WO1997043263A1 - PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE - Google Patents

PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE Download PDF

Info

Publication number
WO1997043263A1
WO1997043263A1 PCT/JP1996/001272 JP9601272W WO9743263A1 WO 1997043263 A1 WO1997043263 A1 WO 1997043263A1 JP 9601272 W JP9601272 W JP 9601272W WO 9743263 A1 WO9743263 A1 WO 9743263A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
carbon atoms
defined above
Prior art date
Application number
PCT/JP1996/001272
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nagase
Kuniaki Kawamura
Koji Ohshima
Koji Kawai
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP7299408A priority Critical patent/JPH08208618A/ja
Priority claimed from JP7299408A external-priority patent/JPH08208618A/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP96915148A priority patent/EP0845460A4/en
Priority to PCT/JP1996/001272 priority patent/WO1997043263A1/ja
Priority to KR1019980700325A priority patent/KR19990029022A/ko
Priority to CA002226877A priority patent/CA2226877A1/en
Priority to US09/000,121 priority patent/US5939551A/en
Priority claimed from CA002226877A external-priority patent/CA2226877A1/en
Publication of WO1997043263A1 publication Critical patent/WO1997043263A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • C07D217/16Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems

Definitions

  • the present invention relates to a process for producing a 4a-aryldecahydroisoquinoline derivative.
  • the above 4a-aryl-1trans-6-oxodecahydroisoquinoline derivatives are used as analgesics and / or narcotic antagonists, and It is useful as a raw material for synthesizing the immunosuppressant disclosed in 995.
  • Rapoport U.S. Pat. 4, 189, 583
  • the important step used in the present invention ie, the step of introducing an aromatic ring, is a 1,4-conjugation addition reaction to an enone compound (M) using an aromatic metal compound represented by an aromatic copper compound.
  • M an aromatic metal compound represented by an aromatic copper compound.
  • An object of the present invention is to provide a 4aaryl-1trans-16-oxodecahydroisoquinoline derivative, which is useful as an analgesic and / or a narcotic antagonist and also as a raw material for synthesis of an immunosuppressant, in a smaller number of steps than in the prior art.
  • An object of the present invention is to provide a method for synthesizing with good yield.
  • the present inventors have deliberately studied a method for producing a 4a-aryl-6-oxodecahydroisoquinoline derivative, particularly a trans isomer thereof.
  • Chart 1 a 1,4-monoconjugate addition reaction using an aromatic metal compound to the compound (II) derived from the starting material compound (I) was achieved, and this was regarded as an important step.
  • the present inventors have found a novel synthetic route for a-aryl-to-trans-6-oxodecahydroisoquinolines and have reached the present invention. According to the present invention, it has become possible to synthesize 4a-aryl-1trans-16-oxodecahydroisoquinolines in a shorter process than in the prior art. That is, the present invention provides a compound of the formula (I)
  • R 1 is an alkyl group having 1 to 6 carbon atoms, an aryl group, a benzyl group, a phenethyl group or a cycloalkylalkyl group having 4 to 7 carbon atoms
  • R 2 is an alkyl group having 1 to 4 carbon atoms or benzyl group.
  • R 3 is a hydrogen atom, an alkoxy group having 1 to 4 carbon atoms or a benzyloxy group, and M is lithium, magnesium chloride, magnesium bromide, or magnesium iodide.
  • R 1 , R 2 and R 3 are the same as defined above, and R 4 and R 4 ′ independently represent a methyl group or an ethyl group, or R 4 and R 4 are bonded to each other to form ethylene, trimethylene Indicates
  • the compound of formula (VI) is further converted to a compound of formula (VII) by a reduction reaction.
  • a process for producing a 4a-aryl-trans-6-oxodecahydroisoquinoline derivative characterized by obtaining a compound represented by the formula: wherein R 3 is an alkoxy group or benzyloxy having 1 to 4 nitrogen atoms. Cleavage of the phenol ether bond of the compound of the formula (VI II)
  • the present invention provides a method for producing a 4a-aryl-l-6-oxodecahydroisoquinoline derivative, characterized by obtaining a compound represented by the formula:
  • 4a-arylutranth-6-oxodecahydroisoquinolines which are raw materials for synthesizing analgesics, immunosuppressants and the like, can be obtained in short steps with high yield.
  • R 1 in the formula (I) is preferably a methyl group, an ethyl group, a propyl group
  • n-, iso- butyrene (n-, iso-, sec-, tert-), n-hexylene, n-hexynole, aryl, benzyl, phenethyl, cyclopropylmethyl
  • examples include a cyclobutylmethyl group, a cyclopentylmethyl group, and a cyclohexylmethyl group.
  • a benzyl group and a cyclopropylmethyl group are particularly preferred.
  • R 2 examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a benzyl group, and among them, an ethyl group is particularly preferable.
  • R 3 in the formula (II I) represents a hydrogen atom, a methoxy group, an ethoxy group, a propoxy group (n-, iso-), a butoxy group (n-, iso-, sec-.tert-), a benzyloxy group. And a hydrogen atom and a methoxy group are particularly preferable.
  • R 4 and R 4 ′ are each independently a methyl group, an ethyl group, or R 4 and R 4 ′ bonded to each other to form ethylene and trimethylene, and among them, ethylene is particularly preferable.
  • the 4 a-aryldecahydroisoquinoline derivatives obtained according to the present invention are generally numbered as shown in the following formula, and 1, 2, 3, 4, 4a, 5, 6, f, 8, 8a-Decahydroisoquinoline as the basic skeleton ⁇
  • the structural formula of the compound represents only one of the optically active forms, but these formulas include d-form, I-form, and dI-form, and the above-mentioned nomenclature represents RS.
  • the display naming is abbreviated.
  • the raw material (I) obtained according to the method of Schu Itz et al. ( ⁇ Org. Ghem., 50, 217, 1985) is obtained by reacting the raw material (I) with methyl vinyl ketone.
  • This step is It is divided into the stages of the conjugate addition reaction, the intramolecular conversion reaction, and the dehydration reaction between the raw material (I) and methyl vinyl ketone, and is described in the aforementioned report ( ⁇ Org. Chem., 50, 217, 1985). The implementation of each step is described, but the yield is low.
  • the present inventors considered the cause of the low yield in the step (A) performed by Schuu Itz et al. To be due to the conjugate addition reaction step and examined the reaction conditions in this step. As a result, they succeeded in finding reaction conditions that greatly improve the isolation yield of the compound of the formula (II).
  • the reaction conditions include a method in which a compound of formula (I) is reacted with methyl vinyl ketone in the presence of an inorganic base or metal alkoxide and crown ether (method 1), or in the presence of a corresponding gold alkoxide in alcohol.
  • potassium hydroxide, sodium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, lithium carbonate, sodium sulfate, and lithium carbonate are preferable, and water is particularly preferable.
  • Potassium oxide is particularly preferred.
  • crown ether Any known crown ether may be used, for example, 18-crown-16, 12-crown-14, 15-crown-15, benzo-12-crown-14, benzo- 1 5—crown 5, 1 benzo 1 8 1 crown 1 6, 4 ′ 1 bromobenzo 1 8—crown 1, 6 dibenzo 1—crown 6, dibenzo 24—crown 1, 8, dibenzo 30—crown 1 10 0, dicyclohexano 18-crown 16 and dicyclohexano 24 4-crown It can be selected depending on the type of metal ion of the base used.
  • the combination of the base and the crown ether is not particularly limited, but potassium hydroxide Z18-crown-16 is particularly preferred, and the molar ratio thereof is such that 1 mol of the substrate (I) nosebase crown ether is 1 mol. 1 to 1 mol / ⁇ 0.01 to 1 mol equivalent is appropriate, and particularly preferably 1 mol / 0.1 mol 0.1 mol equivalent.
  • the equivalent of methyl vinyl ketone should be at least 1 equivalent, particularly preferably 2 to 3 equivalents.
  • the solvent is preferably a polar solvent such as alcohol, dimethylformamide, dimethylsulfoxide or the like, or an ether solvent such as getyl ether, tetrahydrofuran, 1,4-dioxane, etc.
  • ester part C0 Alcohol (R 2 OH) corresponding to 2 R 2
  • tert-butoxide is preferred
  • the reaction temperature is suitably from 0 to 80 ° C, and the reaction is usually carried out at room temperature. The reaction is carried out for 5 to 72 hours, but usually for 10 to 24 hours.
  • Alcohols that can be used in the second method include alcohols (R 2 OH) corresponding to the ester portion (C0 2 R 2 ) of the substrate (I) such as methanol, ethanol, n-propanol, n-butanol, or benzyl alcohol.
  • Alkoxides are not particularly limited, but include sodium methoxide, sodium methoxide, sodium n-propoxide, sodium n-butoxide, sodium benzyl alkoxide, potassium methoxide, potassium ethoxide, and potassium n-oxide.
  • Examples include propoxide, potassium n-butoxide, potassium benzyl alkoxide, lithium methoxide, lithium ethoxide, lithium n-propoxide, lithium n-butoxide, and lithium benzyl alkoxide.
  • the molar ratio of the alkoxide is suitably from 1 to 0.01 mol equivalent of the alkoxide of the substrate (I), particularly preferably 1 mol equivalent to 1 mol.
  • the equivalent of methylvinyl ketone is at least 1 equivalent.
  • the reaction temperature is suitably 0 to 50 ° C. and is usually carried out at room temperature, and the reaction is carried out for 5 to 72 hours, usually for 5 to 24 hours. Is done.
  • Lithium fluoride, sodium fluoride, and potassium fluoride are preferable as the fluoride of the alkali metal that can be used in the third method, and potassium fluoride is particularly preferred. Is particularly preferred.
  • a crown ether may be added to the reaction system. When added, any existing known crown ether may be used, and is suitably selected depending on the type of fluoride used, and potassium fluoride 18-crown 16 is particularly preferred. The molar ratio of these is preferably a fluoride of the base (l) ⁇ alkali gold ⁇ 18-crown-6 is 1 mol / 0.0 "!-1 mol.
  • the equivalent of methyl vinyl ketone requires at least 1 equivalent, preferably 1.5 to 3 equivalents, particularly preferably 2 equivalents.
  • a polar solvent such as amide and dimethyl sulfoxide or an ether solvent such as getyl ether, tetrahydrofuran and 1,4-dioxane, or a non-polar solvent such as benzene, toluene, xylene, dichloromethane, and chloroform are preferable, and toluene is particularly preferable.
  • the reaction temperature is suitably from 0 to 80 ° C., usually at room temperature, and the reaction is carried out for 5 to 120 hours, usually for 10 to 36 hours.
  • the above three methods are improvements in the conjugate addition reaction step between the substrate (I) and methylvinyl ketone in the step (A), and the subsequent steps for completing the step (A) are Schu I It is performed according to the method of tz et al. ( ⁇ Org. Chem., 50, 217, 1985). That is, the intermediate in the step (A) obtained in the conjugate addition reaction is treated with piperidine under reflux of benzene without purification, and then a mixed solution of Z water acetate / sodium acetate is added and heated.
