WO1998001215A1 - Verfahren zur adsorptiven trennung von luft - Google Patents

Verfahren zur adsorptiven trennung von luft Download PDF

Info

Publication number
WO1998001215A1
WO1998001215A1 PCT/EP1997/003434 EP9703434W WO9801215A1 WO 1998001215 A1 WO1998001215 A1 WO 1998001215A1 EP 9703434 W EP9703434 W EP 9703434W WO 9801215 A1 WO9801215 A1 WO 9801215A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
adsorber
phase
pump
outlet
Prior art date
Application number
PCT/EP1997/003434
Other languages
German (de)
English (en)
French (fr)
Inventor
Gerhard Reiss
Heinrich Amlinger
Original Assignee
Bayer Aktiengesellschaft
Sgi-Prozesstechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft, Sgi-Prozesstechnik Gmbh filed Critical Bayer Aktiengesellschaft
Priority to JP10504728A priority Critical patent/JP2000513997A/ja
Priority to CZ9940A priority patent/CZ4099A3/cs
Priority to BR9710225A priority patent/BR9710225A/pt
Priority to PL97331017A priority patent/PL331017A1/xx
Priority to EP97929311A priority patent/EP0910457A1/de
Publication of WO1998001215A1 publication Critical patent/WO1998001215A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to an improved method for separating oxygen or nitrogen from air in the sense of vacuum swing adsorption
  • VSA vacuum-vacuum swing adsorption
  • PVSA pressure-vacuum swing adsorption
  • the preferred adsorption of nitrogen over oxygen is used, ie nitrogen in the air is adsorbed on the zeolite, the less strongly adsorbed components such as oxygen and argon are collected as a product when air flows through a zeolite bed at the outlet of this bed.
  • the desorption of the adsorbed nitrogen can e.g. by evacuating the fill. In this case one speaks of the VSA process
  • step a) is carried out at a pressure of 200 to 600 kPa and step b) is carried out at about 100 kPa with purging with part of the O 2 product (the pressures always relate to absolute values)
  • Vacuum pumps previously used for vacuum desorption are two- or three-stage rotary lobe blowers with displacement function (see EP 158 262) or water ring pumps, also based on a
  • centrifugal compressors that are used as vacuum pumps (see, for example, EP 575 591).
  • These compressors known as radial blowers, have the property that they are operated up to a pressure ratio of back pressure to suction pressure of about 2.6 can, but for their optimal use, that is, to achieve the lowest possible energy requirement, a certain ratio between suction pressure and discharge pressure is required.This is also known as the optimal pressure ratio ⁇ .
  • This pressure ratio ⁇ is around 1 6 to 1 7 with conventional radial blowers a radial blower is to be optimally used as a vacuum pump and the back pressure including the pressure loss of the downstream S chal 1 steam is equal to 1000 hPa, then a constant pressure of 625 or 588 hPa had to be set on the suction side.
  • the evacuation pressure within about a minute e from a highest level (P Des-) ), typically 950 hPa to a lowest value (Pn c -m ⁇ n ), e.g. 300 hPa, the use of only one radial blower as a single stage is not possible considering the optimal low energy input
  • the invention relates to a method for separating oxygen or
  • is brought to at least 0.6 times the ambient pressure, then in a desorption phase the adsorber containing the nitrogen or oxygen-coated adsorbent within a certain desorption time, in particular from 20 to 120 seconds, for the desorption of the adsorbed nitrogen or oxygen by means of the vacuum pump level of the higher pressure P l:) es.
  • the positive displacement pump connected in series pump the adsorber, the positive displacement pump being connected to the pressure side of the radial blower, and that during the series operation of the radial fan and the positive displacement pump, the positive displacement pump running to the pressure side is set or dimensioned such that the radial blower is on average during the evacuation phase optimal
  • the possible changeover of the pump arrangement from parallel to row is preferably carried out at an evacuation pressure P Dc 0 upstream of the radial fan, in particular when the evacuation pressure P Dcs 0 is at least the value formed from the pressure P () at the outlet of the pressure-side displacement pump divided by 0 65 * reached ⁇
  • Radial blowers and positive displacement pumps are preferably operated in series at the beginning of the evacuation phase
  • a preferred variant of the method according to the invention is characterized in that the pressure P cs . 0 in which the switch is made from parallel operation to series operation, is at least equal to the pressure P () at the outlet of the pressure-side displacement pump divided by 1.15 times the pressure ratio ⁇ of the radial fan
  • a particularly advantageous variant of the invention is characterized in that for a given initial evacuation pressure P Des . ] at the beginning of the desorption phase, the minimum evacuation pressure P Des m
  • the changeover of the pump arrangement from parallel operation to series operation can be controlled, for example, via a control system of the adsorption system according to a time specification or a pressure specification
  • the downstream vacuum pump has to operate according to the displacement principle at a pumping pressure below 0 25 of the ambient pressure, it can consist of two or three displacement pumps connected in series
  • FIG. 3 shows the characteristic curve and the pressure-dependent power consumption of a pumping station made up of radial blowers and rotary lobe blowers connected in series
  • FIG. 5 shows the diagram of a VSA system for carrying out the method according to the invention
  • the VSA system has the following components
  • the adsorbers A, B and C are filled with Ca zeolite A granules with a grain size of 1 to 2.5 mm, which is produced according to Example 2 from the published patent application EP-A 0 170 026.
  • the nitrogen adsorption on these granules is 1000 hPa and 25 ° C 14 Nl / kg the oxygen adsorption 4.3 Nl / kg
  • the nominal diameter of the adsorbent was 1 000 mm, the height of the rubble of the total fill was 2200 mm.
  • a 20 cm layer of silica gel was attached to the inlet of the adsorber.
  • the height of the rubble of the zeolite granules was 200 cm, the weight of the zeolite was 1 000 kg
  • the adsorbers A, B, C are operated in cycles.
  • valve 15 A on adsorber A is open. Only valves I2C and 13C are open on adsorber C. Sucked in by pumping station V10, O - rich gas flows from adsorber A via valve 15A, open control valve 17 ABC and valve 13C in adsorber C The pressure in adsorber A thus drops from the adsorption pressure to a lower pressure P D s , (relaxation phase) In adsorber C, the evacuation is ended, the pressure in adsorber C falling from the final pressure increases to a higher pressure
  • Adsorber B begins with the air separation (adsorption phase), that is, ambient air passes through valve I IB into adsorber B, 0 -, - real product gas leaves the adsorber via valve 14B and is discharged with compressor G10 to the product supply (not shown)
  • Valve 15A on adsorber A is closed again and only valve 12A is open.
  • adsorber A becomes pressurized by P es. , sucked to the pressure Po e - mm with the vacuum pump VI 0.
  • the adsorber B is in the adsorption phase, ie the valves I IB and 15B are open.
  • the valves 18 ABC, 16ABC and 13C open the adsorber C with O 2 -re ⁇ chem Gas filled
  • valve 13C Only valve 13C is open on adsorber C The full quantity is dimensioned so that at the end of this period the pressure in adsorber C almost reaches the adsorption pressure (covering phase) In the next cycle of the cycle, adsorber C separates the air (adsorption phase), in the third cycle of the cycle adsorber A, ie the two cycle times of 0-8 sec and 8-60 sec are repeated accordingly
  • the maximum adsorption pressure was always 1 100 hPa, the minimum evacuation pressure P ]) CS-mm was always 300 hPa.
  • the pressure P cs was compared, at the beginning of the evacuation step. In the first variant, this starting pressure was 950 hPa and compared to it 800 hPa was the pressure at the outlet of the pump stand (P 0 & ambient pressure including the strau pressure of the muffler behind the pump stand) was on average 1050 hPa
  • Capacity at 300 hPa was about 1,000 m 3 / h
  • the characteristic curve of a two-stage rotary blower is shown in FIG. 2.
  • the second stage connected in series, has a 40% lower suction power at ambient pressure than the first stage on the suction side, depending on the gradation ratio. Between 1,000 hPa and 200 hPa, the suction power of the overall characteristic curve drops by about 10%. from
  • the evacuation pressure P Dc is achieved in that the valve 12C is closed in the above-mentioned time cycle of "0-8 sec", ie a pressure equalization or a partial pressure equalization between adsorber A and C takes place during this time evacuates the vacuum pump
  • the evacuation pressure P Dcs- ⁇ is achieved in that in the above-mentioned time cycle of "0 - 8 sec" on adsorber C only valve 12C is open, thereby adsorber C is evacuated to its final pressure.
  • Adsorber B is only Valve I IB opened, causing the air blower C10 to
  • the optimum starting pressure P es] for evacuation with a connected vacuum pump level is achieved relatively quickly by only using adsorber C in the time interval of "0 - 8 sec.” 98/01215. ,,.
  • valves 1 IB and 14B are open on adsorber B, whereby the air blower CIO fills the adsorber B with air and already produces O -, - rich gas.
  • the valves 12A and 15A are open fills the adsorber C via valves 15A, 17ABC and 13C.
  • the pressure in adsorber A drops rapidly to the desired optimal starting pressure P D - I re ' at ' v due to the vacuum pump VI 0 connected to valve 12A
  • Figure 6 gives the measured pressure curve at a starting pressure P I c;>. ] from 950 hPa again
  • the pumping station E) (series connection of radial blowers with rotary lobe compressors) with its low suction capacity at higher pressures has a relatively high pressure level in the suction process compared to type D (two-stage rotary lobe blowers)
  • the pumping station F (start with parallel operation of the radial blower and rotary lobe compressor) with its higher suction capacity at higher pressures has a relatively low pressure level in the extraction process compared to type D (two-stage rotary lobe blower), which suggests an unfavorable energy requirement
  • FIG. 7 shows the measured pressure curve at a starting pressure P Dcs.) Of 800 mbar. Compared to FIG. 6, the evacuation characteristics are not so far apart
  • the ambient pressure would be 1000 hPa and 50 hPa dynamic pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
PCT/EP1997/003434 1996-07-08 1997-07-01 Verfahren zur adsorptiven trennung von luft WO1998001215A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10504728A JP2000513997A (ja) 1996-07-08 1997-07-01 空気の吸着分離法
CZ9940A CZ4099A3 (cs) 1996-07-08 1997-07-01 Způsob adsorpčního dělení vzduchu
BR9710225A BR9710225A (pt) 1996-07-08 1997-07-01 Processo para a separação adsortiva de ar
PL97331017A PL331017A1 (en) 1996-07-08 1997-07-01 Absorptive air separating process
EP97929311A EP0910457A1 (de) 1996-07-08 1997-07-01 Verfahren zur adsorptiven trennung von luft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19627422A DE19627422A1 (de) 1996-07-08 1996-07-08 Verfahren zur adsorptiven Trennung von Luft
DE19627422.2 1996-07-08

Publications (1)

Publication Number Publication Date
WO1998001215A1 true WO1998001215A1 (de) 1998-01-15

Family

ID=7799211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003434 WO1998001215A1 (de) 1996-07-08 1997-07-01 Verfahren zur adsorptiven trennung von luft

Country Status (11)

Country Link
EP (1) EP0910457A1 (xx)
JP (1) JP2000513997A (xx)
KR (1) KR20000023604A (xx)
BR (1) BR9710225A (xx)
CA (1) CA2259660A1 (xx)
CZ (1) CZ4099A3 (xx)
DE (1) DE19627422A1 (xx)
PL (1) PL331017A1 (xx)
TW (1) TW380118B (xx)
WO (1) WO1998001215A1 (xx)
ZA (1) ZA976025B (xx)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921636A (zh) * 2019-12-26 2020-03-27 苏州班顺工业气体设备有限公司 节能型模块式变压吸附制氮系统及其控制流程
CN113982805A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997612A (en) * 1998-07-24 1999-12-07 The Boc Group, Inc. Pressure swing adsorption process and apparatus
CN110465158A (zh) * 2019-06-27 2019-11-19 杨皓 一种带热泵系统的变压吸附工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146189A1 (de) * 1981-11-21 1983-05-26 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum betrieb einer druckwechselanlage und nach diesem verfahren arbeitende druckwechselanlage
DE3639512A1 (de) * 1986-11-20 1988-06-01 Alcatel Hochvakuumtechnik Gmbh Vakuumpumpsystem mit einer waelzkolbenpumpe
EP0356861A2 (de) * 1988-09-01 1990-03-07 Bayer Ag Trennung von Gasgemischen durch Vakuum Swing Adsorption (VSA) in einem Zwei-Adsorber-System
FR2684023A1 (fr) * 1991-11-26 1993-05-28 Air Liquide Procede de production d'un gaz a teneur substantielle en oxygene.
DE4434101C1 (de) * 1994-09-23 1995-08-31 Linde Ag Druckwechsel-Adsorptionsverfahren
DE19602450C1 (de) * 1996-01-24 1997-02-13 Linde Ag Vakuumdruckwechseladsorptionsverfahren und -vorrichtung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413895A1 (de) * 1984-04-13 1985-10-17 Bayer Ag, 5090 Leverkusen Druckwechselverfahren zur adsorptiven trennung von gasgemischen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146189A1 (de) * 1981-11-21 1983-05-26 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum betrieb einer druckwechselanlage und nach diesem verfahren arbeitende druckwechselanlage
DE3639512A1 (de) * 1986-11-20 1988-06-01 Alcatel Hochvakuumtechnik Gmbh Vakuumpumpsystem mit einer waelzkolbenpumpe
EP0356861A2 (de) * 1988-09-01 1990-03-07 Bayer Ag Trennung von Gasgemischen durch Vakuum Swing Adsorption (VSA) in einem Zwei-Adsorber-System
FR2684023A1 (fr) * 1991-11-26 1993-05-28 Air Liquide Procede de production d'un gaz a teneur substantielle en oxygene.
EP0575591A1 (fr) * 1991-11-26 1993-12-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production d'un gaz a teneur substantielle en oxygene
DE4434101C1 (de) * 1994-09-23 1995-08-31 Linde Ag Druckwechsel-Adsorptionsverfahren
DE19602450C1 (de) * 1996-01-24 1997-02-13 Linde Ag Vakuumdruckwechseladsorptionsverfahren und -vorrichtung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921636A (zh) * 2019-12-26 2020-03-27 苏州班顺工业气体设备有限公司 节能型模块式变压吸附制氮系统及其控制流程
CN110921636B (zh) * 2019-12-26 2024-02-23 苏州班顺工业气体设备有限公司 节能型模块式变压吸附制氮系统及其控制流程
CN113982805A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法
CN113982805B (zh) * 2021-11-15 2023-04-25 中国第一汽车股份有限公司 一种起机系统及控制方法

Also Published As

Publication number Publication date
ZA976025B (en) 1998-02-02
EP0910457A1 (de) 1999-04-28
CZ4099A3 (cs) 1999-08-11
JP2000513997A (ja) 2000-10-24
BR9710225A (pt) 1999-08-10
CA2259660A1 (en) 1998-01-15
PL331017A1 (en) 1999-06-21
KR20000023604A (ko) 2000-04-25
TW380118B (en) 2000-01-21
DE19627422A1 (de) 1998-01-15

Similar Documents

Publication Publication Date Title
DE69627104T2 (de) Druckwechseladsorptionsverfahren mit einzigem Bett zur Gewinnung von Sauerstoff aus Luft
DE60129685T2 (de) Mehrbettiges druckwechseladsorptionsverfahren
DE69514190T2 (de) Verbessertes Druckwechseladsorptionsverfahren
DE60027338T2 (de) Vorrichtung und Verfahren zur Durchflusssteuerung bei der Druckwechseladsorption
DE69702991T2 (de) Vakuumwechseladsorptionsverfahren mit Energiezurückgewinnung
EP0157939B1 (de) Verfahren zur Gewinnung von Sauerstoff mit einem geringen Argon-Anteil aus Luft
KR100491684B1 (ko) 압력순환흡착을 이용한 산소농축방법 및 장치
DE69410402T2 (de) Vakuumdruckwechseladsorptionsprozess
EP2801392B1 (de) Inertisierungsverfahren sowie Anlage zur Sauerstoffreduzierung
EP0819461A1 (en) Single stage secondary high purity oxygen concentrator
DE19528561C2 (de) Druckwechsel-Adsorption für hochreinen Stickstoff unter Verwendung geregelter innerer Ströme
EP0158262A2 (de) Druckwechselverfahren zur adsorptiven Trennung von Gasgemischen
DE69815031T2 (de) Druckwechseladsorptionsverfahren mit gleichzeitiger Evakuierung des Adsorptions-betts an seinem oberen und an seinem unteren Ende
DE3941487C1 (xx)
EP0848981A1 (de) Druckwechselanlage zur Gewinnung von Sauerstoff aus der Luft und Verfahren zum Betrieb einer solchen
WO1990002599A1 (de) Verfahren zur gewinnung von stickstoff aus sauerstoff und stickstoff enthaltenden gasgemischen mittels druckwechseladsorption an kohlenstoff-molekularsieben
DE3007427A1 (de) Druckwechsel-adsorptionsverfahren und einrichtung zum abtrennen einer gasgemischkomponente aus einem mindestens zwei gase und wasserdampf enthaltenden gasgemisch
DE3144012C2 (xx)
EP0910457A1 (de) Verfahren zur adsorptiven trennung von luft
EP0038410B1 (de) Vorrichtung zur Trennung oder fraktionierenden Reinigung von Gasgemischen
DE69507227T2 (de) Verfahren zur herstellung eines gases mittels adsorption
CN1148996A (zh) 吸附法生产加压氧的工艺
US20240058744A1 (en) Method for Mobile Pressure Swing Adsorption Oxygen Production Device
DE3146189A1 (de) Verfahren zum betrieb einer druckwechselanlage und nach diesem verfahren arbeitende druckwechselanlage
JP3378949B2 (ja) 圧力変動式空気分離装置及びその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97196242.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN CZ JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997929311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09214243

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2259660

Country of ref document: CA

Ref document number: 2259660

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV1999-40

Country of ref document: CZ

Ref document number: 1019997000051

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997929311

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-40

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997000051

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997929311

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1999-40

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1019997000051

Country of ref document: KR