WO1998006128A1 - Dry etching method and device used for the same - Google Patents

Dry etching method and device used for the same Download PDF

Info

Publication number
WO1998006128A1
WO1998006128A1 PCT/JP1996/003612 JP9603612W WO9806128A1 WO 1998006128 A1 WO1998006128 A1 WO 1998006128A1 JP 9603612 W JP9603612 W JP 9603612W WO 9806128 A1 WO9806128 A1 WO 9806128A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
processing chamber
oxygen
resist
Prior art date
Application number
PCT/JP1996/003612
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Izawa
Shinichi Tachi
Kazunori Tsujimoto
Tokuo Kure
Hironobu Kawahara
Ryouji Hamasaki
Yoshinao Kawasaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998006128A1 publication Critical patent/WO1998006128A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a fine processing method and apparatus for a semiconductor device, and particularly to a dry etching method and apparatus for realizing high-precision processing.
  • dry etching technology One of the technologies for fine processing of semiconductor devices is dry etching technology.
  • an etching gas is introduced into a vacuum vessel, a high-frequency bias or wave is applied to the gas, plasma is generated, and a pattern on the wafer is generated by active ions and ions generated in the plasma.
  • the active species formed in the plasma are adsorbed on the octagonal surface, and the etching is performed by introducing ions accelerated by a high-frequency bias into the active species adsorption surface. Since ions are accelerated only in the depth direction of the pattern, only the bottom surface of the pattern on the wafer is scraped, and the side surface of the pattern is not etched because there is no ion incidence.
  • dry etching achieves anisotropic processing.
  • the processing accuracy must be within 10%, preferably ⁇ 5% or less, of the mask width.
  • the wiring member side surface scraping case (Sai de etching) is that Ji raw force within an acceptable range ffl machining accuracy if the wiring processing of 500 nm width ';, advances of 300Ti m miniaturization
  • the allowable amount of side etching (side etching) on the wiring material must be kept at least 30 nm or less.
  • the resist film 15 is sufficiently higher than the thickness of the wiring pattern, the resist selectivity to resist is increased in order to increase the amount of resist products that serve as protective films. And the registration area has been widened.
  • Japanese Patent Publication No. 03-36300 as a method of performing etching by controlling the mixture ratio of carbon-containing gas and oxygen.
  • the purpose of introducing oxygen is to efficiently generate chlorine from carbon tetrachloride in plasma.
  • the oxygen / carbon ratio of the gas introduced is between 16 and 80%.
  • the amount of oxygen (oxygen radical equivalent) generated from the inner wall of the etching apparatus is about 2 SCC m, and even if carbon generated from the resist material is added, the oxygen / carbon ratio incident on the wafer is very good. More than%.
  • the anisotropic processing of the wiring material can be performed by using the protective film, but the amount of generated resist products is controlled.
  • the mechanism of protective film formation and the factor that inhibits it were not clear.
  • methane gas is added in an amount of 5% or more, and the deposition property is higher than that of halides. It will be.
  • An object of the present invention is to obtain a side surface protective film that does not depend on the amount of organic products generated from a resist, prevent the generation of foreign substances, improve the processing dimensional accuracy of wiring, and eliminate the trade-off. It is in. Disclosure of the invention
  • the above object is to supply oxygen and carbon to the object to be etched so that the ratio of the number of oxygen atoms to the number of carbon atoms becomes a finite value of 10% or less, and control the deposition and etching of the protective film to process the object. Achieved by etching things.
  • the etching gas is achieved by adding to the etching gas 7 to 35% of the etching gas with a hydrocarbon haptic compound.
  • the halogenated compound there may be mentioned, for example, a black mouth form.
  • the inner wall of the processing chamber is made of quartz,
  • etching of an Al-Cu-Si alloy film has been performed with an etching gas mainly composed of chlorine gas and ions generated in plasma within a range of pressure 1Pa to 5Pa.
  • an etching gas mainly composed of chlorine gas and ions generated in plasma within a range of pressure 1Pa to 5Pa.
  • the resist product generated on the wafer has a short mean mean free path of 3 or less in the region of several Pa, and is not exhausted without colliding with other molecules. The direction of the movement to leave is lost. Therefore, W is incident on the wafer again.
  • the re-injected resist product, once desorbed from the wafer, is not easily evacuated due to collisions with other molecules: the product concentration near the wafer is high. When the area where the product concentration is low is obtained from the diffusion equation, the vertical separation from the wafer reaches about the radius of the wafer.
  • Such a region having no product concentration is called a double-assembly region, and is a region around the wafer, in which the distance from the wafer is equal to the radius of the wafer (the region not only in the vertical direction but also in the lateral direction of the wafer). Including).
  • the concentration of the resist product increases due to the stay of the resist product, so that the resist product enters the wafer many times.
  • the probability of deposition on the side surface of the ⁇ ⁇ 1-Cu-Si alloy film increases due to the incidence of the resist product many times.
  • the amount of generated resist products was about 5 sccm.
  • the pressure of the resist product on the wafer is estimated to be about 0.13 Pa due to the stay effect. This amount is equivalent to the addition of about 13 sccm of the resist product from the outside to the etching cloth.
  • the effect of forming a protective film on the resist product is about 2.5 times that of the gas introduced from the outside.
  • the partial pressure of chlorine is reduced on the wafer because it is consumed on the wafer. Therefore, the amount of chlorine incident on the wafer is smaller than the supply amount.
  • the total pressure is lPa
  • the total flow rate is 100 sccm
  • the chlorine supply is 80 sccm
  • the etching rate of the A1-Cu-Si alloy film etching of a 6-inch wafer is 800 nm / tn ir. Describes the case of performing in ⁇ >. If the etching reaction does not occur, the chlorine gas pressure is 0.8 Pa, but if the etching reaction occurs, the partial pressure of chlorine on the wafer is reduced to about 0.3 Pa.
  • the ratio of the resist product incident on the wafer to chlorine is about 50% due to the stay of the product and the consumption of chlorine in the two-face area formed up to the wafer radial distance.
  • the resist product effectively acts on the formation of the protective film.
  • carbon-based protective films can be easily removed by oxygen contamination. That is, the incidence of oxygen impedes the formation of the deposited protective film.
  • Oxygen is mainly generated by etching the material of the inner wall of the etching apparatus, for example, quartz.
  • oxygen since oxygen has the effect of suppressing the formation of the protective film, it is necessary to reduce the amount of oxygen incident.
  • a certain amount is required because the deposits of the resist products form foreign matter and dust bases.
  • the effect of removing the protective film by the stay of the product and oxygen near the wafer was not known in the past, the formation of the protective film could not be controlled, and the resist selection ratio, the resist area, etc. There was a trade-off in between.
  • the resist product is mainly a carbon chloride-based compound and contains carbon, which is sedimentary. Therefore, in order to accurately anisotropically process the metal Cu-Si alloy film, it is necessary to control the amount of gas containing carbon including the resist product and the amount of oxygen incident on the wafer. It is important to control the carbon incidence ratio. By controlling the oxygen-Z carbon ratio, side etching can be reduced, and the trade-off between resist area and the trade-off between the resist area and the side etching is eliminated, increasing the resist selectivity. Wiring processing becomes possible.
  • Specific methods for increasing the carbon content include a method in which gas is introduced directly into the two-face area and a carbon ring product that is generated by installing a force ring around the wafer and etching the force bond. Can be introduced into the wafer, and a method of adding a gas so that the amount of gas containing carbon incident on the wafer becomes an appropriate amount.
  • a method of controlling the amount of oxygen a method of covering the inner wall surface of the etching apparatus with a film that does not generate oxygen can be considered.
  • Figure 1 shows the relationship between the side-etching amount and the oxygen-carbon injection ratio.
  • Reference numeral 102 denotes an area in which foreign matter dust is generated
  • reference numeral 103 denotes a range of an oxygen / carbon incidence ratio within an allowable amount of deviation from a mask size.
  • Sa The curve 101 indicating the amount of etching increases with an increase in the oxygen-Z carbon ratio. Therefore, in order to obtain sufficient processing accuracy, it is necessary to make the oxygen / carbon ratio smaller than a certain value, depending on the pattern size. For example, if the amount of side etching is suppressed to 15 nm or less in a pattern of 300 nm, the oxygen / carbon ratio is generally 10% or less.
  • the oxygen-Z carbon ratio is reduced, the amount of side etching is reduced, but if the oxygen-free state is approached, the accumulation of resist products and the like is not suppressed, so that they will accumulate in the etching device and become Causes problems such as dust. Since this problem depends on the device structure, the lower limit of the oxygen-carbon ratio differs from device to device. In particular, in an oxygen-free state, deposition cannot be suppressed, and consequently, the generation of foreign matters and the like becomes remarkable.
  • the reduction of the side etching is realized by reducing the oxygen / carbon ratio within a range in which the dust and the like are not generated.
  • side etching in wiring can be reduced by setting the ratio of the number of oxygen atoms to the number of carbon atoms incident on the wafer to be processed to be 10% or less.
  • finer wiring can be processed with high dimensional accuracy even if the selectivity to resist is increased.
  • FIG. 1 is a conceptual diagram showing the dependence of the amount of side etching on the carbon-oxygen ratio
  • FIG. 2 is a sectional view of a dry etching apparatus used in the present invention
  • FIG. 3 is a sectional view of a substrate before etching used in the embodiment
  • FIG. 4 is a cross-sectional view of the substrate after etching under the conventional conditions
  • FIG. 5 shows the effect of the present invention.
  • FIG. 6 is a cross-sectional view of the dry etching apparatus according to the present invention in the embodiment
  • FIG. 7 is a cross-sectional view of the dry etching apparatus according to the present invention in the embodiment, showing that the side etching is reduced.
  • FIG. 1 is a conceptual diagram showing the dependence of the amount of side etching on the carbon-oxygen ratio
  • FIG. 2 is a sectional view of a dry etching apparatus used in the present invention
  • FIG. 3 is a sectional view of a substrate before etching used in the embodiment
  • FIG. 8 is a cross-sectional view of the semiconductor device structure before etching used in the embodiment
  • FIG. 9 is a cross-sectional view of the semiconductor device structure showing the effect of the present invention
  • FIG. 10 is dry etching according to the present invention in the embodiment
  • FIG. 11 is a cross-sectional view of a dry etching apparatus according to the present invention in an embodiment
  • FIG. 12 is a view showing a relationship between a resist surface ratio of the present invention and a necessary carbon gas addition amount. It is.
  • FIG. 2 An embodiment according to the present invention will be described with reference to wiring processing using a microwave dry etching apparatus (FIG. 2) for generating high-density plasma using electron cyclotron resonance.
  • Fig. 3 shows the structure on a 6-inch silicon substrate, which is the object to be etched.
  • Silicon dioxide (SiO 2 ) 25 lower titanium nitride (TiN) film 24, ⁇ -Cu-Si alloy film 23, upper TiN film 22, and mask pattern are formed on silicon substrate 26.
  • the transferred resist mask 21 is formed.
  • the pattern width of the resist mask is 300 nm, and the area of the resist is 50% of the silicon substrate.
  • the substrate 6 is transferred to a processing table 5 (FIG.
  • the substrate temperature at the time of etching is 40 ° C, and the RF bias applied to the substrate is applied to the processing table 5 at 800 kHz and 70 W from the RF power supply 12.
  • Etching is performed in the order of upper ⁇ ', ⁇ 1-Cu-Si alloy, and lower TiN.
  • the etching speed of TiN is about 500nni / min, A1-Cu—Si alloy is about 800nm / min, and the resist (warp) 4 OOnm / m J n Fig. 4 shows a schematic diagram of the shape after etching.
  • the side surface of the Al-Cu-Si alloy film 23 just below the upper TiN 22 can be cut by about 60t m, and it is not possible to obtain sufficient machining accuracy. Further, the side surface of the Al—Cu—Si alloy film 23 is entirely cut off by about 40 nm. It is considered that the reason for the side surface being scraped off is that chlorine is excessively present in the processing chamber and the protective film on the side surface is insufficiently formed. Insufficient formation of the overcoat may be due to low resist products or the presence of oxygen which inhibits overcoat formation. As the ratio of oxygen concentration to resist product increases, the oxygen will remove the side protective film.
  • the protective film is formed from the resist product, it is important to estimate how much the resist product re-enters the Si substrate in controlling the protective film formation.
  • the amount of resist product generated is estimated by the product of the density of the resist, the etching rate of the resist, and the area of the resist.
  • the etching rate of the resist is 400 nm / min, and the area is 88 square centimeters (6 In the case of 50% of the silicon substrate, it is about 5 sccm.
  • the resist product generated on the silicon substrate has a mean free path of about 3 mm at a pressure of lPa and the size of the processing chamber of the etching apparatus (for example, the length from the silicon substrate to the top of the vacuum processing chamber is about 20 cm).
  • the number of re-injections is estimated to be about 15 times from Monte Carlo calculations without considering the gas flow inside the vacuum processing chamber. The effect of the flow is as follows: From the gas flow calculation, the concentration decreases slightly more than about 10% as the total flow rate of gas increases by l OOsc cm. I do. Therefore, it is estimated that the number of re-injections is about 13 times at the total flow rate lOOsccm.
  • the product re-injection amount is estimated, and the pressure becomes about 0.13 Pa. This pressure is about 2.5 times the pressure expected from the amount of resist product generated. As described above, the phenomenon of the stay of the product on the Si substrate plays an important role in forming the protective film.
  • oxygen is generated from the inner wall of the quartz chamber 13 of the etching equipment, and the surface of the inner wall has a surface area of about 2900 square centimeters and can be cut off by about 15 nm per minute during plasma discharge.
  • the volume is estimated at about 2 sccm.
  • the amount of oxygen incident on the silicon substrate is about 0.02 Pa in terms of oxygen radical pressure.
  • the oxygen radical reduced pressure is a pressure when oxygen and oxygen radicals are all incident as oxygen radicals.
  • the amount of oxygen incident on the resist product on the silicon substrate is about 15%.
  • the resist product that forms the protective film is presumed to be a carbon chloride compound because the resist is an organic polymer. Therefore, as a gas to be added, a lOsccm chromium form was added to increase the number of carbon atoms incident on the silicon substrate. In this case, the pressure of the gas containing carbon on the wafer is about 0.23 Pa, which is the sum of the amount of the resist product and the form of the cross-hole. The ratio of the amount of oxygen incident to the amount of carbon-containing gas (carbon incident) is about 9%.
  • the side surface of the Au-Cu-Si alloy film 23 is etched without being scraped, as shown in FIG.
  • the addition amount of the mouth form is increased and 20 sccm is added, the pattern of the lower Tin becomes slightly thicker and the forward taper It becomes one shape.
  • the oxygen / carbon incidence ratio at this time is 6%.
  • deposits accumulate inside the etching apparatus and become dust.
  • the addition amount of black form is reduced to 5 sccm, the amount of abrasion on the side surface of Al-Cu-Si decreases less than before addition, and the force effect is small.
  • the amount of abrasion on the side of the A1-Cu-Si alloy can be improved by adding more than 7 sccm of the aperture form.
  • 7 sccm that is, when the ratio of the added gas to the etching gas is 7%, the ratio of the number of oxygen atoms to the number of carbon atoms incident on the substrate is about 10% .
