WO1997045363A1 - Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x echangee au lithium - Google Patents

Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x echangee au lithium Download PDF

Info

Publication number
WO1997045363A1
WO1997045363A1 PCT/FR1997/000878 FR9700878W WO9745363A1 WO 1997045363 A1 WO1997045363 A1 WO 1997045363A1 FR 9700878 W FR9700878 W FR 9700878W WO 9745363 A1 WO9745363 A1 WO 9745363A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
zeolite
hydrogen
pressure
adsorption zone
Prior art date
Application number
PCT/FR1997/000878
Other languages
English (en)
Inventor
Olivier Bomard
Jérôme JUTARD
Serge Moreau
Xavier Vigor
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP97925101A priority Critical patent/EP0840708B1/fr
Priority to DE69700400T priority patent/DE69700400T2/de
Priority to AU30359/97A priority patent/AU3035997A/en
Priority to US08/983,073 priority patent/US5912422A/en
Publication of WO1997045363A1 publication Critical patent/WO1997045363A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4067Further details for adsorption processes and devices using more than four beds using ten beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a process for the purification of hydrogen-based gas mixtures polluted by various impurities, including carbon monoxide and at least one other impurity chosen from carbon dioxide and linear, branched or cyclic, saturated hydrocarbons. or unsaturated in C j -C ⁇ -
  • the process of the invention allows in particular the improvement of conventional processes for the separation of hydrogen of the PSA type, or processes by adsorption by variation of the pressure, using zeolites as adsorbent.
  • PSA processes have proved to be very effective for the separation of gas mixtures and in particular for the production of hydrogen or pure oxygen from gas mixtures contaminated with various impurities.
  • PSA processes take advantage of the adsorption selectivity of a given adsorbent for one or more of the contaminating substances in the gas mixture to be purified.
  • adsorbent The choice of adsorbent is delicate: it depends on the one hand on the nature of the mixture to be treated. In general, the adsorbents are selected according to their ease of adsorbing and desorbing a particular compound. In fact, PSA processes involve the use of pressure cycles. In a first phase, the adsorbent bed ensures the separation of at least one constituent of the mixture by adsorption of this constituent on the adsorbent bed. In a second phase, the adsorbent is regenerated by lowering the pressure. With each new cycle it is therefore essential that the desorption is effective and complete, so as to find a regenerated state identical to each new cycle. It is clear however that this facility for adsorbing and then desorbing a particular constituent of a gas mixture is a function of the particular operating conditions of the PSA process envisaged and in particular of the conditions of temperature and pressure.
  • PSA processes intended for the production of oxygen which generally operate at adsorption pressures lower than 5.10 Pa
  • PSA processes intended for the production of hydrogen which can involve adsorption pressures between 5.10 and 70.10 5 Pa.
  • the mixture to be purified generally comprises more than one impurity, it is desirable that the adsorbent can adsorb and then desorb, not just one, but several of these impurities.
  • the profile and the selectivity of adsorption of a given constituent are often influenced by the presence, in the gas mixture, of other impurities, and this, for example, due to a possible competition or poisoning adsorbent.
  • the invention relates to a process for the separation of the hydrogen contained in a gaseous mixture polluted by carbon monoxide and containing at least one other impurity chosen from the group consisting of carbon dioxide and linear hydrocarbons, branched or cyclic, saturated or unsaturated in CI ⁇ C Q , comprising bringing into contact in an adsorption zone the gaseous mixture to be purified with at least:
  • a second adsorbent which is a zeolite of the faujasite type exchanged at least 80% with lithium and whose Si / Ai ratio is less than 1.5, to eliminate at least carbon monoxide (CO).
  • the process of the invention is more particularly suitable for the removal of carbon monoxide from gaseous mixtures based on hydrogen containing, in addition, other impurities such as carbon dioxide or linear, branched or hydrocarbons. cyclic, saturated or unsaturated in C ⁇ -Cg, of the methane, ethane, butane, propane, benzene, toluene or xylene type. Likewise, the nitrogen gas optionally present in the gas mixture is separated from the hydrogen by adsorption on the particular adsorbent bed, used in the process of the invention.
  • the purity of the hydrogen resulting from the process of the invention is at least 99.999%, when the gas mixture to be purified comprises more than 45% of hydrogen gas. This purity can however up to 99.999999% or more, depending on the operating conditions involved and the amount of adsorbent used 1.
  • the purification of a gaseous mixture containing less than 45% of hydrogen gas is not desirable, since it would require an excessive quantity of adsorbent and an excessive size of the installations so as to be able to reach an acceptable purity. It goes without saying that the greater the proportion of hydrogen in the starting gas mixture, the more the hydrogen recovered in exit from the adsorption zone will be pure. It is considered that the process of the invention leads to the best results when the percentage of hydrogen in the gas mixture to be treated is at least 70%.
  • the temperature of the incoming gas mixture and the adsorption zone is not critical and is generally kept constant during the adsorption phase of the impurities. Usually this temperature is between 0 and 50 ° C, preferably between 30 and 45 ° C during 1 adsorption.
  • the first and second adsorbents are arranged so that the gas mixture passes through them one after the other. It has been found that the efficiency of the separation can be optimized by placing, at the entrance to the adsorption zone, the selective adsorbent at least carbon dioxide and C 1 -C 6 hydrocarbons and, at the outlet of the adsorption zone, the lithium faujasite type adsorbent intended to remove at least CO.
  • the selective adsorbent of at least carbon dioxide and C1-C6 hydrocarbons it is possible to use an activated carbon, a prefilter carbon, a silica gel or a mixture of these different adsorbents in any proportion.
  • an activated carbon a prefilter carbon, a silica gel or a mixture of these different adsorbents in any proportion.
  • silica gels which can be used according to the invention are those commonly used in the art. These gels are commercially available, in particular from SOLVAY (sorbead gels). Prefiltered coals are active coals with high porosity and low density. Active carbon and prefilter carbon are for example marketed by NORIT, CARBOTECH, CECA, PICA or CHEMVIRON.
  • the second adsorbent is advantageously a zeolite of faujasite type exchanged at least 80% with lithium.
  • the faujasite type zeolites also designated in the art by zeolite X are crystalline zeolites of formula: (0.9 ⁇ 0.2) M 2 / n 0: A1 2 0 3 : 2.5 ⁇ 0.5 Si0 2 : yH 2 0 in which M represents an alkali or alkaline earth metal, n is the valence of the metal M, and y takes any value between 0 and 8 depending on the nature of M and the degree of hydration of the zeolite.
  • Document US-A-2,882,244 relates to this particular type of zeolite.
  • the X zeolites whose Si / Al ratio is less than 1.5 are selected.
  • this ratio is between 1 and 1.2, it being understood that a value of 1 is more particularly recommended.
  • X zeolites are available commercially in particular from the following companies: Bayer, UOP, CECA, Ueticon, supplementary Davison or Tosoh.
  • the 13X zeolites offered by these distributors are, in particular, suitable as starting materials for the preparation of X zeolites exchanged with lithium usable according to the invention as adsorbent.
  • the process of the invention is not limited to the use of faujasites on the market.
  • the use of a zeolite of greater or lesser porosity than that of industrial X zeolites currently available commercially is not, for example, not excluded.
  • the zeolites can be in the form of crystalline powders or agglomerates.
  • the zeolite agglomerates are obtained in a conventional manner by using conventional agglomeration methods.
  • the agglomerated zeolite can, for example, be prepared by mixing a crystalline zeolite powder with water and a binder (generally in the form of a powder), then spraying this mixture onto agglomerates of zeolites acting as a germ. agglomeration.
  • the zeolite agglomerates are subjected to a continuous rotation on themselves. This can be achieved by placing the agglomerates in a reactor rotating on itself around an axis of rotation, said axis of rotation being preferably inclined relative to the vertical direction.
  • agglomerates in the form of beads are obtained.
  • the agglomerates thus obtained are then subjected to baking at a temperature between approximately 500 and 700 ° C., preferably at a temperature in the region of 600 ° C.
  • a binder a person skilled in the art may use a clay such as kaolin, silica or alumina.
  • the agglomerated zeolite thus obtained which comprises a binder, can be used for the preparation of agglomerated zeolite without binder also usable in the process of the invention.
  • the zeolites X which can be used as an adsorbent are subjected to a subsequent treatment aimed at introducing lithium cations into the crystal lattice. This is achieved by ion exchange, part of the cations M initially contained in the zeolite being exchanged with lithium cations.
  • the combination of the first and second adsorbents described above leads to an improvement in the purification of the gaseous mixture of hydrogen and in the overall productivity, when the second adsorbent is a zeolite of faujasite X type exchanged at least 80% with lithium.