  • the method for purifying the compound (II) obtained by this operation is not particularly limited, but a silica gel column chromatography or a recrystallization method is used.
  • a compound represented by formula (III) and an aromatic metal compound prepared from a metal compound selected from VI IB, VIU, IB, IIB, or III A ⁇ are used.
  • Alkyl-1 8a carboalkoxy-1,6, -dioxo-1,2,3,4,6,7,8,8 a-octahydroisoquinoline 1,2 2-Alkyl-4a-aryl-8a-Carboalkoxy-1 1,6, -dioxo-1,2,3,4,4a, 5,6,7,8,8a-Decahydroisox
  • the metal M represented by the formula (II I) lithium (Li), magnesium chloride (MgCI), magnesium iodide (MgBr), and magnesium iodide (Mgl) are suitable.
  • the formula (III) When the metal compound of VIIB urine is used as the metal compound required for the 1,4-conjugate addition of the compound of formula (II) to the compound of formula (II), the compound is not particularly limited as long as it is a divalent gold urine compound. It is preferably a divalent manganese compound, and these may be an iron complex.
  • a metal compound of IB ⁇ is used, it is not particularly limited as long as it is a monovalent metal compound, but is preferably a monovalent copper compound, and these may be art complexes.
  • the monovalent copper compound may be added as a catalyst to the compound of the formula (IM), or may be added to an aromatic metal compound prepared from the compound of the formula (III) and a metal compound of the group VIIB or IIB. Similarly, it may be added as a catalyst.
  • a metal compound of group IIB it is not particularly limited as long as it is a divalent metal compound, but is preferably a divalent zinc compound, and may be an art complex.
  • a metal compound of III A ⁇ is used, it is not particularly limited as long as it is a trivalent metal compound, but is preferably a trivalent aluminum compound, and these may be an art complex.
  • a metal compound belonging to Group VIII it is not particularly limited as long as it is a divalent metal compound, but is preferably a divalent iron compound, a cobalt / nitro compound, a nickel compound, or a palladium compound.
  • a divalent cobalt compound, a nickel compound and a palladium compound may be added as a catalyst to an aromatic metal compound prepared from a compound of the formula (IM) and a metal compound of Group IIB or IIIA.
  • monovalent copper compounds, divalent manganese compounds, divalent zinc compounds, and trivalent aluminum compounds necessary for the progress of 1,4-monoconjugate addition are monovalent copper compounds or divalent copper compounds. Manganese compounds are particularly preferred.
  • the above-mentioned gold urine compound is preferably in the form of, for example, a metal halide, a metal carboxylate, a metal alkoxide, a metal mercaptide, a metal acetylide, and a metal cyanide, but is not limited thereto.
  • the molar ratio of the reagents is as follows: 1 mole of substrate (II) phenyllithium copper compound Z 2 to 6 moles to 3 mole equivalents preferably 1 mole 4 moles 2 molar equivalents.
  • the copper compounds used are cuprous iodide, cuprous bromide.
  • cuprous iodide is preferable.
  • Ether solvents such as getyl ether, tetrahydrofuran, dimethoxetane, 1,4-dioxane and the like are used as the reaction solvent.
  • geethyl ether is preferable.
  • a solvent is used.
  • the reaction temperature is preferably -50 to 0 ° C during the preparation of the aromatic copper compound, particularly preferably 120 to 0 ° C, and more preferably 110 to 30 ° C during the 1,4-conjugate addition reaction. Satisfactory results are usually obtained at room temperature.
  • Chlorotrimethylsilane, boron trifluoride ether complex, hexamethyl phosphorotriamide, triphenylphosphine, tributylphosphine, etc. may be used alone or as a mixture as a reaction accelerator for 1,4-monoconjugate addition reaction. Particularly, chlorotrimethylsilane is preferable.
  • the reaction temperature during the 1,4-monoaddition reaction is preferably gradually increased in the range of 178 ° C to room temperature.
  • the molar equivalent of the reaction accelerator is preferably 2 to 5 molar equivalents, particularly preferably 3 to 4 molar equivalents.
  • the reaction is carried out for 1 to 72 hours, usually for 2 to 24 hours.
  • R 3 of compound (III) is an alkoxy group or a benzyloxy group having a St prime number of 1 to 4, in preparing an aromatic copper compound, for example, m-alkoxybromobenzene may be used in an ether solvent in the range of 78 to 0 C., preferably at a temperature of 8 to 150 ° C., by subjecting the alkyl lithium to a metal halide exchange reaction with compound (III) (R 3 : an alkoxy group having 1 to 4 carbon atoms or a benzyloxy group, M Lithium) can be prepared by adding it to an ethereal solvent suspended with a copper compound.
  • reaction accelerator may be added.
  • the molar ratio of the reagents is as follows: Substrate (I) -alkoxybromobenzene / a ID alkyl lithium copper compound 1 mole 2-6 moles 2-6 moles 1-3 moles 3-5 mole equivalents of the reaction accelerator, preferably 1 mole Z 4 moles 4 moles 2 moles 4 mole equivalents.
  • butyl lithium (n-, sec-, tert-) is preferably used, and tert-butyl lithium is particularly preferable.
  • tert-butyllithium twice as much as m-alkoxybromobenzene.
  • Copper compounds include cuprous iodide, cuprous bromide / dimethyl sulfide complex, cuprous chloride, cuprous cyanide, lithium 2-cupenyl (cyano), cuprous lithium, copper (I) Acetylides, lithium cuprous alkynyl (cyano), and the like, with cuprous iodide being preferred.
  • reaction accelerator for the 1,4-conjugation addition reaction boron trifluoride etherate complex, trimethyl silane, hexamethyl phosphorotriamide, triphenyl phosphine, tributyl phosphine, or the like may be used alone or as a mixture. Trimethyl silane is particularly preferred.
  • reaction solvent ether solvents such as getyl ether, tetrahydrofuran, dimethoxetane, 1,4-dioxane and the like are used. Particularly, at the time of the co-addition reaction, getyl ether is preferable, but getyl ether is preferably selected depending on the solubility of the substrate.
  • a mixed solvent of / tetrahydrofuran can also be used.
  • the reaction temperature it is preferable to gradually raise the temperature in the range of 178 ° C to room temperature during the metal halide exchange reaction.
  • the temperature is preferably 150 to 0 ° C, particularly preferably ⁇ 20 to 0 ° C, and at the time of 1,4-conjugation addition reaction, the temperature is preferably 110 to 30 ° C, but is usually satisfied at room temperature. The expected result is obtained.
  • the reaction time is 30 minutes to 72 hours, and is usually 2 to 24 hours.
  • Compound (IV) as a method for isolating (R 3 alkoxy or base Njiruokishi group having 1 to 4 carbon atoms) is not particularly limited available silica gel column chroma Bok photography one or recrystallization.
  • chlorobenzene, boromobenzene, iodobenzene, m-alkoxychlorobenzene, m-alkoxyboromobenzene, and m-alkoxyiodobenzene are mixed in an ether solvent at room temperature to reflux.
  • the compound (III) (R 3: hydrogen, ⁇ number 1-4 alkoxy or base Njiruokishi group, M: magnesium chloride, bromide mug Neshiumu or magnesium iodide) was prepared This is compound (ll), a divalent compound When added to an ether-based solution of a manganese compound, lithium chloride, and cuprous chloride, a 1,4-conjugate addition reaction proceeds, and compound (IV) (R 3 : hydrogen, an alkoxy group having 1 to 4 carbon atoms or benzyloxy) ) Is generated. At that time, the same reaction accelerator as described above may be added.
  • the molar ratio of the reagents is as follows: Substrate (II) Aromatic bromide nomagnesium Divalent manganese compound Z lithium chloride Z 1 cuprous chloride 1 mol Z1-5 mol Z 1-5 mol 0.5-1.5 mol 3 to 9 moles ZO. "! To 1.5 mole equivalents, preferably 1 mole 2.4 moles 2.9 moles 1.1 moles 6 moles 1.1 moles equivalents. And manganese chloride, manganese bromide, manganese iodide, etc., among which manganese chloride is preferred As a preferred 1,4-conjugation addition reaction, 1 to 5 equivalents of chlorotrimethylsilane is used. More preferably, the equivalent is 3.
  • reaction solvent ether solvents such as getyl ether, perhydrohydrofuran, dimethyloxetane, 1,4-dioxane and the like can be used alone or in combination.
  • the reaction is carried out at a temperature of from 30 to 30 ° C. However, satisfactory results are obtained at a temperature of from 0 ° C. to room temperature, and the reaction time is from 30 minutes to 72 hours. Always "! ⁇ 24 hours.
  • the method for isolating the compound (IV) (R 3 : hydrogen, an alkoxy group or a benzyloxy group having 1 to 4 carbon atoms) is not particularly limited as described above, but silica gel column chromatography or recrystallization can be used. .
  • the next step (C) is a step of converting the compound (IV) into a compound (V) by protecting the carbonyl group at the 6-position by a ketalization reaction.
  • R 4 and R 4 independently represent a chain alkyl group such as methyl, ethyl or the like, or RR 4 represents ethylene or trimethylene bonded to each other.
  • the ketal protecting group may be any of acyclic ketals such as dimethyl acetal and getyl acetal, and linear ketals such as ethylene ketal and trimethylene ketal. Preferred, especially ethylene ketal, is preferred.
  • an acid catalyst is added, and the resulting water is azeotropically distilled off. It is obtained by heating and stirring.
  • an aromatic hydrocarbon solvent such as benzene, toluene and xylene together with an alcohol such as methanol, ethanol, ethylene glycol and trimethylene glycol
  • an acid catalyst is added, and the resulting water is azeotropically distilled off. It is obtained by heating and stirring.
  • meta in the case of acyclic ketals, meta It can also be obtained by heating and stirring with ortho-esters such as methyl orthoformate, ethyl orthoformate, methyl orthoacetate and ethyl orthoacetate in alcoholic solvents such as knol and ethanol.
  • the acid catalyst used in these cases is usually an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, or the like, or an organic acid such as methanesulfonic acid, benzenesulfonic acid, P-toluenesulfonic acid, camphorsulfonic acid, etc.
  • hydrochloric acid, methanesulfonic acid, camphorsulfonic acid and p-toluenesulfonic acid are preferred, and p-toluenesulfonic acid is particularly desirable.
  • the reaction temperature may be in the range of 20 to 150 ° C, and a satisfactory result can be obtained at 60 to 130 ° C.
  • the reaction time is 2 to 72 hours, and is usually performed in 2 to 5 hours.
  • the compound (V) obtained by the above reaction may be subjected to the next step without purification, but may be subjected to a short column using silica gel for purification.
  • the next step (D) is a step of removing the 8a-position carboalkoxy group of the compound (V) to convert it to the compound (VI). This transformation is described in the literature (P. A. Bartlett. W. J. Johnson,
  • the compound (V) is subjected to a reaction with a gold-alkyl mercaptide.
  • alkyl mercaptan examples include ethyl mercaptan, ⁇ -propyl mercaptan, isopropyl mercaptan, ⁇ -butyl mercaptan, isoptyl mercaptan, tert-butyl mercaptan, and the like.
  • Preferred is ethyl mercaptan.