  • the low dust generation is between 10 and 25 sccm, that is, the ratio of the additive gas to the etching gas is between 10% and 25%.
  • the incidence ratio of oxygen at 25 sccm is 5%.
  • the output of the RF bias is lowered and the selectivity to the resist is raised, the amount of resist product generated decreases, so the amount of black form added must be increased.
  • the selectivity is doubled to about 4 with a resist area of 50%, the side etching is reduced by adding about 15 sccm of the cross-hole form, and the side etching is about the measurement limit with the addition of more than 20 sccm. become.
  • the following equation shows the ratio of the number of oxygen atoms to the wafer and the number of carbon atoms incident on the wafer.By introducing a close-up form so that this value becomes 10% or less, a sufficient processed shape can be obtained. Can be Particularly desirable areas Is between 5 and 9%.
  • the relationship between the product concentration and the area ratio of the register and the amount of the lowest carbon-containing gas added is shown in Fig. 2 and r .
  • the area of the registry is less than about 80%, the carbon supplied from the registry power is not enough, and it is necessary to supply carbon.- The area of the registry is more than 80% Then, there is no need to lend carbon from a non-registry shack.
  • Chlorine and boron trichloride are used as the etching gas, and fluorine, chlorine or ethane, methane, propylene or butane, or ethane, methane, propylene or butane is used as the additive gas in addition to the crotch form.
  • bromine substituents, or Cal borane bromide carbon is halogen substituents (CBr ,, CHBr 3, etc.) and chloride force Rubora emission compound (CC1 3 BC1 2, CHCl BCL ,, CC1: (BCU) CIIC1 (BC1 2 ) 2 , BC1 (CHC1 2 ) 2, etc.) have the same effect.
  • the effect of the present invention is not limited to the above-described microwave etching apparatus.
  • other devices such as RIE, magnetron RIE, helicon resonant RIE, and inductively coupled RIE can achieve the same effect.
  • FIG. 6 shows another embodiment of the dry etching equipment according to the present invention.
  • an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microwave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 to generate gas plasma.
  • Two solenoid coils 4 for generating a magnetic field are arranged around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875 Gauss magnetic field is almost directly above the processing table.
  • a high-density plasma is generated using electron cyclotron resonance.
  • the vacuum processing chamber 1 has a processing table 5 on which an object 6 (often a wafer) is placed and subjected to etching by gas plasma.
  • the etching gas is introduced into the vacuum processing chamber 1 through the gas flow controller 10 and the gas inlet 11, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7.
  • the processing table 5 on which the workpiece is to be installed is provided with an RF power supply 12, and can apply an RF bias from 400 Hz to 13.56 MHz.
  • the processing base is connected via a conductance valve 703 and a gas flow controller 702 so that gas can be efficiently introduced into the two-assembly area near the workpiece.
  • a gas inlet 70 1 is provided.
  • the 12-inch silicon substrate is transported to this rice paddy.
  • the silicon substrate has a silicon dioxide film 25, a lower TiN film 24, an Al-Cu-Si alloy film 23, and an upper TiN film 2 on the substrate 26. 2 and a resist mask 21 onto which the mask pattern was transferred.
  • the pattern width of the resist mask is 300 nm, and the area of the resist is 20% of the control board.
  • the processing table temperature is 50 ° C
  • the total pressure is 1 Pa
  • the RF power is 800 kHz
  • the power is 120 W.
  • the ratio of the number of oxygen atoms and the number of carbon atoms incident on the silicon substrate is about 7.5%, and the Al-Cu-Si alloy side surface hardly cuts or thickens (forward taper).
  • the form gas is not introduced from the periphery of the processing table, the re-injection of the resist product is large near the center of the silicon substrate and the number of re-injections is reduced on the outside by exhaust. However, it was difficult to process uniformly.
  • the effect of the present invention is not limited to the above-described microwave etching apparatus, and similar effects can be obtained with other apparatuses such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
  • FIG. 1 Another embodiment of the dry etching apparatus according to the present invention is shown in FIG.
  • an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microwave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 to generate gas plasma.
  • Two solenoid coils 4 for generating a magnetic field are placed around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875-gauss magnetic field is almost directly above the processing table.
  • High using electron cyclotron resonance Generate a density plasma.
  • the vacuum processing chamber 1 has a processing table 5 on which an object 6 to be processed is installed, and is subjected to etching processing by gas plasma.
  • the etching gas is introduced into the vacuum processing chamber 1 through the gas flow control device, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7.
  • the processing table 5 on which the object is to be installed is equipped with an RF power supply 12 and can apply an RF bias from 400 Hz to 13.56 MHz.
  • a carbon ring 801 with a height of cm cm is installed near the outer periphery of the processing table in the near surf area.
  • the 12-inch silicon substrate is transported to this device.
  • the silicon substrate has a silicon oxide film 25, a lower iN film 24, an Al-Cu-Si alloy film 23, and an upper Ti. 2 and a resist mask 21 onto which the mask pattern has been transferred.
  • the pattern width of the resist mask is 300 ntn, and the area of the resist is 20% of the silicon substrate.
  • the processing table temperature is 50 ° C
  • the total pressure is 1 Pa
  • the RI's temperature is 800 kHz
  • the power is 120 W.
  • the introduced silicon substrate is etched by introducing a 150 sccm salt gas, a 50 sccm boron trichloride, and a 4 scctn chlorophonolem through the upper gas inlet.
  • the oxygen-Z carbon ratio on the silicon substrate is about 7.5%, including the gas (approximately 3 sccm) generated when the carbon ring is chipped, and the side surface of the Al-Cu-Si alloy is cut and fattened. Hardly occurs. Furthermore, there is no difference in the abrasion of the Al-Cu-Si side surfaces on the center and outside of the silicon substrate, and the pattern in the substrate is uniformly etched. On the other hand, when the carbon ring is not introduced near the outer periphery of the processing table, the re-injection of the resist product is large near the center of the silicon substrate, and the exhaust gas is exhausted outside. As a result, the number of re-incidents is reduced, making it difficult to perform uniform processing.
  • the effect of the present invention is not limited to the above-described microwave etching apparatus, and the same effect can be obtained with other equipment such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
  • a wiring having a width of about 100 nm is formed on an M0S transistor having a gate length and a width of about 100 nm formed on a 6-inch silicon substrate.
  • M0S transistor 121, capacitor and polysilicon wiring are processed on the silicon substrate, and the space between the lines is insulated by silicon dioxide film 25. ing.
  • a lower film 241 'film 24, a Cu-Si alloy film 23, an upper Ti ⁇ 22, and a resist film 21 to which a mask pattern is transferred are formed.
  • the first layer wiring is formed.
  • the resist area on the silicon substrate is about 30%.
  • the silicon substrate is carried into an etching apparatus, and the Ti 7A Cu-Si / TiN film is processed.
  • the gas to be introduced is about 80 sccm of chlorine, about 20 sccm of boron trichloride, and about 20 sccm of a croft form.
  • a silicon dioxide film containing phosphorus and contact holes are formed on the substrate on which the wiring has been processed, and a second layer of TiN / Al-Cu-Si / TiN wiring is further formed thereon.
  • the wiring dimensions are as small as about 100 nm, which is about the gate length, the semiconductor device will be a highly integrated semiconductor device.
  • the wiring etching method according to the present invention it is possible to manufacture a semiconductor device which operates at high speed at lower cost.
  • the form gas is not added, the side surface of the Al-Cu-Si film is shaved, and the shaved amount exceeds the width of the Al-Cu-Si alloy film (about lOOnm). Was difficult.
  • fine wiring processing of a semiconductor device can be performed by using the etching method according to the present invention.
  • Such a wiring process is also possible if the gas type is changed to carborane chloride, carbon bromide, etc., even if the gas is introduced from near the etching equipment processing table.
  • FIG. 1 Another embodiment of the dry etching apparatus according to the present invention is shown in FIG.
  • an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microphone mouth wave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 and is subjected to gas plasma.
  • Two solenoid coils 4 for generating a magnetic field are arranged around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875 Gauss magnetic field is almost directly above the processing table.
  • Rotron resonance Generate high-density plasma.
  • the vacuum processing chamber 1 has a processing table 5 on which an object 6 is to be processed, and is subjected to etching processing by gas plasma.
  • the etching gas is introduced into the vacuum processing chamber 1 through the gas flow control device, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7.
  • the processing table 5 on which the object is to be installed is equipped with an RF power supply 12 and can apply an RF bias from 400 Hz to 13.56 MHz.
  • the inner wall of the quartz chamber 113 is coated with a silicon nitride film 110 so as to prevent oxygen from being emitted.
  • a 6-inch silicon substrate is transported to this device.
  • This silicon substrate has a silicon oxide film, a lower TiN film, an Al-Cu-Si alloy film, an upper TiN film, and a resist mask on which a mask pattern is transferred on a substrate.
  • the pattern width of the resist mask is 300 nm, and the area of the resist is 50% of the silicon substrate.
  • the substrate is transported to an etching apparatus, and 70 sccm of chlorine gas and 30 sccm of boron trichloride gas are introduced into the etching apparatus as an etching gas, and the etching is performed so that the total pressure becomes lPa. Do.
  • the substrate temperature at the time of etching is 50 ° C., and the RF bias applied to the substrate is approximately 70 kHz at 800 kHz.
  • Etching is performed in the order of upper TiN, Al-Cu-Si alloy and lower TiN.
  • the etching speed of TiN is about 450 nm / min
  • A1-Cu-Si alloy is about 750 nm / min
  • the resist is about 350 nm / min. It is.
  • the method of reducing the supply amount of oxygen gas to 0.3% can also be achieved by increasing the coating area of the silicon nitride film to 80% or more.
  • This added amount of oxygen gas corresponds to 0.06% to 0.6% of the total gas flow rate.
  • Oxygen Z Carbon incident amount ratio at this time is the oxygen contamination traces of considered It Then 2 from the inner wall surface 1 about 0% r
  • A1-Cu-Si alloy with a small amount (0.06 to 1%) of oxygen gas added using the inner wall material, and the side surfaces of the A1-Cu-Si alloy are reduced in size and thickness A processed shape can be obtained.
  • the effect of the present invention is not limited to the above-described microwave cutting device, and the same effect can be obtained in other devices such as RIE, magneto-opening RIE, silicon resonance RIE, and inductively coupled RIE. There is.
  • Example 2 Using the apparatus of Example 1, a multilayer film having the same structure as that shown in FIG. 3 is etched. On the silicon substrate 26, a silicon dioxide film 25, a lower TiN 'film 24, an Al-Cu-Si alloy film 23, an upper TiN film 22 and a resist mask 21 to which a mask pattern is transferred are formed. Is formed.
  • the substrate is conveyed to a processing table 5 of an etching apparatus, and 80 sccm of chlorine gas and 20 sccm of boron trichloride gas are introduced as an etching gas, which is composed of 96% of argon and 4% of methane.
  • the gas is added at 100 sccm, and the pressure in the vacuum processing chamber is controlled to about 2 Pa.
  • Oxygen emitted from the wall is about 2sc C tri.
  • Silicon group The board is 8 inches and the resist area on the board is about 50%.
  • the substrate temperature during etching is 50 ° C, and the RF bias applied to the substrate is 2 MHz and 100 W from the RF power supply 12 and is applied to the processing table 5 at 100 W.
  • the etching rate of the Al-Cu-Si film is about 800 nm / min, and the etching rate of the resist is about 300 nm / min.
  • the amount of resist product generated is about 7 sccm in terms of carbon atoms. Taking into account that the resist product deposition effect near the wafer increases the resist product deposition effect by about 2.5 times, the oxygen-carbon incidence ratio is about 11%. When the added methane is added to this, the oxygen-to-coal / injection ratio becomes about 9%. When etching is performed under these conditions, side etching is reduced, and the amount of side etching is reduced to about 10 nm or less.
  • methane gas when adding methane gas, it is desirable to add methane gas in the range of 2 to 5% as compared with the introduction amount of chlorine and boron trichloride gas.
  • hydrocarbon gases such as methane and ethane are flammable gases
  • safety can be achieved by diluting with an inert gas such as argon, neon, or xenon. It is desirable to secure
  • argon gas Excess chlorine gas and oxygen are exhausted, and side etching is slightly reduced.
  • the effects of the present invention are not limited to the above-described microwave etching apparatus, and similar effects can be obtained with other apparatuses such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
  • FIG. 1 Another embodiment of the dry etching apparatus according to the present invention is shown in FIG.
  • an etching gas is introduced into the etching chamber 1, a high frequency is generated from 1 MHz to 2.45 GHz by a second RF (high frequency) power supply 31, and the high frequency is passed through the antenna 32 to perform etching.
  • a dielectric 33 is formed on the surface of the antenna 32 to prevent the antenna from being etched.
  • the etching chamber 1 has a processing table 5 on which an object 6 to be processed is placed, and an etching process is performed by gas plasma.
  • the etching gas is introduced into the etching chamber 1 through the gas flow control device, and is exhausted out of the etching chamber 1 by the exhaust pump 7.
  • the processing table 5 on which the workpiece is installed is equipped with an RF power supply 12 and can apply a high frequency (RF) bias from 400 Hz to 1 GHz.
  • RF high frequency
  • a multilayer film having the same structure as that shown in FIG. 3 is etched.
  • a silicon dioxide film 25 On the silicon substrate 26, a silicon dioxide film 25, a lower TiN film 24, an Al-Cu-Si alloy film 23, an upper TiN film 22, and a resist on which a mask pattern is transferred Mask 21 is formed.
  • the substrate is transported to the processing table 5 of the etching apparatus, and as an etching gas, 70 sccm of chlorine gas and 30 sccm of boron trichloride gas are introduced, and it is composed of 96% of argon and 4% of methane. 100 sccm of gas to be added and vacuum processing Control the pressure in the chamber to about 2Pa.
  • Oxygen emitted from the wall is about 2sccm.
  • the silicon substrate is 8 inches and the resist area on the substrate is about 50%.
  • the substrate temperature during etching is 50 ° C
  • the frequency of the second RF power supply 31 is 13.56 MHz
  • the output is 300 W
  • the RF bias applied to the substrate is 800 kHz from the RF power supply 12. , 100 W at the processing table 5.
  • the etching rate of the Al-Cu-Si film is about 750 nm / min, and the etching rate of the resist is about 300 nm / min.
  • the amount of the resist product generated is about 7 sccm when converted to the number of carbon atoms.
  • the oxygen / carbon incidence ratio is about 11%.
  • the oxygen / carbon injection ratio is about 9%.
  • side etching is reduced, and the amount of side etching becomes about 10 nm.
  • the methane content in the mixed gas is 2% or more, the effect of suppressing side etching is sharply exhibited. Can be It is considered that the reason for this is that methane is more sedimentable than chlorine-containing gas such as chloroform.
  • methane gas when adding methane gas, it is desirable to add methane gas in the range of 2 to 5% as compared with the introduction amount of chlorine and boron trichloride gas.
  • hydrocarbon gases such as methane-ethane are flammable gases. Therefore, when used in a production line, it is desirable to ensure safety by diluting with an inert gas such as argon, neon, xenon or the like.
  • an inert gas such as argon, neon, xenon or the like.
  • the addition of argon gas facilitates the exhaust of excess chlorine and oxygen and slightly reduces side etching.
  • the inert gas argon having a small difference in mass from chlorine ions is preferably used. The reason for this is that the etching speed is reduced due to the lightness of the helicopter, while the selectivity is reduced due to the heavy weight of xenon and the like.
  • the present invention is excellent in microfabrication of a semiconductor device, and is particularly suitable for etching an aluminum film; it can also be applied to etching of an insulating film and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

