WO1997049728A1 - Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline - Google Patents

Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline Download PDF

Info

Publication number
WO1997049728A1
WO1997049728A1 PCT/US1997/011018 US9711018W WO9749728A1 WO 1997049728 A1 WO1997049728 A1 WO 1997049728A1 US 9711018 W US9711018 W US 9711018W WO 9749728 A1 WO9749728 A1 WO 9749728A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
beta
cells
stf
transcription factor
Prior art date
Application number
PCT/US1997/011018
Other languages
English (en)
Inventor
Kevin G. Ferreri
Patrick Soon-Shiong
Original Assignee
Vivorx Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivorx Pharmaceuticals, Inc. filed Critical Vivorx Pharmaceuticals, Inc.
Priority to JP10503496A priority Critical patent/JP2000513227A/ja
Priority to CA002258499A priority patent/CA2258499A1/fr
Priority to AU34104/97A priority patent/AU724745B2/en
Priority to EP97930221A priority patent/EP0929573A1/fr
Publication of WO1997049728A1 publication Critical patent/WO1997049728A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells

Definitions

  • the present invention relates to methods and compositions useful for the proliferation of pancreatic islets of Langerhans as a therapy for diabetes mellitus, optionally including their delivery encapsulated within microcapsules .
  • invention methods result in the expression of certain characteristic intracellular proteins (e.g., HNF3 beta, NKX 6.1, STF-1, or beta2) whose activity regulates the transcription of the insulin gene.
  • Insulin-dependent diabetes is characterized by the loss of insulin-producing beta cells from the pancreatic islets of Langerhans.
  • Standard therapy has included parenteral administration of insulin (either bovine or porcine or recombinant human) by means of multiple daily injections or an indwelling catheter-and- pump. This treatment, however, can only temporarily delay the pathological complications of the disease.
  • Fetal pancreatic islets contain many beta stem cells which can mature after transplantation and which are less subject to rejection by the recipient, but they cannot be obtained in large enough amounts to serve as a practical therapeutic approach. Transplantation of individual cells or cellular communities (including human or porcine pancreatic islets) will depend on an inexhaustible supply of functional living cells which can be used in experimental models as well as in human therapy.
  • the endocrine pancreas consists primarily of three cell types which are distinguished by their selective synthesis and secretion of the peptide hormones glucagon (from A-cells) , insulin (from B-cells) , and somatostatin (from D-cells) .
  • these pancreatic islet cells may retain regulatory pathways which originated in the gut to direct expression of the same peptide hormone genes.
  • the fetal pancreas is populated by pluripotent stem cells which can co-express somatostatin, insulin, and glucagon. As these stem cells mature, their endocrine hormone repertoire becomes restricted to expression from a single gene instead of three genes simultaneously.
  • tissue-specific promoter element TSE
  • the somatostatin TSEs contain a structural feature which is generally recognized by homeobox-type proteins ] Leonard et al., MOLECULAR ENDOCRINOLOGY vol. 7:1275-1283 (1993)] .
  • the homeobox is a sequence specific DNA-binding motif present in numerous developmentally regulated transcription factors, some of which are thought to be required for the expression of lineage-specific genes [Guz, et al., Development vol. 121:11-18 (1995) ] .
  • the overall rate of insulin secretion obtained from proliferated insulin-secreting mammalian cells can be partially determined by the activity of certain intracellular transcription factors (e.g., HNF3- beta, STF-l, NKX 6.1 or Beta2) which exert direct effects upon the insulin promoter and thereby alter its tran ⁇ criptional activity.
  • HNF3- beta a transcription factor that exert direct effects upon the insulin promoter and thereby alter its tran ⁇ criptional activity.
  • This effect is sufficiently pronounced in proliferated insulin-secreting cells that measurable amounts of these transcription factors can be detected using an appropriate assay.
  • methods for the isolation of insulin-secreting cells from mammalian islet cells comprising: culturing said islet cells under conditions which promote insulin secretion, and isolating those cells which produce one or more transcription factors associated with insulin production.
  • Culturing conditions suitable for use herein can be readily identified by those of skill in the art.
  • Ham's F12 medium GibcoBRL #317865-035
  • fetal bovine serum in the range of about 2-4% fetal bovine serum and in the range of about 10-200 ⁇ g/ml of bovine pituitary extract
  • media containing 0-400 ng/ml of insulin, 0-100 ng/ml of placental lactogen, 0-10 micromolar hydrocortisone, 0-5 mM nicotinamide, 0-200 U/ml of hepatic growth factor, triiodothyronine, 1-5 ⁇ g/ml of apotransferrin, 20-500 ⁇ g/ml of hypothalamic extract, 0-2% bovine serum albumin, and the like.
  • homeobox-type transcription factor or “transcription factor protein” refers to a protein which is able to bind to native promoter regions of pancreatic islet hormone genes and thereby modulate mRNA transcription.
  • homeobox refers to a domain of about 55-65 amino acids within the transcription factor which binds to specified nucleotide sequences within the given gene promoter region.
  • the homeobox domain of the transcription factor preferably binds to either one or both of the "t.issue-s_pecific promoter element (s) " (TSEs) promixal to the insulin promoter.
  • TSEs tissue-s_pecific promoter element promixal to the insulin promoter.
  • the transcription factors have the ability to transactivate the gene expression of pancreatic hormones.
  • the transcription factor STF-l (also known as IDX-1, IPF-1, and PDX-1) accounts for the predominant TSE-binding activity in nuclear extracts from insulin- and somatostatin-producing pancreatic islet cells, supporting the proposition that this protein plays a primary role in regulating peptide hormone expression and in specifying endocrine cell lineage in the developing pancreas. Transcription factors are uniformly expressed in B-cells and the D-cells of the endocrine pancreas, and are not expressed in exocrine cells. Those of skill in the art can readily identify a variety of transcription factors associated with insulin production, e.g., NKX 6.1, HNF3-beta, STF-l, Beta-2, and the like.
  • the phrase uniformly expressed means that naturally occurring RNA encoding the transcription factor protein can be detected in each of the pancreatic islet cell types which produce insulin.
  • STF-l can be used as an identifying marker to detect specific functional activity of the insulin promoter, concurrent with insulin expression in the beta cells of pancreatic islets.
  • This STF-l factor can be used as a probe, not only to optimize cell culture media in terms of developing a media which provides the highest STF-l activity, but also provides a probe for identifying STF-l cells, and thus insulin-producing cells.
  • STF-l is a member of the homeobox class of transcription factors and is required for pancreatic organogenesis [Johnson, et al . , NATURE 371: 606-609
  • STF-l In adult beta and delta cells, STF-l is required for the hallmark phenotype of these cells, the expression of insulin in beta cells [Peers et al . , MOLECULAR ENDOCRINOLOGY 7:1798-1806 (1994)] and somatostatin in delta cells [Leonard et al . , MOLECULAR ENDOCRINOLOGY 7:1275-1283 (1993)] .
  • STF-l binds to the CT2 box in the human insulin promoter [Petersen et al. , PROC. NAT. ACAD. SCI. USA 91:10465-10469 (1994)] resulting in increased transcription of the insulin gene.
  • transcription factors e.g., STF-l, HNF3 beta, NKX 6.1, Beta2, and the like
  • STF-l can be utilized as both markers for mature islet cells and as a requirement for insulin expression.
  • HNF3 beta can be utilized as both markers for mature islet cells and as a requirement for insulin expression.
  • culture conditions can be optimized based upon the expression levels and activities of such transcription factors in conjunction with measurements of glucose-responsive insulin release.
  • methods for proliferating insulin-secreting cells comprising: culturing mammalian islet cells under conditions which promote insulin secretion, isolating those cells which produce one or more transcription factors associated with insulin production, and culturing the isolated cells under conditions which promote production of one or more of said transcription factors.
  • methods for optimizing the insulin-secreting ability of mammalian islet cells comprising: culturing said islet cells under a variety of culturing conditions which promote insulin secretion, and selecting those conditions which stimulate production of elevated levels of one or more transcription factors associated with insulin production.
  • Porcine and human islets are isolated by standard techniques.
  • the isolated islets are cultured in standard culture vessels utilizing commercial cell culture media with the exception that, in contrast to standard cell culture where oxygen tension, glucose levels and pH fluctuate between high and very low levels, in accordance with the present invention, islet cells are proliferated at physiological levels of oxygen, glucose and pH.
  • Islets proliferated in this manner can be defined by the STF-l, HNF3 beta, NKX 6.1, and Beta2 protein levels as determined by Western blot analysis.
  • the presence of STF-l protein can be used to characterize the proliferating cells.
  • Cultures of proliferated islets (10 cm plates) at passage 1 and passage 4 are extracted at 65°C with 0.5 ml each Cell Lysis Solution (1% sodium dodecyl sulfate, 1 mM EDTA, 1 mM 2- mercaptoethanol, 100 mM KC1, 20 mM Tris HC1, pH 7.4) .
  • Equivalent amounts of each extract (10 micrograms protein) are electrophoresed on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose. The blot is probed with an STF-l specific antibody [Peers et al.
  • This example describes the quantitation of STF-l mRNA levels for use as specific probes for beta cells.
  • the proliferated beta cells from representative islet cultures are extracted with TriReagent (Sigma #T-9424) and both RNA and protein samples are prepared.
  • the levels of STF-l mRNA are determined by quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) utilizing primers that distinguish the correctly spliced message, e.g.,
  • This example demonstrates the use of the level and activity of the STF-l protein to optimize beta cell culture medium.
  • the interaction of STF-l with the CT2 element in the insulin promoter is augmented in insulinoma cells following glucose stimulation implying that both the level and the state (phosphorylation, glycosylation etc.) of the STF-l protein is important for insulin expression.
  • Islet cell culture conditions are optimized in part based on the expression level and glucose-dependent modification of the STF-l protein.
  • the levels of STF-l protein are determined in the protein extracts by Western blot analyses using specific antibodies [Peers et al . , MOLECULAR ENDOCRINOLOGY 8:1798-1806 (1994)] and compared with control protein and other markers.
  • STF-l protein levels normalized for cell number remain constant.
  • the glucose-dependent modification of STF-l is examined in cell extracts by electrophoretic mobility shift assays, DNA footprinting experiments, and by isoelectric focusing. The results of the assays are compared with measurement of glucose-responsive insulin release as determined with Static Glucose Stimulation assays and used to optimize the culture conditions . This is the first report of the use of the state and level of STF-l protein to optimize beta cell culture conditions.
  • islet cells have been identified in representative cultures by in situ hybridization with a STF-l probe.
  • Co-localization of STF-l and other beta-cell markers in the cultured cells allows the morphological identification of insulin-producing cells leading to the sub-culturing of homogeneous beta cell clones. Physical isolation of these clones may be possible by robotic instrumentation, including the use of laser directed splicing of the cell and retrieval of these clones from the cell culture vessel for further subculture. This technique of using STF-l as a probe has never been described to confirm specific beta cell selection and to optimize media for beta cell selection.
  • This example describes means to regulate the STF-l promoter.
  • High level expression of STF-l is believed to be required for the beta cell phenotype.
  • an STF-l promoter fragment has been shown to direct the expression of a beta-galactosidase reporter gene predominantly to the pancreatic beta cells. It is possible to introduce a similar reporter construct into proliferating beta cell populations and monitor the effect of the media components in order to identify factors that maximize transcription from the STF-l promoter. Reporter gene expression data can be correlated with other data and conditions optimized for glucose-dependent insulin release.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne des procédés destinés à l'isolation et à la prolifération de cellules mammaliennes sécrétant de l'insuline. Les procédés de l'invention comprennent l'isolation de cellules sécrétant de l'insuline et la préparation d'une culture primaire dans laquelle de l'insuline est sécrétée, sous la régulation d'un ou de plusieurs facteurs de transcription promoteurs de l'insuline, comme par exemple, NKX 6.1, HNF3-beta, STF-1, Beta 2, et autres facteurs similaires. Ces cellules de prolifération sécrétant de l'insuline se distinguent de toutes les autres cellules en ce qu'elles sont issues d'une prolifération et qu'elles ont des niveaux intracellulaires mesurables d'un ou de plusieurs facteurs de transcription associés à la production d'insuline, ainsi que peuvent facilement le démontrer des essais appropriés.
PCT/US1997/011018 1996-06-24 1997-06-24 Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline WO1997049728A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10503496A JP2000513227A (ja) 1996-06-24 1997-06-24 インスリン分泌細胞の単離および増殖方法
CA002258499A CA2258499A1 (fr) 1996-06-24 1997-06-24 Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline
AU34104/97A AU724745B2 (en) 1996-06-24 1997-06-24 Methods for the isolation and proliferation of insulin-secreting cells
EP97930221A EP0929573A1 (fr) 1996-06-24 1997-06-24 Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2080196P 1996-06-24 1996-06-24
US60/020,801 1996-06-24

Publications (1)

Publication Number Publication Date
WO1997049728A1 true WO1997049728A1 (fr) 1997-12-31

Family

ID=21800651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/011018 WO1997049728A1 (fr) 1996-06-24 1997-06-24 Procedes destines a l'isolation et a la proliferation de cellules secretant de l'insuline

Country Status (5)

Country Link
EP (1) EP0929573A1 (fr)
JP (1) JP2000513227A (fr)
AU (1) AU724745B2 (fr)
CA (1) CA2258499A1 (fr)
WO (1) WO1997049728A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052936A1 (fr) * 2000-12-28 2002-07-11 Japan Science And Technology Corporation Agents de conservation destines a des cellules lyophilisees
JP2003500457A (ja) * 1999-06-01 2003-01-07 サラ ファーバー, 非ランゲルハンス島組織における調節された膵臓ホルモンを誘導する方法
US8778899B2 (en) 1999-06-01 2014-07-15 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US9982236B2 (en) 2013-06-13 2018-05-29 Orgenesis Ltd. Cell populations, methods of transdifferentiation and methods of use thereof
US10179151B2 (en) 2014-12-30 2019-01-15 Orgenesis Ltd. Methods of transdifferentiation and methods of use thereof
US10975354B2 (en) 2017-05-08 2021-04-13 Orgenesis Ltd. Transdifferentiated cell populations and methods of use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508492A (ja) * 2005-09-15 2009-03-05 バーンハム インスティトゥート フォー メディカル リサーチ インスリンプロモーター活性を調節する化合物のスクリーニング方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BR. J. PHARMACOL., 1991, Vol. 103, LACEY et al., "Selective Stimulation of Glucagon Secretion by Beta2-Adrenoceptors in Isolated Islets of Langerhans of the Rat", pages 1824-1828. *
J. MOL. ENDOCRINOL., 1990, Vol. 5, LACEY et al., "Differential Effects of Beta-Adrenergic Agonists on Insulin Secretion from Pancreatic Islets Isolated from Rat and Man", pages 49-54. *
PROC. NATL. ACAD. SCI. U.S.A., October 1994, Vol. 91, PETERSEN et al., "Transcriptional Regulation of the Human Insulin Gene is Dependent on the Homeodomain Protein STF1/IPF1 Acting Through the CT Boxes", pages 10465-10469. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500457A (ja) * 1999-06-01 2003-01-07 サラ ファーバー, 非ランゲルハンス島組織における調節された膵臓ホルモンを誘導する方法
JP2011057716A (ja) * 1999-06-01 2011-03-24 Sarah Ferber 非ランゲルハンス島組織における調節された膵臓ホルモンを誘導する方法
US8119405B2 (en) 1999-06-01 2012-02-21 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US8778899B2 (en) 1999-06-01 2014-07-15 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
US9481894B2 (en) 1999-06-01 2016-11-01 Tel Hashomer Medical Research Infrastructure And Services Ltd. Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
WO2002052936A1 (fr) * 2000-12-28 2002-07-11 Japan Science And Technology Corporation Agents de conservation destines a des cellules lyophilisees
US9982236B2 (en) 2013-06-13 2018-05-29 Orgenesis Ltd. Cell populations, methods of transdifferentiation and methods of use thereof
US10947509B2 (en) 2013-06-13 2021-03-16 Orgenesis Ltd. Cell populations, methods of transdifferentiation and methods of use thereof
US10179151B2 (en) 2014-12-30 2019-01-15 Orgenesis Ltd. Methods of transdifferentiation and methods of use thereof
US11617769B2 (en) 2014-12-30 2023-04-04 Orgenesis Ltd. Methods of transdifferentiation and methods of use thereof
US10975354B2 (en) 2017-05-08 2021-04-13 Orgenesis Ltd. Transdifferentiated cell populations and methods of use thereof

Also Published As

Publication number Publication date
AU724745B2 (en) 2000-09-28
JP2000513227A (ja) 2000-10-10
AU3410497A (en) 1998-01-14
EP0929573A1 (fr) 1999-07-21
CA2258499A1 (fr) 1997-12-31

Similar Documents

Publication Publication Date Title
Zhou et al. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells.
Labriola et al. Beneficial effects of prolactin and laminin on human pancreatic islet-cell cultures
AU2003302702B2 (en) Cultured human pancreatic islets, and uses thereof
US9745554B2 (en) Method of improving cell proliferation of pancreatic progenitor cells in a pancreatic cell culture
Zambre et al. Inhibition of human pancreatic islet insulin release by receptor-selective somatostatin analogs directed to somatostatin receptor subtype 5
JP2002538779A (ja) 膵臓細胞前駆細胞、それらに関する方法及び利用
Arensburg et al. Expression of steroidogenic genes in maternal and extraembryonic cells during early pregnancy in mice
US11613736B2 (en) Isolation of bona fide pancreatic progenitor cells
JP5785287B2 (ja) 脂肪組織由来細胞の調製方法
US7527971B2 (en) Adult stem cell lines
Schmied et al. Maintenance of human islets in long term culture
Fagan et al. Insulin secretion is inhibited by subtype five somatostatin receptor in the mouse
AU724745B2 (en) Methods for the isolation and proliferation of insulin-secreting cells
Lupsa et al. Skin‐homing CD8+ T cells preferentially express GPI‐anchored peptidase inhibitor 16, an inhibitor of cathepsin K
US20150056173A1 (en) Beta cell growth and differentiation
US20100330043A1 (en) Gpr125 as a marker for stem and progenitor cells and methods use thereof
Bouckenooghe et al. Modulation of specific beta cell gene (re) expression during in vitro expansion of human pancreatic islet cells
Taguchi et al. Feline adipose derived multipotent stromal cell transdifferentiation into functional insulin producing cell clusters
WO2007075956A2 (fr) Procede de production et d’utilisation de cellules endocrines pancreatiques
Basta et al. Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes
Nagai et al. Effect of GLP-1 (glucagon-like peptide 1: 7-36 amide) on porcine pancreatic endocrine cell proliferation and insulin secretion
Sabek et al. OP-142 gene expression profile of nonfunctional human pancreatic islets: Predictors of transplant failure?
US20210369788A1 (en) Production of canine pancreatic islets from an immature pancreas
Tai et al. Isolating Human Islets of Langerhans Causes Loss of Decay Accelerating Factor (CD55) on β-Cells
Huang IDENTIFYING MECHANISMS OF INSULIN PRODUCTION AND SECRETION IN SMALL AND LARGE RAT ISLETS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2258499

Country of ref document: CA

Ref country code: CA

Ref document number: 2258499

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997930221

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997930221

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997930221

Country of ref document: EP