts 13 which, as best shown in FIG. 5, include a plurality, here of eight pads 13a at 1 p.m., each opposite a through hole 12a at 12 p.m.
  • Said electrical contacts 13 are produced by a first screen printing using a conductive ink, preferably a conductive ink loaded with silver which is the most economical technique. During this operation, the through holes 12 are partially filled with conductive ink.
  • the electrical contacts 13 thus obtained are designed so as to be able to come into contact with standard connectors of electronic memory card readers. Said contacts 13 are therefore common to the different applications of the modules. Therefore, the substrate sheets 10 can be screen printed on their first face on a large scale, then stored after heat treatment in the expectation of receiving on their second face a second screen printing specific to a given type of integrated circuits. Unless using a gold or gold / metallo-organic polymer ink, the electrical contacts 13 screen printed in silver charged polymer ink can be recharged with metallic deposits, for example nickel then gold, this for aesthetic and / or compatibility with the nature of the protrusions of integrated circuits. The technique used to recharge the contacts 13 is, for example, the so-called "electroless" process with ion displacement.
  • the screen printing screens are made from stainless steel fabrics with a number of meshes between 200 and 400 mesh.
  • FIG. 6 shows the second face of the insulating sheet 10 on which have been printed, in a second screen printing step, interconnection patterns 14 whose function is to electrically connect the through holes 12 on the second face of the pads 15 connection arranged so as to receive the protrusions of the integrated circuits. It is thus obtained that each protuberance is in electrical connection with one and only one of the areas of the electrical contacts 13. It is clear that this type of interconnections is particular to a given integrated circuit.
  • the coupling antennas 1 10 are deposited in the form of turns delimited by a first terminal 1 1 1 of antenna inside the turns and an external terminal 1 12, in the same manner as for simple contactless card modules.
  • an isolation bridge 1 14 is produced on each antenna 1 10 by depositing an insulating strip between the first internal terminal 1 1 1 and the external terminal 1 12.
  • the conductor 1 15 of closure is deposited by screen printing of a conductive ink in the form of a track connecting the external terminal 1 12 to a second internal terminal 1 13 of the antenna.
  • a dielectric layer 31 is deposited by screen printing, sparing the metallizations 32 of input / output and the paths for cutting the plate into unit circuits. Then, the protrusions 33 are screen printed through a mask metallic, the openings of which correspond to the metallizations 32 of the circuits 30.
  • This high-precision mask is either machined by laser or produced by electrolytic growth.
  • the protrusions 33 will preferably be made with electrically conductive polymers which, in application to electronic memory cards, offer from a mechanical point of view better decoupling of the integrated circuit with respect to the card body.
  • the metallizations 32 of input / output of the circuits must be made with a stainless metal or else a metal whose oxide conducts electricity: gold, titanium / tungsten, silver, copper .
  • the polymer is a silver loaded epoxy resin which will be polymerized after screen printing.
  • the polymer is a reactive silver-charged epoxy resin, dried after screen printing, and which will be polymerized after assembly of the integrated circuit on the insulating substrate of the module.
  • the polymer is a silver loaded thermoplastic.
  • the plate is cut into unit circuits of very small dimensions, of the order of 1 mm 3 , which unit circuits are ready to be assembled or mounted directly on the substrate.
  • each integrated circuit 30 provided with its protrusions 33 is taken from the cut plate, then returned so as to present its active face opposite the second interconnection face of the substrate 10 of the module.
  • pressure is applied to the circuit 30 while the temperature of the zone of the module being assembled is increased.
  • the process depends on the variants chosen for the polymer material conducting the protrusions: in the case of variant a), an additional screen printing on the second interconnection face of the substrate 10 is required, only on connection pads.
  • This deposition of epoxy resin is carried out with a screen specific to each type of integrated circuit.
  • the heating device of the equipment is not activated, the polymerization of the epoxy resin is done later after the installation of the circuit. in the case of variant b), there is no additional operation.
  • the heating device is activated so as to maintain the circuit, the complete polymerization of the epoxy resin is also done later, in the case of variant c), there is also no additional operation.
  • the heating device is activated, the area of the substrate 10 of the module being assembled will be brought to the temperature at which the thermoplastic begins to melt.
  • the mechanical and electrical connection will be made during cooling. Another mode of connection is ultrasonic welding.
  • a fluid resin 40 can be dispensed to each pellet 30 so as to form a seal.
  • each module position on the substrate sheet 10 is tested for functionality, the bad positions being identified, exactly like the integrated circuits on their plate ("wafer").

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

Procédé de fabrication de modules électroniques pour cartes à mémoire aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, lesdites cartes comportant, chacune, une antenne de couplage avec ledit dispositif de lecture. Selon l'invention, ledit procédé comporte les étapes suivantes: a) au moins une première sérigraphie consistant à réaliser, sur un substrat isolant en feuille, une pluralité d'antennes de couplage par dépôt d'une encre conductrice sous forme de spires délimitées, chacune, par une première et deuxième bornes d'antenne; b) montage d'un circuit intégré à protubérances sur les première et deuxième bornes d'antenne; c) découpage de ladite feuille de substrat isolant en modules électroniques formés, chacun, par ladite antenne de couplage et ledit circuit intégré à protubérances. Application à la fabrication de cartes à mémoire sans contact.