An object is etched in an atmosphere in which the ratio of the number of oxygen atoms to that of carbon atoms is less than 10 while the deposition of a protective film and etching are controlled. Consequently, the side etching amount can be reduced at the time of forming wiring and finer wiring can be formed with higher dimensional accuracy even when the selection ratio to resist is raised.

Description

明細書 ドライエツチング方法およびその装置  Description Dry etching method and its apparatus
技術分野 Technical field
本発明は、 半導体装置の微細な加工方法及び装置に関し、 特に高 精度加工を実現する ドライエッチング方法及び装置に関する。  The present invention relates to a fine processing method and apparatus for a semiconductor device, and particularly to a dry etching method and apparatus for realizing high-precision processing.
背景技術 Background art
半導体装置の微細加工を行う技術の 1 つに ドライエツチング技術 がある。 ドライエッチングでは、 エツチン グガスを真空容器に導入 し、 このガスに高周波バイアスも しく は 波を印加し、 プラズマを 発生させ、 このプラズマ中で生成した活性 ¾およびイオンによ り ゥ ェハ上のパターンを加工する。 プラズマ中で^成した活性種はゥェ 八面に吸着し、 この活性種吸着面に高周波バイ ア スによって加速さ れたイオンを導入することによ りエ ッチン グは :行する。 イオンは パターンの深さ方向にのみ加速されるため、 ウェハ上のパターン底 面のみ削れ、 パターン側面は、 イオンの入射がないためエツチング されない。 このようにして、 ドライエッチングは異方加工を実現し ている。  One of the technologies for fine processing of semiconductor devices is dry etching technology. In dry etching, an etching gas is introduced into a vacuum vessel, a high-frequency bias or wave is applied to the gas, plasma is generated, and a pattern on the wafer is generated by active ions and ions generated in the plasma. To process. The active species formed in the plasma are adsorbed on the octagonal surface, and the etching is performed by introducing ions accelerated by a high-frequency bias into the active species adsorption surface. Since ions are accelerated only in the depth direction of the pattern, only the bottom surface of the pattern on the wafer is scraped, and the side surface of the pattern is not etched because there is no ion incidence. Thus, dry etching achieves anisotropic processing.
半導体装置のアルミニウム (A U を主成分とするアルミ ニウム一 銅一シリ コン (A 1 - Cu- S i ) で構成される配線加工では、 導入ガスで ある塩素ガスのプラズマ解離に関係なく 、塩素ガスによって A 1がェ ツチングされるため、 パターン側面がエッチン グされないよ うに保 護膜を形成する必要がある。 この保護膜の形成は、 レジス ト材料か ら発生する有機系生成物によって行われてきた。 この配線加工時に は、 レジス トにもイオンが入射するためレジス トもエッチングされ るこ とになる。 このレジス トのエッチングによって レジス ト生成物 が発生し、これがウェハに再入射して A l -Cu-S i合金パターンの側面 に付着し保護膜となる。 この保護膜によ り 、 配線材の異方加工が可 能となった。 In the wiring processing of semiconductor devices made of aluminum (aluminum-copper-silicon (A1-Cu-Si) whose main component is AU), chlorine gas is used regardless of the plasma dissociation of the introduced gas, chlorine gas. Since A1 is etched by the mask, it is necessary to form a protective film so that the side of the pattern is not etched. This has been done by organic products evolving from it. During this wiring processing, the ions are also incident on the resist, so that the resist is also etched. The resist etching produces a resist product, which re-enters the wafer and adheres to the side surface of the Al-Cu-Si alloy pattern to form a protective film. This protective film enabled anisotropic processing of wiring materials.
また、加工精度と して許容されるのは、マス ク幅に対して土 1 0 % 以内、 好ま しく は ± 5 %以下にする必要がある。 例えば、 配線材側 面に 50ηηι程度の削れ (サイ ドエッチング) が生 じ る場合、 500 nm幅 の配線加工であれば加工精度の許容範 fflにある力';、 微細化が進み 300tim の配線幅を加工する場合、 配線材側面の削れ (サイ ドエツチ ング) の許容量は少なく と も 30nm以下に抑える必要がある。 このサ ィ ドエッチングの対策と して、 レジス 卜の膜 15が配線パターンの膜 厚に比べ十分高い場合は、 保護膜と なる レジス ト生成物の発生量を 増やすために、 対レジス ト選択比を抑える こ とや、 レジス ト面積を 広くすることが行われてきた。 Also, the processing accuracy must be within 10%, preferably ± 5% or less, of the mask width. For example, about 50ηηι the wiring member side surface scraping case (Sai de etching) is that Ji raw force within an acceptable range ffl machining accuracy if the wiring processing of 500 nm width ';, advances of 300Ti m miniaturization When processing the width of wiring, the allowable amount of side etching (side etching) on the wiring material must be kept at least 30 nm or less. As a countermeasure against this side etching, if the resist film 15 is sufficiently higher than the thickness of the wiring pattern, the resist selectivity to resist is increased in order to increase the amount of resist products that serve as protective films. And the registration area has been widened.
他方、 炭素を含むガスおよび酸素の混合比を制御してエツチング する方法と して特公平 03- 36300号がある。 酸素の導入目的は、 プラ ズマ中で四塩化炭素から効率的に塩素を発生させることを目的と し ている。 この導入するガスの酸素原子/炭素原子比は 1 6から 8 0 %の間にある。 さ らにエッチング装置内壁面から発生する酸素量 (酸素ラジカル換算) が 2 S C Cm程度あり、 レジス ト材料から発生す る炭素を加えても、 ウェハに入射する酸素/炭素比は優に 1 0 %を 越えるものである。 On the other hand, there is Japanese Patent Publication No. 03-36300 as a method of performing etching by controlling the mixture ratio of carbon-containing gas and oxygen. The purpose of introducing oxygen is to efficiently generate chlorine from carbon tetrachloride in plasma. The oxygen / carbon ratio of the gas introduced is between 16 and 80%. In addition, the amount of oxygen (oxygen radical equivalent) generated from the inner wall of the etching apparatus is about 2 SCC m, and even if carbon generated from the resist material is added, the oxygen / carbon ratio incident on the wafer is very good. More than%.
また、 A 】 エッチングにおいて異方加丁.を実現するため、 メ タン ガスを添加する方法が、 U S P 4, 6 1 8, 3 9 8に記載されてレヽ る。 ここでは、 エッチングガスである塩素と 3塩化ホウ素の総導入 量に対し、 メ タンガスを 5から 3 0 %添加している。 Also, in order to realize anisotropic etching in A The method of adding the gas is described in USP 4,618,398. Here, methane gas is added in an amount of 5 to 30% based on the total amount of etching gas chlorine and boron trichloride.
しかし、 前述のパターン側面がェツチングされないよ うに保護膜 を形成する方法では、 この保護膜によ り、 配線材の異方加工が可能 となったが、 レジス ト生成物の発生量の制御はなされず、 保護膜形 成機構およびそれを阻害するファクタ一については不明であった。 さらに、 レジス 卜の生成物がどのく らいウェハに再入射するか不明 であった。 このよ うな状況では側面の保護膜の制御できないため、 配線パターンが微細になるに伴い、 十分な加工寸法精度を得るこ と が難しく なってきた。  However, in the above-described method of forming a protective film so that the side surface of the pattern is not etched, the anisotropic processing of the wiring material can be performed by using the protective film, but the amount of generated resist products is controlled. However, the mechanism of protective film formation and the factor that inhibits it were not clear. Furthermore, it was unknown how much of the product of the registry would re-enter the wafer. In such a situation, since the protective film on the side face cannot be controlled, it has become difficult to obtain sufficient processing dimensional accuracy as the wiring pattern becomes finer.
また、 レジス トに対する選択比を抑えたり 、 レジス ト面積を大き くする方法では、 配線幅が小さ く なる と、 露光技術の面からレジス 卜の膜厚を薄膜化する必要がある一方で、 配線パターンの膜厚は、 電気伝導性から薄膜化は望めない。 このため、 対レジス ト選択比を 上げる必要がある。 しかし、 サイ ドエッチング対策のため対レジス ト選択比を抑える必要もある。 即ち、 対レジス ト選択比とサイ ドエ ツチングは ト レー ドオフの関係にあり、 よ り微細な加工を困難にし ているのである。 さらに、 レジス ト面積を大き くすることは、 配線 構造に制限を与えるだけでなく 、 半導体デバイ スの高集積化を行え ば配線構造が複雑になり 、 必要以上にレジス ト面積を大きくするこ とは現実的に困難となる。  In addition, in the method of suppressing the selectivity to the resist or increasing the resist area, when the wiring width is reduced, it is necessary to reduce the thickness of the resist from the viewpoint of the exposure technology, The thickness of the pattern cannot be reduced due to its electrical conductivity. Therefore, it is necessary to increase the resist selectivity. However, it is necessary to reduce the resist selectivity to prevent side etching. In other words, there is a trade-off between the resist selectivity and the side etching, making finer processing difficult. Furthermore, increasing the resist area not only limits the wiring structure, but also increases the integration density of the semiconductor device, which complicates the wiring structure and increases the register area more than necessary. Becomes difficult in practice.
さらに、 特公平 3- 36300号に記載された方法では、 微細パターン の異方加工は到底達成できない。 さ らに、 ハロゲン化炭素ガスと し てフロン規制の対象となる四塩化炭素を用いているため、 エツチン グプロセスと して実現できない。 Furthermore, anisotropic processing of fine patterns cannot be achieved by the method described in Japanese Patent Publication No. 3-36300. In addition, since carbon tetrachloride, which is subject to CFC regulations, is used as the halogenated carbon gas, Cannot be realized as a process.
また、 U S P 4 , 6 1 8, 3 9 8の方法では、 メ タンガスを 5 % 以上添加しており、 ハロゲン化物に比べ堆積性が強く 、 エッチング 装置内部に堆積物が付着し、 異物発生の原因となってしま う。  In addition, in the methods of USP 4, 618, and 398, methane gas is added in an amount of 5% or more, and the deposition property is higher than that of halides. It will be.
本発明の目的は、 レジス トから発生する有機系生成物量に依存し ないよ うな側面保護膜を得、 異物の発生を防止すると共に、 配線の 加工寸法精度の向上と上記ト レー ドオフを解消することにある。 発明の開示  An object of the present invention is to obtain a side surface protective film that does not depend on the amount of organic products generated from a resist, prevent the generation of foreign substances, improve the processing dimensional accuracy of wiring, and eliminate the trade-off. It is in. Disclosure of the invention
(解決手段)  (Solution)
上記目的は、 炭素原子数に対する酸素原子数の割合が 1 0 %以下 の有限値となるように、 被エッチング物に酸素と炭素を供給し、 保 護膜の堆積とエッチングを制御して被加工物をェツチングするこ と によって達成される。 または、 エッチングガスに、 そのエッチング ガスの 7 %以上 3 5 %未満の炭化水素のハ口ゲン化物を添加して、 エッチングすることによつて達成される。 なお、 ハロ ゲン化物と し てク ロ口ホルム等が挙げられる。 さ らに、 処理室の内壁が石英で形 成されている場合には、  The above object is to supply oxygen and carbon to the object to be etched so that the ratio of the number of oxygen atoms to the number of carbon atoms becomes a finite value of 10% or less, and control the deposition and etching of the protective film to process the object. Achieved by etching things. Alternatively, the etching gas is achieved by adding to the etching gas 7 to 35% of the etching gas with a hydrocarbon haptic compound. In addition, as the halogenated compound, there may be mentioned, for example, a black mouth form. Furthermore, if the inner wall of the processing chamber is made of quartz,
(前記石英内壁面積 X前記石英内壁ェツチング速度 X前記石英内壁 酸素密度)  (The quartz inner wall area X the quartz inner wall etching rate X the quartz inner wall oxygen density)
÷ (前記レジス ト面積 X前記レジス トエツチング速度 X前記レジ ス ト炭素密度 X 2 . 5  ÷ (the area of the resist X the speed of the resist etching X the density of the resist carbon X 2.5
+炭素を含むガスの供給量)  + Supply of gas containing carbon)
の値が、 0 . 1以下となるよ うに炭化水素のハロゲン置換体を導入 して、 金属膜をエッチングすることによって達成される。 (作用) Is achieved by introducing a halogen-substituted hydrocarbon and etching the metal film so that the value of is less than 0.1. (Action)
Al-Cu-Si合金膜のエッチングは、 従来から圧力 lPa力 ら 5Paの範 囲で塩素ガスを主体と したエッチングガスとプラズマ中で生成した イオンによって行われる。 この条件下で、 レジス ト面積 5 0%の 6 インチウェハをレジス トのエツチング速度 400nm/minで削つた場合、 レジス ト生成物の発生量は高々 5sccm 程度であり 、 供給する塩素ガ スの量 lOOsccm程度に比べ 5 %程度にしかならないが、 現実にはこ の 5 %のレジス ト生成物が保護膜形成に有効に用いられる。  Conventionally, etching of an Al-Cu-Si alloy film has been performed with an etching gas mainly composed of chlorine gas and ions generated in plasma within a range of pressure 1Pa to 5Pa. Under these conditions, when a 6-inch wafer with a resist area of 50% is cut at a resist etching speed of 400 nm / min, the amount of generated resist products is at most about 5 sccm, and the amount of chlorine gas supplied Although it is only about 5% compared to about 100sccm, in reality this 5% of the resist product is effectively used for forming a protective film.
ウェハ上で発生したレジス ト生成物は、圧力数 Paの領域では平均 自由行程が 3 以下と短いため、 他の分子と術突するこ と無しに排 気されることは無く 、 衝突によってウェハから離れるという運動の 方向性は失われる。 このため、 再び、 ウェハに W入射することにな る。 再入射したレジス ト生成物は再びウェハから脱離しても、 他の 分子との衝突があるため容易に排気されない: このため、 ウェハ近 傍の生成物濃度は高く なる。 この生成物濃度の い領域を、 拡散方 程式から求めると、 ウェハから鉛直方向への 離がウェハ半径程度 のと ころまで達する。 このよ うな生成物濃度の い領域を二アサ一 フェース領域と呼び、 ウェハ周囲の領域であって、 ウェハからの距 離がウェハ半径までの領域 (ウェハの鉛直方向のみならず横方向の 領域も含む) で定義する。 ウェハ上に二アサ一フェース領域が形成 されると レジス ト生成物の滞在によ り レジス 卜生成物濃度が高く な るため、 レジス ト生成物はウェハに何回も入射することになる。 何 回もレジス ト生成物が入射することによ り 、 Λ1- Cu- Si合金膜側面へ 堆積する確率は大き く なるのである。  The resist product generated on the wafer has a short mean mean free path of 3 or less in the region of several Pa, and is not exhausted without colliding with other molecules. The direction of the movement to leave is lost. Therefore, W is incident on the wafer again. The re-injected resist product, once desorbed from the wafer, is not easily evacuated due to collisions with other molecules: the product concentration near the wafer is high. When the area where the product concentration is low is obtained from the diffusion equation, the vertical separation from the wafer reaches about the radius of the wafer. Such a region having no product concentration is called a double-assembly region, and is a region around the wafer, in which the distance from the wafer is equal to the radius of the wafer (the region not only in the vertical direction but also in the lateral direction of the wafer). Including). When a double-face region is formed on the wafer, the concentration of the resist product increases due to the stay of the resist product, so that the resist product enters the wafer many times. The probability of deposition on the side surface of the 確 率 1-Cu-Si alloy film increases due to the incidence of the resist product many times.
前述のエッチング条件で、 レジス 卜生成物の発生量は約 5sccmで あるが、 ウェハ上でのレジス ト生成物の圧力は滞在効果によ り約 0. 13Pa となる と推定される。 この量は、 エッチング装匱に外部から レジス ト生成物を約 13 sc cm添加した量に相当する。 即ち、 レジス ト 生成物の保護膜形成の効果は、外部から導入したガスに比べ、約 2. 5 倍になることを意味している。 Under the above etching conditions, the amount of generated resist products was about 5 sccm. However, the pressure of the resist product on the wafer is estimated to be about 0.13 Pa due to the stay effect. This amount is equivalent to the addition of about 13 sccm of the resist product from the outside to the etching cloth. In other words, the effect of forming a protective film on the resist product is about 2.5 times that of the gas introduced from the outside.