  • the term “zeolite exchanged at least 80% with lithium” means a zeolite of which at least 80% of the units A10 2 ⁇ are associated with lithium cations.
  • the zeolites of faujasite type exchanged with more than 90% with lithium are more particularly preferred.
  • the expression activation of a zeolite is understood to mean its dehydration, that is to say the elimination of the water of hydration contained in the zeolite.
  • the partial pressure of the water in the gas in contact with the zeolite is made to be less than approximately 4.10 4 Pa, preferably 1.104 Pa after activation.
  • Methods for activating zeolites are known in the art. One of these methods is to subject the zeolite to a pressure of about
  • the zeolite can be activated by maintaining it under a vacuum of about 1.10 4 Pa or less while heating the zeolite to a temperature of about 300 to 650 ° C without any need to resort to gas sweeping inert.
  • Another alternative consists in activating the zeolite by a process using microwaves, as described in the document US-A-
  • the first and second adsorbents in any weight ratio.
  • a weight ratio of the first selective adsorbent at least carbon dioxide and C ⁇ - hydrocarbons - Cg to the second zeolite adsorbent between 10/90 and 85/15 is particularly advantageous from the point of view of the efficiency of the purification and of the overall productivity.
  • this ratio is ideally between 50/50 and 80/20, preferably between 60/40 and 80/20.
  • the treatment cycle to which each bed of adsorbent is subjected comprises the steps consisting in: a) passing a gaseous mixture based on hydrogen polluted by carbon monoxide and containing at least one other impurity chosen from the group consisting of dioxide carbon and Cj-Cg hydrocarbons in an adsorption zone comprising, at least:
  • a first adsorbent bed consisting of a first adsorbent selective for at least carbon dioxide and Cj-Cg hydrocarbons and:
  • a second adsorbent bed consisting of a second adsorbent which is a faujasite type zeolite exchanged at least 80% with lithium, the Si / Ai ratio of which is less than 1.5 to eliminate at least the CO; b) desorbing the carbon monoxide and the other impurity (s) adsorbed on said first and second adsorbents by setting up a pressure gradient and gradually lowering the pressure in said adsorption zone so as to recover the carbon monoxide and the other one or more impurities through the entry of said adsorption zone; and c) raising the pressure of said adsorption zone by introducing a stream of pure hydrogen through the outlet. of the adsorption zone.
  • step a) it is preferable to opt for the purification of a gaseous mixture containing more than 70% of hydrogen and comprising as impurities nitrogen, methane, CO and C0 2 , which are will bring into contact with a bed of adsorbent consisting of activated carbon and faujasite exchanged at more than 90% with lithium, the weight ratio of activated carbon to faujasite being preferably between 50/50 and 80/20.
  • the adsorption zone is maintained at a temperature between 0 and 80 ° C.
  • the capacity of the adsorbent beds is limited by the maximum size that can be used either because of the mechanical strength of the individual particles of adsorbent, or because of the maximum size that can be used for shipping containers containing adsorbents. This is why the operation of 4 to 10 beds of adsorbents arranged in parallel is common in the art.
  • the decompression and compression phases of the various adsorbent beds are synchronized: it is in particular advantageous to introduce pressure equalization steps between two adsorbent beds, one of these two beds being in the decompression phase, the other in the recompression phase.
  • FIG. 1 schematically represents an installation for implementing a PSA process for the production of hydrogen, comprising ten beds of adsorbent 1 to 10.
  • FIG. 2 represents the evolution of the pressure within an adsorption zone during a treatment cycle for the purification of a gaseous mixture based on hydrogen by a PSA process.
  • FIG. 3 represents the variations in the adsorption capacity of various zeolites as a function of the adsorption pressure.
  • FIG. 4 represents variations in the adsorption capacity of a type X zeolite exchanged with lithium according to the invention (curve LiX) and of a conventional zeolite 5A (curve 5A) as a function of the adsorption pressure.
  • the pipes 11, 12 and 13 are each connected to a source of gas mixture 14 by means of a single pipe 15 into which the pipes 11, 12 and 13 open. At the outlet of the adsorption zones
  • the purified hydrogen is recovered via the pipes
  • the lines 16 to 18 all open into a line 19 which brings the purified hydrogen, coming from the lines 16, 17 and 18, to a storage enclosure 21 via the line 19. Part of the hydrogen produced is taken from line 19 via line 22 and brought to the adsorbent bed 10 which is then at the end of the recompression phase: a pressure equalization is thus carried out between the adsorbent beds 1 to 3 during the production phase and bed "adsorbent 10 which is the end of the treatment cycle.
  • a pressure equalization is carried out on the adsorbent beds 4 and 8 on the one hand and 4 and 9 on the other hand.
  • the respective inlets of the adsorption zones 4, 8 and 9 are hermetically closed.
  • the adsorbent beds 4 and 8 are placed in communication with one another via a line 23.
  • the adsorbent bed 4 entering the decompression phase is still under a relatively high hydrogen pressure, while the bed adsorbent 8 which is at the start of the recompression phase is at a much lower pressure.
  • a pressure equalization is carried out between the adsorbent beds 5 and 7, these two beds being placed in communication with each other by means of a pipe 26.
  • the hydrogen flows from the adsorbent bed 5 to the adsorbent bed 7.
  • the adsorption bed 6 is also in the decompression phase. Its pressure is lowered simply by evacuation of the hydrogen via the inlet 28 of the adsorption zone 6. It is at this decompression stage that the desorption of the impurities adsorbed on the adsorbent bed takes place.
  • the percentages are volume percentages.
  • FIG. 2 shows the evolution of the pressure within a bed of adsorbent over time.
  • the adsorbent beds are filled with activated carbon on the one hand and a zeolite on the other hand.
  • the activated carbon used is of the type generally used in the various processes for the separation of hydrogen by adsorption by variation of the pressure (PSA / H 2 ).
  • the zeolite is zeolite 5A sold by the company Procatalyse under the reference 5APS.
  • the zeolite is zeolite 5A sold by the company Bayer under the reference Baylith K.
  • the zeolite used is a zeolite X exchanged at 90% with lithium.
  • the Baylith K R (Bayer) and 5APS R (Procatalysis) zeolites are A zeolites containing as exchangeable cations ions Na + and Ca2 +, and, having pores with a size of approximately 5A.
  • p 5APS zeolite which is in the form of extrudates with a diameter of 1.6 mm and 3.2 mm, is further characterized by:
  • the zeolite X exchanged at 90% with lithium is prepared in the following manner from a faujasite 13X having an Si / Ai ratio of 1.25 and containing approximately 20% of binder:
  • this curve represents the variations in the adsorption capacity of the nitrogen expressed in cm3 per gram as a function of the adsorption pressure (expressed in bars).
  • the zeolites Before being placed in the various adsorption zones, the zeolites are activated under vacuum at 400 ° C. for 8 hours.
  • the activated carbon is placed at the inlet of the adsorption zone, the zeolite of the faujasite type exchanged with lithium being arranged at the outlet of said adsorption zone so that these two adsorbents form two distinct superposed layers.
  • the temperature of the adsorbent beds is maintained at 40 ° C.
  • Productivity P is defined here as the ratio of the volume of hydrogen produced, measured under normal conditions of temperature and pressure, per hour and per
  • the yield R of the process corresponds to the ratio of the volume of pure hydrogen produced, measured under normal temperature and pressure conditions, to the volume of hydrogen contained in the effluent gas to be purified, also measured under normal temperature and pressure conditions. pressure.
  • the yields and productivity reported in Tables 2 and 3 are relative yields and productivity.
  • comparative example 1 was chosen as a reference, that is to say that for this example the relative yields and productivity were fixed at 100: this example illustrates more precisely the purification of the mixture Ml described in table 1 in the presence of an adsorbent consisting of 70% by weight of activated carbon and 30% by weight of 5APS zeolite, the desorption pressure being
  • R r and P r ⁇ Rci Pc-, where R and P are as defined above and RC ⁇ and Pcj are respectively the actual yield and productivity determined in the case of comparative example 1.
  • the points concerning the zeolite exchanged with lithium of the 0 examples 1 to 3 are marked D; the points concerning the zeolite A Baylith K R (Bayer) are marked o and the points concerning the zeolite A 5APS.R (Procatalyse) are marked ⁇ .
  • the CO respiration of a zeolite X exchanged with lithium according to the invention is much higher than that of a zeolite of type 5A. classic.
  • the respiration of a zeolite is defined as the difference between the adsorption capacity of a pure gas by this zeolite at high partial pressure, or adsorption pressure and the adsorption capacity of said gas at pressure low, or desorption pressure, by said zeolite.
  • the amount of CO adsorbed in the adsorption phase is approximately 18.3 Ncm 3 / g and approximately 11.1 Ncm 3 / g in the desorption phase, which corresponds to a breath
  • the quantity of CO adsorbed in the adsorption phase is approximately 35.9 Ncm / g and approximately 25.2 Ncm / g in the desorption, which