Description

PROCEDE DE FABRICATION D'UN ENSEMBLE DE MODULES ELECTRONIQUES POUR CARTES A MEMOIRE SANS CONTACT
La présente invention concerne un procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture.
L'invention trouve une application avantageuse dans le domaine de la fabrication des cartes sans contact, notamment celles pouvant être utilisées comme titres de transport, comme badges d'accès à des locaux protégés, ou encore comme moyens de paiement de communications téléphoniques. Plus particulièrement, l'invention s'adresse aux cartes sans contact devant fonctionner dans une faible distance d'interaction avec le dispositif de lecture ("close coupling" en anglo-saxon).
L'échange d'informations entre une carte sans contact et le dispositif de lecture auquel elle est associée s'effectue, de manière très générale, par couplage électromagnétique à distance entre une première antenne logée dans la carte sans contact et une deuxième antenne située dans ledit dispositif de lecture. La carte est munie, par ailleurs, d'un circuit intégré connecté à ladite première antenne et comportant une pastille semi-conductrice, ou puce, qui contient, entre autres, une mémoire dans laquelle sont stockées les informations à fournir au dispositif de lecture, ainsi que des moyens, un microprocesseur par exemple, prévus pour élaborer les informations à émettre et traiter les informations reçues.
Dans le cas de cartes sans contact simples, l'antenne de couplage et le circuit intégré sont le plus souvent noyés dans le corps de carte, tandis que, s'agissant de cartes dites hybrides, pouvant également fonctionner avec contact, le circuit intégré est placé dans ledit corps de carte de sorte que des plages de contact aménagées sur le circuit affleurent à la surface d'une des faces du corps de carte.
On connaît aujourd'hui un certain nombre de procédés permettant de fabriquer des cartes sans contact telles qu'elles viennent d'être décrites. Cependant, ces procédés connus ne sont pas sans présenter quelques inconvénients.
Tout d'abord, une première difficulté réside dans la nécessité de réaliser un logement destiné à accueillir l'antenne de la carte. Pour cela, on peut simplement usiner une gorge annulaire dans la masse d'une feuille d'un matériau plastique comme du PVC. Outre l'usinage, coûteux en temps, ce procédé exige également, après mise en place de l'antenne, des injections de résine dans le logement afin de donner une consistance mécanique à l'ensemble. Si le logement de l'antenne n'est pas usiné, il peut être obtenu par laminage d'au moins trois éléments, à savoir une feuille plane servant de base, un cadre en une ou deux parties, et un noyau central. Cet assemblage nécessite plusieurs opérations et conduit à un flux de fabrication carte à carte de faible productivité. Un autre procédé connu consiste à surmouler l'antenne et la pastille semi-conductrice dans une feuille de résine, polyuréthanne par exemple, puis de laminer cette feuille entre deux feuilles de PVC. L'inconvénient de ce procédé est d'aboutir à une structure hétérogène du fait de l'utilisation de matériaux plastiques différents.
Une deuxième difficulté rencontrée avec les procédés de fabrication actuels est qu'ils font tous appel à un laminage à froid ou, du moins, à basse température. En effet, dans le cas par exemple de structures inhomogènes telles que celles mentionnées plus haut, les matériaux utilisés ont des points de fusion différents, ce qui impose de travailler à la température la plus basse acceptée par l'ensemble des constituants. Cependant, les adhésifs basse température (60-70°) ne donnent pas toujours de bons résultats, la tenue mécanique des couches étant grandement amoindrie.
Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un procédé qui permettrait de réaliser des cartes sans contact selon une mise en oeuvre qui se distinguerait des procédés connus par sa simplicité et son faible coût, tout en assurant une excellente tenue mécanique des différents composants de la carte.
La solution au problème technique posé consiste, selon la présente invention, en un procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, lesdites cartes comportant, chacune, une antenne de couplage avec ledit dispositif de lecture et un circuit intégré connecté à ladite antenne, remarquable en ce que ledit procédé comporte les étapes suivantes : a) au moins une première sérigraphie consistant à réaliser, sur un substrat isolant en feuille, une pluralité d'antennes de couplage, régulièrement réparties, par dépôt d'une encre conductrice sur au moins une face dudit substrat sous forme de spires délimitées, chacune, par une première et une deuxième bornes d'antenne, intérieures auxdites spires, b) montage d'un circuit intégré à protubérances sur les première et deuxième bornes d'antenne, c) découpage de ladite feuille de substrat isolant en modules électroniques formés, chacun, par l'ensemble constitué par ladite antenne de couplage et ledit circuit intégré à protubérances.
Ainsi, le procédé selon l'invention permet d'obtenir de manière très simple et peu coûteuse un grand nombre de modules électroniques pour cartes sans contact simples, par exemple une centaine sur une feuille de 152, 4 mm (6 pouces) de côté.
Les modules électroniques ainsi réalisés peuvent ensuite être intégrés aux corps de cartes selon des techniques d'encartage usuelles dans le domaine des cartes à mémoire électronique, par exemple par insertion et collage dans une cavité usinée ou moulée dans le corps de carte, ou encore par moulage du corps de carte, le module électronique étant présent dans le moule.
Le procédé de l'invention présente également l'avantage de se prêter facilement à toute modification de gabarit de l'antenne de couplage. De même, il est possible d'utiliser des circuits intégrés de toutes dimensions, contrairement au procédé connu sous le terme anglo-saxon de "coil on chip" (bobine sur la puce) pour lequel la taille du circuit intégré est fonction de la dimension de l'antenne. On notera également que le procédé conforme à l'invention met en oeuvre des circuits intégrés à protubérances, selon une technologie de montage et d'interconnexion des circuits intégrés communément désignée sous le vocable anglo-saxon de "flip chip".
Cette technique consiste à former sur les métallisations d'entrée/ sortie du circuit intégré des protubérances constituées d'un ou plusieurs matériaux conducteurs de l'électricité. Après montage sur le substrat, ces protubérances assurent les fonctions de liaison électrique, de maintien mécanique et de conduction thermique. Les avantages de cette technologie sont : diminution du nombre d'opérations d'assemblage, - suppression des fils de câblage qui sont fragiles, une seule soudure par métallisation d'entrée/ sortie, une amélioration du niveau de fiabilité.
Pour la réalisation de cartes sans contact hybrides, l'invention prévoit un procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, lesdites cartes comportant, chacune, une antenne à couplage avec ledit dispositif de lecture et un circuit intégré connecté à ladite antenne, remarquable en ce que ledit procédé comporte les étapes suivantes : a) réalisation, sur un substrat isolant en feuille, d'une pluralité de groupes régulièrement répartis de trous traversants, chaque groupe de trous étant associé à un module électronique, et lesdits trous traversants étant destinés à être remplis d'un matériau conducteur afin d'assurer la continuité électrique entre une première et une deuxième faces du substrat isolant, prévues pour recevoir respectivement, pour chaque module électronique, d'une part, des contacts électriques de liaison avec un connecteur extérieur et, d'autre part, des motifs d'interconnexion sur lesquels le circuit intégré à protubérances est destiné à être monté, b) une première sérigraphie consistant à réaliser lesdits contacts électriques par dépôt d'une encre conductrice sur la première face du substrat isolant en feuille, lesdits trous étant partiellement remplis de ladite encre, c) au moins une deuxième sérigraphie consistant à réaliser par au moins un dépôt d'une encre conductrice sur la deuxième face du substrat isolant en feuille, d'une part, lesdits motifs d'interconnexion, lesdits trous traversants étant complètement remplis par ladite encre, et, d'autre part, lesdites antennes de couplage sous forme de spires délimitées, chacune, par une première et une deuxième bornes d'antenne, intérieures auxdites spires, d) montage d'un circuit intégré à protubérances sur les motifs d'interconnexion et les première et deuxième bornes d'antenne, e) découpage de ladite feuille de substrat isolant en modules électroniques formés, chacun, par l'ensemble constitué par lesdits contacts électriques, ladite antenne de couplage et le circuit intégré à protubérances.
Comme cela a déjà été mentionné plus haut, une technique connue de réalisation des cartes à mémoire électronique consiste à placer les modules dans un moule dont les empreintes définissent les cartes aux normes ISO et d'injecter un matériau thermoplastique. Ce matériau thermoplastique peut être un ABS, un polycarbonate ou un matériau de la famille du polyester. Dans ce cas, le substrat isolant en feuille sera choisi de manière à créer des liaisons moléculaires au cours de l'injection, entre ledit substrat et le matériau thermoplastique injecté.
De même une autre technique connue de réalisation des cartes est celle de l'assemblage des modules dans les corps de carte auxquels ils sont destinés, consistant à aménager, par moulage ou usinage, une cavité dans lesdits corps de carte et à insérer les modules dans lesdites cavités. A cet effet, il est prévu, selon la présente invention, que, entre l'étape c) de deuxième sérigraphie et l'étape d) de montage, est intercalée une étape de dépôt autour desdits motifs d'interconnexion, d'un matériau d'assemblage des modules électroniques dans des corps de carte à mémoire électronique. Le dépôt peut être réalisé par sérigraphie, collage ou tout autre procédé.
Selon des variantes de l'invention, ledit matériau d'assemblage est une résine époxy réactivable thermiquement, une colle fusible
("hot melt") ou encore un thermoplastique pour soudure par ultra- sons. Dans ce dernier cas, les dimensions du motif doivent permettre la concentration suffisante de l'énergie ultra-sonore.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. Les figures la à ld sont des vues de dessus illustrant les différentes étapes d'un procédé de fabrication de modules électroniques pour cartes sans contact simples.
La figure 2 est une vue de dessus montrant une antenne de couplage formée de deux demi-antennes sur chaque face d'une feuille de substrat isolant.
La figure 3 est une vue de dessus d'une feuille de substrat isolant perforée de trous traversants pour la mise en oeuvre d'un procédé de fabrication de modules électroniques pour cartes sans contact hybrides. La figure 4 est une vue de dessus de la première face de la feuille de la figure 3 après sérigraphie des contacts électriques.
La figure 5 est une vue de dessus d'un contact électrique de la figure 4.
La figure 6 est une vue de dessus d'un motif d'interconnexion et d'une antenne de couplage sérigraphiés sur la deuxième face de la feuille de substrat isolant de la figure 3.
La figure 7 est une vue de dessous d'un module électronique pour cartes sans contact hybrides.
La figure 8a est une vue de côté d'un circuit intégré à protubérances. La figure 8b est une vue de côté du circuit intégré de la figure 8a monté sur la deuxième face du substrat isolant de la figure 3.
Un procédé de fabrication d'un ensemble de modules électroniques pour cartes sans contact simple va maintenant être décrit en regard des figures la à ld. Ces cartes sont aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, non représenté. A cet effet, elles comportent, chacune, une antenne 1 10 de couplage avec ledit dispositif de lecture et un circuit intégré 30 connecté à ladite antenne 110. Ledit procédé comporte une première étape de sérigraphie qui consiste à réaliser sur un substrat isolant 10 en feuille, une pluralité d'antennes 110 de couplage, telles que celle montrée à la figure la, régulièrement réparties, par dépôt d'une encre conductrice sur une face de ladite feuille 10 sous forme de spires délimitées, à chaque extrémité, par une borne 1 1 1 intérieure aux spires, dite première borne intérieure d'antenne, et une borne 1 12 extérieure aux spires.
Bien entendu, le matériau isolant constituant la feuille 10 de substrat devra être compatible avec la température de cuisson des encres qui seront utilisées par les sérigraphies et avec le type de circuits intégrés à protubérances choisis pour équiper les modules électroniques et aussi au mode de réalisation de la carte. De manière non limitative, les matériaux suivants sont parmi ceux pouvant convenir pour réaliser la feuille 10 de substrat isolant : tissu de verre imprégné époxy, polycarbonate, polyester, polyimide, polyacrylate, polyétherimide.