—方、 塩素については、 ウェハで消費されるこ とによって、 塩素 の分圧がウェハ上で小さく なる。 従って、 塩素のウェハへの入射量 は、 供給量に比べ少なく なるのである。 具体的には、 全圧 l Pa、 全 流量が 100s c cm、 その内、 塩素の供給量が 80 s c c mで 6イ ンチウェハ の A 1 - Cu- S i合金膜ェツチングをエツチング逨度 800nm/tn i r>で行う場 合について述べる。 エッチング反応が生じなければ、 塩素のガス圧 は 0. 8Paであるが、 エッチング反応が生じると 、 ウェハ上での塩素 の分圧は、 0. 3Pa程度に減じてしまう。  On the other hand, as for chlorine, the partial pressure of chlorine is reduced on the wafer because it is consumed on the wafer. Therefore, the amount of chlorine incident on the wafer is smaller than the supply amount. Specifically, the total pressure is lPa, the total flow rate is 100 sccm, of which the chlorine supply is 80 sccm, and the etching rate of the A1-Cu-Si alloy film etching of a 6-inch wafer is 800 nm / tn ir. Describes the case of performing in <>. If the etching reaction does not occur, the chlorine gas pressure is 0.8 Pa, but if the etching reaction occurs, the partial pressure of chlorine on the wafer is reduced to about 0.3 Pa.
以上のよ うに、 ウェハ半径距離まで形成された二アサ一フェース 領域での生成物の滞在、 塩素の消費によ り 、 ウェハに入射する レジ ス ト生成物の塩素に対する比は、 50 %程度となり 、 保護膜形成にレ ジス ト生成物が有効に作用するのである。  As described above, the ratio of the resist product incident on the wafer to chlorine is about 50% due to the stay of the product and the consumption of chlorine in the two-face area formed up to the wafer radial distance. However, the resist product effectively acts on the formation of the protective film.
さらに、 炭素系の保護膜は酸素の混入によって容易に除去されて しま う。 すなわち、 酸素が入射すると堆積保護膜の形成が阻害され るのである。 酸素の発生源と しては、 主にエッチング装置内壁面の 材料、 例えば石英がエッチングされるこ とによって発生する。 この よ うに、 酸素は保護膜形成を抑制する効果があるので、 酸素入射量 を低減する必要がある。 しかしながら、 無酸素状態では、 レジス ト 生成物の堆積によ り異物、 粉塵の基となるので、 ある一定量必要で ある。 しかしながら、 従来はこのウェハ近傍での生成物滞在および酸素 による保護膜除去効果が不明であったため、 保護膜形成の制御がで きず、 対レジス ト選択比、 レジス ト面積等と異方形状加工の間に ト レー ドオフがあつたのである。 すなわち、 レジス ト面積が小さい場 合や、 対レジス ト選択比が高く レジス ト生成物の発生量が少ない場 合、 A l - Cu- S i合金の側面が削れてしまい、 マスクパターンを忠実に 再現する Λ 1 - Cu-S i合金の加工ができなかったのである。 レジス ト生 成物は、 主に塩化炭素系の化合物で炭素を含むガスであるため堆積 性がある。 従って、 Λ卜 Cu-S i合金膜を精度よ く異方加工するために は、 レジス ト生成物を含めた炭素を含むガスと酸素のウェハへの入 射量を制御する必要があり、 酸素/炭素入射比を制御することが重 要となる。 酸素 Z炭素比を制御することによ り、 サイ ドエッチング が低減できる他、 対レジス ト選択比およびレジス ト面積とサイ ドエ ツチングの間の ト レー ドオフが解消され、 対レジス ト選択比を上げ た配線加工が可能になる。 In addition, carbon-based protective films can be easily removed by oxygen contamination. That is, the incidence of oxygen impedes the formation of the deposited protective film. Oxygen is mainly generated by etching the material of the inner wall of the etching apparatus, for example, quartz. Thus, since oxygen has the effect of suppressing the formation of the protective film, it is necessary to reduce the amount of oxygen incident. However, in the anoxic condition, a certain amount is required because the deposits of the resist products form foreign matter and dust bases. However, since the effect of removing the protective film by the stay of the product and oxygen near the wafer was not known in the past, the formation of the protective film could not be controlled, and the resist selection ratio, the resist area, etc. There was a trade-off in between. In other words, when the resist area is small, or when the resist selectivity is high and the amount of generated resist products is small, the side surfaces of the Al-Cu-Si alloy are scraped off, and the mask pattern is faithfully adjusted. Reproduce Λ 1-Cu-Si alloy could not be machined. The resist product is mainly a carbon chloride-based compound and contains carbon, which is sedimentary. Therefore, in order to accurately anisotropically process the metal Cu-Si alloy film, it is necessary to control the amount of gas containing carbon including the resist product and the amount of oxygen incident on the wafer. It is important to control the carbon incidence ratio. By controlling the oxygen-Z carbon ratio, side etching can be reduced, and the trade-off between resist area and the trade-off between the resist area and the side etching is eliminated, increasing the resist selectivity. Wiring processing becomes possible.
具体的に炭素成分を増やす方法と して、 二アサ一フェース領域に 直接ガスを導入する方法、 ウェハのまわり に力一ボンリ ングを設置 し力一ボンリ ングのエッチングによって発生するカーボンリ ング生 成物をウェハに導入する方法、 およびウェハへの炭素を含むガスの 入射量が適量になるよ う にガスを添加する方法が上げられる。 一方、 酸素量の制御方法と しては、 エッチング装置内壁面を酸素を発生し ない膜で覆う方法が考えられる。  Specific methods for increasing the carbon content include a method in which gas is introduced directly into the two-face area and a carbon ring product that is generated by installing a force ring around the wafer and etching the force bond. Can be introduced into the wafer, and a method of adding a gas so that the amount of gas containing carbon incident on the wafer becomes an appropriate amount. On the other hand, as a method of controlling the amount of oxygen, a method of covering the inner wall surface of the etching apparatus with a film that does not generate oxygen can be considered.
第 1 図にサイ ドエツチング量の酸素 炭素入射量比依存性の関係 図を示す。 1 0 2は異物粉塵の発生する領域、 1 0 3はマスクサイ ズからのずれの許容量に収まる酸素/炭素入射比の範囲を示す。 サ ィ ドエツチング量を示す曲線 1 0 1 は、 酸素 Z炭素比の増加と共に 増加する。 従って、 十分な加工精度を得るためには、 パターンサイ ズに依存するが、 酸素/炭素比をある一定よ り小さ くする必要があ る。 例えば、 300nmのパターンでサイ ドエッチング量は 15nm以下に 抑える場合、 酸素/炭素比は概ね 1 0 %以下になる。 酸素 Z炭素比 を小さくすれば、 サイ ドエッチング量は低減されるが、 無酸素の状 態に近づけば、 レジス ト生成物等の堆積が抑制されないため、 エツ チング装置内に堆積し、 異物や粉塵等の問題を引き起こす。 この問 題は、 装置構造に依存するので、 酸素 炭素比の下限は装置毎に異 なる。 特に、 無酸素の状態では、 堆積が抑えられないため、 異物等 の発生は顕著になる。 Figure 1 shows the relationship between the side-etching amount and the oxygen-carbon injection ratio. Reference numeral 102 denotes an area in which foreign matter dust is generated, and reference numeral 103 denotes a range of an oxygen / carbon incidence ratio within an allowable amount of deviation from a mask size. Sa The curve 101 indicating the amount of etching increases with an increase in the oxygen-Z carbon ratio. Therefore, in order to obtain sufficient processing accuracy, it is necessary to make the oxygen / carbon ratio smaller than a certain value, depending on the pattern size. For example, if the amount of side etching is suppressed to 15 nm or less in a pattern of 300 nm, the oxygen / carbon ratio is generally 10% or less. If the oxygen-Z carbon ratio is reduced, the amount of side etching is reduced, but if the oxygen-free state is approached, the accumulation of resist products and the like is not suppressed, so that they will accumulate in the etching device and become Causes problems such as dust. Since this problem depends on the device structure, the lower limit of the oxygen-carbon ratio differs from device to device. In particular, in an oxygen-free state, deposition cannot be suppressed, and consequently, the generation of foreign matters and the like becomes remarkable.
このよ うに、 サイ ドエッチングの低減は、 異物粉塵等が発生しな い範囲で、 酸素/炭素比を低減させることによって実現される。  As described above, the reduction of the side etching is realized by reducing the oxygen / carbon ratio within a range in which the dust and the like are not generated.
(効果)  (Effect)
本発明によれば、 被処理物であるウェハに入射する炭素原子数に 対する酸素原子数の比率を 1 0 %以下にする こ とによって、 配線加 ェにおけるサイ ドエツチングの低減することができる。 この結果、 対レジス ト選択比を上げても高い寸法精度でよ り微細な配線加工が 可能となる。 図面の簡単な説明  According to the present invention, side etching in wiring can be reduced by setting the ratio of the number of oxygen atoms to the number of carbon atoms incident on the wafer to be processed to be 10% or less. As a result, finer wiring can be processed with high dimensional accuracy even if the selectivity to resist is increased. BRIEF DESCRIPTION OF THE FIGURES
第 1 図はサイ ドエツチング量の対炭素酸素比依存性を示す概念図、 第 2図は本発明で用いる ドライエッチング装置の断面図、 第 3図は 実施例で用いるエッチング前の基板の断面図、 第 4図は従来の条件 によるエツチング後の基板の断面図、 第 5図は本発明の効果によ り サイ ドエツチングが低減することを示すェツチング後の基板の断面 図、 第 6図は実施例における本発明による ドライエッチング装置の 断面図、 第 7図は実施例における本発明による ドライエッチング装 置の断面図、 第 8図は実施例で用いるエッチング前の半導体装置構 造の断面図、 第 9図は本発明の効果を示す半導体装置構造の断面図、 第 1 0図は実施例における本発明による ドライエッチング装置の断 面図、 第 1 1 図は実施例における本発明による ドライエッチング装 置の断面図、 第 1 2図は本発明のレジス ト面 比と必要な炭素ガス 添加量との関係を示す図である。 FIG. 1 is a conceptual diagram showing the dependence of the amount of side etching on the carbon-oxygen ratio, FIG. 2 is a sectional view of a dry etching apparatus used in the present invention, FIG. 3 is a sectional view of a substrate before etching used in the embodiment, FIG. 4 is a cross-sectional view of the substrate after etching under the conventional conditions, and FIG. 5 shows the effect of the present invention. FIG. 6 is a cross-sectional view of the dry etching apparatus according to the present invention in the embodiment, and FIG. 7 is a cross-sectional view of the dry etching apparatus according to the present invention in the embodiment, showing that the side etching is reduced. FIG. 8 is a cross-sectional view of the semiconductor device structure before etching used in the embodiment, FIG. 9 is a cross-sectional view of the semiconductor device structure showing the effect of the present invention, and FIG. 10 is dry etching according to the present invention in the embodiment. FIG. 11 is a cross-sectional view of a dry etching apparatus according to the present invention in an embodiment, and FIG. 12 is a view showing a relationship between a resist surface ratio of the present invention and a necessary carbon gas addition amount. It is.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
本発明による実施例を、 電子サイクロ トロン共鳴を用いて高密度 プラズマを発生させるマイクロ波ドライエツチング装置 (第 2図) を用いた配線加工で説明する。  An embodiment according to the present invention will be described with reference to wiring processing using a microwave dry etching apparatus (FIG. 2) for generating high-density plasma using electron cyclotron resonance.
第 3図に被ェッチング物である 6インチシ リ コ ン基板上の構造を 示す。 シリ コン基板 2 6上には、 二酸化ケィ素糗 (SiO 2 ) 2 5、 下 部窒化チタン (TiN) 膜 2 4 、 ΛΙ-Cu-Si 合金膜 2 3、 上部 TiN膜 2 2およびマスクパターンを転写した レジス トマ ス ク 2 1 が形成され ている。 レジス トマスクのパターン幅は、 300nm で、 レジス トの面 積はシリ コン基板の 5 0 %である。 この基板 6 をェッチング装置の 処理台 5 (第 2図) に搬送し、 エッチングガス と して、 コンダク タ ンスバルブ 9 を介して流量コン トローラ 1 0 で制御 し た塩素ガス 8 0 sccm、 三塩化ホウ素ガス 2 0 seem をガス導人口 1 1 よ り真空処 理室 1 に導入し、 全圧力; lPa になるよ う に し てェ チン グを行う。 なお、 マイク ロ波発生器 2から導波管を通 じて マ ク 口波を供給し、 ソレノ ィ ドコイル 4のから発生する磁場と相乗 し て 密度プラズマ が発生するよ うになっている。 また、 チャンバ一は石英 1 3からな つており、 チャンバ一内の気体は、 排気バルブ 8を介して排気ポン ブ 7に送られて排気される。 エッチング時の基板温度は 4 0 °Cで、 基板に印加する RFバイアスは、 RF電源 1 2 よ り 800kHz で 7 0 Wで 処理台 5に印加する。 エッチングは上部 Πλ'、 Λ1- Cu- Si 合金、 下部 TiNの順番でェッチングされ、 TiNのェッチン グ速度は約 500nni/min、 A1— Cu— Si 合金 ίま約 800nm/min、 レジス 卜(ま糸 4 OOnm/m J nである。 第 4図にエッチング後の形状の模式図を示す。 T i \ のエ ツチング時の 塩素の消費量が小さく 、 Al -Cu- Si合金膜ェツチング時初期に過剰に 塩素が処理室内に存在するこのため、 上部 T iN 2 2直下の A l -Cu-S i 合金膜 2 3の側面が約 60t m削れ、十分な加工精度を得ることができ ない。 また、 全体的に Al - Cu-S i合金膜 2 3の側面が 40nm程度側面 が削れる。 このよ うに側面が削れてしま う原因と しては、 塩素が過 剰に処理室内に存在することおよび側面の保護膜形成が不十分なた めであると考えられる。 保護膜形成が不十分な理由と して、 レジス ト生成物が少ないか、 保護膜形成を阻害する酸素の存在が上げられ る。 レジス ト生成物に対する酸素濃度の比が大き く なれば、 酸素に よつて側面の保護膜が除去されてしま うのである。 Fig. 3 shows the structure on a 6-inch silicon substrate, which is the object to be etched. Silicon dioxide (SiO 2 ) 25, lower titanium nitride (TiN) film 24, ΛΙ-Cu-Si alloy film 23, upper TiN film 22, and mask pattern are formed on silicon substrate 26. The transferred resist mask 21 is formed. The pattern width of the resist mask is 300 nm, and the area of the resist is 50% of the silicon substrate. The substrate 6 is transferred to a processing table 5 (FIG. 2) of an etching apparatus, and as an etching gas, chlorine gas 80 sccm controlled by a flow rate controller 10 through a conductance valve 9, boron trichloride, The gas 20 seem is introduced into the vacuum processing chamber 1 from the gas-carrying population 11 and the etching is performed so that the total pressure is 1 Pa. A microwave is supplied from the microwave generator 2 through the waveguide, and a density plasma is generated in synergy with a magnetic field generated from the solenoid coil 4. Further, the chamber 1 is made of quartz 13, and the gas in the chamber 1 is sent to the exhaust pump 7 via the exhaust valve 8 and exhausted. The substrate temperature at the time of etching is 40 ° C, and the RF bias applied to the substrate is applied to the processing table 5 at 800 kHz and 70 W from the RF power supply 12. Etching is performed in the order of upper Πλ ', Λ1-Cu-Si alloy, and lower TiN. The etching speed of TiN is about 500nni / min, A1-Cu—Si alloy is about 800nm / min, and the resist (warp) 4 OOnm / m J n Fig. 4 shows a schematic diagram of the shape after etching. Since the consumption of chlorine is small and excessive chlorine is present in the processing chamber at the initial stage during the etching of the Al-Cu-Si alloy film, the side surface of the Al-Cu-Si alloy film 23 just below the upper TiN 22 However, it can be cut by about 60t m, and it is not possible to obtain sufficient machining accuracy. Further, the side surface of the Al—Cu—Si alloy film 23 is entirely cut off by about 40 nm. It is considered that the reason for the side surface being scraped off is that chlorine is excessively present in the processing chamber and the protective film on the side surface is insufficiently formed. Insufficient formation of the overcoat may be due to low resist products or the presence of oxygen which inhibits overcoat formation. As the ratio of oxygen concentration to resist product increases, the oxygen will remove the side protective film.