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Procédé pour la séparation de l'hydrogène contenu dans un mélange gazeux pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C1-C8, comprenant la mise en contact dans une zone d'adsorption du mélange gazeux à purifier avec, au moins un premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C1-C8 et un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80 % au lithium dont le rapport Si/Al est inférieur à 1,5 pour éliminer au moins le monoxyde de carbone (CO).

Description

procédé pour la purification de mélanges gazeux à base d'hydrogène utilisant une zéolite X échangée au lithium
L'invention concerne un procédé pour la purification de mélanges gazeux à base d'hydrogène, pollués par diverses impuretés, dont du monoxyde de carbone et au moins une autre impureté choisie parmi le dioxyde de carbone et les hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en Cj-Cβ-
Le procédé de l'invention permet notamment le perfectionnement des procédés conventionnels de séparation de l'hydrogène de type PSA, ou procédés par adsorption par variation de la pression, utilisant des zéolites en tant qu'adsorbant.
La production d'hydrogène de grande pureté est d'un grand intérêt sur le plan industriel, celui-ci étant largement utilisé dans de nombreux procédés de synthèses tels que l'hydrocraquage, la production de méthanol, la production d'oxoalcools et les procédés d'isomérisation.
Dans la technique antérieure, les procédés PSA se sont révélés très efficaces pour la séparation de mélanges gazeux et notamment pour la production d'hydrogène ou d'oxygène pur à partir de mélanges gazeux contaminés par diverses impuretés. Les procédés PSA mettent à profit la sélectivité d'adsorption d'un adsorbant donné pour une ou plusieurs des substances contaminantes du mélange gazeux à purifier.
Le choix de l'adsorbant est délicat : il dépend d'une part de la nature du mélange à traiter. En règle générale les adsorbants sont sélectionnés en fonction de leur facilité à adsorber et à désorber un composé particulier. De fait, les procédés PSA impliquent la mise en oeuvre de cycles de pression. Dans une première phase, le lit d'adsorbant assure la séparation d'au moins un constituant du mélange par adsorption de ce constituant sur le lit d'adsorbant. Dans une deuxième phase l'adsorbant est régénéré par abaissement de la pression. A chaque nouveau cycle il est donc essentiel que la désorption soit efficace et complète, de manière à retrouver un état régénéré identique à chaque nouveau cycle. Il est clair cependant que cette facilité à adsorber puis désorber un constituant particulier d'un mélange gazeux est fonction des conditions opératoires particulières du procédé PSA envisagé et notamment des conditions de températures et de pression.
Une distinction doit donc être faite entre les procédés PSA destinés à la production d'oxygène, lesquels fonctionnent généralement à des pressions d'adsorption inférieures à 5.10 Pa, et les procédés PSA destinés à la production d'hydrogène, lesquels peuvent mettre en jeu des pressions d'adsorption comprises entre 5.10 et 70.105 Pa.
Toutefois, dans la mesure où le mélange à purifier comprend généralement plus d'une impureté, il est souhaitable que l'adsorbant puisse adsorber puis désorber, non pas une seule, mais plusieurs de ces impuretés.
Or, le profil et la sélectivité d'adsorption d'un constituant donné sont souvent influencés par la présence, dans le mélange gazeux, d'autres impuretés, et ceci, par exemple, en raison d'une éventuelle compétition ou d'un empoisonnement de l'adsorbant.
Ces différentes considérations rendent compte de la complexité du problème de l'optimisation des procédés PSA par amélioration de l'adsorbant.
Des études récentes ont montré que dans le cas de mélanges contenant de l'azote, de l'oxygène, de l'hydrogène, du méthane et de l'argon ou de l'hélium, les zéolites échangées au lithium permettent une nette amélioration des performances. Il résulte notamment des différents travaux de recherche effectués, que les critères de sélection à prendre en compte pour le choix de 1 'adsorbant sont sa capacité d'adsorption de l'azote, sa sélectivité azote/oxygène, sa résistance mécanique (le tassement de l'adsorbant devant être possible sur une certaine hauteur, sans écrasement) et la perte de charge occasionnée, et ceci naturellement dans le cas de mélanges gazeux comprenant à la fois de l'azote et de l'oxygène en vue d'une purification de l'oxygène.
On se reportera, par exemple, aux documents US-A- 5,152,813 et US-A-5, 258, 058, ainsi qu'à la demande de brevet EP-A-0 297 542 lesquels décrivent l'utilisation de zéolites de type X échangées au lithium dans des procédés PSA destinés à la production d'oxygène.
L'enseignement de ces documents n'est cependant pas généralisable à la purification de mélanges gazeux contenant des impuretés du type du monoxyde de carbone, du dioxyde de carbone ou des hydrocarbures en C^CQ dont la présence modifie le profil d'adsorption de l'azote par la zéolite. Or, ces impuretés sont les plus fréquemment rencontrées dans les unités PSA de purification de 1 'hydrogène. D'autre part, les pressions d'adsorption mises en jeu dans l'art antérieur cité, étant généralement bien inférieures a 5.10 Pa, ne correspondent pas a celles utilisées généralement pour les procédés PSA de production d'hydrogène. Et de fait, concernant la production d'hydrogène à partir d'un mélange gazeux à base d'hydrogène contenant à titre d'impuretés CO, C02, CH4, NH3, H2S, N2 et H20, le document US-A-3,430,418 propose la combinaison de deux types d'adsorbant, le premier qui est un charbon actif assurant l'élimination de CH4, C02 et H20, le second qui est une zéolite de type A au calcium permettant l'élimination de l'azote et du monoxyde de carbone. De façon à améliorer les performances des procédés PSA de production de l'hydrogène, et notamment, en vue d'obtenir un meilleur rendement en hydrogène, l'on a jusqu'à présent joué essentiellement sur le nombre et la disposition des lits d'adsorbants fonctionnant en parallèle. Les documents US-A-4,381, 189 et FR-A-2, 330,433 illustrent notamment une telle démarche.
La présente invention repose sur la découverte que l'association d'un type particulier de zéolite avec au moins un second adsorbant de type gel de silice, charbon actif ou charbon préfiltre permet l'élimination d'impuretés du type du monoxyde de carbone, du dioxyde de carbone, des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en Ci-Ce ainsi que de l'azote, à partir d'un mélange gazeux d'hydrogène, tout en entraînant une augmentation significative de la productivité. Tel qu'il est utilisé ici, le terme productivité désigne le rapport du volume d'hydrogène produit, mesuré dans les conditions normales de température et de pression, par heure et par volume ou poids d'adsorbant.
Plus précisément, l'invention a trait à un procédé pour la séparation de l'hydrogène contenu dans un mélange gazeux pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en CI~CQ , comprenant la mise en contact dans une zone d'adsorption du mélange gazeux à purifier avec au moins:
- un premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en Cj-Cβ/
- et un second adsorbant qui est une zéolite du type faujasite échangée à au moins 80% au lithium et dont le rapport Si/Ai est inférieur à 1,5, pour éliminer au moins le monoxyde de carbone (CO) .
Le procédé de l'invention est plus particulièrement approprié à l'élimination du monoxyde de carbone à partir de mélanges gazeux à base d'hydrogène contenant, en outre, d'autres impuretés telles que du dioxyde de carbone ou des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C±-Cg , du type méthane, éthane, butane, propane, benzène, toluène ou xylène. De même, l'azote gazeux éventuellement présent dans le mélange gazeux, est séparé de l'hydrogène par adsorption sur le lit d'adsorbant particulier, mis en oeuvre dans le procédé de l'invention. Avantageusement, au moins une partie et, préférentiellement, la majeure partie de l'azote éventuellement présent dans le mélange gazeux à purifier est éliminée par adsorption sur un troisième lit d'adsorbant placé ou interposé, c'est-à- dire pris en "sandwich", entre le lit dudit premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures Cj-Cs, et le lit dudit second adsorbant destiné à éliminer principalement le CO. De préférence, on choisit l'adsorbant constituant le troisième lit parmi les zéolites, telle la zéolite 5A.
Selon un mode de réalisation préféré, le mélange gazeux contient du monoxyde de carbone, du dioxyde de carbone, du méthane, de l'azote et de l'hydrogène. Comme mélanges gazeux pouvant convenir, on peut citer les mélanges gazeux issus d'unités de craquage catalytique, d'unités de craquage thermique, d'unités de reformage catalytique ou d'unités d'hydrotraitement.