A titre indicatif, les spires de l'antenne 1 10 de couplage peuvent être sérigraphiées avec une encre conductrice chargée argent, ou encore cuivre ou or, sur une épaisseur de 25 à 40 μm. La deuxième étape du procédé, objet de l'invention, consiste conformément à la figure lb, à sérigraphier, sur chaque antenne 110 de couplage, un pont 1 14 d'isolement par dépôt d'une encre diélectrique sous forme d'une bande isolante s'étendant sur les spires de l'antenne entre la première borne intérieure 1 1 1 d'antenne et la borne extérieure 1 12. Ladite encre diélectrique est, par exemple, une encre polymère chargée alumine déposée sur une épaisseur de 25 à 40 μm.
La figure le illustre une troisième étape du procédé au cours de laquelle un conducteur 115 de fermeture est sérigraphié par dépôt d'une encre conductrice sous forme d'une piste reliant, par l'intermédiaire dudit pont 114 d'isolement, la borne extérieure 112 à une deuxième borne intérieure 1 13 de l'antenne 110. L'encre conductrice utilisée pour réaliser ledit conducteur 1 15 de fermeture peut, naturellement, être identique à l'encre conductrice constituant l'antenne 110.
Ensuite, dans une quatrième étape, un circuit intégré 30 du type à protubérances est monté sur les première 1 1 1 et deuxième 113 bornes d'antenne, conformément à la figure ld selon la méthode de "flip chip" visée dans le préambule de la description, les protubérances étant directement en contact avec les bornes d'antenne.
La façon dont sont constitués lesdits circuits intégrés à protubérances ainsi que la manière dont ils sont montés sur lesdites bornes seront décrites en détail plus loin en relation avec les figures 8a et 8b.
Enfin, comme le montre également la figure ld, la feuille 120 de substrat isolant est découpée en une pluralité de modules électroniques 100 formés, chacun, de l'ensemble constitué par l'antenne 110 de couplage et le circuit intégré 30 à protubérances. On peut aussi prévoir d'imprimer sur la même face de la feuille 10, par procédé sérigraphique, collage ou tout autre procédé, un matériau d'assemblage des modules électroniques 100 dans une cavité aménagée dans les corps de cartes à mémoire électronique. Ainsi que l'indique la figure ld, ledit matériau 16 d'assemblage est déposé autour de l'antenne 1 10 de couplage. La nature du matériau lui-même peut être une résine époxy réactivable thermiquement ou une colle fusible ("hot melt"). Un thermoplastique peut aussi être imprimé, les dimensions de l'antenne étant déterminées afin de définir un concentrateur d'énergie suffisant pour l'assemblage par ultra-sons des modules dans les corps de cartes.
Si la technique du moulage des cartes avec leur module électronique est retenue, le matériau du substrat du module est, de préférence, un thermoplastique apte à favoriser la création de liaisons moléculaires entre le substrat isolant et le corps de carte.
La figure 2 montre une variante d'exécution dans laquelle chaque antenne 1 10 de couplage est réalisée en deux demi- antennes 1 10a, 1 10b par dépôt de l'encre conductrice sur chaque face de la feuille 10 de substrat isolant, les deux demi-antennes étant reliées par des trous traversants conducteurs 1 16, 1 17.
Va être maintenant décrit un procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire hybrides, c'est-à-dire aptes à échanger avec ou sans contact électrique, des informations avec un dispositif de lecture.
Comme l'indique la figure 3, on fournit d'abord une feuille 10 de substrat isolant de grande dimension par exemple de 152,4 mm de côté pour la réalisation de 100 modules. La feuille 10 a une épaisseur comprise entre 0, 1 et 0,2 mm et présente les mêmes caractéristiques de compatibilité que celles mentionnées précédemment en référence aux modules électroniques pour cartes sans contact simples.
Conformément à la figure 3, le substrat isolant est percé de trous traversant l'épaisseur de la feuille 10. Cet usinage est réalisé par une machine programmable, de préférence sur une pile de feuilles serrées entre deux plaques de métal.
Deux séries de trous sont usinées. D'une part, des trous 1 1 de grand diamètre ont pour fonction de servir de centrage et d'indexation. D'autre part, des trous 12 de plus petit diamètre, agencés en groupes 20 régulièrement répartis, chaque groupe 20 étant associé à un module électronique. Les trous 12 sont destinés, au cours du déroulement du procédé, à être remplis d'un matériau conducteur afin d'assurer la continuité électrique entre une première face (figure 4) et une deuxième face (figures 6 et 7) du substrat isolant. On peut voir sur la figure 4 que la première face de la feuille 10 de substrat est prévue pour recevoir, pour chaque module électronique, des contacts électriques 13 qui, comme le montre mieux la figure 5, comprennent une pluralité, ici de huit plages 13a à 13h, chacune en regard d'un trou traversant 12a à 12h.
Lesdits contacts électriques 13 sont réalisés par une première sérigraphie à l'aide d'une encre conductrice, de préférence une encre conductrice chargée argent qui est la technique la plus économique. Lors de cette opération, les trous traversants 12 sont partiellement remplis d'encre conductrice.
Les contacts électriques 13 ainsi obtenus sont dessinés de manière à pouvoir entrer en liaison avec des connecteurs standards de lecteurs de cartes à mémoire électronique. Lesdits contacts 13 sont donc communs aux différentes applications des modules. De ce fait, les feuilles 10 de substrat peuvent être sérigraphiées sur leur première face à une grande échelle, puis stockées après traitement thermique dans l'attente de recevoir sur leur deuxième face une seconde sérigraphie spécifique à un type donné de circuits intégrés. A moins d'utiliser une encre polymère chargée or ou or/ métallo-organique, les contacts électriques 13 sérigraphiés en encre polymère chargée argent peuvent être rechargés par des dépôts métalliques, par exemple nickel puis or, ceci à des fins esthétiques et/ ou de compatibilité avec la nature des protubérances des circuits intégrés. La technique utilisée pour recharger les contacts 13 est, par exemple, le procédé dit "electroless" à déplacement d'ions.
Les écrans de sérigraphie sont réalisés à partir de toiles en acier inoxydable d'un nombre de mailles compris entre 200 et 400 mesh.
La figure 6 montre la deuxième face de la feuille 10 isolante sur laquelle ont été imprimés, dans une deuxième étape de sérigraphie, des motifs 14 d'interconnexion dont une fonction est de relier électriquement au débouché des trous traversants 12 sur ladite deuxième face des plots 15 de raccordement disposés de manière à recevoir les protubérances des circuits intégrés. On obtient ainsi que chaque protubérance est en liaison électrique avec une et une seule des plages des contacts électriques 13. Il est clair que ce type d'interconnexions est particulier à un circuit intégré donné.
De préférence en cours de la même opération de sérigraphie, les antennes 1 10 de couplage sont déposées sous forme de spires délimitées par une première borne 1 1 1 d'antenne intérieure aux spires et une borne extérieure 1 12, de la même manière que pour les modules des cartes sans contact simples. Puis, dans une troisième sérigraphie, on réalise sur chaque antenne 1 10 un pont 1 14 d'isolement par dépôt d'une bande isolante entre la première borne intérieure 1 1 1 et la borne extérieure 1 12. Ensuite, le conducteur 1 15 de fermeture est déposé par sérigraphie d'une encre conductrice sous forme d'une piste reliant la borne extérieure 1 12 à une deuxième borne intérieure 1 13 de l'antenne.
De même que pour les cartes sans contact simples, on peut prévoir d'imprimer sur ladite deuxième face, par procédé sérigraphique, collage ou tout autre procédé, un matériau d'assemblage des modules électroniques dans une cavité aménagée dans les corps de cartes à mémoire électronique. Ainsi que le montre la figure 7, ledit matériau 16 d'assemblage est déposé en anneau autour des motifs 14 d'interconnexion et de l'antenne 1 10 de couplage. Enfin, dans une dernière étape du procédé, objet de l'invention, les circuits intégrés à protubérances sont montés sur les plots 15 de raccordement des motifs 14 d'interconnexion respectifs. Pour cela, les circuits intégrés auront été préparés d'une manière également applicable aux cartes sans contact simples, qui va maintenant être décrite en regard des figures 8a et 8b.
Alors que les circuits 30 sont encore réunis sur une plaque ("wafer"), une couche 31 de diélectrique est déposée par sérigraphie en épargnant les métallisations 32 d'entrée/ sortie et les chemins de découpe de la plaque en circuits unitaires. Ensuite, les protubérances 33 sont sérigraphiées au travers d'un masque métallique dont les ouvertures correspondent aux métallisations 32 des circuits 30. Ce masque de grande précision est soit usiné par laser, soit réalisé par croissance électrolytique.
Les protubérances 33 seront de préférence réalisées avec des polymères conducteurs de l'électricité qui, dans l'application aux cartes à mémoire électronique, offrent d'un point de vue mécanique un meilleur découplage du circuit intégré par rapport au corps de carte. Naturellement, pour être compatibles avec le procédé, les métallisations 32 d'entrée/ sortie des circuits doivent être faites avec un métal inoxydable ou bien un métal dont l'oxyde est conducteur de l'électricité : or, titane/ tungstène, argent, cuivre.
Plusieurs variantes sont à envisager selon la nature du polymère conducteur formant les protubérances : a) le polymère est une résine époxy chargée argent qui sera polymérisée après sérigraphie. b) le polymère est une résine époxy chargée argent réactivable, séchée après sérigraphie, et qui sera polymérisée après assemblage du circuit intégré sur le substrat isolant du module. c) le polymère est un thermoplastique chargé argent.
A ce stade du procédé, la plaque est découpée en circuits unitaires de dimensions très faibles, de l'ordre de 1mm3, lesquels circuits unitaires sont prêts à être assemblés ou montés directement sur le substrat. De manière automatique, chaque circuit intégré 30 muni de ses protubérances 33 est prélevé de la plaque découpée, puis retourné de manière à présenter sa face active en regard de la deuxième face d'interconnexion du substrat 10 du module. Après alignement des protubérances sur les plots de raccordement, une pression est appliquée sur le circuit 30 tandis qu'est augmentée la température de la zone du module en cours d'assemblage. Le procédé dépend des variantes choisies pour le matériau polymère conducteur des protubérances : dans le cas de la variante a), une sérigraphie supplémentaire sur la deuxième face d'interconnexion du substrat 10 est nécessaire, uniquement sur les plots de raccordement. Ce dépôt de résine époxy, identique à celle des protubérances, est réalisé avec un écran spécifique à chaque type de circuit intégré. Le dispositif chauffant de l'équipement n'est pas activé, la polymérisation de la résine époxy est faite ultérieurement après la pose du circuit. dans le cas de la variante b), il n'y a pas d'opération supplémentaire. Le dispositif chauffant est activé de façon à assurer le maintien du circuit, la polymérisation complète de la résine époxy est aussi faite ultérieurement, dans le cas de la variante c), il n'y pas non plus d'opération supplémentaire. Le dispositif chauffant est activé, la zone du substrat 10 du module en cours d'assemblage sera portée à la température de début de fusion du thermoplastique. La liaison mécanique et électrique sera réalisée pendant le refroidissement. Un autre mode de liaison est la soudure par ultra-sons.
Après ces opérations d'assemblage, une résine fluide 40 peut être dispensée à chaque pastille 30 de manière à former un scellement.
Lorsque la résine 40 est durcie, chaque position de module sur la feuille 10 de substrat est testée en fonctionnalité, les mauvaises positions étant identifiées, exactement comme les circuits intégrés sur leur plaque ("wafer").
Au moment d'être intégrés dans le corps de carte, les modules sont découpés unitairement, les mauvais étant éliminés.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, lesdites cartes comportant, chacune, une antenne de couplage avec ledit dispositif de lecture et un circuit intégré connecté à ladite antenne, caractérisé en ce que ledit procédé comporte les étapes suivantes : a) au moins une première sérigraphie consistant à réaliser, sur un substrat isolant en feuille, une pluralité d'antennes de couplage, régulièrement réparties, par dépôt d'une encre conductrice sur au moins une face dudit substrat sous forme de spires délimitées, chacune, par une première et deuxième bornes d'antenne, intérieures auxdites spires, b) montage d'un circuit intégré à protubérances sur les première et deuxième bornes d'antenne, c) découpage de ladite feuille de substrat isolant en modules électroniques formés, chacun, par l'ensemble constitué par ladite antenne de couplage et ledit circuit intégré à protubérances.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape a) comporte les étapes suivantes :
- au moins ladite première sérigraphie par dépôt d'une encre conductrice sur au moins une face dudit substrat sous forme de spires délimitées, chacune, par ladite première borne intérieure d'antenne et une borne extérieure aux spires.
- une deuxième sérigraphie consistant à réaliser sur chaque antenne de couplage un pont d'isolement par dépôt d'une encre diélectrique sous forme d'une bande isolante s'étendant sur lesdites spires entre ladite première borne intérieure et ladite borne extérieure,
- ' une troisième sérigraphie consistant à réaliser un conducteur de fermeture par dépôt d'une encre conductrice sous forme d'une piste reliant, par l'intermédiaire dudit pont d'isolement, ladite borne extérieure à ladite deuxième borne intérieure d'antenne.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que, lors de l'étape a), chaque antenne de couplage est réalisée en deux demi-antennes par dépôt de l'encre conductrice sur chaque face de la feuille de substrat isolant, les deux demi- antennes étant reliées par des trous traversants conducteurs.
4. Procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique aptes à échanger, sans contact électrique, des informations avec un dispositif de lecture, lesdites cartes comportant, chacune, une antenne de couplage avec ledit dispositif de lecture et un circuit intégré connecté à ladite antenne, caractérisé en ce que ledit procédé comporte les étapes suivantes : a) réalisation, sur un substrat isolant en feuille, d'une pluralité de groupes régulièrement répartis de trous traversants, chaque groupe de trous étant associé à un module électronique, et lesdits trous traversants étant destinés à être remplis d'un matériau conducteur afin d'assurer la continuité électrique entre une première et une deuxième faces du substrat isolant, prévues pour recevoir respectivement, pour chaque module électronique, d'une part, des contacts électriques de liaison avec un connecteur extérieur et, d'autre part, des motifs d'interconnexion sur lesquels le circuit intégré à protubérances est destiné à être monté, b) une première sérigraphie consistant à réaliser lesdits contacts électriques par dépôt d'une encre conductrice sur la première face du substrat isolant en feuille, lesdits trous étant partiellement remplis de ladite encre, c) au moins une deuxième sérigraphie consistant à réaliser par au moins un dépôt d'une encre conductrice sur la deuxième face du substrat isolant en feuille, d'une part, lesdits motifs d'interconnexion, lesdits trous traversants étant complètement remplis par ladite encre, et, d'autre part, lesdites antennes de couplage sous forme de spire délimitées, chacune, par une première et une deuxième bornes d'antenne, intérieures auxdites spires, d) montage d'un circuit intégré à protubérances sur les motifs d'interconnexion et les première et deuxième bornes d'antenne, e) découpage de ladite feuille de substrat isolant en modules électroniques formés, chacun, par l'ensemble constitué par lesdits contacts électriques, ladite antenne de couplage et le circuit intégré à protubérances.
5. Procédé selon la revendication 4, caractérisé en ce que l'étape c) comporte les étapes suivantes :
- au moins ladite deuxième sérigraphie, lesdites spires étant délimitées, chacune, par ladite première borne intérieure d'antenne, et une borne extérieure aux spires. - une troisième sérigraphie consistant à réaliser sur chaque antenne de couplage un pont d'isolement par dépôt d'une encre diélectrique sous forme d'une bande isolante s'étendant sur lesdites spires entre ladite première borne intérieure et ladite borne extérieure, - une quatrième sérigraphie consistant à réaliser un conducteur de fermeture par dépôt d'une encre conductrice sous forme d'une piste reliant, par l'intermédiaire dudit pont d'isolement, ladite borne extérieure à ladite deuxième borne intérieure d'antenne.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'avant l'étape de montage du circuit intégré à protubérances est intercalée une étape de dépôt, autour desdits motifs d'interconnexion et de l'antenne de couplage, d'un matériau d'assemblage des modules électroniques dans des corps de carte à mémoire électronique.
7. Procédé selon la revendication 6, caractérisé en ce que ledit matériau d'assemblage est une résine époxy réactivable thermiquement.
8. Procédé selon la revendication 6, caractérisé en ce que ledit matériau d'assemblage est une colle fusible.
9. Procédé selon la revendication 6, caractérisé en ce que ledit matériau d'assemblage est un thermoplastique pour soudure par ultra-sons.
10. Procédé selon la revendication 6, caractérisé en ce que ledit matériau d'assemblage est un thermoplastique apte à favoriser la création de liaisons moléculaires entre le substrat isolant et le corps de carte lorsque les cartes à mémoire électronique sont moulées.
11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ladite feuille de substrat isolant est réalisée dans un matériau thermoplastique apte à créer des liaisons moléculaires avec le corps de carte en matériau thermoplastique lorsque les cartes à mémoire électronique sont moulées.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que ladite encre conductrice est une encre polymère chargée argent, or ou or/métalloorganique.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que lesdites protubérances sont en polymère conducteur.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que ladite encre diélectrique est une encre polymère chargée alumine.
PCT/FR1997/001549 1996-09-12 1997-09-02 Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact WO1998011507A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69706427T DE69706427D1 (de) 1996-09-12 1997-09-02 Verfahren zur herstellung einer anordnung von elektronischen modulen für kontaktlose speicherkarten
EP97938972A EP0925553B1 (fr) 1996-09-12 1997-09-02 Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/11147 1996-09-12
FR9611147A FR2753305B1 (fr) 1996-09-12 1996-09-12 Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact

Publications (1)

Publication Number Publication Date
WO1998011507A1 true WO1998011507A1 (fr) 1998-03-19

Family

ID=9495690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001549 WO1998011507A1 (fr) 1996-09-12 1997-09-02 Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact

Country Status (4)

Country Link
EP (1) EP0925553B1 (fr)
DE (1) DE69706427D1 (fr)
FR (1) FR2753305B1 (fr)
WO (1) WO1998011507A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835965A1 (de) * 1998-06-23 1999-12-30 Meto International Gmbh Identifizierungselement
AU731054B2 (en) * 1998-06-23 2001-03-22 Meto International Gmbh Identification element
WO2010060755A1 (fr) 2008-11-03 2010-06-03 Ksw Microtec Ag Procédé de fabrication d’un produit de transpondeur rfid et produit de transpondeur fabriqué selon le procédé

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780534B1 (fr) * 1998-06-25 2002-08-16 Solaic Sa Procede de realisation d'objets portatifs a composants electroniques et objets portatifs tels qu'obtenus par ledit procede
FR2781588B1 (fr) * 1998-07-21 2003-04-25 Solaic Sa Carte sans contact et procede de realisation d'une telle carte
FR2786009B1 (fr) * 1998-11-16 2001-01-26 Gemplus Card Int Procede de fabrication d'une carte a puce hybride par impression double face
FR2796760B1 (fr) * 1999-07-23 2002-02-01 Gemplus Card Int Etiquette electronique et procede pour sa fabrication
US6147662A (en) * 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6304232B1 (en) * 2000-02-24 2001-10-16 The Goodyear Tire & Rubber Company Circuit module
FR2850490A1 (fr) * 2003-01-24 2004-07-30 Framatome Connectors Int Antenne et procede de fabrication
US20060285301A1 (en) * 2003-05-05 2006-12-21 Axalto Sa Method for making a pre-laminated inlet
WO2008081224A1 (fr) * 2006-12-28 2008-07-10 Fci Substrats plats pour cartes d'identification et procédés de fabrication de ceux-ci

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380426A1 (fr) * 1989-01-25 1990-08-01 Tokai Electronics Co., Ltd. Etiquette de résonance ainsi que procédé pour sa fabrication
FR2684471A1 (fr) * 1991-12-02 1993-06-04 Solaic Sa Procede de fabrication d'une carte a memoire et carte a memoire ainsi obtenue.
EP0595549A2 (fr) * 1992-10-26 1994-05-04 Hughes Microelectronics Europa Limited Etiquette-adresse à radiofréquence
DE4337921A1 (de) * 1993-11-06 1995-05-11 Manfred Dr Michalk Kontaktlose Chipkarte mit Antennenspule und Verfahren zu ihrer Herstellung
EP0682321A2 (fr) * 1994-05-11 1995-11-15 Giesecke & Devrient GmbH Porteur d'information à puce
JPH07321438A (ja) * 1995-04-10 1995-12-08 Sony Corp プリント基板回路
EP0706152A2 (fr) * 1994-11-03 1996-04-10 Fela Holding AG Carte à puce et méthode pour sa fabrication
JPH08216571A (ja) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Icカード

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380426A1 (fr) * 1989-01-25 1990-08-01 Tokai Electronics Co., Ltd. Etiquette de résonance ainsi que procédé pour sa fabrication
FR2684471A1 (fr) * 1991-12-02 1993-06-04 Solaic Sa Procede de fabrication d'une carte a memoire et carte a memoire ainsi obtenue.
EP0595549A2 (fr) * 1992-10-26 1994-05-04 Hughes Microelectronics Europa Limited Etiquette-adresse à radiofréquence
DE4337921A1 (de) * 1993-11-06 1995-05-11 Manfred Dr Michalk Kontaktlose Chipkarte mit Antennenspule und Verfahren zu ihrer Herstellung
EP0682321A2 (fr) * 1994-05-11 1995-11-15 Giesecke & Devrient GmbH Porteur d'information à puce
EP0706152A2 (fr) * 1994-11-03 1996-04-10 Fela Holding AG Carte à puce et méthode pour sa fabrication
JPH08216571A (ja) * 1995-02-09 1996-08-27 Hitachi Chem Co Ltd Icカード
JPH07321438A (ja) * 1995-04-10 1995-12-08 Sony Corp プリント基板回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 096, no. 012 26 December 1996 (1996-12-26) *
PATENT ABSTRACTS OF JAPAN vol. 96, no. 4 30 April 1996 (1996-04-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835965A1 (de) * 1998-06-23 1999-12-30 Meto International Gmbh Identifizierungselement
AU731054B2 (en) * 1998-06-23 2001-03-22 Meto International Gmbh Identification element
US6622921B2 (en) 1998-06-23 2003-09-23 Meto International Gmbh Identification element
WO2010060755A1 (fr) 2008-11-03 2010-06-03 Ksw Microtec Ag Procédé de fabrication d’un produit de transpondeur rfid et produit de transpondeur fabriqué selon le procédé
US8408473B2 (en) 2008-11-03 2013-04-02 Smartrac Technology Dresden Gmbh Method for producing an RFID transponder product, and RFID transponder product produced using the method

Also Published As

Publication number Publication date
FR2753305A1 (fr) 1998-03-13
FR2753305B1 (fr) 1998-11-06
EP0925553B1 (fr) 2001-08-29
EP0925553A1 (fr) 1999-06-30
DE69706427D1 (de) 2001-10-04

Similar Documents

Publication Publication Date Title
CA2520441C (fr) Procede de fabrication d`antenne de carte a puce sur un support thermoplastique et carte a puce ainsi obtenue
EP0772232A1 (fr) Procédé de fabrication d'un ensemble de modules électroniques pour cartes à mémoire électronique
EP0671705B1 (fr) Procédé de fabrication d'une carte hybride
EP1016036B1 (fr) Procede de realisation d'une carte a memoire electronique sans contact
EP1260938B1 (fr) Connexion souple par dispense entre puce et interface avec ou sans contact
EP0925553B1 (fr) Procede de fabrication d'un ensemble de modules electroniques pour cartes a memoire sans contact
FR2780551A1 (fr) Micromodule electronique integre et procede de fabrication d'un tel micromodule
FR2794266A1 (fr) Procede de fabrication de dispositif electronique portable a circuit integre comportant un dielectrique bas cout
WO2000025265A1 (fr) Procede de fabrication d'une carte a puce et d'un module electronique destine a etre insere dans une telle carte
WO2000077854A1 (fr) Procede de fabrication de tout ou partie d'un dispositif electronique par jet de matiere
WO1999062028A1 (fr) Procede de fabrication d'un dispositif electronique portable comportant au moins une puce de circuit integre
WO2000030032A1 (fr) Procede de fabrication d'une carte a puce hybride par impression double face
WO2021233869A1 (fr) Procédé de métallisation électro-chimique d'un circuit électrique double-face pour carte à puce et circuit électrique obtenu par ce procédé.
EP1623367A1 (fr) Procede de fabrication d'un inlet prelamine
FR2795202A1 (fr) Carte et procede de fabrication de cartes ayant une interface de communication a contact et sans contact
FR3093228A1 (fr) Module a double interface a contact et sans contact comportant une ou plusieurs interfaces additionnelles
FR3083892A1 (fr) Carte a puce a double interface de communication et son procede de fabrication
EP2089836B1 (fr) Carte à microcircuit avec antenne déportée
WO2005064533A1 (fr) Procedes de fabrication d'une carte du type sans contacts externes, et carte ainsi obtenue
WO2001009828A1 (fr) Procede de fabrication d'une carte a puce a contact
FR2797977A1 (fr) Procede de fabrication d'un dispositif electronique portable comportant une etape de surmoulage directement sur le film support
EP3020068A1 (fr) Module electronique et son procede de fabrication
WO2007077356A2 (fr) Procede de fabrication d'une carte a microcircuit, et carte a microcircuit associee
EP1210690A1 (fr) Dispositif electronique comportant au moins une puce fixee sur un support et procede de fabrication d'un tel dispositif
FR2812428A1 (fr) Procede de fabrication d'un micromodule de carte a puce et carte a puce incluant un tel micromodule

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997938972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09254823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998513300

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997938972

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997938972

Country of ref document: EP