保護膜はレジス ト生成物から形成されるため、 レジス ト生成物が どのく らい S i基板に再入射するか見積もることは、保護膜形成を制 御する上で重要である。 レジス ト生成物の発生量は、 レジス トの密 度、 レジス トのエッチング速度、 レジス ト面積の積で見積もられ、 レジス トのエッチング速度 400nm/mi n、 面積 8 8平方センチメー ト ノレ ( 6 イ ンチシリ コ ン基板の 5 0 % ) の場合、 約 5 sccmになる。 シ リ コン基板で発生したレジス ト生成物は、 圧力 l Paでは平均自由行 程が約 3mm とェツチング装置処理室の大きさ (例えばシリ コン基板 から真空処理室天板までの長さは約 20cm) よ り短いため、 他分子と 衝突しその方向はランダムになる。 このため、 S i 基板直上の S i 基 板半径までの距離の間 (二アサ一フェース領域) に生成物が滞在す る。 この結果、 生成物は S i基板に何回も再入射することになる。 そ の再入射回数は、 真空処理室内部のガス流れを考慮していないモン テカルロ計算から約 1 5回と見積もられる。 流れの影響は、 ガス流 計算からガスの全流量が l OOsc cm増える毎に約 1 0 %強濃度が減少 する。 従って、 全流量 l OOsccmでは再入射回数は約 1 3回と見積も られる。 この回数にレジス ト生成物の発生量を掛けると生成物再入 射量が見積もられ、 圧力にして約 0. 13Paになる。 この圧力は、 レジ ス ト生成物の発生量から予想される圧力の約 2. 5倍になる。 このよ うに、 S i基板上での生成物の滞在現象が保護膜形成に重要な役割を している。 Since the protective film is formed from the resist product, it is important to estimate how much the resist product re-enters the Si substrate in controlling the protective film formation. The amount of resist product generated is estimated by the product of the density of the resist, the etching rate of the resist, and the area of the resist. The etching rate of the resist is 400 nm / min, and the area is 88 square centimeters (6 In the case of 50% of the silicon substrate, it is about 5 sccm. The resist product generated on the silicon substrate has a mean free path of about 3 mm at a pressure of lPa and the size of the processing chamber of the etching apparatus (for example, the length from the silicon substrate to the top of the vacuum processing chamber is about 20 cm). ) Because it is shorter, it collides with other molecules and its direction becomes random. For this reason, the product stays within the distance (two-face-to-face area) to the radius of the Si substrate immediately above the Si substrate. As a result, the product re-enters the Si substrate many times. The number of re-injections is estimated to be about 15 times from Monte Carlo calculations without considering the gas flow inside the vacuum processing chamber. The effect of the flow is as follows: From the gas flow calculation, the concentration decreases slightly more than about 10% as the total flow rate of gas increases by l OOsc cm. I do. Therefore, it is estimated that the number of re-injections is about 13 times at the total flow rate lOOsccm. When this number is multiplied by the amount of resist product generated, the product re-injection amount is estimated, and the pressure becomes about 0.13 Pa. This pressure is about 2.5 times the pressure expected from the amount of resist product generated. As described above, the phenomenon of the stay of the product on the Si substrate plays an important role in forming the protective film.
これに対し、 酸素は、 エッチング装置の石英チャンバ一 1 3の内 壁面から発生し、 内壁面の表面積が、約 2900平方センチメー トルで、 プラズマ放電時に毎分約 1 5 nm削れるので、酸素原子供給量は約 2 sccmと見積もられる。 シリ コン基板への酸素の入射量は、 酸素ラジ カルに換算した圧力にして約 0. 02Paである。 ここで、 酸素ラジカル 換算圧力とは、 酸素および酸素ラジカルが全て酸素ラジカルと して 入射した場合の圧力である。 シリ コン基板における レジス 卜生成物 に対する酸素の入射量は、 約 1 5 %である。  On the other hand, oxygen is generated from the inner wall of the quartz chamber 13 of the etching equipment, and the surface of the inner wall has a surface area of about 2900 square centimeters and can be cut off by about 15 nm per minute during plasma discharge. The volume is estimated at about 2 sccm. The amount of oxygen incident on the silicon substrate is about 0.02 Pa in terms of oxygen radical pressure. Here, the oxygen radical reduced pressure is a pressure when oxygen and oxygen radicals are all incident as oxygen radicals. The amount of oxygen incident on the resist product on the silicon substrate is about 15%.
先述のエッチング条件で A卜 Cu-S i 側面が削れて しま う こ とを述 ベた。 保護膜を形成する レジス ト生成物は、 レジス トが有機高分子 であることから塩化炭素化合物であると推定される。 そこで、 添加 ガス と して、 シ リ コ ン基板への炭素原子入射数を増やすために lOsccmのクロ口ホルムを添加した。 この場合、 ウェハにおける炭素 を含むガスの圧力は、 レジス ト生成物と ク ロ 口 ホルムの和で約 0. 23Pa である。 酸素入射量の炭素を含むガス入射量 (炭素入射量) に対する割合は約 9 %になる。 上述と同じシ リ コ ン基板を、 この条 件でェツチングすると、第 5図に示すよ うに A卜 Cu- S i 合金膜 2 3の 側面は削れることなくエッチングされる。 ク 口 口ホルムの添加量を 増やし、 20sccm添加すると下部 T i Nのパターンが若干太り順テーパ 一形状になる。 この時の酸素 炭素入射比は、 6 %である。 さらに、 クロ口ホルムの添加量が 35sccm、 すなわちエッチングガスに対する 添加ガスの割合が 3 5 %を越えた領域では、 エッチング装置内部に 堆積物が蓄積し粉塵となってしまう。 逆に、 クロ 口ホルムの添加量 を 5sccmまで下げると Al-Cu-Siの側面の削れ量は添加前に比べ減る 力 効果は小さい。 A1- Cu-Si 合金側面の削れ量は、 7sccm以上ク ロ 口ホルムを添加することによって改善される。 7sccm、 すなわち、 ェ ッチングガスに対する添加ガスの割合が 7 %では、 基板に入射する 酸素原子数ノ炭素原子数比は約 1 0 %であ · 特に、 良好な形状が 得られ、 実施例の装匱において粉塵発生が少ないのは、 10 から 25sccm、 すなわちエッチングガスに対する添加ガスの割合が 1 0 % から 2 5 %の間である。 なお、 25sccmの酸 ノ炭素入射比は、 5 % である。 We have mentioned that the side surfaces of Cu-Si can be cut off under the above-mentioned etching conditions. The resist product that forms the protective film is presumed to be a carbon chloride compound because the resist is an organic polymer. Therefore, as a gas to be added, a lOsccm chromium form was added to increase the number of carbon atoms incident on the silicon substrate. In this case, the pressure of the gas containing carbon on the wafer is about 0.23 Pa, which is the sum of the amount of the resist product and the form of the cross-hole. The ratio of the amount of oxygen incident to the amount of carbon-containing gas (carbon incident) is about 9%. When the same silicon substrate as described above is etched under these conditions, the side surface of the Au-Cu-Si alloy film 23 is etched without being scraped, as shown in FIG. When the addition amount of the mouth form is increased and 20 sccm is added, the pattern of the lower Tin becomes slightly thicker and the forward taper It becomes one shape. The oxygen / carbon incidence ratio at this time is 6%. Further, in a region where the amount of the addition of the cross-hole form is 35 sccm, that is, in a region where the ratio of the addition gas to the etching gas exceeds 35%, deposits accumulate inside the etching apparatus and become dust. Conversely, when the addition amount of black form is reduced to 5 sccm, the amount of abrasion on the side surface of Al-Cu-Si decreases less than before addition, and the force effect is small. The amount of abrasion on the side of the A1-Cu-Si alloy can be improved by adding more than 7 sccm of the aperture form. At 7 sccm, that is, when the ratio of the added gas to the etching gas is 7%, the ratio of the number of oxygen atoms to the number of carbon atoms incident on the substrate is about 10% .Especially, a good shape is obtained. The low dust generation is between 10 and 25 sccm, that is, the ratio of the additive gas to the etching gas is between 10% and 25%. The incidence ratio of oxygen at 25 sccm is 5%.
次に、 レジス ト面積が約 3 0 %の場合、 レ ジス 卜生成物の発生量 は 4 0 %程度減少するため、 ク ロ 口ホルムの :人 itをレジス ト面積 5 0 %の場合に比べ増加させる必要がある。 この場合、 1 2 sccm 以上のクロ口ホルム添加が必要である。  Next, when the resist area is about 30%, the amount of register products generated is reduced by about 40%. Need to increase. In this case, it is necessary to add more than 12 sccm.
RFバイアスの出力を下げ、 対レジス 卜選択比を上げた場合、 レジ ス ト生成物の発生量が減るため、 クロ口ホルム添加量を増やす必要 がある。 レジス ト面積 5 0 %で選択比を倍の約 4 に した場合、 約 1 5 sccmのクロ口ホルム添加で、 サイ ドエッチン グは低減され、 2 0 sccm以上の添加でサイ ドエッチングは測定限界程度になる。  If the output of the RF bias is lowered and the selectivity to the resist is raised, the amount of resist product generated decreases, so the amount of black form added must be increased. When the selectivity is doubled to about 4 with a resist area of 50%, the side etching is reduced by adding about 15 sccm of the cross-hole form, and the side etching is about the measurement limit with the addition of more than 20 sccm. become.
総じて、 次式はウェハに入射する酸素原子数 Z炭素原子数比を示 した式で、 この値が 1 0 %以下になるよ うにク ロ 口ホルムを導入す ることにより十分な加工形状が得られる。 なお、 特に望ま しい領域 は、 5から 9 %である。 In general, the following equation shows the ratio of the number of oxygen atoms to the wafer and the number of carbon atoms incident on the wafer.By introducing a close-up form so that this value becomes 10% or less, a sufficient processed shape can be obtained. Can be Particularly desirable areas Is between 5 and 9%.
(内壁面積 X内壁ェツチング速度 X内壁酸素密度) (Inner wall area X Inner wall etching speed X Inner wall oxygen density)
÷ (レジス ト面積 X レジス トエッチング速度 X レジス ト炭素 密度 X 2. 5 +炭素を含むガスの供給量) この式に従えば、 レジス トのエッチング速度を下げた場合 (対レジ ス ト選択比を上げた場合) には、 添加ガスである ク ロ 口ホルムの添 加量を増やせばよい。  ÷ (Regist area X resist etching rate X resist carbon density X 2.5 + supply of gas containing carbon) According to this equation, when the etching rate of the resist is reduced (to the resist selectivity) In this case, it is only necessary to increase the addition amount of the additional form of the form-hole form.
次に、 6インチウェハ一で、 1 P a 、 C 1 ノ C 1 3を 1 0 0 s c c m流し、 酸素発生量を 2 s c c niとなるよ 0 に した場合の、 レジ ス ト面積比に対する レジス ト生成物濃度及びレ ジ ス 卜面積比と最低 炭素含有ガスの添加量との関係を、 第 ] 2図に示す r, 第 1 2図から わかるように、 レジス ト面積比にレジス ト 生成物濃度は比例するが、 レジス ト面積が約 8 0 %以下の場合はレジ ス 卜力 'ら供給される炭素 だけでは足りず、 炭素を供給する必要がある 一 -、 レジス 卜面積 が 8 0 %以上では、 炭素をレジス ト以外の簡所から洪給する必要は ない。 Next, 6-inch wafer one, 1 P a, C 1 Bruno C 1 3 a flow 1 0 0 sccm, in the case where the oxygen generation amount to zero by comprising a 2 scc ni, registry against registration be sampled area ratio The relationship between the product concentration and the area ratio of the register and the amount of the lowest carbon-containing gas added is shown in Fig. 2 and r . However, if the area of the registry is less than about 80%, the carbon supplied from the registry power is not enough, and it is necessary to supply carbon.- The area of the registry is more than 80% Then, there is no need to lend carbon from a non-registry shack.
エッチングガスと しては、 塩素及び三塩化ホウ素が用いられ、 ま た添加ガスと して、 ク ロ 口ホルム以外に、 ェタン、 メ タン、 プロ ノく ンもしく はブタンのフッ素、 塩素もしく は臭素置換体、 またはカル ボランのハロゲン置換体である臭化炭素 (CBr,, CHBr3等) や塩化力 ルボラ ン化合物 (CC13BC12, CHCl BCL,, CC1: (BCU) CIIC1 (BC12)2, BC1 (CHC12)2 等) を添加しても同様な効果が得られる。 Chlorine and boron trichloride are used as the etching gas, and fluorine, chlorine or ethane, methane, propylene or butane, or ethane, methane, propylene or butane is used as the additive gas in addition to the crotch form. bromine substituents, or Cal borane bromide carbon is halogen substituents (CBr ,, CHBr 3, etc.) and chloride force Rubora emission compound (CC1 3 BC1 2, CHCl BCL ,, CC1: (BCU) CIIC1 (BC1 2 ) 2 , BC1 (CHC1 2 ) 2, etc.) have the same effect.
本発明 効果は前述のマイク ロ波エッチン グ装置に限らず、 例え ば RIEやマグネ トロン型 RIE、 ヘリ コン共振型 RIE、 誘導結合型 R IE 等の他の装置でも、 同様の効果が得られる。 The effect of the present invention is not limited to the above-described microwave etching apparatus. For example, other devices such as RIE, magnetron RIE, helicon resonant RIE, and inductively coupled RIE can achieve the same effect.
(実施例 2 )  (Example 2)
本発明による ドライエッチング装匱の別の実施例を第 6図に示す。 この装置では真空処理室 1 にエッチングガスを導入し、 マイクロ波 発生器 2において 2. 45GHzの高周波を発生させ、 この高周波を導波 管 3を通し真空処理室 1 に輸送してガスプラズマを発生させる。 高 効率放電のために磁場発生用のソ レノィ ドコイル 4を真空処理室周 辺に 2つ配置し、 875 ガウスの磁場が処理台のほぼ真上にく るよ う に 2つのコイル電流を制御し、 電子サイク ロ ト ロ ン共鳴を用いて高 密度プラズマを発生させる。 真空処理室 1 には処理台 5があり、 こ の上に被処理物 6 (多く の場合ウェハ) を設置して、 ガスプラズマ によ りエッチング処理する。 エッチングガスは、 ガス流量制御装置 1 0 、 ガス導入口 1 1 を通して真空処理室 1 に導入され、 排気ボン プ 7によ り真空処理室 1 の外に排気される。 被処理物を設置する処 理台 5には RF電源 1 2を備え、 400Hzから 1 3. 56MHzまでの RFバイ ァスを印加できる。 処理台外周付近には、 被処理物近傍の二アサ一 フェース領域に効率的にガスが導入されるよ うに、 コンダクタンス バルブ 7 0 3、 ガス流量コン トロ一ラー 7 0 2を介して処理台のガ ス導入口 7 0 1 が設けられている。  FIG. 6 shows another embodiment of the dry etching equipment according to the present invention. In this system, an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microwave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 to generate gas plasma. Let it. Two solenoid coils 4 for generating a magnetic field are arranged around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875 Gauss magnetic field is almost directly above the processing table. A high-density plasma is generated using electron cyclotron resonance. The vacuum processing chamber 1 has a processing table 5 on which an object 6 (often a wafer) is placed and subjected to etching by gas plasma. The etching gas is introduced into the vacuum processing chamber 1 through the gas flow controller 10 and the gas inlet 11, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7. The processing table 5 on which the workpiece is to be installed is provided with an RF power supply 12, and can apply an RF bias from 400 Hz to 13.56 MHz. Around the outer periphery of the processing base, the processing base is connected via a conductance valve 703 and a gas flow controller 702 so that gas can be efficiently introduced into the two-assembly area near the workpiece. A gas inlet 70 1 is provided.
この装匱に、 1 2イ ンチシリ コン基板を搬送する。 このシリ コ ン 基板は、 第 3図に示すよ うに基板上 2 6に二酸化ケイ素膜 2 5、 下 部 TiN膜 2 4、 A l -Cu-S i合金膜 2 3、 上部 T i N膜 2 2およびマスク パターンを転写したレジス トマスク 2 1 が形成されたものである。 レジス トマスクのパターン幅は、 300nm で、 レジス 卜の面積はシ リ コン基板の 2 0 %である。 The 12-inch silicon substrate is transported to this rice paddy. As shown in FIG. 3, the silicon substrate has a silicon dioxide film 25, a lower TiN film 24, an Al-Cu-Si alloy film 23, and an upper TiN film 2 on the substrate 26. 2 and a resist mask 21 onto which the mask pattern was transferred. The pattern width of the resist mask is 300 nm, and the area of the resist is 20% of the control board.