  • sodium hydride sodium hexamethyldisilamide, potassium hydride, potassium hexamethyldisilamide, potassium tert-butoxide, and the like are used, and sodium hydride is particularly preferred, but sodium hydride is preferred. I can't.
  • the equivalent of the metal alkyl mercaptide used can be at least equimolar to excess with respect to the substrate, but is preferably 6 molar equivalents.
  • the reaction solvent is preferably an aprotic polar solvent such as dimethylformamide and N-methyl-1-pyrrolidone, and dimethylformamide is particularly preferred.
  • the reaction temperature is preferably from 60 to 120 ° C, but the reaction is usually carried out at 80 ° C.
  • the reaction time is 1 to 72 hours, and is usually performed in 4 to 10 hours.
  • the next step (E) is a step in which the carboxy group at the 1-position of compound (VI) is reduced to convert it into an enamine form (VII).
  • This process is based on Rapoport (US Pat. 4, 189, 583, J. Org. Cherti. 42, 1485, 1977). That is, diisobutylaluminum hydride is used as a reducing agent, and it is used in an amount of at least equimolar, preferably at least 5 moles relative to the substrate (VI).
  • ether solvents such as getyl ether, tetrahydrofuran, and dimethoxetane can be used, and among them, tetrahydrofuran is preferable.
  • the reaction is carried out at a temperature between 0 ° C and room temperature.
  • the compound (VII) obtained here can be subjected to the next step (F) without purification.
  • Step (F) is a step in which the enamine form (VII) is reduced to convert it into the trans-14a-aryldecahydroisoquinoline form (VI II).
  • a catalytic hydrogenation reaction using a 5% rhodium-alumina catalyst such as Ra poport is used.
  • r man J. Org.Ghem., 54, 1442, 1989
  • et al. Catalytic hydrogenation over platinum oxide catalysts
  • Evans, Zimmerman J. Am. Chem.
  • a hydride reduction method using sodium borohydride in the presence of perchloric acid is known.
  • the present inventors have found a new reduction method with good reproducibility. That is, this is a method in which the enamine derivative (VII) is reduced with sodium cyanoborohydride under acidic conditions.
  • the amount of sodium cyanoborohydride used is 0.5 to 5 molar equivalents, preferably 1 to 3 molar equivalents, per 1 mol of the substrate (VII).
  • the reaction solvent is preferably a polar solvent such as methanol, ethanol and dimethylformamide, and among them, methanol is particularly preferred.
  • the syrup of the reaction solution ( ⁇ 1 to 2 to 5, especially pH4) by adding methanol saturated with hydrochloric acid.
  • the acid used is not limited to hydrochloric acid, and the reaction is carried out at a temperature of from 120 ° C. to room temperature, usually from 110 ° C. to 0 ° C.
  • Step (G) is a step of dissolving compound (VI II) in a solvent together with an acid catalyst, and then deprotecting the acetal protecting group to convert the compound into a 4a_7 reel decahydroisoquinoline derivative (IX).
  • Acid catalysts include inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid; organic sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and camphorsulfonic acid; and organic carboxylic acids such as acetic acid and propionic acid. Sulfuric acid or hydrochloric acid usually gives satisfactory results.
  • solvent Solvent mixture of water with ether solvents such as toluene, perhydrohydrofuran, dimethoxetane, 1,4-dioxane, halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, etc.
  • ether solvents such as toluene, perhydrohydrofuran, dimethoxetane, 1,4-dioxane, halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, etc.
  • an acidic aqueous solution containing the above-mentioned acid catalyst is used, but a dilute sulfuric acid aqueous solution or a dilute hydrochloric acid aqueous solution usually gives satisfactory results.
  • the reaction can be carried out at a temperature in the range of 150 to 100 ° C, but usually a satisfactory temperature is obtained in
  • Step (H) is a step of cleaving the phenol ether bond of compound (VIII) in which R 3 is an alkoxy group or benzyloxy group having 1 to 4 carbon atoms to convert the compound into compound (X). That is, the reaction is carried out by dissolving the compound (VI M) in a solvent and reacting with a base or a trivalent boron compound in the presence of mercaptan. If a trivalent boron compound is used, the subsequent step (I) can be omitted.
  • aprotic polar solvents such as dimethylformamide, dimethylsulfoxide and hexamethylphosphorotriamide are preferably used, and dimethylformamide is particularly preferable.
  • a halogen-based solvent such as dichloromethane, chloroform, and carbon tetrachloride is preferable, and dichloromethane is particularly preferable.
  • the mercaptan include those having a chain side chain of C1 to C10, and propylmercaptan is usually preferably used.
  • the base include alkali metal salts of alcohols such as potassium tert-butoxide, potassium ethoxide, sodium tert-butoxide, sodium ethoxide and sodium methoxide, hydrides such as sodium hydride and potassium hydride, and sodium amide.
  • the reaction temperature may range from 0 to 300 ° C., preferably from 50 to 200 ° C., particularly preferably from 80 to 120 ° C.
  • the temperature is preferably 180 to 50 ° C, particularly preferably 0 to 30 ° C.
  • step (I) compound (X) is dissolved in a solvent together with an acid catalyst, the acetal protecting group at position 6 is deprotected, and the compound is converted to a compound represented by formula (IX) in which R 3 is a hydroxyl group.
  • Process It is.
  • This step can be performed in the same manner as in step (G) of Chart 1.
  • Compound (IX) can be purified by silica gel column chromatography or recrystallization, or recrystallization after conversion into a pharmacologically acceptable salt.
  • the 4a-aryl-1 trans-16-oxodecahydroisoquinoline derivative obtained by the present invention can be used as an analgesic and / or narcotic antagonist as disclosed in JP-A-5-155857. It is useful as a raw material for synthesizing the immunosuppressant disclosed in 89/995.
  • V max cnT ' 3500, 1736.
  • V max cm— 1 1734, 1653.
  • reaction mixture was poured into ethyl acetate, and the mixture was washed with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated saline, and dried over magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain the title compound as a colorless oil.
  • V max cm— ' 1729, 1657, 1599.
  • the oily substance was dissolved in 1.2 ml of benzene, 0.22 ml (2.6 mmol) of pyrrolidine was added, and the mixture was heated under reflux for 19 hours using a D-Ean Stark apparatus, and the generated water was removed azeotropically. Then, the reaction mixture was returned to room temperature, 1 ml of aqueous acetic acid and sodium acetate (2: 2: 1) were added, and the mixture was heated for 1.5 hours. After completion of the reaction, dichloromethane and distilled water were added for extraction. The obtained organic solution was washed with 1N-hydrochloric acid, 1N-sodium carbonate and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the crude oil obtained by evaporating the solvent The title compound was obtained as a colorless solid by subjecting 310 mg of the compound to column chromatography using 10 g of silica gel (form: chloroform).
  • This oily substance was dissolved in 25 ml of benzene, 3.71 ml (44.45 mmol) of pyrrolidine was added, and the mixture was heated under reflux for 19 hours using a Dean-Stark apparatus to remove azeotropically water generated. Then, the reaction mixture was returned to room temperature, and heated with 20 ml of Zirconic acid Z water Z sodium acetate (2: 2: 1 V / v / V ) for 1.5 hours. After completion of the reaction, ethyl acetate was added, and the obtained organic layer was washed with 1N-hydrochloric acid, 1N-sodium carbonate, and saturated saline, and dried over anhydrous magnesium sulfate.
  • This oil was dissolved in benzene (10 ml), and pyrrolidine (0.24 mol) was added. The mixture was heated under reflux for 6 hours using a Dean-Stark apparatus, and the generated water was removed azeotropically. Then, the reaction mixture was returned to room temperature, and 5 ml of sodium acetate / aqueous sodium acetate (2: 2: 1) was added, followed by heating for 3 hours. After completion of the reaction, dichloromethane and distilled water were added for extraction. The obtained organic layer was washed with saturated sodium hydrogen carbonate and saturated saline, and dried over anhydrous magnesium sulfate. Dried with steam.
  • the oil was dissolved in 80 ml of benzene, 5.46 ml of pyrrolidine (65.38 olol) was added, and the mixture was heated under reflux for 16 hours using a Dean Stark apparatus to remove azeotropically the resulting water.
  • This oily substance was dissolved in 10 ml of benzene, 0.18 ml (2.1 mmol) of pyrrolidine was added, and the mixture was heated under reflux for 16 hours using a device of Dean-Stark to azeotropically remove water produced. Next, the reaction mixture was returned to room temperature, and heated with 0.25 ml of aqueous acetate / sodium acetate (2: 2: 1 v / v / v) for 1 hour. After the reaction was completed, ethyl acetate was added, and the obtained organic layer was washed with 1N-hydrochloric acid, 1N-sodium acid, and saturated saline, and dried over anhydrous magnesium sulfate.
  • V max cm— ' 1729, 1630.
  • V max cm -1 1742, 1717, 1636, 1502, 1446.
  • step 3 The preparation of the m "-anisylmagnesium bromide solution in step 3 and the 1,4-conjugate addition reaction were carried out using dimethoxymethane in place of the THF solvent. The same post-treatment and purification procedures as in step 3 were performed. The compound was obtained as a colorless oil.
  • Operation 1 Yield 271 ⁇ 2g (50%)
  • Operation 2 Yield 219mg (40%)
  • Step 3 Yield 192mg (35%)
  • Step 4 Yield 219mg (40%)
  • Example 17 In the same manner as in Example 8, 8a-carbethoxy-2-cyclopropylmethyl-4a- (m-methoxyphenyl) 1cis-1,1,6-dioxodecahydroisoquinoline 1 obtained in Example 7
  • the title compound was obtained as a colorless oil from 5 (90 mg), ethylene glycol (0.07 ml), and a catalytic amount of p-toluenesulfonic acid.
  • Example 10 sodium hydride (22.6 mg), ethanethiol (0.08 ml), Title from 8a-carbethoxy-2-cyclopropylmethyl-6,6-ethylenedioxy4a- (m-methoxyphenyl) -cis-1-1-oxodecahydroisoquinoline 17 (50 mg) obtained in Example 9
  • the compound was obtained as a trans Z-cis isomer mixture (8: 1) (colorless oil).
  • reaction solvent was concentrated under reduced pressure, and the resulting residue was added to a mixed solution of 10 ml of a 3N aqueous solution of sodium hydroxide and 20 ml of chloroform for extraction.
  • the aqueous layer was extracted twice more with chloroform.
  • the organic layer was washed with saturated saline, dried over sodium sulfate, and concentrated under reduced pressure to give the title compound.
  • Example 11 To a solution of 2-cyclopropylmethyl-6,6-ethylenedioxy-4a- (m-methoxyphenyl) -11-oxodecahydroisoquinoline 1913 mg (0.035 mmol) obtained in Example 1 in 0.5 ml of tetrahydrofuran was added. Under an argon stream, 0.2 ml (0.2 mmol) of diisobutylaluminum hydride / hexane solution (0.9 M) was added dropwise at 0 ° C. After stirring the reaction solution for 15 minutes, it was heated to room temperature and stirred for another 30 minutes. 3 ml of methanol was added to the reaction mixture, and the mixture was further stirred for 15 minutes.