La pureté de l'hydrogène issu du procédé de l'invention est d'au moins 99,999%, lorsque le mélange gazeux à purifier comprend plus de 45% d'hydrogène gazeux. Cette pureté peut atteindre cependant jusqu'à 99,999999 % ou plus, suivant les conditions opératoires mises en jeu et la quantité d1adsorbant utilisée. La purification d'un mélange gazeux contenant moins de 45% d'hydrogène gazeux n'est pas souhaitable, dans la mesure où il nécessiterait une quantité excessive d'adsorbant et une taille démesurée des installations de façon à pouvoir atteindre une pureté acceptable. Il va sans dire que plus la proportion d'hydrogène dans le mélange gazeux de départ est importante, plus l'hydrogène récupéré en sortie de la zone d'adsorption sera pur. On considère que le procédé de l'invention conduit aux meilleurs résultats lorsque le pourcentage d'hydrogène dans le mélange gazeux à traiter est d'au moins 70% . En règle générale, dans le cadre de l'invention, la zone d'adsorption est maintenue à une pression comprise entre 5.10 5 et 70.105 Pa, lors de la mise en contact du mélange gazeux à purifier avec lesdits premier et second adsorbants. Cependant une pression supérieure ne nuit pas à la conduite de la purification. Toutefois, dans un souci d'économie d'énergie et en raison du coût élevé d'installations résistant à la pression, on évite généralement les pressions situées au-dessus de 70.10 Pa. Des pressions inférieures à 5.10 Pa ne sont habituellement pas mises en oeuvre pour la production d'hydrogène par adsorption des impuretés sur un lit d'adsorbant, et ceci pour des raisons d'efficacité. De préférence, la pression régnant dans la zone d'adsorption sera maintenue à une valeur inférieure à 50.10 Pa, mieux encore inférieure à 30.10 Pa. De même, la zone d'adsorption est maintenue, de préférence, au-dessus de
5.10 5 Pa, préferenti•ellement, au-dessus de 15.105 Pa.
La température du mélange gazeux entrant et de la zone d'adsorption n'est pas déterminante et est généralement maintenue constante pendant la phase d'adsorption des impuretés. D'ordinaire cette température est comprise entre 0 et 50°C, préférablement entre 30 et 45°C pendant 1 'adsorption.
Dans la zone d'adsorption, les premier et second adsorbants sont disposés de telle sorte que le mélange gazeux les traverse l'un après l'autre. On a constaté que l'efficacité de la séparation pouvait être optimisée en plaçant, à l'entrée de la zone d'adsorption, 1 'adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en Ci-Cg et, en sortie de la zone d'adsorption, 1 'adsorbant de type faujasite au lithium destiné à éliminer au moins le CO.
Ce résultat peut s'expliquer du fait que l'efficacité d'adsorption de la zéolite de type faujasite se trouve augmentée une fois les impuretés de type hydrocarbures en Ci-Cg et dioxyde de carbone arrêtées par le premier adsorbant.
En tant qu'adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en Ci-Cg, on peut utiliser un charbon actif, un charbon préfiltre, un gel de silice ou un mélange de ces différents adsorbants dans une proportion quelconque. Lorsque l'on choisit un tel mélange, il est préférable de disposer les différents constituants du mélange, dans la zone d'adsorption, sous forme de couches séparées de façon à ce que le mélange gazeux vienne tour à tour au contact de chaque couche.
Les gels de silice utilisables selon l'invention sont ceux couramment utilisés dans la technique. Ces gels sont disponibles dans le commerce notamment auprès de SOLVAY (gels sorbead) . Les charbons préfiltres sont des charbons actifs de forte porosité et de faible densité. Les charbons actifs et charbons préfiltres sont par exemple commercialisés par NORIT, CARBOTECH, CECA, PICA ou CHEMVIRON.
Le second adsorbant est avantageusement une zéolite de type faujasite échangée à au moins 80% au lithium.
Les zéolites sont un groupe d'alumino-silicates métalliques naturels ou synthétiques hydratés dont la plupart présentent une structure cristalline. Les zéolites diffèrent les unes des autres de par leur composition chimique, leur structure cristalline et leurs propriétés physiques. De façon schématique, les cristaux de zéolite sont constitués de réseaux de tétrahèdres de Si04 et de AIO4 imbriqués. Un certain nombre de cations, par exemple des cations de métaux alcalins et alcalino- terreux tels que le sodium, le potassium, le calcium et le magnésium, inclus dans le réseau cristallin assurent la neutralité électrique de la zéolite.
Les zéolites de type faujasite, également désignées dans la technique par zéolite X sont des zéolites cristallines de formule : (0,9 ± 0,2) M 2/n 0 : A1203: 2,5 ± 0,5 Si02 : yH20 dans laquelle M représente un métal alcalin ou alcalino- terreux, n est la valence du métal M, et y prend une valeur quelconque entre 0 et 8 suivant la nature de M et le degré d'hydratation de la zéolite. Le document US-A- 2,882,244 a trait à ce type particulier de zéolite.
On sélectionne, selon l'invention, les zéolites X dont le rapport Si/Al est inférieur à 1,5. De manière préférée, ce rapport est compris entre 1 et 1,2 étant entendu qu'une valeur de 1 est plus particulièrement recommandée.
Les zéolites X sont disponibles dans le commerce notamment, auprès des sociétés suivantes : Bayer, UOP, CECA, Ueticon, Grâce Davison ou Tosoh. Les zéolites 13X proposées par ces distributeurs sont, notamment, appropriées comme matériaux de départ pour la préparation des zéolites X échangées au lithium utilisables selon l'invention en tant qu'adsorbant.
Cela étant, le procédé de l'invention n'est pas limité à l'utilisation de faujasites commercialisées. L'emploi d'une zéolite de porosité plus ou moins élevée que celle des zéolites X industrielles actuellement disponibles dans le commerce n'est par exemple -pas exclu. Selon l'invention, les zéolites peuvent être sous la forme de poudres cristallines ou d'agglomérats. Les agglomérats de zéolites sont obtenus de façon conventionnelle par mise en oeuvre de procédés classiques d'agglomération. La zéolite agglomérée peut, par exemple, être préparée par mélange d'une poudre cristalline de zéolite avec de l'eau et un liant (généralement sous forme de poudre) , puis pulvérisation de ce mélange sur des agglomérats de zéolites jouant le rôle de germe d'agglomération. Pendant la pulvérisation les agglomérats de zéolite sont soumis à une rotation continue sur eux- mêmes. Ceci peut être réalisé en disposant les agglomérats dans un réacteur en rotation sur lui-même autour d'un axe de rotation, ledit axe de rotation étant préférablement incliné par rapport à la direction verticale. Par ce procédé, couramment désigné dans la technique par procédé "boule de neige" on obtient des agglomérats sous forme de billes. Les agglomérats ainsi obtenus sont ensuite soumis à une cuisson à une température comprise entre environ 500 et 700°C, de préférence à une température voisine de 600°C. Comme exemple de liant, l'homme du métier pourra recourir à une argile telle que du kaolin, de la silice ou de l'alumine. La zéolite agglomérée ainsi obtenue, laquelle comprend un liant, peut servir à la préparation de zéolite agglomérée sans liant également utilisable dans le procédé de l'invention. De façon à convertir le liant en phase zéolitique, on peut procéder en effet à la cuisson ultérieure des agglomérats zéolitiques avec liant, ce par quoi, après cristallisation, on obtient des agglomérats zéolitiques sans liant.
Selon l'invention, les zéolites X utilisables en tant qu'adsorbant sont soumises à un traitement ultérieur visant à introduire des cations lithium au sein du réseau cristallin. Ceci est réalisé par échange d'ions, une partie des cations M initialement contenus dans la zéolite étant échangée par des cations lithium.
La combinaison des premier et second adsorbants décrits ci-dessus conduit à une amélioration de la purification du mélange gazeux d'hydrogène et de la productivité globale, lorsque le second adsorbant est une zéolite de type faujasite X échangée à au moins 80% au lithium. On entend par zéolite échangée à au moins 80% au lithium, une zéolite dont au moins 80% des motifs A102 ~ sont associés à des cations lithium.
Tout procédé connu de l'état de la technique permettant d'aboutir à une zéolite de type faujasite échangée à au moins 80% au lithium peut être mis en oeuvre.
Les zéolites de type faujasite échangées à plus de 90% au lithium sont plus particulièrement préférées.
Avant utilisation des zéolites au lithium, une activation de celles-ci est nécessaire. Selon l'invention, on entend par activation d'une zéolite sa déshydratation, c'est-à-dire l'élimination de l'eau d'hydratation contenue dans la zéolite. En règle générale, on fait en sorte que la pression partielle de l'eau dans le gaz au contact de la zéolite soit inférieure a environ 4.10 4 Pa, de préférence 1.104 Pa après activation. Les procédés d'activation des zéolites sont connus dans la technique. L'une de ces méthodes consiste à soumettre la zéolite à une pression d'environ
1.10 4 Pa a^ 1.106 Pa tout en faisant passer un courant d'un gaz inerte au travers du lit d'adsorbant constitué de ladite zéolite et tout en chauffant ladite zéolite jusqu'à une température comprise entre 300 et 650°C à une vitesse de montée en température d'environ 0,1 à 40°C par minute. En variante, on peut activer la zéolite en la maintenant sous un vide d'environ 1.10 4 Pa ou inférieur tout en chauffant la zéolite jusqu'à une température d'environ 300 à 650°C sans nul besoin de recourir au balayage par un gaz inerte. Une autre alternative consiste à activer la zéolite par un procédé utilisant des micro-ondes, tel que décrit dans le document US-A-
4,322,394.
Pour la mise en oeuvre du lit d'adsorbant, on peut a priori combiner les premier et second adsorbants dans un rapport pondéral quelconque. Néanmoins, on a pu constaté qu'un rapport pondéral du premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en C^- Cg au second adsorbant de type zéolite compris entre 10/90 et 85/15 est particulièrement avantageux du point de vue de l'efficacité de la purification et de la productivité globale. De façon empirique, on a pu observer que ce rapport est idéalement compris entre 50/50 et 80/20, de préférence entre 60/40 et 80/20.
De façon à produire de l'hydrogène en continu, il est connu de disposer en parallèle un certain nombre de lits d'adsorbant que l'on soumet en alternance à un cycle d'adsorption avec compression adiabatique et de désorption avec décompression.
De telles installations sont notamment mises en oeuvre dans les procédés PSA d'adsorption par variation de la pression. Le cycle de traitement auquel est soumis chaque lit d'adsorbant comprend les étapes consistant à : a) faire passer un mélange gazeux à base d'hydrogène pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures en Cj-Cg dans une zone d'adsorption comprenant, au moins:
- un premier lit d'adsorbant constitué d'un premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en Cj-Cg et:
- un second lit d'adsorbant constitué d'un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Ai est inférieur à 1,5 pour éliminer au moins le CO; b) désorber le monoxyde de carbone et l'autre ou les autres impuretés adsorbées sur lesdits premier et second adsorbants par instauration d'un gradient de pression et abaissement progressif de la pression dans ladite zone d'adsorption de façon à récupérer le monoxyde de carbone et l'autre ou les autres impuretés par l'entrée de ladite zone d'adsorption; et c) remonter en pression ladite zone d'adsorption par introduction d'un courant d'hydrogène pur par la sortie de la zone d'adsorption.
Ainsi, chaque lit d'adsorbant est soumis à un cycle de traitement comprenant une première phase de production d'hydrogène, une seconde phase de décompression et une troisième phase de recompression.
Il est clair qu'en ajustant les conditions opératoires de l'étape a) conformément aux modes de réalisation préférés décrits ci-dessus, on aboutit à une amélioration des rendement et productivité ainsi qu'à une amélioration de la pureté de l'hydrogène récupéré en sortie. Ainsi, on optera, de préférence, pour la purification d'un mélange gazeux contenant plus de 70% d'hydrogène et comprenant à titre d'impuretés de l'azote, du méthane, du CO et du C02, que l'on mettra en contact avec un lit d'adsorbant constitué de charbon actif et de faujasite échangée à plus de 90% au lithium, le rapport pondéral du charbon actif à la faujasite étant préférablement compris entre 50/50 et 80/20.
De manière préférée, la zone d'adsorption est maintenue à une température comprise entre 0 et 80°C.
La capacité des lits d'adsorbant est limitée par la dimension maximale qui peut être utilisée soit à cause de la résistance mécanique des particules individuelles d'adsorbant, soit à cause de la dimension maximale qu'on peut utiliser pour l'expédition des récipients contenant les adsorbants. C'est pourquoi, le fonctionnement de 4 à 10 lits d'adsorbants disposés en parallèle ,est chose courante dans la technique.
De façon à optimiser les procédés PSA, les phases de décompression et de compression des différents lits d'adsorbant sont synchronisées : il est notamment avantageux d'introduire des étapes d'égalisation de pression entre deux lits d'adsorbant, l'un de ces deux lits étant en phase de décompression, l'autre en phase de recompression. L'invention est décrite maintenant en référence aux exemples de réalisation 1 et 2 et aux figures annexées.
La figure 1 représente, de façon schématique, une installation pour la mise en oeuvre d'un procédé PSA de production d'hydrogène, comprenant dix lits d'adsorbant 1 à 10.
La figure 2 représente l'évolution de la pression au sein d'une zone d'adsorption au cours d'un cycle de traitement de purification d'un mélange gazeux à base d'hydrogène par un procédé PSA.
La figure 3 représente les variations de la capacité d'adsorption de diverses zéolites en fonction de la pression d'adsorption.
La figure 4 représente des variations de la capacité d'adsorption d'une zéolite de type X échangée au lithium selon l'invention (courbe LiX) et d'une zéolite 5A classique (courbe 5A) en fonction de la pression d'adsorption.
Sur la figure 1, seules les conduites par lesquelles circule l'hydrogène, à un instant donné, ont été représentées. Plus précisément, à l'instant considéré les lits 1 à 3 sont en phase de production, les lits 4 à 7 sont en phase de décompression et les lits 8 à 10 sont en phase de recompression. Les lits 1 à 3 sont respectivement alimentés en mélange gazeux à purifier via les conduites 11, 12 et 13.
Les conduites 11, 12 et 13 sont chacune reliées à une source de mélange gazeux 14 par l'intermédiaire d'une seule et même conduite 15 dans laquelle débouchent les conduites 11, 12 et 13. En sortie des zones d'adsorption
1 à 3, l'hydrogène purifié est récupéré via les conduites
16, 17 et 18.
Les conduites 16 à 18 débouchent toutes trois dans une conduite 19 qui amène l'hydrogène purifié, issu des conduites 16, 17 et 18, vers une enceinte de stockage 21 via la conduite 19. Une partie de l'hydrogène produit est prélevée sur la conduite 19 via la conduite 22 et amenée jusqu'au lit d'adsorbant 10 lequel est alors en fin de phase de recompression : on procède ainsi à une égalisation de pression entre les lits d'adsorbant 1 à 3 en phase de production et le lit d»adsorbant 10 lequel est en fin de cycle de traitement.
Pendant ce même temps, on opère à une égalisation de pression des lits d'adsorbant 4 et 8 d'une part et 4 et 9 d'autre part. Pour ce faire, les entrées respectives des zones d'adsorption 4, 8 et 9 sont hermétiquement fermées. Les lits d'adsorbants 4 et 8 sont mis en communication l'un avec l'autre via une conduite 23. Le lit d'adsorbant 4 entrant en phase de décompression est encore sous une pression d'hydrogène relativement élevée, alors que le lit d'adsorbant 8 qui est en début de phase de recompression est à une pression bien inférieure. Suite à la différence de pression existant entre les lits d'adsorbant 4 et 8, l'hydrogène est entraîné du lit d1adsorbant 4 vers le lit d'adsorbant 8, ce qui contribue à la recompression du lit d'adsorbant 8 et à la décompression concomitante du lit d1adsorbant 4. La conduite 23 débouche plus précisément dans des conduites 24 et 25, la conduite 24 étant reliée au lit d'adsorbant 8 et la conduite 25 étant reliée au lit d'adsorbant 9. Ainsi, par l'intermédiaire des conduites 23 et 25 les lits d'adsorbant 4 et 9 sont également mis en communication l'un avec l'autre : on procède de fait simultanément à une égalisation de pression des lits d'adsorbant 4 et 8 d'une part et 4 et 9 d'autre part. De la même manière, on opère une égalisation de pression entre les lits d'adsorbant 5 et 7, ces deux lits étant mis en communication l'un avec l'autre par l'intermédiaire d'une conduite 26. Là encore, dans la mesure où la pression régnant au sein du lit d'adsorbant 5 est supérieure à la pression régnant au sein de la zone d'adsorption 7, l'hydrogène s'écoule du lit d'adsorbant 5 vers le lit d'adsorbant 7. On aboutit ainsi à une égalisation de pression. Néanmoins, dans la mesure où les lits d'adsorbants 5 et 7 sont l'un en cours de décompression et l'autre en fin de phase de décompression, on souhaite, non pas égaliser les pressions de ces zones d'adsorption mais au contraire abaisser la pression régnant dans la zone d'adsorption 7 par rapport à la pression régnant dans la zone d'adsorption 5. Ceci est réalisé en laissant s'évacuer l'excès d'hydrogène de la zone d'adsorption 7 via l'entrée 27 de la zone d'adsorption 7.
Le lit d'adsorption 6 est également en phase de décompression. Sa pression est abaissée simplement par évacuation de l'hydrogène via l'entrée 28 de la zone d'adsorption 6. C'est à ce stade de décompression qu'a lieu la désorption des impuretés adsorbées sur le lit d'adsorbant.
Exemples
Dans les exemples qui suivent on réalise la purification de deux mélanges gazeux Ml et M2 dont les compositions sont indiquées dans le tableau 1 ci-dessous.
Dans ce tableau, les pourcentages sont des pourcentages volumiques.
TABLEAU 1
Figure imgf000017_0001
Pour ce faire, on utilise une installation analogue à celle décrite en référence à la figure 1, comprenant 10 lits d'adsorbant. Le cycle de traitement mis en oeuvre est schématisé figure 2. Plus précisément, on a représenté sur la figure 2, l'évolution de la pression au sein d'un lit d'adsorbant au cours du temps. Dans tous les cas, les lits d'adsorbant sont garnis de charbon actif d'une part et d'une zéolite d'autre part.
Le charbon actif utilisé est du type de ceux généralement mis en oeuvre dans les différents procédés de séparation de l'hydrogène par adsorption par variation de la pression (PSA/H2) .
Dans le cas des exemples comparatifs 1, 3 et 4, la zéolite est la zéolite 5A vendue par la société Procatalyse sous la référence 5APS. Dans le cas de l'exemple comparatif 2, la zéolite est la zéolite 5A vendue par la société Bayer sous la référence Baylith K.
Dans le cas des exemples 1 à 3 conformes à l'invention, la zéolite utilisée est une zéolite X échangée à 90% au lithium.
Les zéolites Baylith K R (Bayer) et 5APS R (Procatalyse) sont des zéolites A contenant en tant que cations échangeables des ions Na + et Ca2+, et, présentant des pores d'une taille d'environ 5A. p La zéolite 5APS qui se présente sous la forme de produits d'extrusion d'un diamètre de 1,6 mm et 3,2 mm est en outre caractérisée par :
- une perte au feu comprise entre 1 et 1,5%, à 550°C; - une masse volumique apparente comprise entre 0,69 et 0,73 g/cm3;
- une chaleur spécifique de 0,23 kcal.kg" . °C~ ;
- une chaleur d'adsorption de l'eau d'au plus 1000 kcal/kg; - une adsorption statique de l'eau comprise entre 17,0 et 19 g d'eau pour 100 g d1adsorbant à une humidité relative de 10%; et
- une adsorption statique de l'eau comprise entre 20 et 22 g d'eau pour 100 g d'adsorbant à une humidité relative de 60%. La zéolite X échangée à 90% au lithium est préparée de la façon suivante au départ d'une faujasite 13X présentant un rapport Si/Ai de 1,25 et contenant environ 20% de liant :
Au travers d'une colonne garnie de 1 kg de cette faujasite, on fait percoler une solution aqueuse 1,94 N de chlorure de lithium contenant 60 mmol/1 de chlorure de sodium, dont on a préalablement ajusté le pH à 8, par addition de lithine. Lors de cette opération, la colonne est maintenue à une température de 95°C. La zéolite échangée au lithium obtenue est caractérisée par la courbe isotherme passant par les points marqués D de la Figure 3. Cette courbe isotherme a été tracée à 20°C par analyse volumétrique au moyen d'un appareil Sorptomatic MS 190 de chez FISONS après activation sous vide de la zéolite à 400°C pendant 8 heures.
Plus précisément, cette courbe représente les variations de la capacité d'adsorption de l'azote expri .mé-e en cm3 par gramme en fonction de la pression d'adsorption (exprimée en bars).
Avant leur mise en place dans les différentes zones d'adsorption les zéolites sont activées sous vide à 400°C pendant 8 heures.
On dispose le charbon actif en entrée de la zone d'adsorption, la zéolite de type faujasite échangée au lithium étant disposée en sortie de ladite zone d'adsorption de telle sorte que ces deux adsorbants forment deux couches superposées distinctes.
La température des lits d'adsorbant est maintenue à 40°C. Plusieurs expériences sont alors réalisées pour tester l'efficacité du procédé de l'invention; dans ces expériences on modifie les valeurs des pressions d'adsorption (atteinte en fin de phase de compression) et de desorption (atteinte en fin de phase de décompression) et on détermine les rendement et productivité résultants.
La productivité P est définie ici comme le rapport du volume d'hydrogène produit, mesuré dans les conditions normales de température et de pression, par heure et par
3 m d'adsorbant.
Le rendement R du procédé correspond au rapport du volume d'hydrogène pur produit, mesuré dans les conditions normales de température et de pression, au volume d'hydrogène contenu dans le gaz effluent à purifier, également mesuré dans les conditions normales de température et de pression.
Dans les exemples ci-dessous les rendements et productivités rapportés dans les tableaux 2 et 3 sont des rendements et productivités relatifs. De fait, l'exemple comparatif 1 a été choisi comme référence, c'est-à-dire que pour cet exemple les rendement et productivité relatifs ont été fixés à 100: cet exemple illustre plus précisément la purification du mélange Ml décrit au tableau 1 en présence d'un adsorbant constitué de 70% en poids de charbon actif et de 30% en poids de zéolite 5APS, la pression de desorption étant
5 fixée à 2.10 Pa et la pression d'adsorption étant de 20.105 Pa.
Par conséquent, dans le cas de tous les autres exemples, les rendements et productivités relatifs Rr et Pr sont respectivement donnés par les équations :
R x 100 P x 100
Rr = et Pr ≈ Rci Pc-, où R et P sont tels que définis ci-dessus et RC} et Pcj sont respectivement les rendement et productivité réels déterminés dans le cas de l'exemple comparatif 1.
Les résultats obtenus dans le cas des exemples comparatifs ont été rapportés dans le tableau 2 ci- dessous en fonction des conditions de pression sélectionnées, et des rapports massiques charbon actif/zéolite utilisés :
TABLEAU 2
Figure imgf000021_0001
Les résultats obtenus en utilisant la zéolite échangée au lithium conformément au procédé de l'invention ont été recueillis dans le tableau 3 dans le cas des trois exemples suivants :
TABLEAU 3
Figure imgf000022_0001
Dans le cas des exemples 1 à 3 la pureté de l'hydrogène produit était de 99,999%.
Il résulte clairement de ces résultats que la combinaison de charbon actif et de zéolite X échangée au lithium conduit à de meilleures valeurs du rendement et de la productivité.
Sur la figure 3 annexée, sont représentées les courbes isothermes de variation de la capacité d'adsorption de l'azote dans le cas de chacune des zéolites étudiées dans les exemples 1 à 3 et les exemples comparatifs 1 à 4, en fonction de la pression d'adsorption.
Sur ces courbes, on a porté la quantité Q d'azote
3 adsorbee (exprimée en cm par gramme) en ordonnées et la pression d'adsorption (exprimée en bars) en abscisses. Les points concernant la zéolite échangée au lithium des 0 exemples 1 à 3 sont marqués D ; les points concernant la zéolite A Baylith K R (Bayer) sont marqués o et les points concernant la zéolite A 5APS.R (Procatalyse) sont marqués Δ.
Ces courbes ont été tracées à 20°C par analyse 5 volumetrique au moyen d'un appareil Sorptomatic MS 190 de chez FISONS après activation sous vide des zéolites à
400°C pendant 8 heures.
Il résulte clairement de ces courbes que la capacité d'adsorption de la zéolite au lithium est supérieure. De même, la capacité d'adsorption de la zéolite Baylith K commercialisée par Bayer est plus importante que celle de la zéolite 5 APS.
Or, à la lumière des résultats obtenus précédemment, les rendement et productivité obtenus dans les procédés PSA de production de l'hydrogène sont les meilleurs pour la zéolite X échangée au lithium et les moins bons dans le cas de la zéolite A Baylith K commercialisée par
Bayer.
On démontre ainsi que la capacité d'adsorption d'une zéolite pour l'azote, jusqu'à présent considérée comme un critère important pour le choix de la zéolite la plus efficace, est sans relation directe avec les rendement et productivité finalement obtenus dans les procédés PSA de production de l'hydrogène. Sur la figure 4, sont représentées les courbes isothermes de variation de la capacité d'adsorption du monoxyde de carbone (CO) d'une zéolite de type faujasite échangée à 87% au lithium selon l'invention (courbe LiX) et d'une zéolite 5A (courbe 5A) . Sur ces courbes, on a porté la quantité Q de monoxyde de carbone (CO) adsorbee (exprimée en Ncm 3/g) en ordonnées et la pression d'adsorption (exprimée en bars) en abscisses; ces mesures ont été réalisées à 30°C.
Ces courbes isothermes montrent clairement que la zéolite X échangée au lithium (LiX) a, pour une pression donnée, une capacité d'adsorption pour le monoxyde de carbone beaucoup plus élevée que la zéolite classique de type 5A.
De même, on constate que la respiration en CO d'une zéolite X échangée au lithium selon l'invention est nettement supérieure à celle d'une zéolite de type 5A classique. En effet, la respiration d'une zéolite est définie comme la différence entre la capacité d'adsorption d'un gaz pur par cette zéolite à la pression partielle haute, ou pression d'adsorption et la capacité d'adsorption dudit gaz à la pression basse, ou pression de desorption, par ladite zéolite.
D'où, pour une pression d'adsorption de 23 bar, une pression de desorption de 1,6 bar et un gaz ayant une teneur en CO de 3% environ, on obtient une pression partielle moyenne de CO en phase d'adsorption (sur zéolite) d'environ 0,69 bar et on a évalué une pression d'environ 0,24 bar en phase de desorption.
De là, pour une zéolite classique de type 5A, la quantité de CO adsorbee en phase d'adsorption est d'environ 18,3 Ncm 3/g et d'environ 11,1 Ncm3/g en phase de desorption, ce qui correspond à une respiration
3 d'environ 7,2 Ncm /g.
De manière analogue, pour une zéolite X échangée au lithium conforme à l'invention, la quantité de CO adsorbee en phase d'adsorption est d'environ 35,9 Ncm /g et d'environ 25,2 Ncm /g en phase de desorption, ce qui
3 correspond a une respiration d'environ 10,7 Ncm /g.
Il apparaît donc immédiatement qu'utiliser une zéolite échangée au lithium à la place d'une zéolite classique de type 5A permet d'obtenir, de manière surprenante, une respiration pour le monoxyde de carbone
(CO) améliorée d'environ 48%.
On démontre ainsi, de façon convaincante, l'intérêt industriel et commercial du procédé de la présente invention.

Claims

REVENDICATIONS
1 - Procédé pour la séparation de l'hydrogène contenu dans un mélange gazeux pollué par du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures linéaires, ramifiés ou cycliques, saturés ou insaturés en C^-Cg, comprenant la mise en contact dans une zone d'adsorption du mélange gazeux à purifier avec, au moins: - un premier adsorbant sélectif au moins du dioxyde de carbone et des hydrocarbures en Cι~C8 et,
- un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Ai est inférieur à 1,5. 2 - Procédé selon la revendication 1, caractérisé en ce que le mélange gazeux à purifier contient plus de 45% d'hydrogène gazeux et, de préférence, plus de 70%.
3 - Procédé selon l'une quelconque des revendications 1 à 2 , caractérisé en ce que le mélange gazeux comprend, en outre, de l'azote à titre d'impureté.
4 - Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le mélange gazeux est un mélange comportant de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane et de l'azote.
5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la zone d'adsorption est maintenue sous une pression comprise entre 5.105 et 70.105 Pa, de préférence entre 15.105 et 30.105 Pa.
6 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le mélange gazeux à purifier est, tout d'abord, mis en contact avec le premier adsorbant sélectif du dioxyde de carbone et des hydrocarbures en Cι-C8, puis dans un deuxième temps avec le second adsorbant de type faujasite au lithium. 7 - Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le premier adsorbant sélectif du dioxyde de carbone et des hydrocarbures en Cj-Cg est un charbon actif, un charbon préfiltre, un gel de silice ou un mélange de ceux-ci, de préférence un charbon actif.
8 - Procédé selon l'une quelconque des revendications l à 7, caractérisé en ce que le second adsorbant est une zéolite de type faujasite échangée à au moins 90% au lithium.
9 - Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le second adsorbant est une zéolite de type faujasite dont le rapport Si/Al est compris entre 1 et 1,2, et est, de préférence, égal à 1.
10 - Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'au moins une partie de l'azote est adsorbé sur au moins un lit d'un troisième adsorbant placé entre les lits de premier et second adsorbants. 11 - Procédé selon la revendication 10, caractérisé en ce que ledit troisième adsorbant est une zéolite, de préférence une zéolite de type 5A.
12 - Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le rapport pondéral du premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en Cj-Cg au second adsorbant de type faujasite est compris entre 10/90 et 85/15, de préférence entre 50/50 et 80/20.
13 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend la mise en oeuvre d'un cycle de traitement comprenant les étapes consistant à : a) faire passer un mélange gazeux à base d'hydrogène pollué par au moins du monoxyde de carbone et renfermant au moins une autre impureté choisie dans le groupe constitué du dioxyde de carbone et des hydrocarbures en C}-Cg dans une zone d'adsorption comprenant, au moins:
- un premier lit d'adsorbant constitué d'un premier adsorbant sélectif d'au moins le dioxyde de carbone et les hydrocarbures en Cι~C8 et, - un second lit d'adsorbant constitué d'un second adsorbant qui est une zéolite de type faujasite échangée à au moins 80% au lithium dont le rapport Si/Ai est inférieur à 1,5; b) désorber le monoxyde de carbone et l'autre ou les autres impuretés adsorbees sur lesdits au moins premier et second adsorbants par instauration d'un gradient de pression et abaissement progressif de la pression dans ladite zone d'adsorption de façon à récupérer le monoxyde de carbone et l'autre ou les autres impuretés par l'entrée de ladite zone d'adsorption; et c) remonter en pression ladite zone d'adsorption par introduction d'un courant d'hydrogène pur par la sortie de la zone d'adsorption.
14 - Procédé selon la revendication 13, caractérisé en ce qu'à l'étape a) la zone d'adsorption est maintenue sous une pression comprise entre 5.10 et 70.10 Pa, de préférence entre 15.10 5 et 30.105 Pa, et à une température comprise entre 0 et 80°C.
PCT/FR1997/000878 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x echangee au lithium WO1997045363A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97925101A EP0840708B1 (fr) 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium
DE69700400T DE69700400T2 (de) 1996-05-24 1997-05-16 Verfahren zur reinigung von auf wasserstoff basierenden gasmischungen mit hilfe von lithium ausgetauschtem x typ-zeolith
AU30359/97A AU3035997A (en) 1996-05-24 1997-05-16 Method for purifying hydrogen based gas mixtures using a lithium exchanged x zeolite
US08/983,073 US5912422A (en) 1996-05-24 1997-05-16 Method for purifying hydrogen based gas mixture using a lithium- exchanged X zeolite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9606516A FR2749004B1 (fr) 1996-05-24 1996-05-24 Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolithe x echangee au lithium
FR96/06516 1996-05-24

Publications (1)

Publication Number Publication Date
WO1997045363A1 true WO1997045363A1 (fr) 1997-12-04

Family

ID=9492456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000878 WO1997045363A1 (fr) 1996-05-24 1997-05-16 Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x echangee au lithium

Country Status (6)

Country Link
US (1) US5912422A (fr)
EP (1) EP0840708B1 (fr)
AU (1) AU3035997A (fr)
DE (1) DE69700400T2 (fr)
FR (1) FR2749004B1 (fr)
WO (1) WO1997045363A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799991A1 (fr) * 1999-10-26 2001-04-27 Air Liquide Procede de production d'hydrogene utilisant un adsorbant carbone a parametres de dubinin selectionnes
EP1132341A1 (fr) * 2000-03-07 2001-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Charbon actif amélioré par traitement à l'acide et son utilisation pour séparer des gaz
US6302943B1 (en) 1999-11-02 2001-10-16 Air Products And Chemicals, Inc. Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption
FR2811241A1 (fr) * 2000-07-07 2002-01-11 Ceca Sa Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
US6340382B1 (en) 1999-08-13 2002-01-22 Mohamed Safdar Allie Baksh Pressure swing adsorption process for the production of hydrogen
US6503299B2 (en) 1999-11-03 2003-01-07 Praxair Technology, Inc. Pressure swing adsorption process for the production of hydrogen
FR2836065A1 (fr) * 2002-02-15 2003-08-22 Air Liquide Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
US6652626B1 (en) 1997-07-22 2003-11-25 Ceca, S.A. Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771943B1 (fr) * 1997-12-05 2000-01-14 Air Liquide Procede de purification de fluides inertes par adsorption sur zeolite lsx
US6171370B1 (en) 1998-03-04 2001-01-09 Tosoh Corporation Adsorbent for separating gases
FR2792220B1 (fr) * 1999-04-19 2001-06-15 Air Liquide Procede psa mettant en oeuvre un adsorbant a resistance intrinseque favorable a la cinetique d'adsorption
DE60120819T2 (de) * 2000-04-04 2007-06-28 Tosoh Corp., Shin-Nanyo Verfahren zur adsorptiven Trennung von Kohlendioxid
DE60129626T2 (de) 2000-04-20 2008-05-21 Tosoh Corp., Shinnanyo Verfahren zum Reinigen von einem Wasserstoff enthaltenden Gasgemisch
US6691702B2 (en) 2000-08-03 2004-02-17 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
US6651658B1 (en) 2000-08-03 2003-11-25 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
US6483001B2 (en) * 2000-12-22 2002-11-19 Air Products And Chemicals, Inc. Layered adsorption zone for hydrogen production swing adsorption
ES2280310T3 (es) * 2000-12-25 2007-09-16 Sumitomo Seika Chemicals Co., Ltd. Metodo para la separacion de gas hidrogeno.
US6692545B2 (en) * 2001-02-09 2004-02-17 General Motors Corporation Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
US6964692B2 (en) * 2001-02-09 2005-11-15 General Motors Corporation Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
FR2835201B1 (fr) * 2002-01-25 2004-04-09 Inst Francais Du Petrole Integration de la reduction du catalyseur d'un procede de conversion catalytique et de la regeneration des masses adsorbantes intervenant dans la purification de l'hydrogene necessaire a la reduction
US6610124B1 (en) * 2002-03-12 2003-08-26 Engelhard Corporation Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
FR2837722B1 (fr) * 2002-03-26 2004-05-28 Air Liquide Procede psa de purification par adsorption d'un gaz pauvre en hydrogene
CN100581645C (zh) * 2002-12-24 2010-01-20 普莱克斯技术有限公司 氢气提纯用工艺和装置
US20050098034A1 (en) * 2003-11-12 2005-05-12 Gittleman Craig S. Hydrogen purification process using pressure swing adsorption for fuel cell applications
US20050137443A1 (en) * 2003-12-19 2005-06-23 Gorawara Jayant K. Regenerative removal of trace carbon monoxide
US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system
CN101128906B (zh) * 2004-12-30 2012-09-05 纳幕尔杜邦公司 调节吸气剂材料的方法
US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device
US7608133B2 (en) * 2006-02-27 2009-10-27 Honeywell International Inc. Lithium-exchanged faujasites for carbon dioxide removal
US20110126709A1 (en) * 2009-12-02 2011-06-02 Uop Llc Use of calcium exchanged x-type zeolite for improvement of refinery off-gas pressure swing adsorption
US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
CN112239215B (zh) * 2019-07-17 2022-05-27 中国石油化工股份有限公司 Scm-27分子筛、其制造方法及其用途
WO2021236936A1 (fr) * 2020-05-22 2021-11-25 Numat Technologies Inc. Procédé de purification d'hydrogène gazeux destiné à être utilisé dans des piles à combustible

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430418A (en) * 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
JPS634824A (ja) * 1986-06-24 1988-01-09 Tosoh Corp 不純ガス吸着床
EP0297542A2 (fr) * 1987-06-30 1989-01-04 Praxair Inc. Procédé pour séparer l'azote de mélanges avec des substances moins polaires
EP0311932A1 (fr) * 1987-10-16 1989-04-19 Air Products And Chemicals, Inc. Rémunération d'azote, hydrogène et anhydride carbonique à partir d'hydrocarbures reformés
US4957514A (en) * 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
US5152813A (en) * 1991-12-20 1992-10-06 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882244A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3150942A (en) * 1959-10-19 1964-09-29 Chemical Construction Corp Method of purifying a hydrogen gas stream by passing said gas in series through 13x and 4a or 5a molecular sieves
US3140933A (en) * 1960-12-02 1964-07-14 Union Carbide Corp Separation of an oxygen-nitrogen mixture
FR2070387A5 (fr) * 1969-12-03 1971-09-10 Air Liquide
US3986849A (en) * 1975-11-07 1976-10-19 Union Carbide Corporation Selective adsorption process
US4077779A (en) * 1976-10-15 1978-03-07 Air Products And Chemicals, Inc. Hydrogen purification by selective adsorption
US4153428A (en) * 1977-08-30 1979-05-08 Union Carbide Corporation Prepurification of toluene dealkylation effluent gas
US4322394A (en) * 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating
US4381189A (en) * 1981-10-27 1983-04-26 Union Carbide Corporation Pressure swing adsorption process and system
DE3143993A1 (de) * 1981-11-05 1983-05-11 Bayer Ag, 5090 Leverkusen Molekularsieb-zeolith fuer die gewinnung von wasserstoff mit der druckwechsel-adsorptions-technik
US4696680A (en) * 1985-10-03 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
US5234472A (en) * 1987-11-16 1993-08-10 The Boc Group Plc Separation of gas mixtures including hydrogen
US4963339A (en) * 1988-05-04 1990-10-16 The Boc Group, Inc. Hydrogen and carbon dioxide coproduction
US4964888A (en) * 1989-12-27 1990-10-23 Uop Multiple zone adsorption process
US5013334A (en) * 1990-01-09 1991-05-07 Uop Methane purification by pressure swing adsorption
US5203888A (en) * 1990-11-23 1993-04-20 Uop Pressure swing adsorption process with multiple desorption steps
US5096470A (en) * 1990-12-05 1992-03-17 The Boc Group, Inc. Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
US5133785A (en) * 1991-02-26 1992-07-28 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures by selective adsorption
US5203887A (en) * 1991-12-11 1993-04-20 Praxair Technology, Inc. Adsorbent beds for pressure swing adsorption operations
US5258060A (en) * 1992-09-23 1993-11-02 Air Products And Chemicals, Inc. Adsorptive separation using diluted adsorptive phase
US5354346A (en) * 1992-10-01 1994-10-11 Air Products And Chemicals, Inc. Purge effluent repressurized adsorption process
US5258058A (en) * 1992-10-05 1993-11-02 Air Products And Chemicals, Inc. Nitrogen adsorption with a divalent cation exchanged lithium X-zeolite
US5268023A (en) * 1992-10-05 1993-12-07 Air Products And Chemicals, Inc. Nitrogen adsorption with highly Li exchanged X-zeolites with low Si/Al ratio
US5294247A (en) * 1993-02-26 1994-03-15 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from low pressure feeds
US5529610A (en) * 1993-09-07 1996-06-25 Air Products And Chemicals, Inc. Multiple zeolite adsorbent layers in oxygen separation
US5464467A (en) * 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
JP3462560B2 (ja) * 1994-03-04 2003-11-05 日本パイオニクス株式会社 水素ガスの精製方法
FR2718979B1 (fr) * 1994-04-20 1996-06-07 Air Liquide Procédé de redémarrage d'un récipient de purification d'hydrogène par adsorption, et son application au traitement de certains gaz contenant de l'hydrogène.
FR2722426B1 (fr) * 1994-07-18 1996-08-23 Air Liquide Procede de separation d'azote d'un melange gazeux par adsorption
US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5674311A (en) * 1995-10-20 1997-10-07 Praxair Technology, Inc. Adsorption process and system using multilayer adsorbent beds
FR2743507B1 (fr) * 1996-01-16 1998-03-06 Air Liquide Procede pour la separation de melanges d'oxygene et d'azote utilisant un adsorbant a porosite amelioree

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430418A (en) * 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
JPS634824A (ja) * 1986-06-24 1988-01-09 Tosoh Corp 不純ガス吸着床
EP0297542A2 (fr) * 1987-06-30 1989-01-04 Praxair Inc. Procédé pour séparer l'azote de mélanges avec des substances moins polaires
EP0311932A1 (fr) * 1987-10-16 1989-04-19 Air Products And Chemicals, Inc. Rémunération d'azote, hydrogène et anhydride carbonique à partir d'hydrocarbures reformés
US4957514A (en) * 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
US5152813A (en) * 1991-12-20 1992-10-06 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8807, Derwent World Patents Index; Class E36, AN 88-046752, XP002023748 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652626B1 (en) 1997-07-22 2003-11-25 Ceca, S.A. Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases
US6340382B1 (en) 1999-08-13 2002-01-22 Mohamed Safdar Allie Baksh Pressure swing adsorption process for the production of hydrogen
EP1095701A1 (fr) * 1999-10-26 2001-05-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de production d'hydrogène utilisant un adsorbant carboné à paramètres de dubinin sélectionnés
FR2799991A1 (fr) * 1999-10-26 2001-04-27 Air Liquide Procede de production d'hydrogene utilisant un adsorbant carbone a parametres de dubinin selectionnes
US6425939B1 (en) 1999-10-26 2002-07-30 L′Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l′Etude et l′Exploitation des Procedes Georges Claude Process for the production of hydrogen using a carbonated adsorbent with selected dubinin parameters
US6302943B1 (en) 1999-11-02 2001-10-16 Air Products And Chemicals, Inc. Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption
US6503299B2 (en) 1999-11-03 2003-01-07 Praxair Technology, Inc. Pressure swing adsorption process for the production of hydrogen
FR2806072A1 (fr) * 2000-03-07 2001-09-14 Air Liquide Charbon actif ameliore par traitement a l'acide et son utilisation pour separer des gaz
EP1132341A1 (fr) * 2000-03-07 2001-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Charbon actif amélioré par traitement à l'acide et son utilisation pour séparer des gaz
WO2002004096A1 (fr) * 2000-07-07 2002-01-17 Ceca S.A. Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
FR2811241A1 (fr) * 2000-07-07 2002-01-11 Ceca Sa Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
US6849106B2 (en) * 2000-07-07 2005-02-01 Ceca S.A. Method for purifying hydrogen-based gas mixtures using a calcium x-zeolite
FR2836065A1 (fr) * 2002-02-15 2003-08-22 Air Liquide Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
WO2003070357A1 (fr) * 2002-02-15 2003-08-28 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
US7381242B2 (en) 2002-02-15 2008-06-03 L'Air Liquide Société Anonyme á Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Treatment of hydrogen/hydrocarbon mixtures on adsorbents regenerated at high pressure

Also Published As

Publication number Publication date
FR2749004A1 (fr) 1997-11-28
US5912422A (en) 1999-06-15
EP0840708A1 (fr) 1998-05-13
DE69700400T2 (de) 2000-03-23
FR2749004B1 (fr) 1998-07-10
DE69700400D1 (de) 1999-09-16
AU3035997A (en) 1998-01-05
EP0840708B1 (fr) 1999-08-11

Similar Documents

Publication Publication Date Title
EP0840708B1 (fr) Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium
EP1309388A1 (fr) Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
EP1312406B1 (fr) Procédé de purification de gaz de synthèse
EP0855209B1 (fr) Procédé psa de purification de l'hydrogène
EP0785020B1 (fr) Procédé pour la séparation de mélanges d'oxygène et d'azote utilisant un adsorbant à porosité améliorée
EP0827771A1 (fr) Procédé pour la séparation de mélanges gazeux contenant de l'oxygène et de l'azote
JP3553568B2 (ja) 酸素・窒素混合ガスより窒素分離するための吸着剤とそれを用いた窒素製造方法
RU2401799C2 (ru) Способ очистки газов
CA2322981C (fr) Decarbonatation de flux gazeux au moyen d'adsorbants zeolitiques
EP1120149A1 (fr) Procédé de purification d'un gaz par adsorption des impuretés sur plusieurs charbons actifs
EP0922482B1 (fr) Procédé de purification d'air par adsorption sur alumine calcinée des impuretés CO2 et H2O
EP0930089A1 (fr) Procédé de purification par adsorption de l'air avant distillation cryogenique
EP1084743A1 (fr) Utilisation d'une activée pour éliminer le CO2 d'un gaz
EP2272581A1 (fr) Procédé de séparation de CO2 par adsorption modulée en pression sur un solide carbone poreux préparé par nanomoulage
FR2799991A1 (fr) Procede de production d'hydrogene utilisant un adsorbant carbone a parametres de dubinin selectionnes
FR2832077A1 (fr) Adsorbant zeolitique au baryum et calcium pour la purification de gaz, en particulier de l'air
EP0677023A1 (fr) Procede d'epuration d'air
EP1934136B1 (fr) Procede de production d'un flux gazeux enrichi en hydrogene a partir de flux gazeux hydrogenes comprenant des hydrocarbures
EP1476243B1 (fr) Traitement des melanges hydrogene/hydrocarbures sur adsorbants regeneres a haute pression
EP0997190A1 (fr) Particules d'adsorbant ellipsoidales et leur utilisation dans un procédé de production de gaz
EP1070539A1 (fr) Adsorbant à sélectivité améliorée pour la séparation des gaz
EP0421875B1 (fr) Procédé d'activation thermique de zéolites par percolation de gaz chaud
JPS61242638A (ja) Co分離回収用吸着剤、その製造法およびそれを用いて高純度coを分離回収する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190607.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE GE HU IS JP KG KP KR LK LR LS LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1997925101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08983073

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997925101

Country of ref document: EP

NENP Non-entry into the national phase

Ref document number: 97541709

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997925101

Country of ref document: EP