処理台温度を 5 0°C、 全圧力は 1 Pa、 RFパワーは 800kHz、 1 2 0Wとする。 上部のガス導入口から導入ガスを塩素 150Sccm、 三塩 化ホウ素 50sccm、 クロ口ホルムを 5sccm、 処理台外周付近のガス導 入口からクロ口ホルムを約 2 sccm導入して、搬入したシリ コン基板 のエッチングを行う。 The processing table temperature is 50 ° C, the total pressure is 1 Pa, the RF power is 800 kHz, and the power is 120 W. 150 sccm of chlorine gas, 50 sccm of boron trichloride , 5 sccm of black mouth form from the upper gas inlet, and approximately 2 sccm of black mouth form from the gas inlet near the outer periphery of the processing board. Is etched.
シリ コン基板に入射する酸素原子数 炭素原子数比は約 7.5%に なり、 Al- Cu- Si合金側面の削れや太り (順テーパー) はほとんど生 じない。 さ らに、 シリ コ ン基板の中心と外側の A] - Cu - Si側面の削れ に差がみられず、 基板内のパターンは均一にエッチングされる。 こ れに対し、 処理台外周付近からクロ口ホルムガスを導入しない場合、 シリ コン基板の中心付近では、 レジス ト生成物の再入射が多く 、 外 側では、 排気により再入射回数が小さ く なるため、 均一に加工する ことは困難であった。  The ratio of the number of oxygen atoms and the number of carbon atoms incident on the silicon substrate is about 7.5%, and the Al-Cu-Si alloy side surface hardly cuts or thickens (forward taper). In addition, there is no difference in the abrasion of the A] -Cu-Si side surfaces at the center and outside of the silicon substrate, and the pattern in the substrate is uniformly etched. On the other hand, when the form gas is not introduced from the periphery of the processing table, the re-injection of the resist product is large near the center of the silicon substrate and the number of re-injections is reduced on the outside by exhaust. However, it was difficult to process uniformly.
本発明の効果は前述のマイク ロ波エッチング装置に限らず、 例え ば RIEやマグネ トロン型 RIE、 ヘリ コン共振型 RIE、 誘導結合型 RIE 等の他の装置でも、 同様の効果が得られる。  The effect of the present invention is not limited to the above-described microwave etching apparatus, and similar effects can be obtained with other apparatuses such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
(実施例 3 )  (Example 3)
本発明による ドライエツチング装置の別の実施例を第 7図に示す。 この装置では真空処理室 1 にエッチングガスを導入し、 マイク ロ波 発生器 2において 2.45GHzの高周波を発生させ、 この高周波を導波 管 3を通し真空処理室 1 に輸送してガスプラズマを発生させる。 高 効率放電のために磁場発生用のソレノ ィ ドコイル 4を真空処理室周 辺に 2つ配置し、 875 ガゥスの磁場が処理台のほぼ真上にく るよ う に 2つのコイル電流を制御し、 電子サイクロ ト ロン共鳴を用いて高 密度プラズマを発生させる。 真空処理室 1 には処理台 5があり、 こ の上に被処理物 6を設置して、 ガスブラズマによ りェツチング処理 する。 エッチングガスは、 ガス流量制御装置を通して真空処理室 1 に導入され、 排気ポンプ 7によ り真空処理室 1 の外に排気される。 被処理物を設置する処理台 5には RF 電源 1 2 を備え、 400Hz から 13.56MHz までの RF バイアスを印加できる。 二アサーフエース領域 内である処理台外周付近には、 高さ 】 c mのカーボンリ ング 8 0 1 が設置されている。 Another embodiment of the dry etching apparatus according to the present invention is shown in FIG. In this system, an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microwave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 to generate gas plasma. Let it. Two solenoid coils 4 for generating a magnetic field are placed around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875-gauss magnetic field is almost directly above the processing table. High using electron cyclotron resonance Generate a density plasma. The vacuum processing chamber 1 has a processing table 5 on which an object 6 to be processed is installed, and is subjected to etching processing by gas plasma. The etching gas is introduced into the vacuum processing chamber 1 through the gas flow control device, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7. The processing table 5 on which the object is to be installed is equipped with an RF power supply 12 and can apply an RF bias from 400 Hz to 13.56 MHz. A carbon ring 801 with a height of cm cm is installed near the outer periphery of the processing table in the near surf area.
この装置に、 1 2イ ンチシ リ コ ン基板を搬 する。 このシリ コ ン 基板は、 第 3図に示すように基板上 2 6に酸化ケィ素膜 2 5、 下部 丁 iN膜 2 4、 Al-Cu-Si 合金膜 2 3、 上部 Ti.\ flft- 2 2およびマスクノ ターンを転写したレジス トマスク 2 1 が形成された ものである。 レ ジス トマス ク のパターン幅は、 300ntn で、 レ ジ ス 卜の面積はシリ コ ン基板の 2 0 %である。  The 12-inch silicon substrate is transported to this device. As shown in FIG. 3, the silicon substrate has a silicon oxide film 25, a lower iN film 24, an Al-Cu-Si alloy film 23, and an upper Ti. 2 and a resist mask 21 onto which the mask pattern has been transferred. The pattern width of the resist mask is 300 ntn, and the area of the resist is 20% of the silicon substrate.
処理台温度を 5 0 °C、 全圧力は 1 Pa、 RI' ハヮ一は 800kHz、 1 2 0 Wとする。 上部のガス導入口から導入ガスを塩尜 150sccm、 三塩 ィ匕ホウ素 50sccm、 ク ロロホノレムを 4scctn、 導人 して、 搬入したシリ コン基板のエッチングを行う。  The processing table temperature is 50 ° C, the total pressure is 1 Pa, the RI's temperature is 800 kHz, and the power is 120 W. The introduced silicon substrate is etched by introducing a 150 sccm salt gas, a 50 sccm boron trichloride, and a 4 scctn chlorophonolem through the upper gas inlet.
シリ コン基板上での酸素 Z炭素比は、 カーボン リ ングが削れるこ とによって発生するガス (約 3 sccm )を含め、 約 7.5%になり 、 Al-Cu- Si合金側面の削れや太り (順テ一ハー) はほとんど生じない。 さ らに、シリ コン基板の中心と外側の Al- Cu- S i側面の削れに差がみ られず、 基板内のパターンは均一にエッチン グされる。 これに対し、 処理台外周付近にカーボンリ ングを導入しない場合、 シリ コン基板 の中心付近では、 レジス ト生成物の再入射が多く 、 外側では、 排気 により再入射回数が小さ く なるため、 均一に加工することは困難で あった。 The oxygen-Z carbon ratio on the silicon substrate is about 7.5%, including the gas (approximately 3 sccm) generated when the carbon ring is chipped, and the side surface of the Al-Cu-Si alloy is cut and fattened. Hardly occurs. Furthermore, there is no difference in the abrasion of the Al-Cu-Si side surfaces on the center and outside of the silicon substrate, and the pattern in the substrate is uniformly etched. On the other hand, when the carbon ring is not introduced near the outer periphery of the processing table, the re-injection of the resist product is large near the center of the silicon substrate, and the exhaust gas is exhausted outside. As a result, the number of re-incidents is reduced, making it difficult to perform uniform processing.
なお、 ここでは 2. 4 5 GH zの高周波を用いたが、 これ以外の 周波数を用いても同様の効果がある。  Although a high frequency of 2.45 GHz was used here, the same effect can be obtained by using other frequencies.
本発明の効果は前述のマイク ロ波エッチング装置に限らず、 例え ば RIEやマグネ トロン型 RIE、 ヘリ コン共振型 RIE、 誘導結合型 RIE 等の他の装匱でも、 同様の効果が得られる。  The effect of the present invention is not limited to the above-described microwave etching apparatus, and the same effect can be obtained with other equipment such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
(実施例 4 )  (Example 4)
本発明による他の実施例を説明する。 実施例 】 のエツチング方法 を用いて、 6イ ンチシリ コン基板に形成されたゲー ト長および幅約 lOOnmの M0S トランジスタ上に、 幅約 1 OOnm の配線加工を行う。 第 8図に示すよ うにシリ コン基板上には、 M0S ト ラ ン ジ ス タ 1 2 1 、 コンデンサおよびポリ シリ コン配線が加工され、 線間は二酸化ケ ィ素膜 2 5で絶緣されているている。 このシ リ コ ン S板の上に、 下 部丁1!'膜 2 4、 A卜 Cu-Si合金膜 2 3、 上部 T i \ 2 2およびマスク パターンを転写したレジス ト膜 2 1 が形成されてし、る , 下部の TiN の一部は、 ポリ シリ コ ンの充填されている コ ン タ ク トホール 1 2 2 を介して M0S トランジスタおよびポリ シリ コ ン配線と電気的に接続 されている。 この基板をサイ ドエッチング無しにエッチングするこ とによって、 第 1層目の配線が形成される。 また、 シ リ コ ン基板上 のレジス ト面積は約 3 0 %である。  Another embodiment according to the present invention will be described. By using the etching method of the embodiment, a wiring having a width of about 100 nm is formed on an M0S transistor having a gate length and a width of about 100 nm formed on a 6-inch silicon substrate. As shown in Fig. 8, M0S transistor 121, capacitor and polysilicon wiring are processed on the silicon substrate, and the space between the lines is insulated by silicon dioxide film 25. ing. On this silicon S plate, a lower film 241 'film 24, a Cu-Si alloy film 23, an upper Ti \ 22, and a resist film 21 to which a mask pattern is transferred are formed. Then, a part of the lower TiN is electrically connected to the M0S transistor and the polysilicon wiring through the contact hole 122 filled with the polysilicon. . By etching this substrate without side etching, the first layer wiring is formed. The resist area on the silicon substrate is about 30%.
このシリ コ ン基板をェツチング装置に搬入し、 Ti 7A Cu-Si/TiN 膜の加工を行う。 導入ガスは、 塩素約 8 0 sccm, 三塩化ホウ素約 2 0 sccm、 ク ロ口ホルム約 2 0 sccmである。 こ のエッチング条件で エッチングを行いレジス トを除去すると、 第 9図に示すよ うに A1 - S i -Cu 配線側面の削れや太りがほとんどない配線が形成される。 こ れによ り、 ゲー ト幅とほぼ等しい約 l OOnmの幅の配線加工ができる。 配線が加工された基板にリ ンを含む二酸化ケイ素膜、 コンタク ト ホールを形成し、さらにその上に第 2層目の T i N/Al - Cu-S i /Ti N配線 を加工する。 このよ う配線の形成を繰り返して、 半導体装置を作成 する。 配線加工の加工寸法はゲ一 ト長程度の約 l OOnmと小さいため、 集積度の高い半導体装置になる。 特に、 配線の加工寸法を小さ くす ることによ り 、 配線層の層数の低减と配線長を短くすることが可能 になる。 従って、 本発明による配線エッチング方法を用いると、 よ り低コス 卜で高速に動作する半導体装置を製造するこ とができる。 —方、 ク ロ口ホルムガスを添加しない場合、 A l - Cu- S i膜側面が削 れ、 その削れ量が A卜 Cu- S i合金膜の幅 (約 l OOnm) を越えるため配 線加工は困難であつた。 The silicon substrate is carried into an etching apparatus, and the Ti 7A Cu-Si / TiN film is processed. The gas to be introduced is about 80 sccm of chlorine, about 20 sccm of boron trichloride, and about 20 sccm of a croft form. When etching is performed under these etching conditions and the resist is removed, A1- Wiring with little scraping or thickening of the side surface of the Si-Cu wiring is formed. As a result, wiring with a width of about 100 nm, which is almost equal to the gate width, can be processed. A silicon dioxide film containing phosphorus and contact holes are formed on the substrate on which the wiring has been processed, and a second layer of TiN / Al-Cu-Si / TiN wiring is further formed thereon. By repeating the formation of the wiring in this manner, a semiconductor device is manufactured. Since the wiring dimensions are as small as about 100 nm, which is about the gate length, the semiconductor device will be a highly integrated semiconductor device. In particular, by reducing the processing dimensions of the wiring, it is possible to reduce the number of wiring layers and the wiring length. Therefore, by using the wiring etching method according to the present invention, it is possible to manufacture a semiconductor device which operates at high speed at lower cost. On the other hand, when the form gas is not added, the side surface of the Al-Cu-Si film is shaved, and the shaved amount exceeds the width of the Al-Cu-Si alloy film (about lOOnm). Was difficult.
このように、 本発明によるエッチング手法を用いて、 半導体装置 の微細配線加工が可能となる。 このよ うな配線加工は、 ガス種を塩 化カルボランおよび臭化炭素等に変えた場合、 ガスをェッチング装 置処理台付近から導入しても同様に可能である。  Thus, fine wiring processing of a semiconductor device can be performed by using the etching method according to the present invention. Such a wiring process is also possible if the gas type is changed to carborane chloride, carbon bromide, etc., even if the gas is introduced from near the etching equipment processing table.
(実施例 5 )  (Example 5)
本発明による ドライエッチング装置の別の実施例を第 1 0図に示 す。 この装置では真空処理室 1 にエッチングガスを導入し、 マイ ク 口波発生器 2において 2. 45GHzの高周波を発生させ、 この高周波を 導波管 3を通し真空処理室 1 に輸送してガスプラズマを発生させる。 高効率放電のために磁場発生用のソレノィ ドコイル 4 を真空処理室 周辺に 2つ配置し、 875 ガウスの磁場が処理台のほぼ真上にく るよ うに 2つのコイル電流を制御し、 電子サイク ロ ト ロ ン共鳴を用いて 高密度プラズマを発生させる。 真空処理室 1 には処理台 5があり 、 この上に被処理物 6を設置して、 ガスプラズマによりエッチング処 理する。 エッチングガスは、 ガス流量制御装置を通して真空処理室 1 に導入され、 排気ポンプ 7により真空処理室 1 の外に排気される。 被処理物を設置する処理台 5 には RF 電源 1 2 を備え、 400Hz から 13.56MHz までの RF バイアスを印加きる。 石英チャンバ一 1 3内壁 には、 酸素が出ないよ うに窒化シリ コン膜 1 1 0でコーティ ングさ れている。 Another embodiment of the dry etching apparatus according to the present invention is shown in FIG. In this apparatus, an etching gas is introduced into the vacuum processing chamber 1, a high frequency of 2.45 GHz is generated in the microphone mouth wave generator 2, and this high frequency is transported to the vacuum processing chamber 1 through the waveguide 3 and is subjected to gas plasma. Generate. Two solenoid coils 4 for generating a magnetic field are arranged around the vacuum processing chamber for high-efficiency discharge, and the two coil currents are controlled so that the 875 Gauss magnetic field is almost directly above the processing table. Using Rotron resonance Generate high-density plasma. The vacuum processing chamber 1 has a processing table 5 on which an object 6 is to be processed, and is subjected to etching processing by gas plasma. The etching gas is introduced into the vacuum processing chamber 1 through the gas flow control device, and is exhausted out of the vacuum processing chamber 1 by the exhaust pump 7. The processing table 5 on which the object is to be installed is equipped with an RF power supply 12 and can apply an RF bias from 400 Hz to 13.56 MHz. The inner wall of the quartz chamber 113 is coated with a silicon nitride film 110 so as to prevent oxygen from being emitted.
この装置に、 6イ ンチシリ コ ン基板を搬送する。 このシ リ コ ン基 板は、 基板上に酸化ケィ素膜、 下部 TiN膜、 Al-Cu- Si合金膜、 上部 TiN 膜およびマスクパターンを転写したレジス トマスク が形成され たものである。 レジス トマスク のパターン幅は、 300nm で、 レジス トの面積はシリ コン基板の 5 0 %である。 この基板をエッチング装 置に搬送し、 エッチングガスと して、 塩素ガス 7 0 sccm、 三塩化ホ ゥ素ガス 3 0 sccmをエツチング装置に導入し、全圧が lPaになるよ うにしてエッチングを行う。 エッチング時の基板温度は 5 0 °Cで、 基板に印加する RFバイアスは、 800kHz で 7 0 « 印加する。 エッチ ングは上部 TiN、 Al-Cu-Si合金、 下部 TiNの順番でェツチングされ、 TiNのェッチング速度は約 450nm/min、 A1- Cu- Si合金は約 750nm/min、 レジス トは約 350nm/minである。  A 6-inch silicon substrate is transported to this device. This silicon substrate has a silicon oxide film, a lower TiN film, an Al-Cu-Si alloy film, an upper TiN film, and a resist mask on which a mask pattern is transferred on a substrate. The pattern width of the resist mask is 300 nm, and the area of the resist is 50% of the silicon substrate. The substrate is transported to an etching apparatus, and 70 sccm of chlorine gas and 30 sccm of boron trichloride gas are introduced into the etching apparatus as an etching gas, and the etching is performed so that the total pressure becomes lPa. Do. The substrate temperature at the time of etching is 50 ° C., and the RF bias applied to the substrate is approximately 70 kHz at 800 kHz. Etching is performed in the order of upper TiN, Al-Cu-Si alloy and lower TiN.The etching speed of TiN is about 450 nm / min, A1-Cu-Si alloy is about 750 nm / min, and the resist is about 350 nm / min. It is.