  • reaction solvent was concentrated under reduced pressure, and the resulting residue was added to a mixed solution of 4 ml of a 3N aqueous solution of sodium hydroxide and 10 ml of chloroform for extraction.
  • the aqueous layer was extracted twice more with black-mouthed form.
  • the organic layer was washed with saturated saline, dried over sodium sulfate, and concentrated under reduced pressure to give the title compound in pale yellow. Obtained as a crude oil of color.
  • V max cm -1 2930, 1659, 1605, 1582, 1487.
  • V max cm— ' 2934, 1607, 1582, 1491, 1458.
  • a novel short-step synthesis method of 4a-aryl-1 trans-16-oxodecahydroisoquinolines can be established, and an analgesic and / or narcotic antagonist or an immunosuppressant can be used. Available for development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明細害
4 a—ァリールデカヒドロイソキノリン誘導体の製造法
技術分野
本発明は、 4 a—ァリールデカヒドロイソキノリン誘導体の製造法に関する。 上記 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリン誘導体は、 特開平 5— 1 5 5 8 5 7に開示されているように鎮痛剤および または麻薬性拮 抗剤として、 さらに W0 89/995に開示されている免疫抑制剤の合成原料として有 用である。
背景技術
4 a—ァリ一ルートランス一デカヒドロイソキノリン類の中でも特に 6—ォキ ソ体の製造法として R a p o p o r t (U. S. Pat. 4, 189, 583,
J. Org. Chem. 42, 1485, 1977)らの方法、 Z i m m e r m a n
(J. Org. Chem. 54. 1442, 1989) らの方法、および J u d d (J. Med. Chem. 35, 48, 1992) らの方法が知られている。
また、 本発明で利用されている重要段階、 すなわち芳香環の導入工程は、 芳香 族銅化合物に代表される芳香族金属化合物を用いるェノン化合物(M )への 1, 4 一共役付加反応であるが、 これと近似した反応による 4 aーァリ一ルー 6—ォキ ソデカヒドロイソキノリン類の製造法が知られている
(J. Org. Chem. 39, 1 1 18, 1974. , U. S. Pat. 4, 301 , 290) 0 すなわち、 式(X I )
Figure imgf000003_0001
の化合物を芳香族銅錯体と反応させ式 (X M )
Figure imgf000004_0001
(XH) で示される 4 a—ァリール一 6—才キソデカヒドロイソキノリン類を製造する方 法である。 しかし、 その縮環部の立体化学はシスであり、 この方法では本発明が 目的とする相当するトランス異性体は得られない。
また一般に 4 a—ァリールデカヒドロイソキノリン系化合物においては、 シス 縮璨系が卜ランス縮瑰系に比して熱力学的に安定であることが知られている。
発明の開示
本発明の目的は、 鎮痛剤および/または麻薬性拮抗剤として、 さらに免疫抑制 剤の合成原料として有用な 4 aーァリール一トランス一 6—ォキソデカヒドロイ ソキノリン誘導体を従来技術よりも少ない工程で、 収率良く合成する方法を提供 することである。
本発明者らは 4 a—ァリール一 6—ォキソデカヒドロイソキノリン誘導体、 特 にそのトランス異性体の製造法について銳意検討した。 その結果チャート 1に示 すように出発原料の化合物(I ) から誘導される化合物(I I )に対する、 芳香族金属 化合物を用いる 1 , 4一共役付加反応を達成し、 これを重要段階とする 4 a—ァ リール一トランス一 6—ォキソデカヒドロイソキノリン類の新規合成ルートを見 出だし本発明に至った。 本発明によリ従来技術に比べて短工程で 4 a—ァリール 一トランス一 6—ォキソデカヒドロイソキノリン類の合成が可能になった。 すなわち本発明は式(I )
Figure imgf000005_0001
(式中 R1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4 ~ 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を、 メチルビ二ルケトンとの反応により式(II)
Figure imgf000005_0002
(式中 R', R 2は前記定義に同じ)
で示される化合物に変換し、 さらに式(II)の化合物を
式(III)
Figure imgf000005_0003
(式中 R3は水素原子、 炭素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである) の化合物と VII B、 VIII、 I B、 II B、 または III A属から選ばれる金属化合物 から調製される芳香族金展化合物と反応させて、 式(IV)
Figure imgf000006_0001
(IV)
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換し、 さらに式(IV)の化合物をアルコール類との反応によ リ式 (V)
Figure imgf000006_0002
(V)
(式中 R1, R2, R3は前記定義に同じで、 R4, R4 'は互いに独立にメチル基、 ェチル基を示すかまたは R4, R4 が互いに結合してエチレン、 トリメチレンを 示す)
で示される化合物に変換し、 さらに式 (V) の化合物を脱 |¾酸反応することで式 (VI) R1一 N
(式中 R1, R3, R4, R4'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VI)の化合物を還元反応で式 (VII)
Figure imgf000007_0001
(VII)
(式中 R1, R3, R4, R4'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VII) の化合物を還元反応で式(VI II)
Figure imgf000007_0002
(式中 R1, R3, R4, R4'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VI II)の化合物を加水分解し、 式(IX)
Figure imgf000008_0001
(IX)
(式中 R1, R3は前記定義に同じ)
で示される化合物を得ることを特徴とする 4 a—ァリール一トランス一 6—ォキ ソデカヒドロイソキノリン誘導体の製造法;および上記方法において R3が庾素 数 1〜 4のアルコキシ基またはべンジルォキシ基である式(VI II)の化合物のフエ ノールエーテル結合を開裂させ式 (X)
Figure imgf000008_0002
(X)
(式中 R1, R R4 'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (X) の化合物を加水分解し、 式(IX)
Figure imgf000009_0001
(IX)
(式中 R1は前記定義に同じで、 R 3は水酸基)
で示される化合物を得ることを特徴とする 4 a—ァリ一ルー卜ランス一 6—ォキ ソデカヒドロイソキノリン誘導体の製造法を提供する。
本発明により鎮痛剤、 免疫抑制剤等の合成原料である 4 a—ァリールートラン スー 6—ォキソデカヒドロイソキノリン類を収率よく短工程で得ることができる。
発明を実施するための最良の形態
式(I) 中の R 1としては、 好ましくはメチル基、 ェチル基、 プロピル基
(n-, iso-) 、 ブチ レ (n— , iso— , sec— , tert―)、 n—ヘンチ レ基、 n—へキンノレ基、 ァリル基、 ベンジル基、 フエネチル基、 シクロプロピルメチル基、 シクロブチル メチル基、 シクロペンチルメチル基、 シクロへキシルメチル基が挙げられる。 こ の中では、 ベンジル基、 シクロプロピルメチル基が特に好ましい。
R 2としては、 メチル基、 ェチル基、 n—プロピル基、 n—ブチル基、 ベンジル 基が挙げられ、 中でもェチル基が特に好ましい。
また式(II I) の R3としては、 水素原子、 メ トキシ基、 エトキシ基、 プロポキ シ基(n-, iso- ) 、 ブトキシ基(n-, iso-, sec- .tert -)、 ベンジルォキシ基が挙げら れ、 中でも水素原子、 メ トキシ基が特に好ましい。
式(V) の R4, R4'としては互いに独立にメチル基、 ェチル基、 または R4, R4 'が互いに結合しエチレン, トリメチレンを形成するものであり、 中でもェチレ ンが特に好ましい。
本発明により得られる 4 a—ァリールデカヒドロイソキノリン誘導体は一般に 下式に示すように番号が付けられており、 1 , 2, 3, 4, 4 a, 5, 6, フ, 8 , 8 a—デカヒドロイソキノリンを基本骨格としている <
Figure imgf000010_0001
本発明では化合物の構造式は光学活性体の一方のみをあらわしてあるが、 これ らの式は d体、 I体、 d I体をも包含して表すものとして上記命名では絶対配置 を表す R S表示の命名は略してある。
本発明を利用した 2—アルキル一 4 a—ァリール一卜ランス一 6—ォキソデカ ヒドロイソキノリン誘導体の製造法は具体的にはチヤ一ト 1に示すような工程に 従って実施される。
チヤ一卜 1
Figure imgf000011_0001
Figure imgf000011_0002
(X) 最初の工程(A) は S c h u I t zらの方法(丄 Org. Ghem. ,50, 217, 1985) に従つ て得られる原料(I) をメチルビ二ルケトンとの反応によリ 2—アルキル一 8 a— カルボアルコキシ一 1 , 6—ジォキソー 1 , 2, 3, 4, 6, 7, 8, 8 a—ォ クタヒドロイソキノリン誘導体(II)に変換する工程である。 この工程は、 さらに 原料(I ) とメチルビ二ルケトンとの共役付加反応、 分子内璣化反応、 および脱水 反応の各段階に分けられ、 前述の報文(丄 Org. Chem. , 50, 21 7, 1985) にも各段階の 実施が記載されているが、 収率は低い。
本発明者らは、 S c h u I t zらが実施した工程(A) の低収率の原因が共役付 加反応段階によるものと考え本段階の反応条件を検討した。 その結果、 式(I I )の 化合物の単離収率を大幅に改善する反応条件を見出すことに成功した。 その反応 条件とは、 式(I ) の化合物を無機塩基あるいは金属アルコキシドおよびクラウン エーテルの存在下メチルビ二ルケトンと反応させる方法 (第 1法)、 あるいはァ ルコール中で相当する金厲アルコキシドの存在下メチルビ二ルケトンと反応させ る方法 (第 2法) 、 あるいはアルカリ金属のフッ化物の存在下でメチルビ二ルケ トンと反応させる方法 (第 3法) であり、 好ましくは第 1法および第 3法の方法 である。
第 1法の方法で用いることのできる無機塩基として、 水酸化カリウム、 水酸化 ナトリウム、 水酸化リチウム、 水酸化カルシウム、 水酸化バリウム、 炭酸力リウ ム、 ¾酸ナトリウム、 炭酸リチウムが好ましく、 中でも水酸化カリウムが特に好 ましい。 また塩基として金属アルコキシドを用いる場合は、 カリウムブトキシド (n-, tert-) , カリウムメ トキシド、 カリウムエトキシド、 カリウム η—プロボ キシド、 カリウムベンジルアルコキシド、 ナトリウムブトキシド(η-, tert -)、 ナ トリウムメ トキシド、 ナトリウムエトキシド、 ナトリウム n—プロポキシド、 ナトリウムベンジルアルコキシド、 リチウムブトキシド(n-, tert -)、 リチウムメ トキシド、 リチウムエトキシド、 リチウム n—プロポキシド、 リチウムベンジ ルアルコキシドが使用できるが、 好ましくは基質(I ) のエステル部 (C 0 2 R 2 ) に相当するアルコキシドあるいは t e r t—ブトキシドであるが、 もちろんこれ らに限られない。 またクラウンエーテルとしては、 既存の公知のものであればど れでも良く、 例えば 1 8—クラウン一 6、 1 2—クラウン一 4、 1 5—クラウン 一 5、 ベンゾー 1 2—クラウン一 4、 ベンゾー 1 5—クラウン 5、 ベンゾ一 1 8 一クラウン一 6、 4 '一ブロモベンゾー 1 8—クラウン一 6、 ジベンゾー 1 8—ク ラウンー 6、 ジベンゾー 2 4—クラウン一 8、 ジベンゾ一 3 0—クラウン一 1 0、 ジシクロへキサノー 1 8—クラウン一 6及びジシクロへキサノー 2 4—クラウン 一 8などを挙げることができ、 用いる塩基の金属イオン種によリ適宣選ばれる。 さらに塩基とクラウンエーテルの組み合わせとしては特に限定はされないが水酸 化カリウム Z1 8—クラウン一 6が特に好ましく、 またこれらのモル比は、 基質 (I) ノ塩基 クラウンエーテルが 1モル 0. 0 1〜1モル/ ^0. 01〜1モル 当量が適当であり、 特に 1モル/ 0. 1モル 0. 1モル当量が好ましい。 メチ ルビニルケトンの当量は少なくとも 1当量が必要で、特に 2〜 3当量が好ましし、。 また、 溶媒としては、 アルコール、 ジメチルホルムアミド、 ジメチルスルホキシ ド等の極性溶媒またはジェチルエーテル、 テトラヒドロフラン、 1, 4—ジォキ サン等のエーテル系溶媒が好ましく、 特に基質(I) のエステル部 (C02R2) に 相当するアルコール (R2OH) が好ましいが、 塩基として t e r t—ブトキシ ドを用いる場合は t e r tーブタノールが好ましい。 反応温度は、 0〜80°Cが 適当で、 通常室温で実施される。 反応時間は、 5〜72時間で行われるが、 通常 1 0〜24時間で実施される。
第 2法の方法で用いることのできるアルコールはメタノール、 エタノール、 n 一ブロパノール、 n—ブタノール、 あるいはベンジルアルコール等の基質(I) の エステル部 (C02R2) に相当するアルコール (R2OH) であり、 アルコキシ ドとしては、特に限定されないがナトリゥ厶メ トキシド、ナトリゥムェトキシド、 ナトリウム n—プロポキシド、 ナトリウム n—ブトキシド、 ナトリウムベン ジルアルコキシド、 カリウムメ トキシド、 カリウムエトキシド、 カリウム n—プ ロポキシド、 カリウム n—ブトキシド、 カリウムベンジルアルコキシド、 リチ ゥ厶メ トキシド、 リチウムエトキシド、 リチウム n—プロポキシド、 リチウム n—ブトキシド、 あるいはリチウムベンジルアルコキシド等である。 またアルコ キシドのモル比は、 基質(I) アルコキシドが 1モル 0. 0 "!〜 1モル当量が 適当であり、 特に 1モル 1モル当量が好ましい。 メチルビ二ルケトンの当 量は少なくとも 1当量が必要で、 特に 2〜 3当量が好ましい。 反応温度は、 0~ 50°Cが適当で、通常室温で実施される。反応時間は 5〜 72時間で行われるが、 通常 5〜24時間で実施される。
第 3法の方法で用いることのできるアル力リ金属のフッ化物として、 フッ化リ チウム、 フッ化ナトリウム、 フッ化カリウムが好ましく、 中でもフッ化カリウム が特に好ましい。 また、 クラウンエーテルを反応系に加えても良い。加える場合、 既存の公知のクラウンエーテルであればどれでも良く、 用いるフッ化物の金厲ィ オン種によリ適宣選ばれ、 中でもフッ化カリウム 1 8—クラウン一 6が特に好 ましい。 これらのモル比は、 基 ¾(l) Ζアルカリ金 ¾のフッ化物 Ζ1 8—クラウ ンー 6が 1モル/ 0. 0 "!〜 1モルノ 0. 01 ~ 1モル当量が適当であり、 特に 1モル 0. 2モル 0. 2モル当量が好ましい。 メチルビ二ルケトンの当量は 少なくとも 1当量が必要で、 1. 5〜3当量、 特に 2当量が好ましい。 また、 溶 媒としては、 アルコール、 ジメチルホルムアミ ド、 ジメチルスルホキシド等の極 性溶媒またはジェチルエーテル、 テトラヒドロフラン、 1 , 4_ジォキサン等の エーテル系溶媒またはベンゼン、 トルエン、 キシレン、 ジクロロメタン、 クロ口 ホルム等の非極性溶媒が好ましく、 特にトルエンが好ましい。 反応温度は 0〜8 0°Cが適当で、通常室温で実施される。反応時間は 5〜 1 20時間で行われるが、 通常 1 0〜 36時間で実施される。
上記の 3法は工程 (A) の内、 基質(I) とメチルビ二ルケトンの共役付加反応段 階における改良法であり、 工程 (A) を完結するための以後の各段階はそれぞれ S c h u I t zらの方法(丄 Org.Chem. ,50, 217, 1985) に従って実施される。 つまり 共役付加反応段階で得られた工程 (A) の中間体を無精製のままベンゼン還流下ピ 口リジンと処理後、 次いで酢酸 Z水/酢酸ナトリゥム混合液を加え加熱する操作 である。 この操作で得られた化合物(II)の精製法は、 特に限定されないが、 シリ 力ゲルカラムクロマトグラフィーまたは再結晶法が用いられる。
次の工程(B) は、 式(III) で示される化合物と VI I B、 VIU、 I B、 I I B、 ま たは III A厲から選ばれる金属化合物から調製される芳香族金属化合物を用いた、 2—アルキル一 8 a—カルボアルコキシ一 1, 6—ジォキソー 1 , 2' 3, 4, 6, 7, 8, 8 a—ォクタヒドロイソキノリン誘導体(I I)への 1, 4一共役付加 反応で、 2—アルキル一 4 a—ァリ—ルー 8 a—カルボアルコキシ一 1 , 6—ジ ォキソ一 1 , 2, 3, 4, 4 a, 5, 6, 7, 8, 8 a—デカヒドロイソキノリ ン誘導体(IV)を得る合成工程である。
式(II I) で示される金属 Mとしては、 リチウム (Li)、塩化マグネシウム(MgCI)、 奥化マグネシウム (MgBr)、ヨウ化マグネシウム (Mgl) が適当である。また、式(III) の化合物を式(I I)の化合物へ 1, 4一共役付加させるために必要な金属化合物と して、 VII B尿の金属化合物を用いる場合、 2価の金尿化合物であれば特に限定 されないが好ましくは 2価のマンガン化合物であり、 これらはァ一ト錯体でも良 い。 I B厲の金属化合物を用いる場合、 1価の金属化合物であれば特に限定され ないが好ましくは 1価の銅化合物であり、 これらはアート錯体でも良い。 さらに 1価の銅化合物は触媒として式(IM) の化合物に添加しても良いし、 式(III) の 化合物と VII B属あるいは II B属の金属化合物とから調整した芳香族金属化合 物に同様に触媒として添加しても良い。 また、 II B属の金属化合物を用いる場合、 2価の金属化合物であれば特に限定されないが好ましくは 2価の亜鉛化合物であ リ、 これらはアート錯体でも良い。 III A厲の金属化合物を用いる場合、 3価の 金属化合物であれば特に限定されないが好ましくは 3価のアルミニウム化合物で あり、 これらはアート錯体でも良い。 さらに、 VI I I属の金属化合物を用いる場合、 2価の金属化合物であれば特に限定されないが好ましくは 2価の鉄化合物、 コ / N ルト化合物、 ニッケル化合物、 パラジウム化合物である。 さらに 2価のコバルト 化合物、 ニッケル化合物、 パラジウム化合物は触媒として、 式(IM) の化合物と II B属あるいは III A属の金属化合物とから調整した芳香族金属化合物に添加し ても良い。 さらに、 1, 4一共役付加を進行させるために必要な 1価の銅化合物、 2価のマンガン化合物、 2価の亜鉛化合物、 あるいは 3価のアルミニウム化合物 の中でも 1価の銅化合物あるいは 2価のマンガン化合物が特に好ましい。 上記し た金尿化合物は、 例えば金属ハロゲン化物、 金属カルボン酸塩、 金属アルコキシ ド、 金属メルカプチド、 金属ァセチリ ド及び金属シアニドなどの形態にあるのが 好ましいがこれらに限定されるものではない。
工程 ) において、 化合物(III) の R3が水素原子である場合、 芳香族銅化合 物の調製に当たっては、 例えば市販のフヱニルリチウム (シクロへキサン エ一 テル 1. OM溶液) を、 銅化合物を懸濁したエーテル系溶媒中に加えて調製する ことができる。 さらに調製した芳香族銅化合物の混合物に化合物(II)のエーテル 系溶媒の溶液を加えると 1 , 4一共役付加反応が進行し化合物(IV) (R3=H) が生成してくる。 試薬のモル比としては、 基質(II) フエ二ルリチウムノ銅化合 物を 1モル Z2〜6モル 〜3モル当量用いる力 好ましくは 1モル 4モル 2モル当量である。 用いる銅化合物としては、 ヨウ化第一銅、 臭化第一銅 . ジ メチルスルフィ ド錯体、 塩化第一銅、 シアン化第一銅、 2—チェニル (シァノ) 第一銅リチウム、 銅(I) ァセチリ ド類、 アルキニル(シァノ)第一銅リチウム類、 等が挙げられ、 中でもヨウ化第一銅が好ましい。 反応溶媒としては、 ジェチルェ —テル、 テトラヒドロフラン、 ジメ トキシェタン、 1, 4一ジォキサン等のエー テル系溶媒が用いられ、 中でもジェチルェ—テルが好ましいが、 基質の溶解度に 応じてジェチルエー于ル テ卜ラヒドロフラン混合溶媒が用いられる。 反応温度 としては、 芳香族銅化合物調製時はー50〜0°Cが好ましく、 特に一 20〜0°C が好ましく、 1 , 4一共役付加反応時は一 1 0〜 30°Cが好ましいが通常室温で 満足すべき結果が得られる。 1 , 4一共役付加反応の反応促進剤としてクロロト リメチルシラン、 三フッ化ほう素エーテル錯体、 へキサメチルホスホロトリアミ ド、 卜リフエニルホスフィン、 トリブチルホスフィン等を単独でまたは混合して 用いてもよく、 特にクロロトリメチルシランが好ましい。 この場合、 1, 4一共 役付加反応時の反応温度は一 78°C〜室温の範囲で徐々に昇温させるのが好まし し、。 反応促進剤のモル当量としては 2モルから 5モル当量が好ましく、 特に 3モ ルから 4モル当量が好ましい。 反応時間は、 1〜72時間が用いられ通常 2~2 4時間で実施される。 化合物(IV) (R3 = H) の単離方法として、 特に限定され ないが再結晶、 シリカゲルカラムクロマトグラフィーが用いられ、 中でも再結晶 が好ましい。
また、 化合物(III) の R3が St素数 1〜4のアルコキシ基またはべンジルォキ シ基の場合、 芳香族銅化合物の調製に当たっては、 例えば m—アルコキシブロモ ベンゼンをエーテル系溶媒中一 78〜0°C、 好ましくはーフ 8〜一 50°Cでアル キルリチウムと金属ハロゲン交換反応に付し、 化合物(III) (R3 :炭素数 1〜 4のアルコキシ基またはべンジルォキシ基、 M ·· リチウム) を調製し、 これを銅 化合物を懸渴したエーテル系溶媒に加えて調製することができる。 このようにし て得られた芳香族銅化合物の混合物に化合物(II)のエーテル系溶媒の溶液を加え ると 1 , 4—共役付加反応が進行し化合物(IV) (R3 ·' ift素数 1 ~4のアルコキ シ基またはべンジルォキシ基) が生成してくる。 その際、 反応促進剤を添加して もよい。 試薬のモル比としては、 基質(I) —アルコキシブロモベンゼン/ァ I D ルキルリチウム 銅化合物 反応促進剤を 1モル 2〜6モル 2 ~ 6モル 1 〜 3モル 3 ~ 5モル当量用いるが、 好ましくは 1モル Z 4モル 4モル 2モ ルノ 4モル当量である。 アルキルリチウムとしては、 好ましくはブチルリチウム (n-, sec-, tert-) が用いられるが、 中でも好ましくは t e r t一ブチルリチウム である。 特にこの場合 t e r t—ブチルリチウムは m—アルコキシブロモベン ゼンに対して 2倍モル用いるのが好ましい。 銅化合物としては、 ヨウ化第一銅、 臭化第一銅 · ジメチルスルフイ ド錯体、 塩化第一銅、 シアン化第一銅、 2—チェ ニル (シァノ) 第一銅リチウム、 銅(I ) ァセチリ ド類、 アルキニル (シァノ) 第 一銅リチウム類、 等が挙げられ、 中でもヨウ化第一銅が好ましい。 1, 4一共役 付加反応の反応促進剤としては、 三フッ化ほう素エーテル錯体、 クロ口 卜リメチ ルシラン、 へキサメチルホスホロトリアミド、 トリフエニルホスフィン、 卜リブ チルホスフィン等を単独でまたは混合して用いてもよく、 特にクロ口トリメチル シランが好ましい。 反応溶媒としては、 ジェチルエーテル、 テトラヒドロフラン、 ジメ トキシェタン、 1, 4一ジォキサン等のエーテル系溶媒が用いられ、 特に共 役付加反応時はジェチルエーテルが好ましいが、 基質の溶解度に応じてジェチル エーテル/テトラヒドロフラン混合溶媒を用いることもできる。 反応温度として は、 金属ハロゲン交換反応時は一 7 8 °C〜室温の範囲で徐々に昇温させるのが好 ましい。 錯体調製時は一 5 0〜0 °Cが好ましく、 特にー2 0〜0 °Cが好ましく、 1, 4一共役付加反応時は一 1 0〜 3 0 °Cが好ましいが通常室温で満足すべき結 果が得られる。 反応時間は 3 0分〜 7 2時間が用いられ通常 2〜 2 4時間で実施 される。 化合物(I V) ( R 3:炭素数 1〜4のアルコキシ基またはべンジルォキシ 基) の単離方法として、 特に限定されないがシリカゲルカラムクロマ卜グラフィ 一かまたは再結晶が利用できる。
また、 芳香族マンガン錯化合物の調製に当たっては、 例えばクロ口ベンゼン、 ボロモベンゼン、 ョウドベンゼン、 m—アルコキシクロ口ベンゼン、 m—アルコ キシボロモベンゼン、 m—アルコキショウドベンゼンをエーテル系溶媒中室温〜 還流条件でマグネシウムとの反応に付し、 化合物(I I I ) ( R 3 :水素、 庾素数 1 〜4のアルコキシ基またはべンジルォキシ基、 M :塩化マグネシウム、 臭化マグ ネシゥムまたはヨウ化マグネシウム) を調製し、 これを化合物(l l )、 2価の化マ ンガン化合物、 塩化リチウム、 塩化第一銅のエーテル系溶液に加えると 1, 4一 共役付加反応が進行し化合物(IV) (R3 :水素、 炭素数 1〜4のアルコキシ基ま たはべンジルォキシ基) が生成してくる。 その際、 上記と同様の反応促進剤を添 加してもよい。 試薬のモル比としては、 基質(II)ノ芳香族ブロミ ドノマグネシゥ ム 2価のマンガン化合物 Z塩化リチウム Z塩化第一銅を 1モル Z1〜5モル Z 1〜5モル 0. 5〜1. 5モルノ 3〜9モル ZO. "! 〜 1. 5モル当量いるが、 好ましくは 1モル 2. 4モル 2. 9モルノ 1. 1モル 6モルノ 1. 1モル 当量である。 2価のマンガン化合物としては、 塩化マンガン、 臭化マンガン、 ョ ゥ化マンガン等が挙げられ、 中でも塩化マンガンが好ましい。 好ましい 1 , 4一 共役付加反応の反応促進剤としては、 クロロトリメチルシランが 1〜5当量用い られるが、 より好ましくは 3当量である。 反応溶媒としては、 ジェチルエーテル、 亍トラヒドロフラン、 ジメ トキシェタン、 1 , 4一ジォキサン等のエーテル系溶 媒が単独または混合で用いられるが、 特にテトラヒドロフラン、 ジメ トキシエタ ンが好ましい。 反応温度としては、 一 30〜30°Cで実施されるが、 通常 0°C〜 室温で満足すべき結果が得られる。 反応時間は、 30分〜 72時間が用いられ通 常"!〜 24時間で実施される。 化合物(IV) (R3 :水素、 炭素数 1〜4のアルコ キシ基またはべンジルォキシ基) の単離方法は上記と同様に、 特に限定されない がシリカゲルカラムクロマ卜グラフィーかまたは再結晶が利用できる。
次の工程 (C) は、 化合物(IV)の 6位カルボニル基をケタール化反応により保護 し化合物 (V) に変換する工程である。 ここで R4, R4 は、 互いに独立にメチル、 ェチル等の鎖状アルキル基を示すかまたは R R 4 力互いに結合したエチレン、 トリメチレンを示す。 ケタール保護基としてはジメチルァセタール、 ジェチルァ セタールなどの非環状ケタール、 あるいはエチレンケタール、 トリメチレンケタ ールなどの璟状ケタールのいずれでもよいが、 中でもエチレンケタール、 卜リメ チレンケタールなどの琿状ケタールが好ましく、 特にエチレンケタールが望まし し、。 具体的には、 メタノール、 エタノール、 エチレングリコール、 卜リメチレン グリコールなどのアルコールと共に、 ベンゼン、 トルエン、 キシレンなどの芳香 族炭化水素系溶媒に溶解後、 酸触媒を加え、 生じる水を共沸留去しながら加熱撹 拌することで得られる。 中でも非環状ケタールの場合には、 酸触媒存在下、 メタ ノール、 エタノールなどのアルコール系溶媒中、 オルトギ酸メチル、 オルトギ酸 ェチル、 オル卜酢酸メチル、 オルト酢酸ェチルなどのオルトエス亍ルを用いて加 熱撹拌しても得ることができる。 これらの場合に用いる酸触媒としては通常、 塩 酸、 硫酸、 リン酸、 などの無機酸、 メタンスルホン酸、 ベンゼンスルホン酸、 P 一トルエンスルホン酸、 カンファースルホン酸などの有機酸が用いられるが、 中 でも塩酸、 メタンスルホン酸、 カンファースルホン酸、 p—トルエンスルホン酸 が好ましく、 特に p—トルエンスルホン酸が望ましい。 反応温度としては、 2 0 〜1 5 0 °Cの範囲でよく、 中でも 6 0〜1 3 0 °Cで満足すべき結果が得られる。 反応時間は、 2〜7 2時間であり、 通常 2 ~ 5時間で実施される。 上記反応で得 られた化合物 (V) は、 精製せずに次の工程に付してもよいが、 精製する場合はシ リカゲルを用いるショートカラムに付してもよい。
次の工程 (D) は、 化合物 (V) の 8 a位カルボアルコキシ基を除去し化合物 (VI ) に変換する工程である。 この変換は文献(P. A. Bart l ett. W. J. Johnson,
Tetrahedoron Lett. , 4459, 1970) に示される操作法に従って実施することができ る。 すなわち、 化合物 (V) を金厲アルキルメルカプチドとの反応に付す。 用いる アルキルメルカブタンとしてはェチルメルカブタン、 η—プロピルメルカブタン、 イソプロピルメルカブタン、 η—ブチルメルカプタン、イソプチルメルカプタン、 t e r tーブチルメルカブタンなどが挙げられ、 好ましくはェチルメルカブタン であるが、 もちろんこれに限られない。 塩基としては、 水素化ナトリウム、 ナト リウ厶へキサメチルジシルアミド、 水素化カリウム、 カリウムへキサメチルジシ ルアミ ド、 カリウム t e r t—ブトキシドなどが用いられ、 特に水素化ナトリ ゥムが望ましいが、 これに限られない。 用いる金属アルキルメルカプチドの当量 は、 基質に対して少なくとも等モルから過剰に使用することができるが、 6モル 当量が好ましい。 反応溶媒は、 ジメチルホルムアミ ド、 N—メチル一2—ピロり ドンなどの非プロトン性極性溶媒が好ましく、 中でもジメチルホルムァミ ドが望 ましい。 反応温度は 6 0〜1 2 0 °Cが好ましいが、 通常 8 0 °Cで実施される。 反 応時間は、 1 ~ 7 2時間であり、 通常 4〜1 0時間で実施される。
次の工程 (E) は、 化合物 (VI )の 1位カルボ二ル基を還元してェナミン体(V I I ) に変換する工程である。 この工程は R a p o p o r t (U. S. Pat. 4, 189, 583, J. Org. Cherti.42, 1485, 1977)らの方法に従って実施することができる。 すなわち、 還 元剤として水素化ジイソブチルアルミニウムを用い、 基質 (VI)に対して等モル以 上、 好ましくは 5モル当 i用いる。 溶媒としてはジェチルエーテル、 テトラヒド 口フラン、 ジメ トキシェタン等のエーテル系溶媒が使用でき、 中でもテトラヒド 口フランが好ましい。 反応温度は 0°C〜室温で実施される。 ここで得られた化合 物 (VII) は無精製のまま次の工程 (F) に付すことができる。
工程(F) はェナミン体 (VII) を還元しトランス一 4 a—ァリールデカヒドロイ ソキノリン体 (VI II)に変換する工程である。 この変換法には公知例として R a— p o p o r t (U. S. Pat.4, 189, 583, 丄 Org. Chem.42.1485, 1977)らの 5 %ロジウム アルミナ触媒による接触水添反応、 近似例として Z i mme r ma n (J. Org. Ghem. , 54, 1442, 1989) らの酸化白金触媒による接触水添反応、および E v a n s, Z i mm e r m a n (J. Am. Chem. Soc. , 102, 5955, 1980)らの過塩素酸存在下での水 素化ほう素ナトリウムによるヒドリ ド還元法が知られている。 本発明者らは本変 換工程を種々検討の結果、 再現性の良い新たな還元方法を見出した。 すなわち、 ェナミン体 (VII) を酸性条件下、 シァノ水素化ほう素ナトリウムにより還元する 方法である。 シァノ水素化ほう素ナトリウムの使用量としては基質 (VII) 1モル に対して 0. 5〜 5モル当量が用いられ、 とくに 1 ~ 3モル当量が好ましい。 反 応溶媒はメタノール、 エタノール、 ジメチルホルムアミ ド等の極性溶媒が好まし く、 この中でメタノールが特に好ましい。 また反応の進行には液性を酸性条件に 保つことが好ましく、 より具体的には塩酸飽和メタノールの添加により反応液の 卩(~1を2〜5、 特に p H 4付近に保つのが好ましいが、 もちろん用いる酸は塩酸 に限られない。 反応温度は一 20°C〜室温で実施され、 通常一 1 0〜0°Cで行わ れる。
工程 (G) は、 化合物 (VI II)を酸触媒と共に溶媒に溶解後、 ァセタール保護基を 脱保護して 4 a _7リールデカヒドロイソキノリン誘導体(IX)に変換する工程で ある。 酸触媒としては、 硫酸、 塩酸、 リン酸などの無機酸、 メタンスルホン酸、 ベンゼンスルホン酸、 p—トルエンスルホン酸、 カンファ—スルホン酸などの有 機スルホン酸、 酢酸、 プロピオン酸などの有機カルボン酸などが挙げられるが、 通常は硫酸または塩酸で十分満足すべき結果が得られる。 溶媒としては、 ジェチ ルエーテル、 亍トラヒドロフラン、 ジメ トキシェタン、 1 , 4一ジォキサンなど のエーテル系溶媒、 ジクロロメタン、 クロ口ホルム、 四塩化炭素、 1 , 2—ジク ロロェタンなどのハロゲン系溶媒などと水との混合溶媒系あるいは上記の酸触媒 を含む酸性水溶液が用いられるが、 通常は稀硫酸水または稀塩酸水で十分満足す べき結果が得られる。反応温度は、一 5 0〜 1 0 0 °Cの範囲で実行可能であるが、 通常は 0〜 5 0 °Cの範囲で満足すべき結果が得られる。
工程(H) は、 R 3が炭素数 1 〜4のアルコキシ基またはべンジルォキシ基であ る化合物 (VI I I )のフヱノールエーテル結合を開裂させ化合物 (X) に変換する工程 である。 すなわち化合物 (VI M )を溶媒に溶かし、 メルカブタンの存在下、 塩基と 反応させるか、 3価のほう素化合物と反応させることにより行われる。 3価のほ う素化合物を用いれば、 続く工程(I ) を省略することができる。 溶媒は、 メルカ ブタンと塩基を用いる時には、 ジメチルホルムアミ ド、 ジメチルスルホキシド、 へキサメチルホスホロトリアミ ド等の非プロトン性極性溶媒が好ましく用いられ、 中でもジメチルホルムアミドが好ましい。 3価のほう素化合物を使用する時には ジクロロメタン、 クロ口ホルム、 四塩化炭素などのハロゲン系溶媒が好ましく、 特にジクロロメタンが好ましい。 メルカブタンとしては、 C 1 〜C 1 0の鎖状の 側鎖を有するものが挙げられ、 通常はプロピルメルカプタンが好ましく用いられ る。 塩基としては、 カリウム t e r t—ブトキシド、 力リウムェトキシド、 ナ トリウム t e r t—ブトキシド、 ナトリウムエトキシド、 ナトリウムメ トキシ ド等のアルコール類のアルカリ金属塩、 水素化ナトリウム、 水素化カリウム等の 水素化物類、 ナトリウムアミド等のアンモニアの金属塩が用いられるが、 通常の 実行にはカリウム t e r t一ブトキシドを用いて十分満足すべき結果が得られ る。 3価のほう素化合物としては三臭化ほう素、 三塩化ほう素などが挙げられ、 特に三臭化ほう素が好ましい。 反応温度はメルカプタンを用いる時は 0〜 3 0 0 °Cの範囲が考えられ、 中でも 5 0 ~ 2 0 0 °Cが好ましく、 特に 8 0 ~ 1 2 0 °C が好ましい。 3価のほう素化合物を使用する場合は、一 8 0〜5 0 °Cが好ましく、 特に 0〜3 0 °Cが好ましい。
次の工程(I ) は化合物 (X) を酸触媒と共に溶媒に溶解し、 6位のァセタール保 護基を脱保護して、 R 3が水酸基である式(I X)で示される化合物に変換する工程 である。 この工程は、 チャート 1の工程 (G) と同様の方法で行うことができる。 化合物(IX)の精製は、 シリカゲルカラムクロマトグラフィーまたは再結晶、 ある いは薬理学的に許容な塩に変換後、 再結晶により行える。
本発明により得られる 4 a—ァリール一トランス一 6—ォキソデカヒドロイソ キノリン誘導体は、 特開平 5— 1 55857に開示されているように鎮痛剤およ び または麻薬性拮抗剤として、 さらに W0 89/995に開示されている免疫抑制剤 の合成原料として有用である。
【実施例】
以下、 本発明を参考例、 実施例により具体的に説明する。 もっとも、 これらの 実施例は例示のためにのみ示すものであり、 いかなる意味においても限定的に解 釈されてはならない。
参考例 1
3— (ベンジルァミノ) プロピ才ン酸ェチル 1
Figure imgf000022_0001
1 ベンジルァミン 13.9g(129.84瞧 ol) のエタノール 30ml 溶液にアクリル酸ェチ ル 10g(99.88mmol)を 50°C下 1時間かけてゆつくリ撹拌下滴下した。滴下終了後、 混合物を 1時間 80°Cで加熱した。 反応終了後、 反応溶液を室温に冷却し溶媒を減 圧濃縮し、 残留油状物を得た。 これを減圧下蒸留すると過剰のベンジルァミンが 最初のフラクションとして(50 ~60°C, 0.75圃 Hg) で回収され、 次いで標題化合 物が 129 〜133 °C(0.75mmHg)で無色油状物として得られた。
収量 17.4g 収率 84.2%
bp.129〜133 °C(0.75mmHg)
I (液膜法)
V max cm"1 :1734.
NMR(90 MHz, CDC 13) 6: 1.26 (3H, t, J=7.0 Hz), 1.70(1H, br s) , 2.53 (2H, t, J=5, 8 Hz) , 2.91 (2H, t, J=5.8 Hz) , 3.82 (2H, s) , 4.16(2H, q, J=7.0 Hz), 7.31 (5H, s) ·
Mass (El)
m/z: 207 (NT )
参考例 2
3— { (N—シクロプロピルメチル) ァミノ } プロピオン酸ェチル
Figure imgf000023_0001
2
参考例 1 と同様の操作によリシクロプロピルメチルァミン 5g(70.3薩 ol), ァ クリル酸ェチル 6.12g(61.13瞧 ol), エタノール 25ml から標題化合物を無色油状 物として得た。
収量 9.39g 収率 90%
bp.68.5 〜70°C(0.75mmHg)
I (液膜法)
V max cnT':3500, 1736.
N R (90 MHz, CDC 13)
<5 :0.08 〜0.20(2H, m) , 0.40 〜0.60(2H, m) , 0.96 (1H, m) , 1.27 (3H, t, J=7.0 Hz), 2.46 (2H, t, J=5.0 Hz), 2.53 (2H, t, J=5.0 Hz) , 2.92 (2H, t, J二 6 , 3 Hz), 3.61 (1H, s), 4.17(2H, q, J=7.0 Hz).
Mass (El)
m/z :171 (IT )
参考例 3
3— (N—ベンジル一 N—カルボエトキシァセ卜アミド) プロピオン酸ェチル
3
Figure imgf000024_0001
3
3— (ベンジルァミノ) プロピオン酸ェチル J_2.07g(10mmol) およびマロン酸 モノェチル 1.39g(10.5mmol) の酢酸ェチル 40ml 溶液に氷冷下ジシクロへキシル カルボジィミド 2.17g(10.5mmol) の齚酸ェチル 10ml 溶液を撹拌下滴下した。 次 いで反応混合物を室温下 1 2時間撹拌した。 反応の結果生じる尿素誘導体の沈殿 物を 3 G 4ガラスフィルターを用いて吸引濾去し、 母液を減圧濃縮し残留物を得 た。 これをさらに酢酸ェチル Zへキサン 1 : 2 に混合し、 生じる沈殿物を同 様に処理し標題化合物を無色油状物として得た。
収量 3.26g 収率 100 %
IR (液膜法)
V max cm— 738' 1653.
NMR (90 MHz. CDC 13)
(5 :1.17 ~1.39(6H, m) , 2.46 ~2.73 (2H, m) , 3.37 ~3.74 (2H, m) , 3.44 an d 3.65 (2H, each s) , 4.00〜4.30 (4H, m) , 4.61 and 4.65 (2H, each s) , 7.20 〜 7.40 (5H, m).
Mass (El)
m/z:321 (NT )
参考例 4
3 - (N—シクロプロピルメチルー N—カルボメ トキシァセ卜アミド) プロピ オン酸ェチル
Figure imgf000024_0002
4 3- { (シクロプロピルメチル) ァミノ } プロピオン酸ェチル^ _5g(29mmol)お よび卜リエチルァミン 10ml (71.9隱 ol)のジクロロメタン 100ml 溶液に 0°C下メ チルマロニルクロリ ド 5.95g(43.6画 ol) を滴下し、 6時間室温で撹拌した。 反応 終了後、 反応溶液を 1 N—塩酸、 1 N—水酸化ナトリウム、 飽和食塩水で洗浄し、 硫酸水素ナトリウムで乾燥した。 濾過後溶媒を減圧濃縮して得られた油状物 9.96g をシリカゲル 200g を用いるクロマト (シクロへキサンノ酢酸ェチル 3:1 ~2:1v/v) に付し、 標題化合物を無色油状物として得た。
収量 6.58g 収率 84%
I (液膜法)
V max cm— 1: 1734, 1653.
N R (90 MHz, CDC 13)
δ :0, 141〜0.35 (2H, m) , 0.42. ~0.67 (2H, m) , 0.94(1H, m) , 1.25(3H, t, J= 6.3 Hz), 2.63 (0.7H, t, J=6.3 Hz) , 2.66(1.3H, t, J=6.3 Hz) , 3.24 (2H, t, J=6.3 Hz), 3.47(1.3H, s) , 3.57(0.7H, s) , 3.69(1.3H, d, J=7.3 Hz) , 4.1 2(1.3H, q, J=6.3 Hz) , 4.16(0.7H, q, J=6.3 Hz) , 6.74(0.7H, d, J=5.5 Hz) , 6.75 (3H, s).
Mass (El)
m/z:271 ( NT )
参考例 5
3— (N—シクロプロピルメチル一N—カルボエトキシァセトアミ ド) プロピ オン酸ェチル 互 o o
OEt
ノ C02Et
5 操作 1
参考例 3と同様の操作により、 3— { (シクロプロピルメチル) アミノ} プロ ピオン酸ェチノレ^ _2.71g(15.85mmol), マロン酸モノェチル 2.09g (15.81闘 ol) , ジ シクロへキシルカルポジイミド 3.27g(15.85mmol)から摞題化合物を無色油状物 として得た。
操作 2
3一 Kシク口プロピルメチル)アミノ)プロピオン酸ェチル _ _4.5g(26.31睡 ol) およびマロン酸モノェチル 3.66g(27.7mmol) をジクロロメタン 35ml に溶解し、 これに 1 — (3—ジメチルァミノプロピル) 一 3—ェチルカルボジイミ ド塩酸塩 5.04g (26.31mmol)のジクロロメタン 35ml溶液を室温で滴下した。 3時間後、反応 混合物を酢酸ェチルに注ぎ、 これを 1 N—塩酸、 飽和炭酸水素ナトリウム水、 飽 和食塩水で洗浄後、 硫酸マグネシウムで乾燥した。 濾過後、 溶媒を減圧蒸留し、 標題化合物を無色油状物として得た。
収量 操作 1 4.29g (95%) , 操作 2 7.48g (99.8%)
IR (液膜法)
V max cm"' :1738, 1649.
NMR(90 MHz, CDC 13)
δ :0.20〜0.37(2H, m), 0.42 ~0.67 (2H, m) , 1.02(1H, m) , 1.29 (6H, t, J= 6.0 Hz). 2.48 ~2.75 (2H, m) , 3.18〜3.35(2H, m) , 3.47(1.2H, s) , 3.54(0 .8H, s) , 3.60〜3.78(2H, m) , 4.16(1.6H, q, J=6.0 Hz) , 4.21 (2.4H, q, J= 6.0 Hz). ass(EI)
m/z:285( M+ )
参考例 6
1一べンジルー 3—カルボエトキシ一 2, 4—ピぺリジンジオン 6
Figure imgf000026_0001
無水エタノール 10ml に金属ナトリウム 280mg(12.15mmol)を溶解し、 これに 3 一 (N—べンジルー N—カルボエトキシァセトアミド) プロピオン酸ェチルル 3.25g(10.13mmol)の無水ベンゼン溶液を氷冷撹拌下アルゴン気流中にて滴下した。 滴下終了後、 混合物を室温で 1. 5時間撐拌すると環化生成物のナトリウム塩が 沈殿した。 減圧濃縮後得られる残留物を水に溶解しエーテルで洗浄した。 水餍を 濃塩酸で酸性とし、 酢酸ェチルで抽出した。 さらに有機層を飽和食塩水で 3回以 上洗浄し硫酸マグネシウムで乾燥後、 有機溶媒を減圧濃縮すると十分に純粋な標 題化合物が無色油状物として得られた。
収量 2.73g 収率 99.3%
IR (液膜法)
V max cm—' :1729, 1657, 1599.
N R (90 MHz, CDC 13)
<5 :1.42(3H, t, J二 7.2 Hz), 2.57 (2H, t, J=6.7 Hz) , 3.33 (2H, t, J=6.7 Hz) ,
4.41 (2H, t, J=7.2 Hz) , 4.64 (2H, s), 7.29 (5H, s) , 14.05(1H, s) .
Mass (El)
m/z:275( M+ )
参考例 7
3—カルボメ トキシー 1ーシクロプロピルメチル _2, 4—ピぺリジンジオン
Figure imgf000027_0001
金属ナトリウム 298mg(12.96國 ol)を無水メタノールに溶解し、 これに 3— (N ーシクロプロピルメチルー N—カルボメ トキシァセトアミ ド) プロピオン酸ェチ
Figure imgf000027_0002
の無水ベンゼン溶液 50ml を 0°Cで滴下し、 2時間撹拌し た。反応混合物を減圧蒸留すると環化生成物のナトリウム塩が 2.89g 得られた。 この粗固形物を水に溶解し、 エーテルで洗浄後、 水層を濃塩酸で酸性とし、 酢酸 ェチルで抽出した。 有機層を飽和食塩水で 5回洗浄し、 硫酸マグネシウムで乾燥 後、 溶媒を減圧蒸留すると標題化合物が無色油状物として得られた。 収量 2.37g 収率 97.3%
I (液膜法)
v max cm-1 :3452, 1729, 1647, 1601.
NMR (90 MHz, CDC 13)
«5 :0.17 ~0.35 (2H, m), 0.40 〜0.62(2H, m) , 1.00(1H, m) , 2.69 (2H, t, J= 6.3 Hz), 3.34 (2H, d, J=6.8 Hz) , 3.40(0.5H, br s) , 3.50 (2H, t. J=6.3 Hz ) , 3.91 (3H, s), 13.8(0.5H, br s) .
Mass (El)
m/z:225( + )
参考例 8
3—カルボェトキシー 1—シクロプロピルメチルー 2, 4—ピペリジンジオン
_8
Figure imgf000028_0001
8
参考例 6と同様にして金属ナトリゥム 305mg(13.26訓 ol),無水エタノール 10ml, 3— (N—シクロプロピルメチルー N—カルボエトキシァセトアミ ド) プロピオ ン酸ェチル^ _3.15g(11.05mmol)および無水ベンゼン 50ml から棵題化合物を無色 油状物として得た。
収量 2.59g 収率 98%
I (液膜法)
V max cm-1 :1729, 1653.
NMR (90 MHz, CDC 13)
<5 :0.17 〜0.36(2H, m), 0.40 〜0.62(2H, m) , 1.02(1H, m) , 1.40(3H, t, J二 7.3 Hz), 2.67 (2H, t, J=6.8 Hz) , 3.34 (2H, d, J=6.8 Hz) , 3.50 (2H, t, J=6 .8 Hz) , 3.60(0.3H, s), 4.38 (2H, d, J=7.3 Hz) , 14.0(0.7H, s) .
Mass (El) m/z:239( M+ )
実施例 1
2—べンジルー 8 a—カルボェトキシー 1 ' 6—ジォキソ一 1, 2, 3, 4 6, 7, 8, 8 a—ォクタヒドロイソキノリン
Figure imgf000029_0001
9
1 一べンジルー 3—カルボェ トキシー 2 , 4—ピぺリジンジオン 8.73g(31.75圆 ol)を無水ベンゼン 30ml と無水 t e r tーブタノール 15mlに溶解 し、 これにポタシゥム t e r t一ブトキシド 428mg(3.81酬 ol) をアルゴン気流 下加え、混合物を 2時間かけて 70°Cに加熱した。混合物を再び室温に戻した後、 これにメチルビ二ルケトン 4.44ml (53.97画 ol) を滴下し、ゆっくり 80°Cに加熱 し 5時間撹拌した。 反応終了後室温に冷却しエーテル 酢酸ェチル 9 : 1 及 び飽和塩化アンモニゥム水の混合溶液に注ぎ抽出し、 有機層を飽和食塩水で洗浄 後硫酸マグネシウムで乾燥した。有機溶媒を減圧濃縮すると粗油状物 9.64g を黄 色油状物として得た。
上記の粗油状物の無水ベンゼン 38ml 溶液にピロリジン 4ml (47.62圆 ol)を加え De a n— S t a r kの装置を用いて 4時間 1 00°Cで加熱した。 さらに反応溶 液を冷却後、 酢酸ノ水ノ齚酸ナトリウム 2 : 2 : 1 の混合物 15ml を加え 1 00°Cで 3時間加熱した。 反応溶液は、 水中に注ぎ酢酸ェチルで抽出した。 有機 層を 1 N—塩酸溶液 (X 4) 、 飽和炭酸水素ナトリウム水溶液、 さらに飽和食塩 水で洗浄後硫酸マグネシウムで乾燥した。 有機溶媒を減圧濃縮し褐色の粗油状物 5.8g を得た。 これをシリカゲル 80g を用いるクロマト (へキサン Z酢酸ェチル 3 : 2) に付し檁題化合物を固形物として得た。
収量 3.9g 収率 50%
mp. 72〜74°C (エーテル)
IR (液膜法) v max cm-1 :1734. 1680, 1653, 1600.
NMR (90 MHz, CDC 13)
<5 :1.29(3H, t, J=7.0 Hz) , 3.28〜3.47 (2H, m) , 4.26 (2H. q, J=7.0 Hz) , 4. 34 (1H, d, J=14.5 Hz), 4.97 (1H, d, J=14.5 Hz), 5.98(1H, br s〉, 7.30(5H, s). Mass (El)
m/z:327( M+ )
実施例 2
8 a—力ルポメ トキシ一 2—シクロプロピルメチルー 1, 6—ジォキソー 1, 2, 3, 4, 6, 7, 8, 8 a—ォクタ匕ドロイソキノリン 1 0
Figure imgf000030_0001
10
操作 1
水素化ナトリウム 5ml (0.125mmol)のベンゼン懸濁液 0.8ml に 1—シクロプロ ピルメチルー 3—カルボメ トキシー 2 , 4—ピぺリジンジオン丄 300mg (1.3睡 ol) のベンゼン 0.5ml 溶液を加え室温で 2時間搜拌した後、 メチルビニル ケトン 0.1ml (1.2mmol)のベンゼン 0.4ml 溶液を加え 42 °Cで 22時間搜拌した。 さらにメチルビ二ルケ トン 0.1ml (1.2mmol)を加え、 さ らに 2 0時間後 0.05ml (0.6mmol)を加え、 4時間搜拌した。 反応溶液を室温に戻し、 蒸留水および ベンゼンを加え抽出した。 有機層を無水硫酸マグネシウムで乾燥し、 溶媒を減圧 濂縮すると粗油状物 381 mg が得られた。
本油状物をベンゼン 1.2ml に溶解し、ピロリジン 0,22ml (2.6mmol) を加え D— e a n-S t a r kの装置を用いて 1 9時間加熱還流し、 生じる水を共沸除去し た。 次いで、 反応混合物を室温に戻し、 酢酸 水 Z酢酸ナトリウム(2:2:1)1ml を 加え 1. 5時間加熱した。 反応終了後、 ジクロロメタンおよび蒸留水を加え抽出 した。 得られた有機展を 1 N—塩酸、 1 N—炭酸ナトリウム、 飽和食塩水で洗浄 し、 無水硫酸マグネシウムで乾燥した。 濾過後、 溶媒を留去して得られる粗油状 物 310mg をシリカゲル 10g (クロ口ホルム) を用いるカラムクラマトに付すと標 題化合物が無色固形物として得られた。
操作 2
化合物 7 4g(17.78mmol) のメタノール 20ml 溶液にナトリウムメ トキシド 115mg(2.13議 ol) 次いでメチルビ二ルケトン 3.65011 (44.45讓01) を加え室温で 1 0時間撹拌した。 反応終了後、 飽和塩化アンモニゥム水を加え、 得られた混合 物をエーテル Z酢酸ェチル(9:1 v/v) Z飽和塩化アンモニゥム水の混合溶液に注 ぎ抽出した。 有機層を飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥した。 濾過後溶媒を減圧留去すると粗油状物が得られた。
本油状物をベンゼン 25ml に溶解し、 ピロリジン 3.71ml (44.45mmol) を加え D e a n -S t a r kの装置を用いて 1 9時間加熱還流し生じる水を共沸除去した。 次いで、 反応混合物を室温に戻し、 醉酸 Z水 Z酢酸ナトリウム(2:2:1 V/v/V)20ml で 1. 5時間加熱処理した。 反応終了後、 酢酸ェチルを加え、 得られた有機層を 1 N—塩酸、 1 N—炭酸ナトリウム、 飽和食塩水で洗浄し、 無水硫酸マグネシゥ ムで乾燥した。 濾過後、 溶媒を留去して得られる粗油状物をシリカゲル 17g (へキ サン 酢酸ェチル 3:4〜1:2 v/v)を用いるカラムクロマ卜に付すと標題化合物が 無色固形物として得られた。 本品はエーテル中で再結晶した。
操作 3
化合物 2300mg(1.3mmol) のメタノール 1ml 溶液に 1 N—水酸化カリウム'メ タノール溶液 0.13ml (0.13mmol)および 18- crown- 634mg(0.13顏 ol) を加え、室温 で 1 0分攪拌後、メチルビ二ルケトンを間欠的(0.1ml (1.2画 ol), 0.1ml (1.2mmol) , 0.05m I (0.6mmol) ) に加え 22時間搜拌した。 反応溶液を減圧濃縮し、 これをジ クロ口メタンおよび飽和塩化力リゥム水で抽出し、 有機層を無水硫酸ナトリゥム で乾燥した。 溶媒を減圧留去すると粗油状物 653mg が得られた。
本油状物をベンゼン 10mlに溶解し、ピロリジン 0·2 Ι (2.24議 ol)を加え D e— a n -S t a r kの装置を用いて 6時間加熱還流し、 生じる水を共沸除去した。 次いで、 反応混合物を室温に戻し、 酢酸ノ水ノ酢酸ナトリウム (2:2:1)5ml を加え 3時間加熱した。 反応終了後、 ジクロロメタンおよび蒸留水を加え抽出した。 得 られた有機層を飽和炭酸水素ナトリウム、 飽和食塩水で洗浄し、 無水硫酸マグネ シゥムで乾燥した。 濾過後、 溶媒を留去して得られる粗油状物 634mg をシリカゲ ル 18g (酢酸ェチルバへキサン 1:1〜2:1 v/v)を用いるカラムクロマトに付すと標 題化合物が無色固形物として得られた。
収量 操作 1 151mg (42%) , 操作 2 3.55gg (72%), 操作 3 342 mg (95%) mp. 95.5〜96.5°C (エーテル)
IR (液膜法)
V max cm"1 :1744, 1680, 1657, 1628.
N R(90 MHz, CDC 13)
δ :0.22 〜0.38 (2H, m) , 0.42 〜0.65 (2H. m) , 1.00(1 H, m) , 1.89 ~3.60(1 OH, m), 3.78 (3H, s), 5.98(1 H, br s) .
Mass (El)
m/z:277( M+ )
元素分析値 C,5 H 19 N O 4 として
計算値 C, 64.97; H, 6.91; N, 5.05
実測値 C, 64.93; H. 6.91; N, 5.11
実施例 3
8 a—力ルポェトキシー 2—シクロプロピルメチルー 1 , 6—ジォキソ一 1 , 2, 3, 4, 6, 7, 8, 8 a—ォクタヒドロイソキノリン 1—1
Figure imgf000032_0001
11
操作
1ーシクロプロピルメチルー 3—カルボェトキシー 2, 4—ピぺリジンジオン 8 6.25g(26.15mmol)のエタ ノ ール 30ml 溶液にナ ト リ ウムエ トキシ ド 213mg(3.14圃 ol)、 次いでメチルビ二ルケトン 4.84ml (58.84國 ol) を加え室温で 7. 5時間撹拌した。 反応終了後、 飽和塩化アンモニゥム水を加え、 得られた混 合物をエーテルノ酢酸ェチル (9:1 v/v) ノ飽和塩化アンモニゥム水の混合溶液に 注ぎ抽出した。 有機層を飽和塩化アンモニゥム水で洗浄し、 無水硫酸マグネシゥ ムで乾燥した。 濾過後溶媒を減圧澹縮すると粗油状物が得られた。
本油状物をベンゼン 80ml に溶解し、 ピロリジン 5.46ml (65.38瞧 ol〉を加え D e a n-S t a r kの装置を用いて 1 6時間加熱還流し生じる水を共沸除去した。 次いで、 反応混合物を室温に戻し、 齚酸 水 酢酸ナトリウム (2:2:1 v/v/v)65ml で 1時間加熱処理した。 反応終了後、 齚酸ェチルを加え、 得られた有機層を 1 N 一塩酸、 I N—炭酸ナトリウム、 飽和食塩水で洗浄し無水硫酸マグネシウムで乾 燥した。 濾過後、 溶媒を留去して得られる粗油状物をシリカゲル 200g (へキサン Z酢酸ェチル 1:1, 3:4 v/v ) を用いるカラムクロマトに付すと標題化合物が無 色固形物として得られた。
操作 2
1ーシクロプロピルメチルー 3—カルボェトキシー 2, 4—ピペリジンジオン JL200mg(0.84瞧 ol) 、 1 8—クラウン一 6 45mg(0.17mmol) 、 およびフッ化カリ ゥム 9.8mg(0.17隱 ol) をトルエン 2ml に溶解し、 これにメチルビ二ルケトン 0.1½l (1.68mm0l)を滴下後、 室温で 8時間吐撹拌した。 反応終了後、 飽和塩化ァ ンモニゥム水を加え、 得られた混合物をエーテル 酢酸ェチル(9:1 v/v) Z飽和 塩化アンモニゥム水の混合溶液に注ぎ抽出した。 有機層を飽和塩化アンモニゥム 水で洗浄し、 無水硫酸マグネシウムで乾燥した。 濾過後溶媒を減圧濃縮すると粗 油状物が得られた。
本油状物をベンゼン 10ml に溶解し、 ピロリジン 0.18ml (2.1mmol)を加え D e a n -S t a r kの装置を用いて 1 6時間加熱還流し生じる水を共沸除去した。 次いで、 反応混合物を室温に戻し、 酢酸ノ水/酢酸ナ ト リ ウム(2:2:1 v/v/v)0.25ml で 1時間加熱処理した。 反応終了後、酢酸ェチルを加え、 得られた 有機層を 1 N—塩酸、 1 N—^酸ナトリウム、 飽和食塩水で洗浄し無水硫酸マグ ネシゥムで乾燥した。 濾過後、 溶媒を留去して得られる粗油状物をシリカゲル 7g (へキサン Z酢酸ェチル 1:1, 3:4 v/v ) を用いるカラムクロマトに付すと標題 化合物が無色固形物として得られた。
収量 操作 1 5.34g (70%) 操作 2 208mg (85%)
mp.50〜52°C (エーテル) IR (液膜法)
v max cm"' :1740, 1680. 1653, 1628.
NMR (90 MHz, CDC 13)
<5 :0.19 0.38(2H, m), 0.42 ~0.65 (2H, m) , 1.01 (1H, m) , 1.30(3H, t, J= 7.5Hz) , 1.91 3.65(10H, m) , 4.25 (2H, q, J=7.5Hz) , 6.00(1 H. br s) .
Mass (El)
m/z:291 ( + )
元素分析値 C 16H 21 NO 4 として
計算値 C, 65.96: H, 7.27; N, 4.81
実測値 C, 65.83; H 7.11; N, 4.88
実施例 4
2一べンジルー 8 a—カルボェトキシ一 4 a—フエ二ルーシス一 1 6—ジォ キソデカヒドロイソキノリン 1 2
Figure imgf000034_0001
12 ヨウ化銅(1)1.17g (6.12 ol)のエーテル懸濁液 10ml にアルゴン気流下市販の フエニルリチウム(シクロへキサンノエ一亍ル 1.0M 溶液) 12.3ml (12.23mmol) を 0°C下滴下し、 1時間撹拌した。 本混合物に実施例 1で得られた 2—ベンジルー 8 a カルボエトキシー 1 , 6—ジォキソー 1 , 2, 3, 4 6, 7 8, 8 a ーォクタヒドロイソキノリン 1g(3.06mmol) のエーテル溶液 40ml を滴下し、さ らに 0°Cで 1時間、 室温で 1時間撹拌した。 反応終了後、 反応溶液を飽和塩化ァ ンモニゥム溶液 40mlで希釈し 30分激しく撹拌した。これを酢酸ェチルで抽出し た。 水層は、飽和アンモニア水 80mlで塩基性とし酢酸ェチルで抽出した。 有機層 は、 飽和アンモニア水及び飽和食塩水で洗浄後、 硫酸マグネシウムで乾燥した。 溶媒を減圧下濃縮すると残留物 1.19g が得られた。 これはエーテル へキサン中 で再結晶でき標題化合物が淡黄色固形物 521mg (42%)として得られた。また同様に して得られた残留物 1.19g をシリカゲル 35 gを用いるクロマ卜(へキサンノ酢 酸ェチル 2:1 及び 1:2v/v )で精製すると標題化合物 631mg(51%)が白色固体と して得られた。
収童 521 (42 %) (再結晶) , 631mg (51 %) (クロマト)
mp. 132 〜135 °C (エーテル Zへキサン)
IR (KBr )
V max cm— ':1729, 1630.
NM (400MHz, CDC 13)
δ :1.01 (3H, t, J=7.2Hz) , 1.61 (1H, dd, J二 5.2 and 13.7 Hz), 2.20(1H, dt,
J=4.3 and 14.1 Hz), 2.40 (1H. dt, J=5.8 and 14.1 Hz), 2.52 (1H, dm, J=1 6.5
Hz), 2.60 (1H, d, J=16.2 Hz), 2.70(1 H, dd, J=1.5 and 16.2 Hz), 2.78 (1H, ddd, J=2.4, 5.8 and 14.1 Hz), 3.34(1 H, ddd, J=7.0, 13.4 and 13.7 Hz), 3.45(1 H, dt. J=5.2 and 13.4 Hz), 3.59 (1H, dd, J=7.0 and 13.4 Hz), 3.87(1H, dq, J=7.2 and 10.5 Hz), 4.02(1 H, dq. J=7.2 and 10.5 Hz) , 4.54 (1H, d, J=14.7 Hz), 4.94 (1H. d. J=14.7 Hz), 7.21 (2H, d, J=7.0 Hz), 7.2 2 〜7.33(6H, m) , 7.36 (2H, d, J=2.7
Hz).
Mass (El)
m/z: 405 ( M+ )
元素分析値 C 25H 27N04 として
計算値 C,74.05; H,6.71 ; N.3.45
実測値 C,74.06; H.6.70; N,3.62
実施例 5
8 a—カルボメ トキシー 2—シクロプロピルメチルー 4 a—フエ二ルーシス一 1 , 6—ジォキソデカヒドロイソキノリン 1 3
Figure imgf000036_0001
13 ヨウ化銅(l)138mg(0.72隱 ol)のエーテル懸濁液 2ml に一 20°Cでアルゴン気 流下フエニルリチウム(シクロへキサン Zエーテル 1.0M 溶液) 1.52ml (1.44画 ol) を滴下し、 30分撹拌した。 反応混合物を一 7 5 °Cに冷却し、 クロロトリメチル シラン 0, 18ml (1.44mmol)、次いで実施例 2で得られた 8 a—カルボメ トキシ一 2 ーシクロプロピルメチルー 1, 6—ジォキソー 1 , 2, 3, 4, 6, 7, 8, 8 a—ォクタヒドロイソキノリン 1 0 100mg (0.36酬 o I ) の T H F 3ml/エーテル 1.5ml 溶液を滴下した。 反応温度を徐々に室温まで昇温し 2時間撹拌した。 反応 混合物を 1 N—塩酸で処理し、 酢酸ェチルで抽出した。 有機層を飽和塩化アンモ ニゥム水および飽和食塩水で洗浄後、 硫酸マグネシウムで乾燥した. 滤過後、 溶 媒を減圧留去すると粗油状物が得られた。 これをシリカゲル 10g (へキサン Z酢 酸ェチル 4:3) を用いるカラムクロマトに付し、 さらにエーテル へキサンで再 結晶すると檁題化合物が白色固形物として得られた。
収!: 40mg 収率 30%
mp. 76〜80°C (エーテル Zへキサン)
IR (液膜法)
V max cm-1 :1742, 1717, 1636, 1502, 1446.
NMR (400MHz, CDC 13)
δ :0.30 (1H, m), 0.34 (1H, m) , 0.51 〜0.62 (2H, m) . 1.09(1H, m) , 1.68(1H, dm), 2.14(1H, dt, J=3.4 and 14.2 Hz), 2.36(1H, dt, J=5.9 and 14.2 Hz), 2.50 (1H, dm). 2.71 (1H, ddd, J=3.4 5.9 and 13.9 Hz), 2.76 (2H, br s), 3. 23(1H, dd, J=6.8 and 14.2 Hz), 3.37(1H, dt, J=9.3 and 14.2 Hz), 3.47(3 H, s) , 3.63(1H, dd, J=6.8 and 13.9 Hz), 3.69〜3.74 (2H, m) , 7.20 〜7.34 (5H, m) .
HRMS C 2) H 25 N O 4 として
計算値 355.1784
実測値 355.1783
実施例 6
2—べンジルー 8 a—カルボエトキシ一 4 a— (m—メ トキシフエ二ル) ーシ スー 1, 6—ジォキソデカヒドロイソキノリン
Figure imgf000037_0001
14
m—ブロモア二ソール 115mg(0.61mmol) の T H F 1.5ml 溶液に t e r t—フ チルリチウム(ペンタン 1.3M溶液) 0.94ml (1.2隱 ol) を一 70°Cでアルゴン気流 下滴下した。 得られた白濁を一 25°Cまで昇温し、 真空ポンプを用いて減圧下 T H Fを留去した。得られた残渣に一 20°Cでエーテル 1ml を加え室温に戻した。 この赤色溶液をヨウ化銅(I) 58, 3mg (0.31議 ol)のェ—テル懸濁液 1ml に 0°Cで滴 下し 1 0分撹拌後、 実施例 1で得られた 2—べンジルー 8 a—カルボエトキシ一 1, 6—ジォキソー 1, 2, 3, 4, 6, 7, 8, 8 a—ォクタヒドロイソキノ リン^ _50mg(0.15mmol)のエーテル 3ml 溶液を滴下した。 0 °C〜室温で 30分反応 させた後、 飽和塩化アンモニゥム水、 次いで 28%アンモニア水で処理し、 酢酸 ェチルで抽出した。有機層を飽和塩化アンモニゥム水および飽和食塩水で洗浄後、 硫酸マグネシウムで乾燥した。 濾過後、 溶媒を留去すると粗油状物が得られた。 これをシリカゲル 10g (へキサン 酢酸ェチル 2:1, 4:3 ) を用いるクロマトに 付し、 さらにエーテル Zへキサン ( 1:1) で再結晶すると標題化合物が白色固形 物として得られた。
収置 27mg 収率 40% mp. 76〜80°C (エーテル Zへキサン)
IR (液膜法)
v max cm'1 :1738, 1715, 1642, 1607, 1584.
N R (400MHz, CDC 13)
ά : 1.04 (3H, t, J=7.9 Hz) , 1.60(1H, dd, J=5.4 and 13.7 Hz), 2.21 (1H, dt , J=5.4 and 14.9 Hz), 2.39 (1H, dt, J=5.4 and 14.9 Hz) , 2.52(1H, dm), 2 .62 (1H, d, J=16.1 Hz), 2.68(1 H, dd, J=1.5 and 16.1 Hz), 2.78(1 H, ddd, J=2.4 5.4 and 13.9 Hz), 3.31 (1H, ddd, J=6.8 11.7 and 13.7 Hz), 3.44 (1H , dt, J=5.4 and 11.7 Hz) , 3.58(1 H, dd, J=6.8 and 13.7 Hz), 3.76 (3H, s) , 3.93(1 H, dq, J=7.3 and 10.7 Hz), 4.04 (1H, dq, J二 7.3 and 10.7 Hz), 4. 54 (1H, d, J=14.7 Hz), 4.94(1 H, d, J=14.7 Hz), 6.75〜6.83 (3H. m) , 7.21 ( 1H, t, J=7.8 Hz) , 7.28 〜7.40(5H. m).
HRMS C 26 H 29 N O 5 として
計算値 435.2046
実測値 435.2025
実施例 7
8 a—カルボェトキシ一 2—シクロプロピルメチルー 4 a - (m—メ トキシフ ェニル) 一シス一 1, 6—ジォキソデカヒドロイソキノリン 1 5
Figure imgf000038_0001
操作 1
m—ブロモア二ソール 0.7ml (5.5mmol)の T H F 15ml 溶液に t e r t—ブチル リチウム■ペンタン溶液 (1.55M)7.1ml (11.0画 ol) を一 70 °Cでアルゴン気流下 滴下した。 得られた白濁液を一 25°Cまで昇温し、 真空ポンプを用いて減圧下 τ H Fを留去した。得られた残渣に一 20°Cでエーテル 10ml を加え室温し戻した。 この赤色溶液をヨウ化銅(l)524mg(2.75mmol)のエーテル懸濁液 15ml に 0°Cで滴 下し 1 0分攪拌後、 実施例 3で得られた 8 a—カルボェトキシー 2—シクロプロ ピルメチルー 1 , 6—ジォキソー 1, 2, 3, 4, 6, 7, 8, 8 a—ォクタヒ ドロイソキノリン 1 1 400mg(1.38mmol) のエーテル 1 Oml 溶液を滴下した。 0°C 〜室温で 1時間反応さた後、 飽和塩化アンモニゥム水、 次いで 28%アンモニア 水で処理し、 酢酸ェチルで抽出した。 有機層を飽和塩化アンモニゥム水および飽 和食塩水で洗浄後、 無水硫酸マグネシウムで乾燥した。 濾過後、 溶媒を留去する と粗油状物が得られた。 これをシリカゲル 41g (へキサン 齚酸ェチル 3:2) を 用いるカラムクロマトに付すと標題化合物が無色油状物として得られた。
操作 2
m—ブロモア二ソール 1.03g(5.5mmol)のジェチルェ一亍ル 15ml に t e r t— ブチルリチウム 'ペンタン溶液 (1.53M)7.2ml (11.0隱 ol) を一 78°Cでアルゴン 気流下滴下した。 得られた白濁液を 0 °Cまで昇温し、 これをヨウ化銅 (l)526mg(2.76瞧 ol)のエーテル懸濁液 15ml に 0°Cで滴下し 1 0分攒拌後、実施例 3で得られた 8 a—カルボェトキシー 2—シクロプロピルメチルー 1 , 6—ジォ キソー 1 , 2, 3, 4 , 6, 7, 8, 8 a—才クタヒ ドロイソキノ リン 1 1 400mg(1.38mmol) のエーテル 10ml溶液を滴下した。 0°C〜室温で 2時間反応さた 後、 飽和塩化アンモニゥム水、 次いで 28%アンモニア水で処理し、 酢酸ェチル で抽出した。 有機層を飽和塩化アンモニゥム水および飽和食塩水で洗浄後、 無水 硫酸ナトリウムで乾燥した。 濾過後、 溶媒を留去すると粗油状物が得られた。 こ れをシリカゲル 40g (へキサンノ齚酸ェチル 3:2) を用いるカラムクロマ卜に付 すと標題化合物が無色油状物として得られた。
操作 3
マグネシウム 97mg(½mol) の T H F 1ml混合液に還流条件下、 m—プロモア二 ソール 0.41ml (3.3圆 ol) を滴下し、 マグネシウムを溶解させた。 別に塩化マンガ ン (ll)190mg(1.51睡 ol) 、 塩化 リ チ ウ ム 348mg(8.21麵 ol) 、 塩 化銅 (1)149呵(1.51議 ol)、 および実施例 3で得られた 8 a—カルボェトキシー 2—シ クロプロピルメチルー 1, 6—ジォキソー 1, 2, 3, 4, 6, フ, 8, 8 a— ォクタヒドロイソキノリン 1 1 400mg (1.38mmo I) の T H F 2ml 混合溶液を調製 し、 これに上記の m-ァニシルマグネシウムブロミ ド TH F溶液を攪拌下 0°Cで滴 下した。 反応液を室温まで昇温し、 2時間反応させた。 反応液を再び氷冷し、 1 N—塩酸 10ml を加え酢酸ェチルで抽出した。さらに酢酸ェチル層を 28 o/0アンモ 二ァ水 飽和塩化アンモニゥム水(1:1 v/v) 、 飽和炭酸水素ナトリウム水、 次い で飽和食塩水で洗浄後、 無水硫酸ナトリウムで乾燥した。 濾過後、 溶媒を留去す ると粗油状物が得られた。 これをシリカゲル 40g (へキサン 酢酸ェチル 3:2) を用いるカラムクロマ卜に付すと摞題化合物が無色油状物として得られた。
操作 4
操作 3と同様の反応系に、 卜リメチルシリルクロリ ド 0.52ml (4.1mmol) を加え た後、操作 3と同様の m-ァニシルマグネシウムブロミ ド T H F溶液を撹拌下 0 °C で滴下した。 反応液を室温まで昇温し、 1時間反応させた。 さらに操作 3と同様 の後処理および精製操作を行い標題化合物を無色油状物として得た。
操作 5
操作 3の m "ァニシルマグネシウムブロミド溶液調製および 1 , 4—共役付加反 応を T H F溶媒に代えて、 ジメ トキシメタンを用いて行った。 さらに操作 3と同 様の後処理および精製操作を行い標題化合物を無色油状物として得た。
操作 1 収量 27½g (50 %) 操作 2 収量 219mg (40 %)
操作 3 収量 192mg (35 %) 操作 4 収量 219mg (40 %)
操作 5 収量 164mg (30 %)
I (液膜法)
1 max cm— ':2964, 1738, 1715, 1634, 1607, 1584, 1493, 1448.
NMR (400MHz, CDC 13)
<5 :0.26 〜0.38(2H, m) , 0.51 ~0.62 (2H, m) , 1.04 and 1.26(3H, each t, each J=7.3 Hz) , 1.18(1H, m) , 1.68 (2H, dd, J=4.4 and 13.2 Hz), 2.18(1H, dt, J二 4.4 and 13.7 Hz), 2.36(1H, dt, J=5.9 and 14.2 Hz), 2.48(1H, br d , J=15.6 Hz) , 2.74 (2H, s), 3.29(1H, dd, J=6.8 and 13.7 Hz), 3.36 (1H, m ), 3.54 (1H, dd, J=7.3 and 13.7 Hz) , 3.63〜3.76 (2H, m) , 3.77 (3H, s) , 3. 89, 3.91, 3.99, and 4.02 (2H, each q, each J=7.3 Hz) , 6.80 ~6.82(3H, m ), 7.22 (1H, t, J=7.3 Hz) HR S C 23 H 29 N O 5 として
計算値 399.2046
実測値 399.2033
実施例 8
2—ベンジルー 8 a—カルボェトキシー 6, 6—エチレンジォキシ一 4 a ェニルーシス一 1 一ォキソデカヒドロイソキノリン 1 6
Figure imgf000041_0001
16 実施例 4で得られた 2—べンジルー 8 a—カルボェトキシー 4 a—フエ二ルー シス一 1 , 6—ジォキソデカヒドロイソキノリン 1 2 117mg (0.29mmo I ) 、 ェチレ ングリ コール 52 I (0.86mmol) 、 そ して p — トルエンスルホン酸 11mg (0.06mmol) のベンゼン 4ml 溶液を D e a n— S t a r kの装置を用いて 2 時間 1 1 0°Cに加熱した。 反応終了後酢酸ェチルで希釈し、 飽和炭酸水素ナトリ ゥム水溶液及び飽和食塩水で洗浄して硫酸マグネシウムで乾燥した。 減圧下濃縮 し得られた残留物をシリカゲル 8g (へキサン Z酢酸ェチル 1 :1) を用いるカラム クロマ卜に付すと標題化合物が無色油状物として得られた。
収量 10½g 収率 80%
mp. 76〜80°C (エーテルノへキサン)
IR (液膜法)
V max cm"' :1725, 1638, 1499, 1448.
瞧(400MHz, CDC 13)
«5 :1.03(3H, t, J=7.3 Hz) , 1.64(1H, m) , 1.83(1 H, m) , 2.20 (2H, d, J=2.9 Hz), 2.49 (1H, m), 2.65 (2H, m), 3.24 (1H, m) , 3.38(1H, m) , 3.82 〜3.99(6 H, m) , 4.45(1 H, d, J=14.7 Hz). 4.87 (1H, d, J=14.7 Hz), 7.16 〜7.36(8H, m) , 7.54 (2H, d, J=7.8 Hz) .
Mass (El)
m/z:449( M+ )
実施例 9
8 a—カルボェトキシー 2—シクロプロピルメチル _6, 6—エチレンジォキ シー 4 a— (m—メ トキシフエニル) 一シス一 1—ォキソデカヒドロイソキノリ ン 1 7
Figure imgf000042_0001
17 実施例 8と同様にして、 実施例 7で得られた 8 a—カルボェトキシー 2—シク 口プロピルメチルー 4 a— (m—メ トキシフエ二ル) 一シス一 1, 6—ジォキソ デカヒドロイソキノリン 1 5 (90mg)、 エチレングリコール(0.07ml)、 および触媒 量の p—トルエンスルホン酸から棵題化合物を無色油状物として得た。
収量 72mg 収率 72%
IR (液膜法)
V max cm"1 :2938, 1730, 1636, 1584, 1495.
N R (400MHz, CDC 13)
(5 :0.21 〜0.36(2H, m) , 0.46 〜0.59(2H, m) , 0.96 and 1.05 (3H, each t, each J=7.3 Hz) , 1.06(1H, m) , 1.56(1H, m) , 1.81 (1H, m) , 2.11 (1H, m) , 2. 21 (2H, s), 2.43 (1H, m), 2.60 (1H, m) , 2.77 (1H, m) , 3.28〜3.42 (2H, m) , 3.43 (1H, m) , 3.58(1 H, m), 3.78 and 3.79 (3H. each s) , 3.86 〜4.02(6H, m ), 6.74(1 H, dd, J=2.0 and 7.8 Hz) , 7.07(1H, dd, J=2.0 and 7.8 Hz), 7.1 7(1H, t, J=7.8 Hz), 7.32(1 H, t, J=2.0 Hz)
H MS C 25 H NO fi として
計算値 443.2308
実測値 443.2330
実施例 1 0
2—ベンジルー 6 6—エチレンジォキシー 4 a—フエ二ルー 1—ォキソデカ ヒ ドロイソキノリン 1 8
Figure imgf000043_0001
18
水素化ナトリウム 170mg(4.25mmol) のジメチルホルムアミ ド 7ml 懸濁液にェ タンチオール 0.58ml (7.79mmol)をアルゴン気流下滴下した。水素ガスの発生が止 まった後、 実施例 8で得られた 2—べンジルー 8 a—カルボエトキシー 6, 6 - エチレンジォキシー 4 a—フエ二ルーシス一 1ーォキソデカヒドロイソキノリン 1 6 318mg(0.71mmol) のジメチルホルムアミ ド 5m I の溶液を加え、撹拌下 6時間 80°Cに加熱した。 反応終了後、 溶媒を 50°C以下で減圧下濃縮し得られる残留 物を酢酸ェチルで希釈し、 飽和塩化アンモニゥム水溶液及び飽和食塩水で洗浄し 硫酸マグネシウムで乾燥した。溶媒留去後、得られる残留物をシリカゲル 12g (へ キサン 酢酸ェチル 2:1, 1:1, 1:2) を用いるカラムクロマトに付すと標題化合 物がトランス Zシス異性体の混合物として得られた(トランス シス 8 : 1 )。 本混合物は無色固体でありエーテルノへキサンを用いて再結晶したところ純粋な トランス異性体が得られた。
収量 245mg 収率 95.2%
トランス異性体
mp. 148 150 °C (エーテル へキサン) IR (KBr )
v max cm—' :1634, 1495, 1452.
NMR (400MHz, CDC 13)
5 :1.68(2H, d, J=13.2 Hz), 1.84 〜1, 97(3H, m) , 2.10(1H, m), 2.40 〜2. 61 (4H, m), 2.99 (1H, m) , 3.49(1H. dt, J=6.8 and 8.3 Hz) , 3.61 (1H, ddd, J=5.4 6.8 and 8.3 Hz), 3.79 (1H. dd. J=6.8 and 14.2 Hz), 3.85(1H, m) , 4 .24(1H, d, J=14.7Hz), 4.71 (1H, d, J=14.7 Hz), 7.12 ~7.32(10H, m) .
Mass (El)
m/z:377( +
元素分析値 C 24 H 27 N O として
計算値 C.76.37; H, 7.21; N, 3.71
実測値 C, 76.24; H, 7.27; N, 3.64
シス異性体
NMR (400MH CDCI3)
δ :1.55 1.70(2H, m), 1.80 〜2.10(5H. m) , 2.36 〜2.55(3H, m) , 2.82 (1H , m), 2, 94(1 H. m) , 3.90 ~3.94 (2H, m) , 3.97 ~4.04 (2H, m) , 4.29(1 H. d, J=14.7 Hz), 4.58(1H, d, J=14.7 Hz), 7.00 (2H, m) , 7.15 〜7.34(8H, m) .
実施例 1 1
2—シクロプロピルメチルー 6, 6—エチレンジォキシー 4 a— (m—メ トキ シフエニル) 一 1 一ォキソデカヒドロイソキノリン 1 9
【化 77】
Figure imgf000044_0001
実施例 1 0と同様に水素化ナトリウム(22.6mg)、 エタンチオール(0.08ml)、 実 施例 9で得られた 8 a—カルボェトキシー 2—シクロプロピルメチルー 6, 6 - エチレンジォキシー 4 a— (m—メ 卜キシフエニル) 一シス一 1 —ォキソデカヒ ドロイソキノ リン 1 7 (50mg)から標題化合物がトランス Zシス異性体混合物 (8:1) (無色油状物) として得られた。
収量 40mg 収率 95%
IR (液膜法)
V max cm"' :2956, 1634. 1584, 1491, 1452, 1435.
N R (400MHz, CDC 13)
6 :0.11 (1H, m), 0.21 (1H, m) , 0.30 〜0.46(2H, m) , 0.84(1H, m) , 1.64(1H, m) , 1.84(1H, m), 1.97 〜2.03(2H, m) , 2.10(1H, dq, J=3.9 and 13.2 Hz), 2.36 (1H, dd, J=3.2 and 12.5 Hz), 2.51 (1H, d, J=2.4 Hz) , 2.55 (1H, d, J= 2.4 Hz) , 2.70(1H, m), 2.99(1H, dd, J=6.8 and 13.7 Hz), 3.11 (1H, m) , 3. 32 (2H, dd, J=6.8 and 13.7 Hz), 3.55(1H, t, J=6.8 Hz) , 3.65 (1H, m) , 3. 77 (3H, s, trans-OM e), 3.81 (1H, m), 3.87 (1H, m) , 4.00(0.37H, s, cis- OM e). 6.72(1H, dd, J=2.4 and 8.3 Hz), 6.80 (1H, t, J=2.4 Hz) , 6.82(1 H, d, J=8.3 Hz) , 7.18(1 H, t, J=8.3 Hz).
Mass (El)
m/z:371 ( M+ )
参考例 9
2—べンジルー 6, 6—エチレンジォキシー 4 a—フエ二ルー 2, 3, 4, 4 a, 5, 6, 7, 8—ォクタヒドロイソキノリン 20
Figure imgf000045_0001
20 実施例 1 0で得られた 2—べンジルー 6, 6—エチレンジォキシ一 4 a—フエ : Jレ一 1ーォキソデカヒドロイソキノリン 1 8 52mg (0.14画 ol)の亍トラヒ ドロ フラン 1.5ml 溶液にアルゴン気流下撹拌下、水素化ジイソブチルアルミニウム - へキサン 0. ΘΜ溶液 0.81ml (0.73mmol)を 0°Cにて滴下した。 反応溶液を室温下 3 0分撹拌した後、 メタノール 3ml を注意して加え、 さらに 20分攒拌した。 反応 溶媒を減圧下濃縮し得られる残留物を 3 N—水酸化ナトリウム水溶液 10ml とク ロロホルム 20mlの混合溶液に加え抽出した。水層はクロロホルムでさらに 2回抽 出した。 有機層は飽和食塩水で洗浄し硫酸ナトリウムで乾燥後、 減圧下濃縮し標 題化合物
42.5mg (85.3%) を粗油状物として得た。
IR (液膜法)
V max cm-' :1659, 1493, 1448
参考例 1 0
2—シクロプロピルメチルー 6, 6—エチレンジォキシ一 4 a— (m—メ トキ シフエ二ル)一 2, 3, 4, 4 a, 5, 6, 7, 8—ォクタヒドロイソキノリン
1
Figure imgf000046_0001
2
実施例 1 1で得られた 2—シクロプロピルメチルー 6, 6—エチレンジォキシ -4 a - (m—メ トキシフエ二ル) 一 1 —ォキソデカヒ ドロイソキノリン 1 9 13mg (0.035mmol) のテトラヒドロフラン 0.5ml溶液にアルゴン気流下で、水素化 ジィソブチルアルミニウム ·へキサン溶液(0.9M)0.2ml (0.2mmol)を 0 °Cにて滴下 した。 反応溶液を 1 5分携拌した後、 室温まで昇温しさらに 30分撹拌した。 反 応混合物にメタノール 3ml を加え、 さらに 1 5分撹拌した。 反応溶媒を減圧下濃 縮し得られる残留物を 3 N—水酸化ナトリウム水溶液 4ml とクロ口ホルム 10ml の混合溶液に加え抽出した。 水層はクロ口ホルムでさらに 2回抽出した。 有機層 は飽和食塩水で洗浄し硫酸ナトリゥムで乾燥後、 減圧下濂縮し標題化合物を淡黄 色の粗油状物として得た。
IR (液膜法)
V max cm-1 :2930, 1659, 1605, 1582, 1487.
NMR (90MHz, CDC 13)
<5 :0.02〜0.17(2H, m) , 0.39〜0.60(2H, m) , 0.91 (1H, m) , 1.51 ~2.80 (12H , m), 3.55-3.94 (4H, m) , 3.80 (3H, s) , 4.09(1 H, br s) , 6.70 (1H, m) , 6.9 2〜 7.32(3H, m).
Mass (El)
m/z:355( M+ )
実施例 1 2
2—べンジルー 6, 6—エチレンジォキシー 4 a—フエ二ルートランスーデカ ヒドロイソキノリン 22
Figure imgf000047_0001
22 参考例 9のェナミン中間体 20をメタノール 2ml に溶解し、水素化シァノホウ 素ナ卜リゥム 26mg(0.41mmol)を一 1 0°C下加え、 これに撹拌下塩酸飽和メタノ一 ル溶液を 2滴滴下し p Hを約 4に保ち、 30分撹拌した。 反応溶液を減圧下濃縮 し得られる残留物をクロロホルムに溶解し飽和炭酸水素ナトリゥム水溶液及び飽 和食塩水で洗浄後、 硫酸マグネシウムで乾燥した。 溶媒留去し得られる残留物を シリカゲル 5gを用いるクロマ卜(クロ口ホルム メタノール 60/1)に付し標題 化合物を無色油状物として得た。
収量 37mg 参考例 9からの全収率 74.3%
I (液膜法)
V max cm—' :1497, 1448. NMR (400MHz, CDC 13)
(5 :1.57 〜1.64(2H, m) , 1.69 〜1.80(4H, tti) , 1.98 〜2.07(2H, m) , 2.27 (1H , dq, J=4.9 and 13.2 Hz), 2.39 (1H, dd, J=2.4 and 13.7 Hz), 2.54(1H, m) , 2.75 〜2.88(2H, m), 3.30 (1H, dd, J=7.3 and 15.1 Hz) , 3.40~3.50 (1H, m ), 3.52 (1H, m), 3.73(1H, dd, J=7.3 and 14.2 Hz), 3.81 (1H, dt, J=4.9 an d 7.3 Hz) , 7.13(1H, t, J=7.3 Hz), 7.24 〜7.32(7H, m) , 7.41 (2H, d, J=7 .3 Hz).
Mass (El)
m/z:363( M+ )
実施例 1 3
2—シクロプロピルメチル一6, 6—エチレンジォキシ一 4 a— (m—メ トキ シフエ二ル) 一卜ランス一デカヒ ドロイソキノリン 23
Figure imgf000048_0001
23 参考例 1 0のェナミン中間体 2 1 をメタノール 0.5ml に溶解し、水素化シァノ ホウ素ナトリゥム 6.6mg(0.105mmol)を 0°C下加え、 これに撹拌下塩酸飽和メタノ ール溶液を 3滴を滴下し p Hを約 3〜4に保ち、 1 5分撹拌した。 反応溶液を減 圧下濂縮し得られる残留物をクロロホルムに溶解し飽和炭酸水素ナトリゥム水溶 液及び飽和食塩水で洗浄後、 硫酸マグネシウムで乾燥した。 溶媒留去し得られる 残留物をシリカゲル 4gを用いるクロマ卜(クロ口ホルム Zメタノール 10/1)に 付し棵題化合物を無色油状物として得た。
収量 10mg 参考例 1 0からの全収率 80%
I (液膜法)
V max cm—' :2934, 1607, 1582, 1491, 1458.
NMR (400MHz, CDC 13) <5 :0.02 ~0.11 (2H, m), 0.43 〜0.52(2H, m) , 0.78 〜0.88(1H, m), 1.56(1H , d, J=13.7 Hz), 1.63 〜1.73(1H, m), 1.73 〜1.83(4H, m) , 1.98 〜2.08(2 H, m) , 2.17(1H, dd, J=6.6 and 12.5 Hz), 2.23〜2.36 (2H, m) , 2.39(1H, dd , J=2.2 and 13.5 Hz), 2.71~2.76(1H, m) , 2.79(1H, dd, J=12.0 and 12.0 Hz), 2.95 (1H, br dd, J=3.4 and 11.2 Hz), 3.36(1H, ddd, J=7.3, 7.3 and 7.8 Hz), 3.57 (1H, ddd, J=5.4, 6.8 and 7.8 Hz), 3.75 (1H, ddd. J= 6.8, 7 .3 and 7.3 Hz), 3.80 (3H, s), 3.82(1 H, ddd, J=5.4, 7.3 and 7.3 Hz) , 6.6 6(1H, dd, J=2.2 and 8.1 Hz), 6.97(1H, br s) , 7.02(1 H, br d, J=8.1 Hz), 7.19(1H, dd, J=8.1 and 8.1 Hz). HRMS C 22 H N O として
計算値 357.2304
実測値 357.2302
参考例 1 1
2—ベンジル一 4 a—フエニル一トランス一 6—ォキソデカヒドロイソキノリ ン 24
Figure imgf000049_0001
24 実施例 1 2で得られた 2—べンジルー 6, 6—エチレンジォキシー 4 a—フエ 二ルー卜ランス一デカヒドロイソキノリン 22 57mg (0.16mmol)を 1 N—硫酸水 溶液 4.5ml に溶解し、 25°Cで 24時間撹拌した。 反応溶液を 5 %水酸化ナトリ ゥム水溶液で塩基性とし、 クロ口ホルムで 3回抽出した後、 有機層を飽和食塩水 で洗浄し硫酸マグネシウムで乾燥した。 溶媒を減圧下濃縮し十分に純粋な標題化 合物を油状物として得た。
収量 51mg 収率 100 %
I (液膜法) v max cm—' :1713.
N R (400MHz, CDC 13)
<5 :1,89 2.00(3H, m) , 2.03(1 H, m) , 2.23 2.56 (5H, m) , 2.63(1 H, m) , 2. 72(1H, t, J=11.5 Hz), 2.87 (1H, dd, J=3.4 and 11.5 Hz), 2.95(1H, dd, J= 1.5 and 13.7 Hz), 3.53 (2H, s) , 7.17(1 H' t. J=7.3 Hz) , 7.27-7.34 (7H, m), 7.41 (2H, d, J=7.3 Hz) .
Mass (El)
m/z:319( M+ )
参考例 1 2
2—シクロプロピルメチルー 4 a - (m—メ トキシフエ二ル) 一トランス一 6 一ォキソデカヒドロイソキノリン 25
Figure imgf000050_0001
25 参考例 1 1 と同様にして、 実施例 1 3で得られた 2—シクロプロピルメチルー 6, 6—エチレンジォキシー 4 a - (m—メ トキシフエ二ル) 一トランスーデカ ヒドロイソキノリン 23 10mg (0.028 01 ) および 1 N—硫酸水溶液 1ml から標 題化合物が得られた。
収量 7.5mg 収率 85.60/o
I (液膜法)
V max cm"1 :2934, 1717, 1605, 1582.
NMR (400MHz, CDC 13)
δ :0.05 0.11 (2H m), 0.47 0.53(2H, m) , 0.89 (1H, m) , 1.90 2.07 (4H, m) , 2.19 2.44(6H, m) , 2.56 (1H, m) , 2.74(1H, t, J=11.7 Hz) , 2.84 (1H, d d, J=l.5 and 14.2 Hz), 2.91 (1H, m) , 3.11 (1H, br dd) , 3.71 (3H, s) , 6.65 (1H, m) , 6.87 〜6.92(2H, m), 7.15(1 H, t, J=8.3 Hz) .
HRMS C 20 H 27 N O 2 として
計算値 313.2042
実測値 313.2061
実施例 1 4
2—シクロプロピルメチル一6, 6—エチレンジォキシー 4 a— (m—ヒドロ キシフエニル) 一トランス一デカヒドロイソキノリン
Figure imgf000051_0001
26 アルゴン気流下、 実施例 1 3で得られた 2—シクロプロピルメチル一6, 6— エチレンジォキシー 4 a一 (m—メ トキシフエニル) 一トランスーデカヒドロイ ソキノリン 23 916mg(2.56mmol) を無水ジメチルホルムアミ ド 20ml に溶解し、 1 —プロパンチオール 1.16ml (12.8mmol), 力リゥム t e r t—ブトキシド 865mg(7.71mmol) を加えて 1 50°Cで 7時間撹拌した。 室温まで冷却した後、 減 圧下溶媒を留去した。飽和炭酸水素ナトリゥム水溶液 25ml を加えてクロロホルム エタノール(3:1) 混合液 25mlで 3回抽出し、有機層を無水硫酸ナトリウムで乾 燥し、 濃縮すると標題化合物 792mg (90%)が粗結晶として得られた。 メタノールよ リ再結晶を行うと針状晶が得られた。
収量 547mg 収率 62%
mp. 197.5 -199.0 °C (メタノール)
IR (KBr)
v max cm-1 :3400, 3028, 1620, 1580, 1499, 1367, 1274, 1089, 913, 777. NMR (400MHz, CDC 13)
5 :0.02〜0.11 (2H, m), 0.43〜0.51 (2H, m) , 0.81 〜0.89(1H, m) , 1.55(1H , d, J=13.4 Hz), 1.60 〜1.90(1H, br s, OH), 1.63〜 1.68(1H, m) , 1.68 〜 1.83 (4H, m), 1.97 〜2·08(2Η, m) , 2.20(1 H, dd, J=6.7 and 12.5 Hz), 2.2 〜 2.34 (2H, m), 2.35(1 H, dd, J=2.3 and 13.6 Hz), 2.73 ~2.77(1H, m) , 2 .81 (1H, dd, J=11.9 and 11.9 Hz) , 2.97 (1H, br dd, J=3.3 and 11.3 Hz), 3 .38(1H, ddd. J=7.0, 7.3 and 7.6 Hz), 3.58 (1H, ddd, J=5.2, 7.0 and 7.6 Hz), 3.75(1H, ddd, J=7.0, 7.0 and 7.0 Hz) , 3.81 (1 H, ddd, J=5.2, 7.0 and 7.3 Hz), 6.57(1H,dd, J=2.1 and 7.9 Hz), 6.88(1 H, br s), 6.94 (1H, br d, J=7.9 Hz) , 7.12(1H, dd, J=7.9 and 7.9 Hz).
Mass (El)
m/z:343( M+ )
元素分析値 C 2, H 29 N O 3 として
計算値 C,73.44; H,8.51; N , 4.04
実測値 C.73.26: H,8.44; N.4.13
(実施例 1 5 )
2—シクロプロピルメチルー 4 a— (m—ヒドロキシフエニル) 一トランス一 6—ォキソデカヒドロイソキノリン 27
Figure imgf000052_0001
27
実施例 1 4で得られた 2—シクロプロピルメチルー 6, 6—エチレンジォキシ -4 a - (m—ヒドロキシフエニル) 一トランス一デカヒドロイソキノリン 26 508mg(1.48mmol) を 1, 4一ジォキサン 7.5ml に溶解し、 3 N—塩酸 2.5ml を加 え、室温で 40分間撹拌した。飽和 |¾酸水素ナトリウム水溶液 30ml を加えクロ口 ホルム エタノール (3:1) 混合液 30mlで 3回抽出し、有機層を無水硫酸ナトリウ ムで乾燥し濂縮した。得られた粗結晶 495mg をメタノールノ酢酸ェチルより 2回 再結晶を行うと、 標題化合物が針状晶として得られた。
収量 346mg 収率 78%
mp. 201.5 -204.0 °C (メタノール Z酢酸ェチル)
IR (KBr)
V max cm"1 :3400, 3082, 1711, 1584, 1491, 1354, 1232, 1214, 1056. 874, 791, 731.
NMR (400MHz, CDC 13)
δ :0.07 〜0.14(2H, m), 0.47 〜0·55(2Η, m) , 0.83 ~0.93 (1H, m) , 1.92 〜 2.08 (4H, m), 2.27 〜2.59(7H, m) , 2.72 (1H, dd, J=11.7 and 11.7 Hz). 2.8 5 〜2.93(2H, m), 3.07 (1H, br dd, J=3.9 and 11.7 Hz), 3.20 〜4.50(1H,br s, OH), 6.61 (1H, dd, J=2.0 and 7.8 Hz) , 6.88(1H, br s) , 6.95(1H, br d, J=7.8 Hz) , 7.12(1H, dd, J=7.8 and 7.8 Hz).
Mass (El)
m/z:299( M+ )
元素分析値 C ,9H 25N02 - 0.1 H 2 Oとして
計算値 C, 75.76; H, 8.48; N , 4.65
実測値 C, 75.67; H.8.38; N , 4.68
C ,9 H 25 N O 2 . HC I ■ 0.4 H 2 Oとして 計算値 C, 66.52; H,7.87; N , 4.04; C I , 10.33 実測値 C, 66.30; H, 7.80; N, 4.06; C I , 10.07 産業上の利用可能性
本発明により、 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリ ン類の新規な短工程合成法が確立でき、 鎮痛剤および/または麻薬性拮抗剤、 あ るいは免疫抑制剤の開発に利用できる。

Claims

睛求の範囲
1. 式(I)
Figure imgf000054_0001
(式中 R1は炭素数"!〜 6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは »素数 4〜 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を、 メチルビ二ルケトンとの反応により式(II)
Figure imgf000054_0002
(式中 R1, R2は前記定義に同じ)
で示される化合物に変換し、 さらに式(II)の化合物を式(III)
Figure imgf000054_0003
(式中 R3は水素原子、 崁素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである)
の化合物と VII B、 VIU、 I B、 II B、 または III A尿から選ばれる金属化合物 から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000055_0001
(IV)
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換し、 さらに式(IV)の化合物をアルコール類との反応によ リ式 (V)
Figure imgf000055_0002
(式中 R1, R2, R3は前記定義に同じで、 R4, R4'は互いに独立にメチル基、 ェチル基を示すかまたは R4, R4'が互いに結合してエチレン、 卜リメチレンを 示す)
で示される化合物に変換し、 さらに式 (V) の化合物を脱炭酸反応することで式 (VI) R,一 N
(VI)
(式中 R1, R3, R4, R4 ' 記定義に同じ)
で示される化合物に変換し、 さらに式 (VI)の化合物を還元反応で式 (VII)
Figure imgf000056_0001
(VII)
(式中 R1, R3, R4, R4 'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VII) の化合物を還元反応で式 (VI I I)
Figure imgf000056_0002
(VIII)
(式中 R1, R3, R R4'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VI II)の化合物を加水分解し、 式(IX)
Figure imgf000057_0001
(IX)
(式中 R1, R3は前記定義に同じ)
で示される化合物を得ることを特徴とする 4 a—ァリ —ルートランス一 6—ォキ ソデカヒドロイソキノリン誘導体の製造法。
2. 式(I)
Figure imgf000057_0002
(式中 R1は炭素数 1 ~6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を、 メチルビ二ルケトンとの反応によリ式(I I)
Figure imgf000057_0003
(式中 R1, R2は前記定義に同じ) で示される化合物に変換し、 さらに式(I I)の化合物を式(I 11)
Figure imgf000058_0001
(式中 R3は崁素数 1 〜4のアルコキシ基またはべンジルォキシ基であり、 Mは リチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネシウムであ る)
の化合物と VI I B、 VIII、 I B、 II B、 または 111 A属から選ばれる金属化合物 から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000058_0002
(IV)
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換し、 さらに式(IV)の化合物をアルコール類との反応によ リ式 (V)
Figure imgf000059_0001
(V)
(式中 Ri, R2, R3は前記定義に同じで、 R4, R4 は互いに独立にメチル基、 ェチル基を示すかまたは R4, R4'が互いに結合してエチレン、 トリメチレンを 示す)
で示される化合物に変換し、 さらに式(V) の化合物を脱炭酸反応することで式
(VI)
Figure imgf000059_0002
(式中 R1, R3, R4, R4'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VI)の化合物を還元反応で式 (VI I)
Figure imgf000060_0001
(式中 R1, R3, R4, R4 'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VII) の化合物を還元反応で式(VI II)
Figure imgf000060_0002
(式中 R,, R3, R4, R4 'は前記定義に同じ)
で示される化合物に変換し、 さらに式 (VI II)の化合物のフエノールエーテル結合 を開裂させ式 (X)
Figure imgf000060_0003
(X)
(式中 R1, R4, R4 'は前記定義に同じ)
で示される化合物に変換し、 さらに式(X) の化合物を加水分解し、 式(IX)
Figure imgf000061_0001
(IX)
(式中 R1は前記定義に同じで、 R 3は水酸基を示す)
で示される化合物を得ることを特 N徴」とする 4 a—ァリール一トランス一 6—ォキ ソデカヒドロイソキノリン誘導体の製造法。
3. 式(II)
Figure imgf000061_0002
(式中 R1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フヱネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
Figure imgf000061_0003
(式中 R3は水素原子、 炭素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである)
の化合物と 3価のアルミニウム、 2価のマンガン、 2価の亜鉛、 または 1価の銅 から選ばれる金属化合物から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000062_0001
(IV)
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換することを特徴とする請求項 1または請求項 2記載の 4 aーァリール一トランス一 6—ォキソデカヒドロイソキノリン誘導体の製造法。
4. 式(II)
Figure imgf000062_0002
(式中 R1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フ Iネチル基 あるいは炭素数 4〜7のシクロアルキルアルキル基であり、 R2は 素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
3 M (式中 R 3は水素原子、 ft素数 1 〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである)
の化合物と 2価のマンガン、 または 1価の銅から選ばれる金属化合物から調製さ れる芳香族金属化合物と反応させて、 式(IV)
Figure imgf000063_0001
(IV)
(式中 R 1 , R 2, R 3は前記定義に同じ)
で示される化合物に変換することを特徴とする請求項 1または請求項 2記載の 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリン類の製造法。
5 式(I )
Figure imgf000063_0002
(式中 R 1は炭素数 1 〜6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R 2は炭素数 1 〜4 のアルキル基あるいはベンジル基である)
の化合物を、 無機塩基あるいは金属アルコキシドおよびクラウンエーテルの存在 下、 あるいはアルコール中で相当する金属アルコキシドの存在下、 あるいはアル 力リ金属のフッ化物の存在下でメチルビ二ルケトンと反応させて、 式(I I )
Figure imgf000064_0001
(式中 R1, R2は前記定義に同じ)
で示される化合物に変換することを特徴とする請求項 1または請求項 2記載の 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリン誘導体の製造法。
6. 式(VII)
Figure imgf000064_0002
(式中 R 1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R 3は水素原子、 炭 素数 1〜4のアルコキシ基またはべンジルォキシ基であり、 R4, R4 'は互いに 独立にメチル基、 ェチル基を示すかまたは R4, R4 が互いに結合してエチレン、 卜リメチレンを示す)
で示される化合物を、 酸性条件でシァノ水素化ほう素ナトリウムにより還元し、 式 (vm)
Figure imgf000065_0001
(式中 R1, R3, R4, R4'は前記定義に同じ)
で示される化合物に変換することを特徴とする請求項 1または請求項 2記載の 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリン類の製造法。
7. 式(II)
Figure imgf000065_0002
(式中 R1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
Figure imgf000065_0003
(式中 R3は水素原子、 炭素数 1〜4のアルコキシ基またはべンジル才キシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである) の化合物と VII B、 VI Iし I B、 I I B、 または I I I A属から選ばれる金属化合物 から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000066_0001
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換することを特徴とする請求項 1または請求項 2記載の 4 a—ァリール一トランス一 6—ォキソデカヒドロイソキノリン類の製造法。
8. 式(II)
Figure imgf000066_0002
(式中 R1は炭素数 1〜6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは崁素数 4〜7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
で示される化合物を式(III)
Figure imgf000066_0003
(式中 R3は水素原子、 )¾素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥ厶である)
の化合物と VI I B、 VI Iし I B、 I I B、 または I I I A属から選ばれる金属化合物 から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000067_0001
(IV) (式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換し、 さらに式(IV)の化合物をアルコール類との反応によ リ式 (V)
Figure imgf000067_0002
(V)
(式中 R1, R2, R3は前記定義に同じで、 R4, R4'は互いに独立にメチル基、 ェチル基を示すかまたは R4, R4'が互いに結合してエチレン、 卜リメチレンを 示す)
で示される化合物に変換し、 さらに式(V) の化合物を脱炭酸反応することで式 (VI) R,一 N
(VI)
(式中 R1, R3, R4, R4'は前記定義に同じ) で示される化合物に変換するェ 程。
9. 式(M)
Figure imgf000068_0001
(式中 は炭素数 1 ~ 6のアルキル基、 ァリル基、 ベンジル基、 フエネチル基 あるいは炭素数 4〜 7のシクロアルキルアルキル基であり、 R2は炭素数 1 ~4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
Figure imgf000068_0002
(式中 R3は水素原子、 炭素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである) の化合物と VI I B、 VI Iし I B、 I I B、 または 111 A属から選ばれる金属化合物 から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000069_0001
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換する工程。
1 0. 式(II)
Figure imgf000069_0002
(式中 R1は炭素数 1〜 6のアルキル基、 ァリル基、 ベンジル基、 フヱネチル基 あるいは炭素数 4 ~ 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
Figure imgf000069_0003
(式中 R3は水素原子、 炭素数 1〜4のアルコキシ基またはべンジル才キシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである)
の化合物と 3価のアルミニウム、 2価のマンガン、 2価の亜鉛、 または 1価の銅 から選ばれる金尿化合物から調製される芳香族金属化合物と反応させて、 式(IV)
Figure imgf000070_0001
(式中 R1, R2, R 3は前記定羲に同じ)
で示される化合物に変換する請求項 9記載の工程。
1 1. 式(II)
Figure imgf000070_0002
(")
(式中 R1は炭素数 1 ~6のアルキル基、 ァリル基、 ベンジル基、 フ: Lネチル基 あるいは炭素数 4~ 7のシクロアルキルアルキル基であり、 R2は炭素数 1〜4 のアルキル基あるいはベンジル基である)
の化合物を式(III)
Figure imgf000070_0003
(式中 R3は水素原子、 ft素数 1〜4のアルコキシ基またはべンジルォキシ基で あり、 Mはリチウム、 塩化マグネシウム、 臭化マグネシウムまたはヨウ化マグネ シゥムである)
の化合物と 2価のマンガン、 または 1価の銅から選ばれる金属化合物から調製さ れる芳香族金属化合物と反応させて、 式(IV)
Figure imgf000071_0001
(式中 R1, R2, R3は前記定義に同じ)
で示される化合物に変換する請求項 9記載の工程。
PCT/JP1996/001272 1994-11-17 1996-05-15 PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE WO1997043263A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7299408A JPH08208618A (ja) 1994-11-17 1995-11-17 4a−アリ−ルデカヒドロイソキノリン類の製造法
EP96915148A EP0845460A4 (en) 1996-05-15 1996-05-15 PROCESS FOR PRODUCING 4a-ARYLDECAHYDROISOQUINOLINE DERIVATIVES
PCT/JP1996/001272 WO1997043263A1 (fr) 1995-11-17 1996-05-15 PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE
KR1019980700325A KR19990029022A (ko) 1996-05-15 1996-05-15 4에이-아릴데카히드로이소퀴놀린유도체의 제조법
CA002226877A CA2226877A1 (en) 1995-11-17 1996-05-15 Process for producing 4a-aryldecahydroisoquinoline derivatives
US09/000,121 US5939551A (en) 1996-05-15 1996-05-15 Process for producing 4a-aryldecahydroisoquinoline derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7299408A JPH08208618A (ja) 1994-11-17 1995-11-17 4a−アリ−ルデカヒドロイソキノリン類の製造法
PCT/JP1996/001272 WO1997043263A1 (fr) 1995-11-17 1996-05-15 PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE
CA002226877A CA2226877A1 (en) 1995-11-17 1996-05-15 Process for producing 4a-aryldecahydroisoquinoline derivatives

Publications (1)

Publication Number Publication Date
WO1997043263A1 true WO1997043263A1 (fr) 1997-11-20

Family

ID=14153271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001272 WO1997043263A1 (fr) 1994-11-17 1996-05-15 PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE

Country Status (3)

Country Link
US (1) US5939551A (ja)
KR (1) KR19990029022A (ja)
WO (1) WO1997043263A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265131B2 (en) 2002-12-20 2007-09-04 Exelixis, Inc. Isoquinolinone derivatives and their use as therapeutic agents
AU2006272622B2 (en) * 2005-07-26 2011-06-30 Research Triangle Institute Octahydroisoquinoline compounds as opioid receptor modulators

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159876A (en) * 1974-09-23 1976-05-25 Du Pont Nn chikan 4aa ariiru toransu dekahidoroisokinorinno seiho
JPS5217476A (en) * 1976-01-01 1977-02-09 Du Pont Nnsubstituted 4aaarylltranss decahydroisoquinoline
JPS5273881A (en) * 1975-12-16 1977-06-21 Sandoz Ag Improvement of organic compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189583A (en) * 1978-04-26 1980-02-19 The United States Of America As Represented By The Department Of Health, Education And Welfare Synthesis of 4A-aryl-decahydroisoquinolines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159876A (en) * 1974-09-23 1976-05-25 Du Pont Nn chikan 4aa ariiru toransu dekahidoroisokinorinno seiho
JPS5273881A (en) * 1975-12-16 1977-06-21 Sandoz Ag Improvement of organic compound
JPS5217476A (en) * 1976-01-01 1977-02-09 Du Pont Nnsubstituted 4aaarylltranss decahydroisoquinoline

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0845460A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265131B2 (en) 2002-12-20 2007-09-04 Exelixis, Inc. Isoquinolinone derivatives and their use as therapeutic agents
AU2006272622B2 (en) * 2005-07-26 2011-06-30 Research Triangle Institute Octahydroisoquinoline compounds as opioid receptor modulators

Also Published As

Publication number Publication date
US5939551A (en) 1999-08-17
KR19990029022A (ko) 1999-04-15

Similar Documents

Publication Publication Date Title
TW200817414A (en) Process for the preparation of asenapine and intermediate products used in said process
KR20080024538A (ko) 로수바스타틴 및 중간체의 제조 방법
TW200831469A (en) Chemical process
KR100712003B1 (ko) 펜세린 및 그 유사체의 제조방법
US7250528B2 (en) Process for producing indenol esters or ethers
JP5301676B2 (ja) (3s,4s)−4−((r)−2−(ベンジルオキシ)トリデシル)−3−ヘキシル−2−オキセタノンの製造方法及びそれに用いられる新規な中間体
WO1997043263A1 (fr) PROCEDE DE PRODUCTION DE DERIVES DE 4a-ARYLDECAHYDROISOQUINOLINE
US7423152B2 (en) Process for the manufacture of intermediates in camptothecin production
MX2007016049A (es) Procedimiento para la preparacion de compuestos de 1-[ciano(4-hidroxifenil)metil] ciclohexanol.
JPH08208618A (ja) 4a−アリ−ルデカヒドロイソキノリン類の製造法
KR20030067742A (ko) (±)트랜스-4-p-플루오로페닐-3-하이드록시메틸-1-메틸피페리딘의 제조 과정
JP4540197B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造法
WO2004043942A1 (ja) γ-ジャスモラクトンの製造方法
WO2003066564A1 (en) Process for producing (r)-3-hydroxy-3-(2-phenylethyl)hexanoic acid and its intermediate
CN109575075B (zh) 一种制备喹啉酮生物碱的中间体
CN114539125B (zh) 一种帕西洛韦中间体的合成方法
EP0845460A1 (en) PROCESS FOR PRODUCING 4a-ARYLDECAHYDROISOQUINOLINE DERIVATIVES
CA2226877A1 (en) Process for producing 4a-aryldecahydroisoquinoline derivatives
US6921832B2 (en) Optically active fluorine-containing compounds and processes for their production
JP3856241B2 (ja) 1(2h)−キノリンカルボン酸の新規な誘導体、その合成方法及び抗生剤作用を有する化合物を合成するためのその使用方法
WO2001074752A1 (fr) Procedes de preparation de cetones macrocycliques
US6509476B1 (en) Process for preparing N-benzyl indoles
JP2004506628A (ja) ビタミンeの調製に用いるための中間体
JPH0316932B2 (ja)
JP3727428B2 (ja) 11−シス型レチナールの製造方法および該方法に有用な合成中間体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2226877

Country of ref document: CA

Ref country code: CA

Ref document number: 2226877

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980700325

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996915148

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09000121

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996915148

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700325

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996915148

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980700325

Country of ref document: KR