上述条件でェツチングを行う と、 レジス ト生成物の酸素による除 去反応が起こらないため、 レジス ト生成物の起因する粉塵が問題と なる。 このエッチング条件で、 約 0.3sccmの酸素ガス (酸素原子に 換算すると約 0.6SCCm) を添加 (全ガス流量の 0.3%) すると、 粉塵 の発生なしに異方性の高い形状が得られる。 この時の酸素/炭素比 は、 約 5 %である。 さらに、 酸素ガスの添加量を 1 sccmまで増やす と、 A1 合金の側面が削られる。 特に、 上部 TiN直下の A1 合金側面 は約 4 0 ηιη削れてしま う。 酸素ガスの供給量を 0.3%にする方法と しては、 窒化シリ コン膜でコ一ティ ングする領域を 8割以上にする こ と によつて も達成でき る。 酸素ガス添加量は 0.06sccm から 0.6scctnの間に制御することによ り 、 A1- Cu- Si 合金膜の高精度異方 加工ができる。この酸素ガス添加量は、全ガス流量の 0.06%から 0.6% に相当する。 この時の酸素 Z炭素入射量比は、 内壁面からの微量の 酸素混入も考 Itすると 2から 1 0 %程度である r When the etching is performed under the above-described conditions, the removal reaction of the resist product by oxygen does not occur, so that dust resulting from the resist product becomes a problem. Under this etching condition, when oxygen gas of about 0.3 sccm (about 0.6 SCC m in terms of oxygen atoms) is added (0.3% of the total gas flow rate), a highly anisotropic shape can be obtained without generating dust. Oxygen / carbon ratio at this time Is about 5%. In addition, increasing the oxygen gas addition to 1 sccm will cut the side of the A1 alloy. In particular, the side of the A1 alloy just below the upper TiN is cut by about 40 ηιη. The method of reducing the supply amount of oxygen gas to 0.3% can also be achieved by increasing the coating area of the silicon nitride film to 80% or more. By controlling the oxygen gas addition amount between 0.06 sccm and 0.6 scctn, highly accurate anisotropic processing of the A1-Cu-Si alloy film can be performed. This added amount of oxygen gas corresponds to 0.06% to 0.6% of the total gas flow rate. Oxygen Z Carbon incident amount ratio at this time is the oxygen contamination traces of considered It Then 2 from the inner wall surface 1 about 0% r
このよ うにして、 酸素を発生しない真空処理 :内壁材を用い、 微 量 (0.06から 1%)の酸素ガスを添加するこ とによ り A1- Cu- Si 合金 側面の削れや太りの小さい加工形状を得るこ とができる。  In this way, a vacuum treatment that does not generate oxygen: A1-Cu-Si alloy with a small amount (0.06 to 1%) of oxygen gas added using the inner wall material, and the side surfaces of the A1-Cu-Si alloy are reduced in size and thickness A processed shape can be obtained.
なお、 本発明の効果は前述のマイク ロ波ュッチン グ装置に限らず、 例えば RIEやマグネ ト口ン型 RIE、 へリ コン共振 ¾ RIE、 誘導結合型 RIE等の他の装置でも、 同様の効果がある。  The effect of the present invention is not limited to the above-described microwave cutting device, and the same effect can be obtained in other devices such as RIE, magneto-opening RIE, silicon resonance RIE, and inductively coupled RIE. There is.
(実施例 6 )  (Example 6)
本発明による他の 1 実施例を説明する。 実施例 1 の装置を用い、 第 3図に示す構造と同様の多層膜をェッチングする。 シリ コン基板 2 6上には、 二酸化ケイ素膜 2 5、 下部 TiN'膜 2 4 、 Al-Cu-Si合金 膜 2 3、 上部 TiN膜 2 2およびマスクバタ一ンを転写したレジス ト マスク 2 1 が形成されている。 この基板をエッチング装置の処理台 5に搬送し、 エッチングガスと して、 塩素ガスを 8 0 sccm, 三塩化 ホウ素ガスを 2 0 sccm導入し、 アルゴン 9 6 %、 メ タン 4 %で構成 されるガスを 1 0 0 sccm添加し、真空処理室の圧力が約 2Paになる よ うに制御する。 壁面から出る酸素は約 2scCtriである。 シ リ コ ン基 板は 8インチで基板上のレジス ト面積は約 5 0 %である。 エツチン グ時の基板温度は 5 0 °Cで、 基板に印加する RF バイアスは、 RF電 源 1 2よ り 2MHz、 1 0 0 Wで処理台 5に印加する。 Another embodiment according to the present invention will be described. Using the apparatus of Example 1, a multilayer film having the same structure as that shown in FIG. 3 is etched. On the silicon substrate 26, a silicon dioxide film 25, a lower TiN 'film 24, an Al-Cu-Si alloy film 23, an upper TiN film 22 and a resist mask 21 to which a mask pattern is transferred are formed. Is formed. The substrate is conveyed to a processing table 5 of an etching apparatus, and 80 sccm of chlorine gas and 20 sccm of boron trichloride gas are introduced as an etching gas, which is composed of 96% of argon and 4% of methane. The gas is added at 100 sccm, and the pressure in the vacuum processing chamber is controlled to about 2 Pa. Oxygen emitted from the wall is about 2sc C tri. Silicon group The board is 8 inches and the resist area on the board is about 50%. The substrate temperature during etching is 50 ° C, and the RF bias applied to the substrate is 2 MHz and 100 W from the RF power supply 12 and is applied to the processing table 5 at 100 W.
Al -Cu- S i膜のエッチング速度は、 約 800nm/mi nで、 レジス トのェ ツチング速度は、 約 3 0 0 nm/mi nとなる。 レジス ト生成物の発生量 は、 炭素原子数に換算すると、 約 7 sc cmである。 ウェハ近傍でのレ ジス ト生成物の滞在によってレジス ト生成物の堆積効果が約 2. 5倍 になることを考慮すると、 酸素 炭素入射比は、 約 1 1 %になる。 これに、 添加したメ タンを加えると、 酸素ダ炭¾人射比は、 約 9 % になる。 この条件で、 エッチングを行う とサイ ドエツチングは低減 され、 サイ ドエッチング量は約 1 0 nm以下になる。 混合ガス中のメ タン含有量 2 %以上でサイ ドエ ッチングを抑制する効果が急激に現 れ、 5 %以上添加すると、 真空処理室内に堆積物が発生し、 異物と してウェハへの付着物が見られる。 この理由と して、 メ タ ンはク ロ 口ホルム等の塩素を含むガスに比べ、 堆積性が強いこ とに起因して いると考えられる。  The etching rate of the Al-Cu-Si film is about 800 nm / min, and the etching rate of the resist is about 300 nm / min. The amount of resist product generated is about 7 sccm in terms of carbon atoms. Taking into account that the resist product deposition effect near the wafer increases the resist product deposition effect by about 2.5 times, the oxygen-carbon incidence ratio is about 11%. When the added methane is added to this, the oxygen-to-coal / injection ratio becomes about 9%. When etching is performed under these conditions, side etching is reduced, and the amount of side etching is reduced to about 10 nm or less. The effect of suppressing side etching rapidly appears when the methane content in the mixed gas is 2% or more, and when 5% or more is added, deposits are generated in the vacuum processing chamber and adhere to the wafer as foreign matter. Can be seen. The reason for this is considered to be that methane is more sedimentable than chlorine-containing gases such as black hole form.
このよ うに、 メ タンガスを添加する場合、 塩素および三塩化ホウ 素ガスの導入量に比べ、 2から 5 %の範囲で添加する ことが望ま し い。  As described above, when adding methane gas, it is desirable to add methane gas in the range of 2 to 5% as compared with the introduction amount of chlorine and boron trichloride gas.
同様な効果は、 ェタン、 ブタン等でも得られる。 ェタ ンの場合、 導入量はメ タンの半分でサイ ドエツチング抑制効果がある。  Similar effects can be obtained with etane and butane. In the case of ethane, the introduction amount is half that of methane, which has the effect of suppressing side etching.
さ らに、 メ タン、 ェタン等の炭化水素ガスは、 可燃ガスであるた め、 生産ライ ンで用いる場合、 アルゴン、 ネオン、 キセ ノ ン等の不 活性ガスで希釈することによ り安全性を確保することが望ま しい。 この他、 メタンほど効果的ではないが、 アルゴンガスの添加によ り 過剰な塩素ガスおよび酸素が排気され、 サイ ドエッチングは、 若干 低減する。 In addition, since hydrocarbon gases such as methane and ethane are flammable gases, when used in production lines, safety can be achieved by diluting with an inert gas such as argon, neon, or xenon. It is desirable to secure In addition, although not as effective as methane, the addition of argon gas Excess chlorine gas and oxygen are exhausted, and side etching is slightly reduced.
本発明の効果は前述のマイクロ波エッチング装置に限らず、 例え ば RIEやマグネ ト ロ ン型 RIE、 ヘリ コン共振型 RIE、 誘導結合型 RIE 等の他の装置でも、 同様の効果が得られる。  The effects of the present invention are not limited to the above-described microwave etching apparatus, and similar effects can be obtained with other apparatuses such as RIE, magnetron RIE, helicon resonance RIE, and inductively coupled RIE.
(実施例 7 )  (Example 7)
本発明による ドライエツチング装置の別の実施例を第 1 1図に示 す。 この装置ではエッチング処理室 1 にエッチングガスを導入し、 第 2 の R F (高周波) 電源 3 1 において 1 MHzから 2. 45GHzの間で高 周波を発生させ、 この高周波をアンテナ 3 2を通しエッチング処理 室 1 に伝搬してガスプラズマを発生させる。 このアンテナ 3 2の表 面には誘電体 3 3を形成し、 アンテナがエッチングされるのを防止 する。 エッチング処理室 1 には処理台 5があり、 この上に被処理物 6を設置して、 ガスプラズマによ りエッチング処理する。 エツチン グガスは、 ガス流量制御装置を通してエッチング処理室 1 に導入さ れ、 排気ポンプ 7によ りエッチング処理室 1 の外に排気される。 被 処理物を設置する処理台 5には R F電源 1 2 を備え、 400Hz から 1GHzまでの高周波(RF)バイァスを印加できる。  Another embodiment of the dry etching apparatus according to the present invention is shown in FIG. In this system, an etching gas is introduced into the etching chamber 1, a high frequency is generated from 1 MHz to 2.45 GHz by a second RF (high frequency) power supply 31, and the high frequency is passed through the antenna 32 to perform etching. Propagate to chamber 1 to generate gas plasma. A dielectric 33 is formed on the surface of the antenna 32 to prevent the antenna from being etched. The etching chamber 1 has a processing table 5 on which an object 6 to be processed is placed, and an etching process is performed by gas plasma. The etching gas is introduced into the etching chamber 1 through the gas flow control device, and is exhausted out of the etching chamber 1 by the exhaust pump 7. The processing table 5 on which the workpiece is installed is equipped with an RF power supply 12 and can apply a high frequency (RF) bias from 400 Hz to 1 GHz.
上述の装置を用い、 第 3図に示す構造と同様の多層膜をエツチン グする。 シ リ コン基板 2 6上には、 二酸化ケイ素膜 2 5、 下部 T i N 膜 2 4 、 A l -Cu-S i合金膜 2 3、 上部 T iN膜 2 2およびマスクパター ンを転写したレジス トマスク 2 1 が形成されている。 この基板をェ ツチング装置の処理台 5に搬送し、 エッチングガスと して、 塩素ガ スを 7 0 sccm、 三塩化ホゥ素ガスを 3 0 sccm 導入し、 アルゴン 9 6 %、 メタン 4 %で構成されるガスを 1 0 0 sc cm添加し、 真空処理 室の圧力が約 2Pa になるよ う に制御する。 壁面から出る酸素は約 2sccm である。 シリ コン基板は 8 ィ ンチで基板上のレジス ト面積は 約 5 0 %である。 エッチング時の基板温度は 5 0 °Cで、 第 2の R F 電源 3 1 の周波数を 13. 56MHz , 出力を 3 0 0 Wと し、 基板に印加す る RF バイアスは、 RF電源 1 2より 800KHz、 1 0 0 Wで処理台 5に 印加する。 Using the above-described apparatus, a multilayer film having the same structure as that shown in FIG. 3 is etched. On the silicon substrate 26, a silicon dioxide film 25, a lower TiN film 24, an Al-Cu-Si alloy film 23, an upper TiN film 22, and a resist on which a mask pattern is transferred Mask 21 is formed. The substrate is transported to the processing table 5 of the etching apparatus, and as an etching gas, 70 sccm of chlorine gas and 30 sccm of boron trichloride gas are introduced, and it is composed of 96% of argon and 4% of methane. 100 sccm of gas to be added and vacuum processing Control the pressure in the chamber to about 2Pa. Oxygen emitted from the wall is about 2sccm. The silicon substrate is 8 inches and the resist area on the substrate is about 50%. The substrate temperature during etching is 50 ° C, the frequency of the second RF power supply 31 is 13.56 MHz, the output is 300 W, and the RF bias applied to the substrate is 800 kHz from the RF power supply 12. , 100 W at the processing table 5.
A l -Cu- S i膜のエッチング速度は、 約 750nm/m i nで、 レジス トのェ ッチング速度は、 約 3 0 0 nm/m i n となる。 レジス 卜生成物の発生量 は、 炭素原子数に換算すると、 約 7 s c cmである。 ウェハ近傍でのレ ジス ト生成物の滞在によってレジス ト生成物の堆積効果が約 2. δ倍 になるこ とを考慮すると、 酸素/炭素入射比は、 約 1 1 %になる。 これに、 添加したメタンを加えると、 酸素/炭素入射比は、 約 9 % になる。 この条件で、 エッチングを行う とサイ ドエッチングは低減 され、 サイ ドエッチング量は約 1 0 nmになる。 混合ガス中のメタン 含有量 2 %以上でサイ ドエッチングを抑制する効果が急激に現れ、 5 %以上添加すると、 真空処理室内に堆積物が発生し、 異物と して ウェハへの付着物が見られる。 この理由と して、 メ タンはク ロ ロホ ルム等の塩素を含むガスに比べ、 堆積性が強いこ と に起因している と考えられる。  The etching rate of the Al-Cu-Si film is about 750 nm / min, and the etching rate of the resist is about 300 nm / min. The amount of the resist product generated is about 7 sccm when converted to the number of carbon atoms. Taking into account the fact that the resist product deposition effect near the wafer increases the resist product deposition effect by about 2.δ, the oxygen / carbon incidence ratio is about 11%. When the added methane is added, the oxygen / carbon injection ratio is about 9%. When etching is performed under these conditions, side etching is reduced, and the amount of side etching becomes about 10 nm. When the methane content in the mixed gas is 2% or more, the effect of suppressing side etching is sharply exhibited. Can be It is considered that the reason for this is that methane is more sedimentable than chlorine-containing gas such as chloroform.
このよ う に、 メ タンガスを添加する場合、 塩素および三塩化ホウ 素ガスの導入量に比べ、 2から 5 %の範囲で添加することが望ま し レ、。  Thus, when adding methane gas, it is desirable to add methane gas in the range of 2 to 5% as compared with the introduction amount of chlorine and boron trichloride gas.
同様な効果は、 ェタン、 ブタン等でも得られる。 ェタ ンの場合、 導入量はメ タンの半分でサイ ドエッチング抑制効果がある。  Similar effects can be obtained with etane and butane. In the case of ethane, the introduction amount is half that of methane, which has the effect of suppressing side etching.
さ らに、 メタン- ェタン等の炭化水素ガスは、 可燃ガスであるた め、 生産ラインで用いる場合、 アルゴン、 ネオン、 キセノ ン等の希 ガスである不活性ガスで希釈することによ り安全性を確保すること が望ま しい。 この他、 メタンほど効果的ではないが、 アルゴンガス の添加によ り過剰な塩素ガスおよび酸素の排気が促進され、 サイ ド エッチングは、 若干低減する。 また、 不活性ガスは、 塩素イオンと 質量差の小さいアルゴンを用いると良い。 ヘリ ゥムでは軽いためェ ツチング速度が低下する一方で、 キセノ ン等では重いため選択比が 低下するからである。 Furthermore, hydrocarbon gases such as methane-ethane are flammable gases. Therefore, when used in a production line, it is desirable to ensure safety by diluting with an inert gas such as argon, neon, xenon or the like. In addition, although not as effective as methane, the addition of argon gas facilitates the exhaust of excess chlorine and oxygen and slightly reduces side etching. As the inert gas, argon having a small difference in mass from chlorine ions is preferably used. The reason for this is that the etching speed is reduced due to the lightness of the helicopter, while the selectivity is reduced due to the heavy weight of xenon and the like.
産業上の利用可能性 Industrial applicability
本発明は、 半導体装置の微細加工に優れ、 特にアルミニゥ ム膜をエッチングするのに適している力;、 この他絶緣膜等のエッチ ングにも適用できる。  INDUSTRIAL APPLICABILITY The present invention is excellent in microfabrication of a semiconductor device, and is particularly suitable for etching an aluminum film; it can also be applied to etching of an insulating film and the like.

Claims

請求の範囲 The scope of the claims
1 . 炭素原子数に対する酸素原子数の割合が 0 %を越え 1 0 %以下 となる二アサ一フェース雰囲気で被処理物をェツチングすることを 特徴とする ドライエッチング方法。 1. A dry etching method characterized in that an object to be processed is etched in a double-faced atmosphere in which the ratio of the number of oxygen atoms to the number of carbon atoms is more than 0% and not more than 10%.
2 . 基体上に金属膜が形成された被処理物を収容する処理室内に、 エッチングガスを導入する工程と、 前記エッチン グガスをブラズマ 化する工程と、 炭素原子数に対する酸素原子数の比が 0 %を越え ] 0 %以下になるよ うに前記被処理物に入射させ、 Γ;;ί ^金属膜をエツ チングする工程とを有することを特徴とする ドライエツチング方法。  2. A step of introducing an etching gas into a processing chamber for accommodating an object to be processed having a metal film formed on a substrate, a step of plasma-forming the etching gas, and a step of reducing the ratio of the number of oxygen atoms to the number of carbon atoms to 0. %; More than 0%; and a step of etching the metal film.
3 . 表面に金属膜が形成された被処理物を収容すろ処理室を真空排 気する工程と、 前記処理室内にエッチングガス を ¾人する工程と、 前記ガスをブラズマ化する工程と、 二アサ一フ ー ス領域に炭素原 子を含むガスを導入する工程と、 前記被処理物に酷素原子数が炭素 原子数の 1 0 %以下になるよ うに入射させ、 Γι'ί ,id i厲膜をエツチン グする工程とを有することを特徴とする ドラィ二 ソチン グ方法。 3. a step of evacuating a filter processing chamber for accommodating an object to be processed having a metal film formed on a surface thereof, a step of introducing an etching gas into the processing chamber, and a step of plasma-forming the gas. Introducing a gas containing a carbon atom into the first field region; and injecting the gas into the object so that the number of severe elements becomes 10% or less of the number of carbon atoms. And d) etching the film.
4 . 前記記処理室は石英で形成され、 前記酸素 ': -ί'·は前 ^石英から 供給されることを特徴とする第 3項に記載の ドライェツチング方法。 4. The dry etching method according to claim 3, wherein the treatment chamber is formed of quartz, and the oxygen ': -ί' · is supplied from quartz.
5 . 基体上のアルミ ニウム膜又はアルミ ニウム合金膜上にレジス ト パターンが形成された被処理物を処理室内の試料台上に載匱するェ 程と、 前記処理室内にガスを導入する工程と、 前記ガスをプラズマ 化する工程と、 前記被処理物をブラズマに接触させ、 ェタ ン、 メ タ ン、 フロバンも しく はブタンのフ ッ素、 塩素も し く は ¾素置換体、 またはカルボランのハ口ゲン置換体のガスを前記処理室内に導入し て、 炭素原子数に対する酸素原子数の割合が 0 %を越えて 1 0 %以 下と された二アサ一フ ェース雰囲気で、 前記アルミニウム膜又はァ ノレ ミニゥム合金膜をエッチングする工程とを有するこ とを特徴とす る ドライエツチング方法。 5. A process in which a workpiece having a resist pattern formed on an aluminum film or an aluminum alloy film on a substrate is placed on a sample stage in a processing chamber, and a step of introducing gas into the processing chamber. A step of converting the gas into a plasma, and contacting the object to be treated with plasma to obtain ethane, methane, flavan or butane fluorine, chlorine or nitrogen-substituted substance, or carborane. Introducing the Haguchigen-substituted gas into the processing chamber, the ratio of the number of oxygen atoms to the number of carbon atoms exceeds 0% and is 10% or less. A step of etching the aluminum film or the aluminum alloy film in a double-faced atmosphere set forth below.
6 . シリ コン基板上に金属膜が形成された被処理物を収容する処理 室に、 エッチングガスを導入する工程と、 酸素及び二アサ一フエ一 ス内に設置された炭素を含む固体から炭素を前記被処理物に供給し、 前記被処理物に入射する炭素原子数に対する酸素原子数の割合が 0 %よ り大き く 1 0 %以下になるよ うにして、 前記金属膜をェッチ ングする工程とを有するこ とを特徴とする ドライエツチング方法。  6. A step of introducing an etching gas into a processing chamber for accommodating an object to be processed in which a metal film is formed on a silicon substrate, and a step of introducing a carbon gas from a solid containing oxygen and carbon provided in a double-layer space. Is supplied to the object to be processed, and the metal film is etched so that the ratio of the number of oxygen atoms to the number of carbon atoms incident on the object to be processed becomes greater than 0% and 10% or less. And a dry etching method.
7 . エッチングガスと、 前記エッチングガスの 7 %以上 3 5 %未満 の添加ガスとを処理室内に導入する工程と、 前記エッチングガスを プラズマ化する工程と、 前記プラズマ化したエッチングガスで、 前 記処理室内に載置された被エッチング物をェツチングする工程とを 有することを特徴とする ドライエツチング方法。 7. a step of introducing an etching gas and an additional gas of 7% to less than 35% of the etching gas into the processing chamber; a step of converting the etching gas into plasma; Etching the workpiece placed in the processing chamber.
8 . 前記エッチングガスは塩素ガスと三塩化ホウ素ガスの混合ガス であり 、 前記添加ガスは炭化水素のハ口ゲン化物であること を特徴 とする第 7項記載の ドライエッチング方法。 8. The dry etching method according to claim 7, wherein the etching gas is a mixed gas of a chlorine gas and a boron trichloride gas, and the additive gas is a haptic compound of a hydrocarbon.
9 . 前記炭化水素のハロゲン化物はク 口 口ホルムであることを特徴 とする第 8項記載の ドライエッチング方法。  9. The dry etching method according to claim 8, wherein the hydrocarbon halide is a co-form.
1 0 . 内壁が石英で形成された処理室内の台に、 所定のパターンを 有するレジス ト膜が形成された被ェツチング物を載置する工程と、 (前記石英内壁面積 X前記石英内壁ェツチング速度 X前記石英内壁 酸素密度)  10. A step of placing an object to be etched on which a resist film having a predetermined pattern is formed on a table in a processing chamber having an inner wall made of quartz, (the quartz inner wall area X the quartz inner wall etching speed X The quartz inner wall oxygen density)
÷ (前記レジス ト面積 X前記レジス トエッチング速度 X前記レジ ス ト炭素密度 X 2 . δ +炭素を含むガスの供給量) ÷ (the resist area X the resist etching rate X the resist carbon density X 2.δ + Supply of gas containing carbon)
の値が、 0 . 1以下となるよ うにして、 被処理物をエッチングする ことを特徴とする ドライエッチング方法。 A dry etching method characterized in that the object to be processed is etched such that the value of is not more than 0.1.
1 1 . 内壁面が酸化物以外の誘電体で構成されている処理室内の台 上に、 アルミニウム膜上に所定のパターンを有するレジス トマスク が形成された半導体ウェハを載置する工程と、 前記処理室内にェッ チングガスを導入する工程と、前記エッチングガスに対し 0 . 0 6 % から 0 . 6 %の範囲で酸素ガスを添加して導入する工程と、 前記ェ ッチングガスを前記処理室内でブラズマ化する工程と、 前記アルミ 二ゥム膜を前記プラズマに接触させて露出した領域の前記アルミ二 ゥム膜をエッチングする工程とを有するこ とを特徴とする ドライエ ッチング方法。  11. A step of placing a semiconductor wafer on which a resist mask having a predetermined pattern is formed on an aluminum film on a table in a processing chamber whose inner wall surface is made of a dielectric material other than oxide; A step of introducing an etching gas into the chamber, a step of adding an oxygen gas in a range of 0.06% to 0.6% with respect to the etching gas and introducing the same, and forming the etching gas into a plasma in the processing chamber. And etching the aluminum film in a region exposed by contacting the aluminum film with the plasma. A dry etching method, comprising:
1 2 . 前記エッチングガスは塩素ガスおよび三塩化ホウ素ガスから なることを特徴とする第 1 1項記載の ドライエッチング方法。  12. The dry etching method according to item 11, wherein the etching gas comprises chlorine gas and boron trichloride gas.
1 3 . 前記内壁面の 8割以上が酸化物以外の誘電体で構成されてい ることを特徴とする第 1 1項記載の ドライエツチング方法。  13. The dry etching method according to item 11, wherein at least 80% of the inner wall surface is made of a dielectric material other than an oxide.
1 4 . 前記酸化物以外の誘電体は窒化ゲイ素であることを特徴とす る第 1 1項または 1 3項記載の ドライエッチング方法。  14. The dry etching method according to item 11 or 13, wherein the dielectric other than the oxide is a silicon nitride.
1 5 . 炭素原子数に対する酸素原子数の割合が 5 %以上 9 %以下で ある二アサ一フェースの雰囲気で、 被処理物をエッチングするこ と を特徴とする ドライエッチング方法。  15. A dry etching method, characterized in that an object to be processed is etched in a double-faced atmosphere in which the ratio of the number of oxygen atoms to the number of carbon atoms is 5% or more and 9% or less.
1 6 . 金属膜が形成された被処理物を収容する処理室を真空排気す る工程と、 前記処理室内にエッチングガスを導入する工程と、 前記 ガスをプラズマ化する工程と、 前記被処理物に酸素を入射させ、 か つ二アサ一フェース領域に設けられた炭素を含む固体材料によ り 、 炭素を前記被処理物に入射させて、 入射する酸素原子数が炭素原子 数の 0 %を越え 1 0 %以下になるよ うにして、 前記金属膜をエッチ ングすることを特徴とする ドライエッチング方法。 16. A process of evacuating a processing chamber for accommodating the processing object on which the metal film is formed, a step of introducing an etching gas into the processing chamber, a step of converting the gas into plasma, Oxygen is incident on the surface, and the carbon-containing solid material provided in the two-face region makes it possible to Dry etching, wherein the metal film is etched by injecting carbon into the object to be processed so that the number of oxygen atoms to be incident is more than 0% and not more than 10% of the number of carbon atoms. Method.
1 7 . 被処理物に、 炭素原子数に対する酸素原子数の割合が 0 %を 越え 1 0 %以下になるよ うに酸素と炭素原子を含む気体状の分子を 照射して、 前記被処理物をエッチングすることを特徴とする ドライ エッチング方法。  17. Irradiate the gas to be processed with gaseous molecules containing oxygen and carbon atoms so that the ratio of the number of oxygen atoms to the number of carbon atoms is more than 0% and not more than 10%. A dry etching method characterized by etching.
1 8 . 被処理物に、 二アサ一フェース領域の炭素原子数と酸素原子 数の割合を制御して、 酸素と炭素を照射して、 前記被処理物をエツ チングすることを特徴とする ドライエツチング方法。  18. The object to be treated is irradiated with oxygen and carbon by controlling the ratio of the number of carbon atoms and the number of oxygen atoms in the two-face region to etch the object. Etching method.
1 9 . 被エッチング物を収容する処理室と、 ^ 処理室を排気する 手段と、 前記処理室内に設けられ前記被ェッチング物を載置する台 と、 前記被エッチング物に高周波を印加する手段と、 二アサ一フエ ス領域内に前記被ェツチング物のエッチング反応に寄与するガスを 導入するためのガス導入口 とを有するこ とを特徴とする ドライエッ チング装置。  19. A processing chamber for accommodating the object to be etched, a means for exhausting the processing chamber, a table provided in the processing chamber for mounting the object to be etched, and a means for applying a high frequency to the object to be etched. A dry etching apparatus having a gas inlet for introducing a gas contributing to an etching reaction of the etching target object into the secondary etching region.
2 0 . 被処理物を収容する処理室と、 前記処理室を真空排気する手 段と、 前記処理室内にエッチングガスを導入する手段と、 前記被処 理物に高周波を印加する手段と、 前記被処理物を載置する試料台と、 前記試料台の外周に炭素を含むガスを導入するためのガス導入口 と を有することを特徴とする ドライエッチング装置。  20. A processing chamber for accommodating an object to be processed, means for evacuating the processing chamber, means for introducing an etching gas into the processing chamber, means for applying a high frequency to the object to be processed, A dry etching apparatus, comprising: a sample stage on which an object to be processed is placed; and a gas inlet for introducing a gas containing carbon to an outer periphery of the sample stage.
2 1 . 被処理物を収容する処理室と、 前記処理室を K空排気する手 段と、 前記処理室内にエッチングガスを導入する手段と、 前記被処 理物に高周波を印加する手段と、 二アサ一フェース領域内に設けら れた炭素を含む固体材料とを有することを特徴とする ドライエッチ ング装置。 21. A processing chamber for accommodating an object to be processed, means for evacuating the processing chamber to K empty space, means for introducing an etching gas into the processing chamber, means for applying a high frequency to the object to be processed, A carbon-containing solid material provided in the two-face region. Device.
2 2 . 基体上に絶縁膜を形成する工程と、 前記絶縁膜に接続口を形 成する工程と、 前記接続口を導電層で充填し前記絶縁膜上に配線層 を形成する工程と、 前記配線層上にレジス トパターンを形成するェ 程と、 前記配線層に入射する酸素原子数を炭素入射原子数の 1 0 % 以下となるよ うにして露出した領域の前記配線層をェツチングする 工程とを有することを特徴とする半導体装置の製造方法。  22. a step of forming an insulating film on the base, a step of forming a connection port in the insulating film, a step of filling the connection port with a conductive layer, and forming a wiring layer on the insulating film; Forming a resist pattern on the wiring layer, and etching the exposed wiring layer so that the number of oxygen atoms incident on the wiring layer is 10% or less of the number of carbon incident atoms. And a method for manufacturing a semiconductor device.
2 3 . 前記配線層は第 1 の窒化チタン層、 アル ミ ニウム層及び第 2 の窒化チタン層の積層膜であることを特徴とする第 2 2項に記載の 半導体装置の製造方法。  23. The method of manufacturing a semiconductor device according to item 22, wherein the wiring layer is a laminated film of a first titanium nitride layer, an aluminum layer, and a second titanium nitride layer.
PCT/JP1996/003612 1996-08-07 1996-12-11 Dry etching method and device used for the same WO1998006128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP96/02227 1996-08-07
PCT/JP1996/002227 WO1998006126A1 (en) 1996-08-07 1996-08-07 Method and device for dry etching

Publications (1)

Publication Number Publication Date
WO1998006128A1 true WO1998006128A1 (en) 1998-02-12

Family

ID=14153653

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1996/002227 WO1998006126A1 (en) 1996-08-07 1996-08-07 Method and device for dry etching
PCT/JP1996/003612 WO1998006128A1 (en) 1996-08-07 1996-12-11 Dry etching method and device used for the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002227 WO1998006126A1 (en) 1996-08-07 1996-08-07 Method and device for dry etching

Country Status (1)

Country Link
WO (2) WO1998006126A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131471A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Surface treatment of substrate
JPS5687670A (en) * 1979-12-15 1981-07-16 Anelva Corp Dry etching apparatus
JPS6159833A (en) * 1984-08-31 1986-03-27 Hitachi Ltd Plasma treater
JPS63142634A (en) * 1986-12-05 1988-06-15 Oki Electric Ind Co Ltd Manufacture of semiconductor
JPH02291131A (en) * 1989-04-28 1990-11-30 Sony Corp Dry etching of barrier metal/aluminum laminated film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305835A (en) * 1988-05-31 1989-12-11 Nippon Tungsten Co Ltd Silicon nitride coated quartz glass vessel
JPH03110846A (en) * 1989-09-25 1991-05-10 Sony Corp Formation of wiring
JPH05211146A (en) * 1991-11-18 1993-08-20 Matsushita Electric Ind Co Ltd Corrosion protecting method of metal wiring
JPH0697126A (en) * 1992-09-11 1994-04-08 Toshiba Corp Method and system for dry etching semiconductor
JP3500178B2 (en) * 1994-01-18 2004-02-23 ソニー株式会社 Dry etching method
JP2923218B2 (en) * 1995-01-30 1999-07-26 株式会社日立製作所 Sample processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131471A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Surface treatment of substrate
JPS5687670A (en) * 1979-12-15 1981-07-16 Anelva Corp Dry etching apparatus
JPS6159833A (en) * 1984-08-31 1986-03-27 Hitachi Ltd Plasma treater
JPS63142634A (en) * 1986-12-05 1988-06-15 Oki Electric Ind Co Ltd Manufacture of semiconductor
JPH02291131A (en) * 1989-04-28 1990-11-30 Sony Corp Dry etching of barrier metal/aluminum laminated film

Also Published As

Publication number Publication date
WO1998006126A1 (en) 1998-02-12

Similar Documents

Publication Publication Date Title
US20210134604A1 (en) Etching method
JP3998003B2 (en) Plasma etching method
KR20010049274A (en) Reactive plasma etch cleaning of high aspect ratio openings
JP2002533949A (en) Perforated plasma confinement ring in plasma reactor
JPH05308062A (en) Dry etching method
KR20150101927A (en) Cleaning method for plasma processing apparatus
WO2014104290A1 (en) Dry etching method
CN109755123B (en) Plasma etching method
KR100477402B1 (en) Method of forming film by plasma
JP4369264B2 (en) Plasma deposition method
TWI690993B (en) Deposition apparatus and deposition method
TW201530605A (en) Plasma processing method and plasma processing device
TWI766907B (en) Plasma treatment device and plasma treatment method
JP2004111779A (en) Method of etching organic insulating film and method of manufacturing semiconductor device
US9803286B2 (en) Method for etching copper layer
JP4015510B2 (en) Interlayer insulating film for multilayer wiring of semiconductor integrated circuit and manufacturing method thereof
JP2003168676A (en) Etching method for organic insulating film
JP2004349458A (en) Process for forming fluorine added carbon film
KR100262883B1 (en) Plasma cleaning method
JPH10242130A (en) Plasma treating method and apparatus
JP2004031888A (en) Deposition method of fluorocarbon film
JP3779277B2 (en) Manufacturing method of semiconductor device
JP4554479B2 (en) Dry etching method
WO1998006128A1 (en) Dry etching method and device used for the same
JPH1197415A (en) Method and equipment for dry etching

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase