WO1997040094A1 - Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes - Google Patents

Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes Download PDF

Info

Publication number
WO1997040094A1
WO1997040094A1 PCT/FR1997/000728 FR9700728W WO9740094A1 WO 1997040094 A1 WO1997040094 A1 WO 1997040094A1 FR 9700728 W FR9700728 W FR 9700728W WO 9740094 A1 WO9740094 A1 WO 9740094A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
stabilizing composition
per
content
sensor
Prior art date
Application number
PCT/FR1997/000728
Other languages
English (en)
Inventor
Gilles Mur
Françoise Henrio
Michel Gay
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to AU27779/97A priority Critical patent/AU2777997A/en
Priority to EP97921871A priority patent/EP0895524A1/fr
Publication of WO1997040094A1 publication Critical patent/WO1997040094A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones

Definitions

  • the subject of the present invention is a stabilizing composition
  • a stabilizing composition comprising at least one compound in the form of a complex of a ⁇ -dicarbonyl compound of zinc or aluminum, and titanium dioxide.
  • composition for the purpose of improving the resistance of halogenated polymers, such as polyvinyl chloride in particular, vis-à-vis light and heat treatments conducted at temperatures moderate.
  • chlorinated polymers are products sensitive to heat and ultraviolet radiation, which causes a change in their coloring.
  • Many additives have been developed with the aim of overcoming this problem of color alteration with respect to heat, such as in particular the metal salts of higher carboxylic acids, ⁇ -dicarbonyl compounds.
  • titanium dioxide has a positive effect on the resistance of halogenated polymer formulations, vis-à-vis ultraviolet radiation. Indeed, it decreases the penetration of said radiation in the article.
  • titanium dioxide does not represent a completely satisfactory solution to the resistance to UV radiation of articles made of halogenated polymers. Titanium dioxide is indeed one of the causes of an alteration in the coloration of articles made of halogenated polymers, such as for example the appearance of a phenomenon of "pinking * .
  • thermo stability at moderate temperature of articles made of halogenated polymers is not improved with titanium dioxide.
  • a first object of the invention consists of a stabilizing composition for halogenated polymers, comprising:
  • R - C - C (R ") C - R Il IM n +
  • M n + represents zinc or aluminum, n being equal to 2 or 3
  • R identical or different, represent a C 1 -C 30 hydrocarbon radical and R ′ represents a hydrogen atom or an alkyl radical C 1 -C 4 , - and titanium dioxide.
  • a second object of the present invention consists of the use of such a composition for the purpose of stabilizing halogenated polymers with respect to light.
  • a third object of the invention consists of the use of such a composition, with the aim of stabilizing halogenated polymers with respect to heat treatments carried out at temperatures lower than or equal to 100 ° C. and more particularly lower or equal to 80 ° C.
  • the present invention makes it possible to stabilize halogenated polymers, which are more particularly chlorinated polymers.
  • the invention is particularly well suited for the stabilization of formulations based on polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • polyvinyl chloride compositions in which the polymer is a homopolymer of vinyl chloride.
  • the homopolymer can be chemically modified, for example by chlorination.
  • copolymers of vinyl chloride can also be stabilized using the composition according to the invention. These are in particular polymers obtained by copolymerization of vinyl chloride with monomers having
  • ISA / EP an ethylenically polymerizable bond, such as, for example, vinyl acetate, vinylidene chloride; maleic, fumaric acids or their esters; olefins such as ethylene, propylene, hexene; acrylic or methacrylic esters; styrene; vinyl ethers such as vinyldodecyl ether.
  • the copolymers contain at least 50% by weight of vinyl chloride units and preferably at least 80% by weight of such units.
  • PVC alone or in admixture with other polymers is the most widely used chlorinated polymer in stabilized formulations according to the invention.
  • any type of polyvinyl chloride is suitable, whatever its method of preparation.
  • the polymers obtained for example by using bulk, suspension or emulsion processes can be stabilized using the composition according to the invention, regardless of the intrinsic viscosity of the polymer.
  • composition according to the invention comprises at least one compound of formula (I) below:
  • R - C - C (R ') C - R Il I M n +
  • M n + represents zinc or aluminum, n being equal to 2 or 3
  • R identical or different, represent a C1-C30 hydrocarbon-based radcal and R 'represents a hydrogen atom or a C1-alkyl radical -C4,
  • the radicals R of said compound represent an alkyl, alkenyl, linear or branched, C 1 -C 24 radical; a C 6 -C 30 aryl radical, substituted or not substituted by at least one alkyl radical and / or a halogen atom and / or a silicon atom; a C 3 -C 14 cycloaliphatic radical and which may optionally contain carbon-to-carbon double bonds.
  • the radicals R represent an alkyl radical, linear or branched, in C ⁇ -C 18 ; an aryl radical in C 6 -C ⁇ 0 , substituted or not by at least one alkyl radical and / or a halogen atom; or a cycloaliphatic radical as defined above.
  • the radicals R which are identical or different, represent a branched alkyl radical, or preferably linear, of C r C- 8 or the aromatic radical C6H5.
  • this preferably represents hydrogen.
  • the composition according to the invention can comprise one or more compounds of formula (I). Thus, it is possible to use several complexes of different metals. he
  • the stabilizing composition comprises at least one compound of formula (I) in which the metal is zinc.
  • the content of compound of formula (I) is more precisely between 0.01 and 5 g per 100 g of halogenated polymer (or resin). More particularly, the content of this compound is between
  • said content of compound of formula (I) is between 0.05 and 1 g relative to the same reference.
  • ⁇ -dicarbonylated compounds of the type of those used in the present invention are well known compounds and capable of being synthesized according to numerous routes.
  • the stabilizing compositions further include titanium dioxide.
  • the titanium dioxide is in the rutile form.
  • the particle size of the titanium dioxide used in the stabilizing compositions according to the invention is between 0.1 and 0.5 ⁇ m.
  • titanium dioxide is used in rutile form having undergone a surface treatment, preferably mineral.
  • titanium dioxides which are particularly suitable for the implementation of the present invention, there may be mentioned without intending to be limited thereto, titanium dioxide RL18® marketed by Rhône-Poulenc, titanium dioxides KRONOS 20.81® and 22.20 ® marketed by Kronos.
  • the content of titanium dioxide in the stabilizing compositions according to the invention is more particularly between 0.1 and 20 g per 100 g of halogenated polymer, preferably between 2 and 15 g relative to the same reference. According to a preferred embodiment of the invention, said content of titanium dioxide is between 3 and 12 g per 100 g of halogenated polymer.
  • the stabilizing composition of the invention can also comprise at least one hydrochloric acid sensor compound.
  • the hydrochloric acid sensing compounds can be of organic type or of mineral type, and can be present alone or in mixtures.
  • organic hydrochloric acid sensors mention may be made more particularly of the compounds comprising an alkaline earth metal or a metal chosen from columns IIB, HA, IVB of the periodic table of the elements (published in the supplement to the Bulletin of the French Chemical Society, no. 1, January 1966).
  • the cations are more particularly preferably chosen from calcium, barium, magnesium, strontium, zinc, cadmium, tin or even lead.
  • associations are possible, such as for example a mixture of hydrochloric acid sensor based on calcium and zinc, barium and zinc, barium and cadmium, the first association being preferred.
  • hydrochloric acid sensor compounds of organic type comprising at least one of the elements of columns IIB and HA
  • the most commonly used are, for example, the salts of the HA or IIB elements of maleic, acetic, diacetic, propionic, hexanoic, 2-ethyl hexanoic, decanoic, undecanoic, lauric, myristic, palmitic, stearic, oleic, ricinoleic, behenic (docosanoic) acids. ), hydroxystearic, hydroxy- undecanoic, benzoic, phenylacetic, paratertiobutylbenzoic and salicyic, phenolates, alcoholates derived from naphthol or phenols substituted by one or more alkyl radicals, such as nonyphenols.
  • the alkaline earth metal is preferably chosen from the organic compounds of the alkaline earth metal mentioned above, the alkaline earth metal propionate, the alkaline earth metal oleate, the alkaline earth metal stearate , the alkaline earth metal laurate, the alkaline earth metal ricinoleate, the alkaline earth metal docosanoate, the alkaline earth metal benzoate, the alkaline earth metal paratertiobutylbenzoate, the alkaline earth metal salicylate, alkaline earth metal maleate and 2-ethyl-2-hexyl), alkaline earth metal nonylphenates, alkaline earth metal naphthenate and among the cadmium organic compounds mentioned above, cadmium propionate, ethyl- 2 cadmium hexanoate, cadmium laurate, cadmium stearate, cadmium salicylate, cadmium and mono (2-ethylhexyl)
  • dibasic lead carbonate tribasic lead sulfate, tetrabasic lead sulfate.
  • lead lead dibasic phosphite, lead orthosilicate, basic lead silicate, silicate and lead sulphate coprecipitate, basic lead chlorosilicate, silica gel and lead ortosilicate coprecipitate, dibasic phatalate lead, neutral lead stearate, dibasic lead stearate, tetrabasic lead fumarate, dibasic lead maleate, 2-ethyl lead hexanoate, lead laurate.
  • tin-based compounds With regard to tin-based compounds, one can in particular refer to the work "PLASTICS AUDITIVES HANDBOOK" by GACHTER / MULLER (1985) pages 204-210 or in ENCYCLOPEDIA OF PVC by Léonard I. NASS (1976 ) pages 313-325. They are more particularly mono- or di-alkyltin carboxylates and mono- or di-alkyltin mercaptides.
  • di-n-methyltin of di-n-butyltin or of di-n-octyltin
  • dibutyltin dilaurate dibutyltin maleate, dibutyltin laurate-maleate
  • dibutyltin bis dibutyltin bis (mono-C 4 -C 8 -alkyl)
  • dibutyltin bis (lauryl-mercaptide)
  • dibutyltin ⁇ -mercapto propionate maleate of di-n-octyltin polymer, bis-S-S '(mercaptoac ⁇ tate c r isooctyle) di-n-octyltin, ⁇ -mercaptc-propionate of di-n-octyltin.
  • the monoalkylated derivatives of the compounds mentioned above are also suitable.
  • a hydrochloric acid sensor of the mineral type mention may also be made of sulfates, and / or carbonates, of aluminum and / or of magnesium, of the hydrotalcite type in particular.
  • the compounds of the hydrotalcite type correspond to the following formula: Mg 1 . x Al x (OH) 2 A n - ⁇ / n . mH 2 0, in which x is between 0 excluded and 0.5, A n ⁇ represents an anion such as carbonate in particular, n varies from 1 to 3 and m is positive.
  • MgO formula
  • y and z satisfy the following inequalities: 0 ⁇ x ⁇ 0, 7; 0 ⁇ y ⁇ 1, 7 and z ⁇ 3.
  • the compounds called catoites of formula Ca 3 Al2 (OH) 12 or also Ca3AI 2 (SiO) 4 (OH) i2 are suitable as hydrochloric acid sensor compounds of mineral type.
  • the composition comprises on the one hand, at least one compound of formula (I) as described above, and preferably in the form of at least one zinc complex, and dioxide titanium.
  • the composition according to this variant comprises, as hydrochloric acid sensor, at least one sensor of the mineral type and at least one sensor of the organic type chosen from the calcium and / or zinc salts of acids. carboxylic. 7
  • the mineral type sensor is chosen from the compounds of the following formula: Mg ⁇ . x Al x (OH) 2A n ' x / n . mH 2 0, in which x is between 0 excluded and 0.5, A n ⁇ represents an anion such as carbonate in particular, n varies from 1 to 3 and m is positive.
  • the composition according to this first variant comprises at least one calcium-based sensor, optionally combined with a zinc-based sensor.
  • the salts of aliphatic, aromatic carboxylic acids or the fatty acids indicated above are suitable for the implementation of this first variant.
  • the content of the abovementioned mineral type sensor is more particularly between 0.1 and 10 g per 100 g of halogenated polymer.
  • this content is between 0.3 and 3 g relative to the same reference.
  • this content is between 0.3 and 1 g relative to 100 g of halogenated polymer.
  • the organic type sensor content defined for this first variant is more particularly between 0.1 and 4 g per 100 g of halogenated polymer, preferably between 0.3 and 2 g relative to the same reference.
  • the titanium dioxide content for this first variant is preferably between 3 and 7 g per 100 g of halogenated polymer.
  • a second variant of stabilizing composition according to the present invention consists of a composition comprising at least one compound of formula (I) as described above, preferably in the form of at least one zinc complex, titanium dioxide, and at as hydrochloric acid sensor, at least one organic sensor chosen from lead-based compounds.
  • Lead salts are used more particularly from those described above.
  • the lead salts used are chosen from lead phosphites combined with neutral or dibasic lead stearates, tri- or tetra-basic lead sulfates optionally combined with at least a neutral or dibasic lead stearate.
  • the composition comprises a content of sensor of organic type based on lead is between 1 and 10 g per 100 g of halogenated polymer.
  • the composition further comprises at least one organic type sensor chosen from the salts of calcium carboxylic acids, described above.
  • the content of the abovementioned organic type sensor is between 0.1 and 3 g per 100 g of halogenated polymer.
  • the titanium dioxide content according to this second variant is more particularly between 3 and 7 g per 100 g of halogenated polymer.
  • a third particularly advantageous variant of the present invention consists of a composition comprising, in addition to at least one compound of formula (I), preferably in the form of at least one zinc complex, and titanium dioxide, at least one organic sensor chosen from the salt of the tin.
  • the stabilizing composition has a content of sensor of the abovementioned organic type, between 0.1 and 3 g per 100 g of halogenated polymer, preferably between 0.2 and 2 g with respect to the same reference.
  • the content of tin-based sensor is between 0.3 and 1 g per 100 g of halogenated polymer.
  • the content of titanium dioxide in the stabilizing composition corresponding to this third variant is between 5 and 12 g per 100 g of halogenated polymer.
  • the formulations according to the invention can also comprise, if necessary, other conventional additives for stabilizing the halogenated polymers.
  • the stabilizing compositions according to the present invention can comprise at least one free ⁇ -diketone.
  • the ⁇ -diketones are chosen from compounds corresponding to the formula (II) R 1 COCHR2COR 3 , formula in which, R 2 and R 3 , identical or different, represent a C-pC ⁇ hydrocarbon radical and R 2 represents a hydrogen atom or a C1-C4 alkyl radical.
  • the radicals R 1 or R 3 of said ⁇ -diketone represent an alkyl, alkenyl, linear or branched, C-
  • radicals R 1 and R 3 represent an alkyl radical, linear or branched in C ⁇ -C ⁇ 8 ; a C 6 -C aryl radical
  • radicals mentioned above can be optionally modified by the presence in the aliphatic chain of one or more groups of formula -O-, -CO-O-, - CO-.
  • the radicals do not include such functions.
  • the radicals R 1 and R 3 can be linked together so that the ⁇ -diketone forms a cycle.
  • the radical R 2 can be either a hydrogen atom or a C 1 -C 4 alkyl radical, the aliphatic chain of which can be interrupted by one or more groups of formula -O-, -CO-O-, -CO -.
  • R 2 represents a hydrogen atom or a methyl radical.
  • the formulation may likewise comprise a ⁇ -diketone in the form of calcium chelate or also of magnesium.
  • the content of this compound is between 0.05 and 1 g per 100 g of resin.
  • composition can also comprise at least one polyol comprising 2 to 32 carbon atoms and having two to nine hydroxyl groups.
  • C 3 -C 30 diols such as propylene glycol, butanediol, hexanediol, dodecanediol, neopentyl glycol, polyols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, xylitol , mannitol, sorbitol, glycerin, mixtures of glycerol oligomers with a degree of polymerization from 2 to 10.
  • diols such as propylene glycol, butanediol, hexanediol, dodecanediol, neopentyl glycol, polyols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, xylitol , mann
  • the amount of polyol used is generally between 0.05 and 5 g per 100 g of polymer. More particularly, it is less than 2 g per 100 g of resin.
  • composition according to the invention compounds of the type of organic phosphites, such as, for example, trialkyl, ary, triaryl, dialkylaryl or diarylalkyl phosphites, for which the term alkyl denotes groups hydrocarbons of monoalcohols or of polyols in C 8 - C22. and the term aryl denotes aromatic groups of phenol or of phenol substituted by alkyl groups of Cg-C ⁇ - It is likewise possible to use calcium phosphites, such as for example compounds of the Ca (HP ⁇ 3) type. (H 2 0 ) as well as phosphret - hydroxy - aluminum - calcium complexes. The additive content of this type is usually between 0.1 and 2 g per 100 g of resin.
  • organic phosphites such as, for example, trialkyl, ary, triaryl, dialkylaryl or diarylalkyl phosphites, for which the term alkyl denotes groups hydrocarbons
  • the stabilizing compositions according to the invention can likewise comprise at least one aluminosilicate of alkali metal, crystalline, synthetic, having a water content of between 13 and 25% by weight, of composition 0.7-1M 2 O.AI 2 O 3 .1.3-2.4Si0 2 in which M represents an alkali metal such as in particular sodium.
  • NaA type zeolites are particularly suitable, as described in US Pat. No. 4,590,233.
  • the content of this type of compound generally varies between 0.1 and 5 g per 100 g of resin.
  • composition according to the invention can also comprise compounds of the epoxide type.
  • These compounds are generally chosen from epoxidized polyglycerides, or esters of epoxy fatty acids, such as epoxidized linseed, soybean or fish oils.
  • the amount of compounds of this type usually varies between 0.5 and 10 g for
  • the formulation can include pigments, such as compounds based on rare earths such as cerium sulphide for example.
  • the amount of pigment introduced into the formulation comprising the polymer varies within wide limits and depends on the coloring power of the pigment and on the desired final coloration. However, by way of example, the amount of pigment can vary from 0.5 to 15 g per 100 g of halogenated polymer. Other conventional additives can complete the formulation, depending on the application for which it is intended.
  • the formulation may include phenolic antioxidants, UV stabilizers such as 2-hydroxybenzophenones, 2-hydroxybenzotriazoles or sterically hindered amines, commonly known as Hais.
  • the content of this type of additive generally varies between 0.05 and 3 g per 100 g of resin.
  • lubricants can also be used which will facilitate the implementation, chosen in particular from glycerol monostearates or even propylene glycol, fatty acids or their esters, montanate waxes, poylethylene waxes or their oxidized derivatives, paraffins, metallic soaps, functionalized polymethylsiioxane oils such as, for example, ⁇ -hydroxypropylenated oils.
  • the amount of lubricant entering the halogenated polymer formulation generally varies between 0.05 and 2 g per 100 g of resin.
  • the formulation can also comprise plasticizers chosen from alkyl phthalates.
  • plasticizers chosen from alkyl phthalates.
  • the most generally used compounds are chosen from di (ethyl-2-hexyl) phthalate, esters of linear C 6 -C 6 diacids
  • the amount of plasticizer used in the formulations varies over a wide range, depending on the rigid or flexible nature of the final polymer. As an indication, the content varies from 5 to 100 g per 100 g of polymer.
  • the preparation of the formulations can be done by any means known to those skilled in the art.
  • this operation can be carried out in a mixer fitted with a blade and counter blade system operating at a high speed.
  • the temperature at which the constituents of the formulation are incorporated is less than 130 ° C.
  • the composition is formed according to the usual methods in the field such as injection, extrusion blow molding, extrusion, calendering or even rotational molding.
  • the temperature at which the shaping is carried out generally varies from 150 to
  • the present invention likewise relates to articles made of halogenated polymers, intended in particular for an application in the building field, comprising the composition according to the invention.
  • Another object of the present invention relates to the use of compositions according to the invention, as described above, for the purpose of stabilizing halogenated polymers with respect to light.
  • Another object of the present invention consists of the use of stabilizing compositions according to the invention, as described above, with the aim of stabilizing halogenated polymers with respect to heat treatments carried out at temperatures lower than or equal to 100 ° C and more particularly at temperatures lower than or equal to 80 ° C.
  • compositions according to the invention are defined. Improved resistance to such heat treatments is very advantageous because these treatments are representative of the conditions under which formulations based on halogenated polymer are used, for example as profiled articles placed near heat sources such as radiators, windows exposed to the sun. It should be noted that this stability is different from the thermal stability at high temperature, which is necessary during the processing of the polymer for obtaining extruded or molded articles. Thus, thermal stabilizers at high temperature, such as for example calcium stearates does not have an effect on the thermal stability at moderate temperature of formulations based on halogenated polymer.
  • the phenomena of alteration of the coloration of the articles in halogenated polymer such as in particular the phenomena of pinking, are reduced compared to conventional formulations.
  • the filtered precipitate is washed with five times 500 ml of water and then with 200 ml of pure methanol at 10 ⁇ C.
  • the infrared analysis confirms the predominantly expected chelate structure.
  • the titer according to ⁇ -diketone of this mixture is 258 meq per 100 g (ie a load of 0.387 mole of ⁇ -diketone).
  • the mixture is heated to 60 ° C. and a solution of 25.8 g of pure ZnCl 2 (0.189 mole) in 300 ml of methanol is rapidly added with stirring.
  • An aqueous 4N sodium hydroxide solution (94.5 ml) is then poured in at 60 ° C. in 30 minutes. It is left for 15 minutes at 60 ° C. and then cooled slowly with vigorous stirring to 15 ° C.
  • the precipitated zinc chelate formed is filtered, washed with four times 200 ml of water to remove the chloride ions and then dried at 30 ° C under reduced pressure (15 mm Hg) to constant weight.
  • composition is as follows:
  • the mixing of the powders is carried out in a rapid mixer of the Papen Meier type (rotation speed of 3500 rpm). The mixing operation is stopped once the temperature of the mixture reaches 113-115 ° C.
  • the characteristics of the extruder are identical to those specified above with the exception of the die which, in this case, is a flat die.
  • the extrusion conditions are:
  • the extruded plates thus obtained are subjected to an aging test under the following conditions:
  • the samples are subjected to a UV radiation cycle of 200 hours under UVCON conditions:
  • UVCON® (ATLAS)
  • the sensitivity to aging of each formula is obtained as a function of time. This sensitivity is measured by the variations of the parameters ⁇ a and ⁇ b; a and b being the parameters of the CIE system (L, a, b).
  • compositions stabilized in accordance with the present invention have a stability with respect to heat treatment at moderate temperature greater than those stabilized by conventional means.
  • composition used is identical to that described in Example 3 with the exception of the following points:
  • Rhodiastab X5® mainly comprises stearoylbenzoylmethane.
  • Example 3 the calcium stearate stabilizer of the formulation of Example 3 was replaced by calcium hydroxystearate (Atochem), the amount remaining of 0.3 part.
  • the mixing of the powders is carried out in the same way as in the previous example, in a Papen Meier type mixer.
  • the extrusion conditions for obtaining the profiles are:
  • UVCON UVCON
  • Apparatus ® UVCON (ATLAS) spectrum illumination: UVA with a maximum at ⁇ ⁇ 340 nm and filter ⁇ 290 nm
  • the sensitivity to aging of each formula is obtained as a function of time. This sensitivity is measured by the variation of the parameter ⁇ b, characterizing the yellow index in the (L, a, b) CIE system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet une composition stabilisante comprenant au moins un composé de formule (I), dans laquelle Mn+ représente le zinc ou l'aluminium, n étant égal à 2 ou 3, R, identiques ou différents, représentent un radical hydrocarboné en C¿1?-C30 et R' représente un atome d'hydrogène ou un radical alkyle en C1-C4, et du dioxyde de titane. Elle a de même pour objet l'utilisation d'une telle composition pour améliorer la résistance de polymères halogénés vis-à-vis de la lumière et de traitements thermiques conduits à des températures modérées.

Description

STABILISATION DE POLYMERES HALOGENES VIS-A-VIS DE LA LUMIERE ET COMPOSITIONS STABILISANTES
La présente invention a pour objet une composition stabilisante comprenant au moins un composé sous forme d'un complexe d'un composé β-dicarbonylé de zinc ou d'aluminium, et du dioxyde de titane.
Elle a de même pour objet l'utilisation d'une telle composition dans le but d'améliorer la résistance de polymères halogènes, tels que le polychlorure de vinyle notamment, vis-à-vis de la lumière et de traitements thermiques conduits à des températures modérées.
Ces polymères chlorés sont des produits sensibles à la chaleur et aux rayonnements ultraviolets, ce qui provoque une altération de leur coloration. De nombreux additifs ont été développés dans le but de pallier ce problème d'altération de la couleur vis-à-vis de la chaleur, comme notamment les sels métalliques d'acides carboxyliques supérieurs, les composés β-dicarbonylés.
Il est de même connu que le dioxyde de titane possède un effet positif sur la résistance de formulations de polymères halogènes, vis-à-vis des rayonnements ultraviolets. En effet, il diminue la pénétration desdits rayonnements dans l'article. Cependant, malgré cet effet indéniablement positif, le dioxyde de titane, en tant que tel, ne représente pas une solution totalement satisfaisante à la résistance aux rayonnements UV d'articles en polymères halogènes. Le dioxyde de titane est effectivement l'une des causes d'une altération de la coloration des articles en polymères halogènes, comme par exemple l'apparition d'un phénomène de "rosissement*.
Par ailleurs, la stabilité thermique à température modérée d'articles en polymères halogènes n'est pas améliorée avec le dioxyde de titane.
De fait, et même si le dioxyde de titane présente un intérêt clair dans des formulations pour polymères chlorés, il n'en reste pas moins que de telles formulations ne présentent toujours pas une stabilité UV et une stabilité thermique à température modérée, totalement satisfaisantes, surtout dans un domaine d'application tel que le bâtiment.
Or l'amélioration de ces propriétés des polymères chlorés est très importante car elle conditionne leι>r comportement lors de leur utilisation ultérieure, par exemple en tant que profilés dans le bâtiment.
If a donc été découvert que l'association particulière de complexes de composés β -dicarbonylés à base de zinc ou d'aluminium, et de dioxyde de titane, permettait d'améliorer non seulement la stabilité lumière des polymères chlorés, mais aussi, et ce de manière totalement inattendue, la résistance desdits polymères chlorés, à des traitements thermiques conduits à des températures modérées, inférieures ou égales à 100°C et plus particulièrement à 80°C.
En effet, et sans intention de se trouver limité par une telle explication, on a constaté que de manière totalement surprenante, les complexes de formule (I) permettent de ralentir et de diminuer les effets négatifs du titane sur l'altération de la coloration, là où des stabilisants classiques n'étaient pas en mesure d'atteindre cet objectif. La présente invention a donc montré qu'il existait une certaine synergie dans l'association de ces composés de formule (I) et du dioxyde de titane. Mais d'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description et des exemples qui vont suivre.
Ainsi, un premier objet de l'invention est constitué par une composition stabilisante pour polymères halogènes, comprenant :
- au moins un composé de formule (I) :
R - C - C (R") = C - R Il I Mn+
O o-
formule dans laquelle Mn+ représente le zinc ou l'aluminium, n étant égal à 2 ou 3, R, identiques ou différents, représentent un radical hydrocarboné en C-1-C30 et R' représente un atome d'hydrogène ou un radical alkyle en C1-C4, - et du dioxyde de titane.
Un second objet de la présente invention est constitué par l'utilisation d'une telle composition dans le but de stabiliser des polymères halogènes vis-à-vis de la lumière.
Un troisième objet de l'invention est constitué par l'utilisation d'une telle composition, dans le but de stabiliser des polymères halogènes vis-à-vis de traitements thermiques conduits à des températures inférieures ou égales à 100°C et plus particulièrement inférieures ou égales 80°C.
Ainsi que cela a été indiqué auparavant, la présente invention permet de stabiliser des polymères halogènes, qui sont plus particulièrement des polymères chlorés.
L'invention est particulièrement bien appropriée à la stabilisation de formulations à base de polychlorure de vinyle (PVC).
Par polychlorure de vinyle, on entend des compositions dont le polymère est un homopolymère de chlorure de vinyle. L'homopolymère peut être modifié chimiquement par exemple par chloration.
De nombreux copolymères du chlorure de vinyle peuvent également être stabilisés en utilisant la composition selon l'invention. Ce sont en particulier des polymères obtenus par copolymérisation du chlorure de vinyle avec des monomères présentant
FEUILLE RECTIFIEE (REGLE 91) ISA/EP une liaison éthyléniquement polymérisable, comme par exemple l'acétate de vinyle, le chlorure de vinylidene ; les acides maléique, fumarique ou leurs esters ; les oléfines telles que l'éthylène, le propylène, l'hexène ; les esters acryliques ou méthacryliques ; le styrène ; les éthers vinyliques tels que le vinyldodècyléther. Habituellement les copolymères contiennent au moins 50 % en poids de motifs de chlorure de vinyle et de préférence au moins 80 % en poids de tels motifs.
Le PVC seul ou en mélange avec d'autres polymères est le polymère chloré le plus largement utilisé dans les formulations stabilisées selon l'invention.
D'une manière générale, tout type de polychlorure de vinyle convient, quel que soit son mode de préparation. Ainsi les polymères obtenus par exemple en mettant en oeuvre des procédés en masse, en suspension, en émulsion peuvent être stabilisés en utilisant la composition selon l'invention, et ceci quelle que soit la viscosité intrinsèque du polymère.
Les compositions stabilisantes selon l'inventon vont maintenant être décrites. Ainsi que cel.':- a «=>• ' • -•que auparavant, la composition selon l'invention comprend au moins un composé de formule (I) suivante :
R - C - C (R') = C - R Il I Mn+
O O"
formule dans laquelle Mn+ représente le zinc ou l'aluminium, n étant égal à 2 ou 3, R, identiques ou différents, représentent un radcal hydrocarboné en C1-C30 et R' représente un atome d'hydrogène ou un radical aikyle en C1-C4,
Selon un mode de réalisation particulier de l'invention, les radicaux R dudit composé, identiques ou différents, représentent un radical alkyle, alcényle, linéaire ou ramifié, en C-1-C24 ; un radical aryle en C6-C3o, substitué ou non par au moins un radical alkyle et/ou un atome d'halogène et/ou un atome de silicium ; un radical cycloaliphatique en C3-C14 et pouvant éventuellement comporter des liaisons doubles carbone - carbone.
Plus particulièrement, les radicaux R, identiques ou différents, représentent un radical alkyle, linéaire ou ramifié, en Cι-C18 ; un radical aryle en C6-Cι0, substitué ou non par au moins un radical alkyle et/ou un atome d'halogène ; ou un radical cycloaliphatique tel que défini plus haut.
De préférence, les radicaux R, identiques ou différents, représentent un radical alkyle ramifié, ou de préférence linéaire, en CrC-8 ou le radical aromatique C6H5. En ce qui concerne le radical R', celui-ci représente, de préférence, l'hydrogène. La composition selon l'invention peut comprendre un ou plusieurs composés de formule (I). Ainsi, on peut mettre en oeuvre plusieurs complexes de métaux différents. Il
FEUILLE RECTIFIEE (REGLE 91) ISA/EP est de môme possible d'utiliser au moins un complexe comprenant des ligands de nature différentes.
Selon un mode de réalisation particulièrement avantageux de la présente invention, la composition stabilisante comprend au moins un composé de formule (I) dans laquelle le métal est le zinc.
Selon une caractéristique particulière de l'invention, la teneur en composé de formule (I) est plus précisément comprise entre 0,01 et 5 g pour 100 g de polymère halogène (ou résine). Plus particulièrement, la teneur en ce composé est comprise entre
0,05 et 2 g par rapport à la môme référence. De préférence, ladite teneur en composé de formule (I) est comprise entre 0,05 et 1 g par rapport à la môme référence.
Les composés β-dicarbonylés du type de ceux employés dans la présente invention sont des composés bien connus et susceptibles d'être synthétisés selon de nombreuses voies.
Ainsi, il est possible d'accéder à ces composés par réaction de la β-dicétone concernée avec des sels de zinc ou d'aluminium, comme notamment les chlorures, sulfates, nitrates, avec des oxydes ou hydroxydes, avec le métal lui-même, avec des carbonates de zinc ou encore avec des alcoxydes de zinc ou d'aluminium. Il est à noter que ces méthodes sont notamment décrites dans l'ouvrage "Métal β-diketonates and allied derivatives" de R.C. Mehrota, R. Gaur, D.P. Gaur, paru en 1978, Académie Press). Les compositions stabilisantes comprennent en outre du dioxyde de titane.
De préférence, le dioxyde de titane est sous le forme rutile. Généralement, la granulométrie du dioxyde de titane entrant dans les compositions stabilisantes selon l'invention, est comprise entre 0,1 et 0,5 μm.
Selon un mode de réalisation particulier de l'invention, on utilise du dioxyde de titane sous forme rutile ayant subi un traitement de surface, de préférence minéral.
Parmi les dioxydes de titane convenant particulièrement bien à la mise en oeuvre de la présente invention, on peut citer sans intention de s'y limiter, le dioxyde de titane RL18® commercialisé par Rhône-Poulenc, les dioxydes de titane KRONOS 20.81® et 22.20® commercialisés par Kronos. La teneur en dioxyde de titane dans les compositions stabilisantes selon l'invention est plus particulièrement comprise entre 0,1 et 20 g pour 100 g de polymère halogène, de préférence entre 2 et 15 g par rapport à la même référence. Selon un mode de réalisation préféré de l'invention, ladite teneur en dioxyde de titane est comprise entre 3 et 12 g pour 100 g de polymère halogène. La composition stabilisante de l'invention peut comprendre en outre au moins un composé capteur d'acide chlorhydrique.
Les composés capteurs d'acide chlorhydrique peuvent être de type organique ou de type minéral, et peuvent être présents seuls ou en mélanges. Parmi les capteurs d'acide chlorhydrique de type organique, on peut citer plus particulièrement les composés comprenant un métal alcalino-terreux ou un métal choisi dans les colonnes IIB, HA, IVB de la classification périodique des éléments (parue dans le supplément au Bulletin de la Société Chimique de France, no. 1, janvier 1966). Les cations sont plus particulièrement de préférence choisis parmi le calcium, le baryum, le magnésium, le strontium, le zinc, le cadmium, l'étain ou encore le plomb.
Il est à noter que des associations sont envisageables comme par exemple un mélange de capteur d'acide chlorhydrique à base de calcium et de zinc, de baryum et de zinc, de baryum et de cadmium, la première association étant préférée. En ce qui concerne les composés capteurs d'acide chlorhydrique de type organique comprenant au moins l'un des éléments des colonnes IIB et HA, on peut citer tout particulièrement les sels d'acides organiques, tels que les acides carboxyiiqυes aliphatiques, aromatiques ou les acides gras, ou encore les phénolates ou les alcoolates aromatiques. Les plus couramment utilisés sont par exemple les sels des éléments HA ou IIB des acides maléique, acétique, diacétique, propionique, hexanoïque, éthyl-2 hexanoïque, décanoique, undécanoique, laurique, myristique, palmitique, stéarique, oléïque, ricinoléïque, béhénique (docosanoique), hydroxystéarique, hydroxy- undécanoïque, benzoîque, phénylacétique, paratertiobutylbenzoîque et salicyiique, les phénolates, les alcoolates dérivés du naphtol ou des phénols substitués par un ou plusieurs radicaux alkyle, tels que les nonyfphénols.
Pour des raisons pratiques ou pour des raisons économiques, on choisit de préférence parmi les composés organiques du métal alcalino-terreux cités précédemment, le propionate de métal alcalino-terreux, l'oléate de métal alcalino- terreux, le stéarate de métal alcalino-terreux, le laurate de métal alcalino-terreux, le ricinoléate de métal alcalino-terreux, le docosanoate de métal alcalino-terreux, le benzoate de métal alcalino-terreux, le paratertiobutylbenzoate de métal alcalino-terreux, le salicylate de métal alcalino-terreux, le maléate de métal alcalino-terreux et de mono- éthyl-2 hexyle), les nonylphénates de métal alcalino-terreux, le naphténate de métal alcalino-terreux et parmi les composés organiques du cadmium cités précédemment, le propionate de cadmium, l'éthyl-2 hexanoate de cadmium, le laurate de cadmium, le stéarate de cadmium, le salicylate de cadmium, le maléate de cadmium et de mono(éthyl-2 hexyle), les nonylphénates de cadmium, le naphténate de cadmium.
En ce qui concerne les composés de type organique comprenant du plomb, on peut citer notamment ceux décrits dans ENCYCLOPEDIA of PVC de Léonard I. NASS (1976) page 299-303.
Ce sont des composés très divers dont les plus couramment utilisés sont le carbonate dibasique de plomb, le sulfate tribasique de plomb, le sulfate tétrabasique de plomb, le phosphite dibasique de plomb, l'orthosilicate de plomb, le silicate basique de plomb, le coprécipitat de silicate et de sulfate de plomb, le chlorosilicate basique de plomb, le coprécipitat de gel de silice et dOrthosilicate de plomb, le phatalate dibasique de plomb, le stéarate neutre de plomb, le stéarate dibasique de plomb, le fumarate tétrabasique de plomb, le maléate dibasique de plomb, l'éthyl-2 hexanoate de plomb, le laurate de plomb.
Pour ce qui a trait aux composés à base d'όtain, on peut notamment se reporter à l'ouvrage "PLASTICS AUDITIVES HANDBOOK" de GACHTER/MULLER (1985) pages 204-210 ou dans ENCYCLOPEDIA OF PVC de Léonard I. NASS (1976) pages 313-325. Ce sont plus particulièrement des carboxylates de mono- ou di-alkyiétain et des mercaptides de mono- ou di-alkylétain.
Parmi ces composés les plus couramment utilisés sont les dérivés de di-n- méthylétain, de di-n-butylétain ou de di-n-octylétain tels que par exemple le dilaurate de dibutylétain, le maléate de dibutylétain, le laurate-maléate de dibutylétain, le bis(malόate de mono-C4-C8-alkyle) de dibutylétain, le bis(lauryl-mercaptide) de dibutylétain, le S-S' (mercatoacétate d'isooctyle) dibutylétain, le β-mercapto propionate de dibutylétain, le maléate de di-n-octylétain polymère, le bis-S-S'(mercaptoacόtate crisooctyle)di-n- octylétain, le β-mercaptc-propionate de di-n-octylétain. Les dérivés monoalkylés des composés cités ci-dessus sont aussi convenables. Comme capteur d'acide chlorhydrique de type minéral, on peut aussi citer les sulfates, et/ou les carbonates, d'aluminium et/ou de- magnésium, du type hydrotalcite notamment. Il est rappelé que les composés du type hydrotalcite correspondent à la formule suivante : Mg1.xAlx(OH)2An-χ/n . mH20, dans laquelle x est compris entre 0 exclu et 0,5, An~ représente un anion tel que le carbonate notamment, n varie de 1 à 3 et m est positif.
On peut aussi utiliser des composés essentiellement amorphes de formule (MgO)y, Al203, (Cθ2)x, (H20)z, dans laquelle x, y et z vérifient les inéquations suivantes : 0 < x ≤ 0,7 ; 0 < y ≤ 1 ,7 et z ≥ 3. Ces composés sont notamment décrits dans la demande de brevet EP 509 864. Par ailleurs, les composés appelés catoites de formule Ca3Al2(OH)12 ou encore Ca3AI2(SiO)4(OH)i2 conviennent en tant que composés capteur d'acide chlorhydrique de type minéral.
Selon une première variante particulièrement avantageuse de la présente invention, ia composition comprend d'une part, au moins un composé de formule (I) tel que décrit auparavant, et de préférence sous forme d'au moins un complexe de zinc, et du dioxyde de titane. D'autre part, la composition selon cette variante comprend, à titre de capteur d'acide chlorhydrique, au moins un capteur de type minéral et au moins un capteur de type organique choisi parmi les sels de calcium et/ou de zinc d'acides carboxyliques. 7
Tous les capteurs d'acide chlorhydrique de type minéral cités auparavant conviennent à la mise en oeuvre de l'invention.
Cependant, de préférence, le capteur de type minéral est choisi parmi les composés de formule suivante : Mgι.xAlx(OH)2An'x/n . mH20, dans laquelle x est compris entre 0 exclu et 0,5, An~ représente un anion tel que le carbonate notamment, n varie de 1 à 3 et m est positif.
En ce qui concerne le capteur de type organique, la composition selon cette première variante comprend au moins un capteur à base de calcium, éventuellement combiné à un capteur à base de zinc. Les sels d'acides carboxyliques aliphatiques, aromatiques ou les acides gras indiqués plus haut conviennent à ia mise en oeuvre de cette première variante.
Selon cette première variante, la teneur en capteur de type minéral précité est plus particulièrement comprise entre 0,1 et 10 g pour 100 g de polymère halogène. De préférence cette teneur est comprise entre 0,3 et 3 g par rapport à la même référence. Selon un mode de réalisation encore plus particulier de l'invention, cette teneur est comprise entre 0,3 et 1 g par rapport à 100 g de polymère halogène.
La teneur en capteur de type organique défini pour cette première variante est plus particulièrement comprise entre 0,1 et 4 g pour 100 g de polymère halogène, de préférence entre 0,3 et 2 g par rapport à ia même référence. Enfin, la teneur en dioxyde de titane pour cette première variante est de préférence comprise entre 3 et 7 g pour 100 g de polymère halogène.
Une seconde variante de composition stabilisante selon la présente invention est constituée par une composition comprenant au moins un composé de formule (I) tel que décrit auparavant, de préférence sous forme d'au moins un complexe de zinc, du dioxyde de titane, et à titre de capteur d'acide chlorhydrique, au moins un capteur organique choisi parmi les composés à base de plomb.
On utilise plus particulièrement des sels de plomb parmi ceux décrits précédemment. Cependant, selon un mode de réalisation préféré de l'invention, les sels de plomb employés sont choisis parmi les phosphites de plomb combinés à des stéarates neutres ou dibasiques de plomb, les sulfates tri- ou tétra-basiques de plomb éventuellement combinés avec au moins un stéarate neutre ou dibasique de plomb.
Selon cette seconde variante, ia composition comprend une teneur en capteur de type organique à base de plomb est comprise entre 1 et 10 g pour 100 g de polymère halogène. Conformément à un mode de réalisation particulier de cette seconde variante, la composition comprend en outre au moins un capteur de type organique choisi parmi les sels d'acides carboxyliques de calcium, décrits précédemment. Selon ce mode particulier de réalisation, la teneur en capteur de type organique précité est comprise entre 0,1 et 3 g pour 100 g de polymère halogène.
Enfin, la teneur en dioxyde de titane selon cette seconde variante est plus particulièrement comprise entre 3 et 7 g pour 100 g de polymère halogène. Une troisième variante particulièrement avantageuse de la présente invention est constituée par une composition comprenant, outre au moins un composé de formule (I), de préférence sous la forme d'au moins un complexe de zinc, et du dioxyde de titane, au moins un capteur organique choisi parmi les sels d"ôtain.
Tous les composés à base d'étain décrits précédemment peuvent être choisis comme éléments constitutifs de la composition selon cette troisième variante.
Plus particulièrement, la composition stabilisante présente une teneur en capteur de type organique précité, comprise entre 0,1 et 3 g pour 100 g de polymère halogène, de préférence comprise entre 0,2 et 2 g par rapport à la même référence. Selon un mode de réalisation plus particulier de cette variante, la teneur en capteur à base d'étain est comprise entre 0,3 et 1 g pour 100 g de polymère halogène.
Enfin, la teneur en dioxyde de titane dans la composition stabilisante correspondant à cette troisième variante, est comprise entre 5 et 12 g pour 100 g de polymère halogène.
Les formulations selon l'invention peuvent aussi comprendre si nécessaire, d'autres additifs classiques pour stabiliser les polymères halogènes.
Ainsi, les compositions stabilisantes selon la présente invention peuvent comprendre au moins une β-dicétone libre.
Plus particulièrement, les β-dicétones sont choisies parmi des composés correspondant à la formule (II) R1COCHR2COR3, formule dans laquelle, R2 et R3, identiques ou différents représentent un radical hydrocarboné en C-pC^ et R2 représente un atome d'hydrogène ou un radical alkyle en C1-C4.
Plus particulièrement, les radicaux R1 ou R3 de ladite β-dicétone, identiques ou différents, représentent un radical alkyle, alcényle, linéaire ou ramifié, en C-|-C24 ; un radical aryle en Cg-C^, substitué ou non par au moins un radical alkyle et/ou un atome d'halogène et/ou un atome de silicium ; un radical cycloaliphatique en C3-C14 et pouvant éventuellement comporter des liaisons doubles carbone - carbone.
Plus particulièrement, les radicaux R1 et R3 représentent un radical alkyle, linéaire ou ramifié en Cι-Cι8 ; un radical aryle en C6-C-|0, substitué ou non par au moins un radical alkyle et/ou un atome d'halogène ; ou un radical cycloaliphatique tel que défini plus haut.
Les radicaux mentionnés ci-dessus peuvent être éventuellement modifiés par la présence dans la chaîne aliphatique d'un ou plusieurs groupes de formule -O-, -CO-O-, - CO-. De préférence, les radicaux ne comprennent pas de telles fonctions. Selon une autre variante, les radicaux R1 et R3 peuvent être reliés entre eux de manière à ce que la β-dicétone forme un cycle.
Le radical R2 peut être soit un atome d'hydrogène, soit un radical alkyle en C1-C4, dont la chaîne aliphatique peut être interrompue par un ou plusieurs groupes de formule -O-, -CO-O-, -CO-.
De préférence R2 représente un atome d'hydrogène ou un radical méthyle.
A titre d exemple de tels composés on peut mentionner tout particulièrement l'octanoylbθnzoylméthane, le stéaroylbenzoylméthane, le dibenzoylméthane ou encore l'acétylbenzoylméthane. La teneur en β-dicétone libre est habituellement comprise entre 0,05 et 1 g pour
100 g de résine.
Il est à noter que la formulation peut de même comprendre une β-dicétone sous forme de chélate de calcium ou encore de magnésium.
Dans ce cas, la teneur en ce composé est comprise entre 0,05 et 1 g pour 100 g de résine.
La composition peut en outre comprendre au moins un polyol comprenant 2 à 32 atomes de carbone et présentant deux à neuf groupements hydroxyles.
Parmi ces composés on peut mentionner les diols en C3-C3o tels que le propylène glycol, le butanediol, l'hexanediol, le dodécanediol, le néopentylglycol, les polyols tels que le triméthylolpropane, le pentaérythritol, le dipentaérythritol, le tripentaèrythritol, le xylitol, le mannitol, le sorbitol, la glycérine, les mélanges d'oligomères de la glycérine présentant un degré de polymérisation de 2 à 10.
Une autre famille de polyols pouvant être convenablement mise en oeuvre, est constituée par les alcools polyvinyiiques partiellement acétylés. On peut de même utiliser des composés hydroxyles comprenant des groupements isocyanurates, seuls ou en combinaison avec les polyols précités, tels que par exemple le tris (2-hydroxyéthyl) isocyanurate.
La quantité de polyol mise en oeuvre est en général comprise entre 0,05 et 5 g pour 100 g de polymère. Plus particulièrement elle est inférieure à 2 g pour 100 g de résine.
On peut éventuellement incorporer dans la composition selon l'invention des composés du type des phosphites organiques, comme par exemple, les phosphites de trialkyle, d'aryie, de triaryle, de dialkylaryle, ou de diarylalkyle, pour lesquels le terme alkyle désigne des groupements hydrocarbonés de monoalcools ou de polyols en C8- C22. et le terme aryle désigne des groupements aromatiques de phénol ou de phénol substitué par des groupements alkyles en Cg-C^- On peut de même utiliser des phosphites de calcium, comme par exemple des composés du type Ca(HPθ3).(H20) ainsi que des complexes phosphrte - hydroxy - aluminium - calcium. La teneur en additif de ce type est habituellement comprise entre 0,1 et 2 g pour 100 g de résine.
Les compositions stabilisantes selon l'invention peuvent de môme comprendre au moins un aluminosilicate de métal alcalin, cristallin, synthétique, présentant une teneur en eau comprise entre 13 et 25 % en poids, de composition 0,7-1M2O.AI2O3.1,3- 2,4Si02 dans laquelle M représente un métal alcalin tel que notamment le sodium. Conviennent notamment les zéolites de type NaA, telles que décrites dans le brevet US 4590233.
La teneur en ce type de composés varie généralement entre 0,1 et 5 g pour 100 g de résine.
La composition selon l'invention peut aussi comprendre des composés du type des époxydes. Ces composés sont généralement choisis parmi les polyglycérides époxydés, ou les esters d'acides gras époxydes, tels que les huiles époxydées de lin, de soja ou de poisson. La quantité de composés de ce type varie habituellement entre 0,5 et 10 g pour
100 g de résine.
Dans les formulations stabilisées selon le procédé de l'invention peuvent être incorporés, si nécessaire, d'autres additifs classiques dans le domaine.
Ainsi, la formulation peut comprendre des pigments, comme les composés à base de terre-rare tels que le sulfure de cérium par exemple.
La quantité de pigment introduite dans la formulation comprenant le polymère varie dans de larges limites et dépend du pouvoir colorant du pigment et de la coloration finale souhaitée. Cependant, à titre d'exemple, la quantité de pigment peut varier de 0,5 à 15 g pour 100 g de polymère halogène. D'autres additifs classiques peuvent compléter la formulation, selon l'application à laquelle elle est destinée.
En règle générale, la formulation peut comprendre des antioxydants phénoliques, des agents anti-UV tels que les 2-hydroxybenzophénones, les 2-hydroxybenzotriazoles ou les aminés stériquement encombrées, connues habituellement sous le terme Hais. La teneur en ce type d'additif varie généralement entre 0,05 et 3 g pour 100 g de résine.
Si nécessaire, on peut aussi utiliser des lubrifiants qui vont faciliter la mise en oeuvre, choisis notamment parmi les monostéarates de glycérol ou encore le propylène glycol, les acides gras ou leurs esters, les cires montanates, les cires de poyléthylène ou leur dérivés oxydés, les paraffines, les savons métalliques, les huiles polyméthylsiioxanes fonctionnalisées comme par exemple les huiles γ- hydroxypropylénées. La quantité de lubrifiant entrant dans la formulation à base de polymère halogène varie en général entre 0,05 et 2 g pour 100 g de résine.
La formulation peut aussi comprendre des plastifiants choisis parmi les phtalates d'alkyle. Les composés les plus généralement utilisés sont choisis parmi le phtalate de di (éthyl- 2 - hexyle), les esters de diacides linéaires en C6-C-|2, les triméllitates ou encore les phosphates esters.
La quantité d'agent plastifiant employée dans les formulations, varie dans un large domaine, en fonction du caractère rigide ou souple du polymère final. A titre indicatif, la teneur varie de 5 à 100 g pour 100 g de polymère. La préparation des formulations peut être faite par tout moyen connu de l'homme du métier.
On peut ainsi incorporer les divers constituants au polymère individuellement ou bien après avoir préparé préalablement un mélange de plusieurs de ces constituants, comme par exemple, la composition stabilisante de l'invention seule ou en présence de lubrifiant.
Les méthodes classiques d'incorporation conviennent parfaitement à l'obtention de la formulation à base de PVC.
Ainsi, on peut effectuer cette opération dans un mélangeur muni d'un système de pâles et de contre-pâles fonctionnant à une vitesse élevée. Généralement, la température à laquelle sont incorporés les constituants de la formulation est inférieure à 130°C.
Une fois le mélange réalisé, on effectue une mise en forme de la composition selon les méthodes habituelles dans le domaine comme l'injection, l'extrusion-soufflage, l'extrusion, le calandrage ou encore le moulage par rotation. La température à laquelle est réalisée la mise en forme varie en général de 150 à
220°C.
La présente invention a de même pour objet des articles en polymères halogènes, destinés notamment à une application dans le domaine du bâtiment, comprenant la composition selon l'invention. Un autre objet de la présente invention est relatif à l'utilisation de compositions selon l'invention, telles que décrites auparavant, dans le but de stabiliser des polymères halogènes vis-à-vis de la lumière.
Tout ce qui a été indiqué auparavant relativement aux compositions stabilisantes selon l'invention reste valable et ne sera donc pas repris ici. En effet, il a été trouvé que de manière tout à fait inattendue, des formulations de polymères halogènes comprenant les compositions selon l'invention, présentent une aptitude à avoir leur coloration altérée, avec par exemple l'apparition de phénomènes tels que le "rosissement", considérablement plus faible que les formulations de polymères halogènes stabilisées par les moyens classiques.
Une amélioration de cette caractéristique est très importante, surtout si le polymère halogène est destiné par exemple, à une application extérieure, comme des profilés employés dans le bâtiment. En effet, cette propriété de limitation de l'altération de la coloration permet de maintenir un aspect stable dans le temps de l'article à base de polymère halogène.
Un autre objet de la présente invention est constitué par l'utilisation de compositions stabilisantes selon l'invention, telles que décrites précédemment, dans le but de stabiliser des polymères halogènes vis-à-vis de traitements thermiques conduits à des températures inférieures ou égales à 100°C et plus particulièrement à des températures inférieures ou égales à 80°C.
On pourra se référer aux parties de la description dans lesquelles sont définies les compositions selon l'invention. Une résistance améliorée vis-à-vis de tels traitements thermiques est très intéressante car ces traitements sont représentatifs des conditions dans lesquelles des formulations à base de polymère halogène sont utilisés, par exemple comme articles profilés disposés près de sources de chaleur telles que des radiateurs, des fenêtres exposées au soleil. Il est à noter que cette stabilité est différente de la stabilité thermique à haute température, nécessaire lors de la mise en oeuvre du polymère pour l'obtention d'articles extrudés ou moulés. Ainsi, des stabilisants thermiques à température élevée, comme par exemple les stéarates de calcium ne présente pas d'effet sur la stabilité thermique à température modérée de formulations à base de polymère halogène. Là encore, les phénomènes d'altération de la coloration des articles en polymère halogène, comme notamment les phénomènes de rosissement, sont diminués par rapport aux formulations classiques.
Des exemples concrets mais non limitatifs de l'invention vont maintenant être présentés.
EXEMPLE 1 : synthèse du chélate de zinc de racétvlacétonate de zinc
Dans un ballon de 3 litres équipé d'une agitation centrale à palettes, d'une gaine thermométrique, d'un réfrigérant ascendant et d'une ampoule de coulée, on introduit 100 g (1 mole) d'acétylacétone pure, et 500 ml de méthanol. On chauffe à 35°C sous agitation, puis on coule rapidement une solution de 68,2 g de ZnCI2 (0,5 mole) dans 500 ml d'une solution aqueuse de soude 4N (1 mole). On laisse une heure à 40°C sous agitation. On refroidit à 10°C et on filtre le précipité à cette température.
On lave le précipité filtré avec cinq fois 500 ml d'eau puis avec 200 mi de méthanol pur à 10βC.
Après séchage en étuve jusqu'à 100°C sous pression réduite (60 mmHg), on obtient un produit anhydre avec un rendement de 75 %.
L'analyse infrarouge confirme la structure chélate majoritairement attendue.
EXEMPLE 2 : synthèse du chélate de zinc d'un mélange comprenant en majorité du stéaroylbenzQYlméthane
Dans une ballon tricoi muni des mêmes appareillages que précédemment décrits, on charge 800 ml et 150 g du mélange de β-dicétones suivant :
* stéaroylbenzoylméthane 60%
* palmitoylbenzoylméthane 30%
* stéaroylpalmitoylméthane -5%
* dipalmitoylméthane -2%
* distéaroylméthane -3%
Le titre en fonction β-dicétone de ce mélange est de 258 méq pour 100 g (soit une charge de 0,387 mole de β-dicétone). On chauffe à 60°C et on ajoute rapidement sous agitation une solution de 25,8 g de ZnCI2 pur (0,189 mole) dans 300 ml de méthanol. On coule ensuit à 60°C, une solution aqueuse de soude 4N (94,5 ml) en 30 minutes. On laisse 15 minutes à 60°C puis on refroidit lentement sous forte agitation jusqu'à 15°C.
Le chélate de zinc formé précipité est filtré, lavé par quatre fois 200 ml d'eau pour éliminer les ions chlorures puis séché à 30°C sous pression réduite (15 mm Hg) jusqu'à poids constant.
On obtient ainsi 170 g d'un solide blanc de point de fusion voisin de 60°C. L'analyse infrarouge confirme la structure chélate majoritairement attendue. L'analyse élémentaire indique une teneur en zinc de 7,5% pour un teneur théorique attendu de 7,6%.
EXEMPLE 3 1/ Préparation de la formulation PVC
La composition est la suivante :
* résine PVC préparée par polymérisation en suspension et commercialisée sous la dénomination S110P® (Atochem) 1 oo parties
* Ti02 (Kronos 22.20®) 6,0 parties
* stabilisant : stéarate de calcium Stavinor® (Atochem) 0.3 partie stéarate de zinc ZN70® (Atochem) 1 partie didécylphénylphosphite Irgastab CH 300® (Ciba Geigy) 0,5 partie
* hydrotalcite Alcamizer 4® (Mitsui) 0,6 partie
* alcool polyvinylique Polyol T34® 0,2 partie
* CaC03 Omyalit 95 T® (Omya) 5,0 parties
* renforçant choc - polymère acrylique Paraloid KM 355® (Rohm & Haas) 6,5 parties
* Lubrifiants : Loxiol G 60® (Henkel) 0,4 partie
Loxiol G 21 ® (Henkel) 0,2 partie
* agent de mise en oeuvre (processing aid) Paraloid K120N® 1 partie (Rohm & Haas)
Le mélange des poudres est effectué dans un mélangeur rapide du type Papen Meier (vitesse de rotation de 3500 tr/min). L'opération de mélange est stoppée une fois que la température du mélange atteint 113-115°C.
A partir de cette composition, on prépare, sous agitation, 3 échantillons en ajoutant :
E1 : stéaroylbenzoylméthane de zinc (selon exemple 2) 0,3 partie
E2 : acétylacétonate de zinc (selon exemple 1) 0,3 partie
E3 : acétylacétonate de calcium - Wacker -(comparatif) 0,3 partie
A partir de ces poudres, on réalise des granulés par extrusion. Les caractéristioues de l'extrudeuse monovis sont :
- fabriquant Brabender
- vis conique : rapport longueur / diamètre : 25 diamètre D : 19 mm
- filière type jonc.
Les conditions ri'extmsion oour l'obtention des granulés sont : • vitesse de rotation de la vis : 30 tr/min
- profil de température : zone 1 zone 2 zone 3 Zone 4 170°C 180°C 190°C 195°C
A partir des granulés, on procède à une transformation par extrusion afin d'obtenir des plaques.
Les caractéristiques de l'extrudeuse sont identiques à celles précisées ci-dessus à l'exception de la filière qui, dans ce cas, est une filière plate. Les conditions d'extrusion sont :
- vitesse de rotation de la vis : 25 tr/min
- profil de température : zone 1 zone2 zone 3 Zone4 170°C 180°C 195°C 195°C
2/ Tests de vieillissement
Les plaques extrudées ainsi obtenues sont soumises à un test de vieillissement dans les conditions suivantes : Les échantillons sont soumis à un cycle de rayonnement U.V. de 200 heures dans les conditions UVCON :
Appareillage : UVCON® (ATLAS)
Spectre d'éclairement : UVA avec un maximum à λ = 340 nm et filtre < 290 nm Température du corps noir : 55°C. Puis les échantillons sont laissés 72 heures sans rayonnement U.V. dans une étuve ventilée à 70°C.
On obtient la sensibilité au vieillissement de chaque formule en fonction du temps. Cette sensibilité est mesurée par les variations des paramètres Δa et Δb ; a et b étant les paramètre du système (L, a, b) CIE.
Il est rappelé que les mesures des indices a, b sont faites sur des plaques extrudées avant et après vieillissement, à l'aide d'un chromomètre-colorimètre MINOLTA CR 200®
Les résultats obtenus sont rassemblés dans le tableau suivant :
Figure imgf000018_0001
Il ressort de ce tableau que les formulations selon l'invention présentent une meilleure tenue au vieillissement.
Des mesures des indices a et b ont été réalisées à partir de formulations n'ayant pas subi d'irradiation UV.
Les résultats obtenus sont du même type que ceux rassemblés dans le tableau ci- dessus, montrant que les compositions stabilisées conformément à la présente invention présente une stabilité vis-à-vis de traitement thermique à température modérée supérieure à celles stabilisées par des moyens classiques.
EXEMPLE 4
1/ Préparation de la formulation PVC
La composition mise en oeuvre est identique à celle décrite dans l'exemple 3 à l'exception des points suivants :
E4 (comparatif) - acétylacétonate de calcium (Wacker) 0,3 partie
- stéarate de zinc ZN70® (Atochem) 1 partie E5 (comparatif) - Rhodiastab X5® (Rhône-Poulenc) 0,3 partie
- stéarate de zinc ZN70® (Atochem) 1 partie E6 (invention) - acétylacétonate de zinc (selon l'exemple 1) 0,3 partie
- stéarate de zinc ZN70® (Atochem) 0,3 partie
NB : - Pour chacune des formulations E4, E5 et E6, le taux de zinc est constant . - le Rhodiastab X5® comprend majoritairement du stéaroylbenzoylméthane.
En outre, le stabilisant stéarate de calcium de la formulation de l'exemple 3 a été remplacé par de l'hydroxystéarate de calcium (Atochem), la quantité restant de 0,3 partie. Le mélange des poudres est effectué de la même façon qu'à l'exemple précédent, dans un mélangeur de type Papen Meier.
A partir de ce mélange de poudres, on procède à une transformation par extrusion afin d'obtenir des plaques.
Les caractéristiques de l'extrudeuse bivis sont :
- fabriquant Brabender
- vis parallèle : rapport longueur / diamètre : 42 / 6 D SK - filière plate.
Les conditions d'extrusion pour l'obtention des profilés sont :
- vitesse de rotation de la vis : 30 tr/min
- profil de température : zone 1 zone 2 zone 3 175°C 185°C 185°C
21 Tests de vieillissement
Les plaques extrudées ainsi obtenues sont soumises à un test de vieillissement dans les conditions suivantes :
Les échantillons sont soumis à un cycle de rayonnement U.V. de durée variable (400, 600 et 1000 heures) dans les conditions UVCON : Appareillage : UVCON® (ATLAS) Spectre d'éclairement : UVA avec un maximum à λ ≈ 340 nm et filtre < 290 nm
Température du corps noir : 55°C.
On obtient la sensibilité au vieillissement de chaque formule en fonction du temps. Cette sensibilité est mesurée par la variation du paramètre Δb, caractérisant l'indice de jaune dans le système (L, a, b) CIE.
Il est rappelé que les mesures de l'indice b sont faites sur des plaques extrudées avant et après vieillissement, à l'aide d'un chromomètre-colorimètre MINOLTA CR 200®
Les résultats obtenus sont rassemblés dans le tableau suivant :
Figure imgf000020_0001
On constate sans aucune ambiguïté que les compositions stabilisées selon l'invention présentent une stabilité vis-à-vis de la lumière considérablement améliorée par rapport à celles stabilisées par des moyens classiques.

Claims

REVENDICATIONS
1- Composition stabilisante pour polymères halogènes, caractérisée en ce qu'elle comprend :
- au moins un composé de formule (I) :
R - C - C (R') = C - R Il I Mn+
O o- n
formule dans laquelle Mn+ représente le zinc ou l'aluminium, n étant égal à 2 ou 3, R, identiques ou différents, représentent un radical hydrocarboné en CpC^ et R' représente un atome d'hydrogène ou un radical alkyle en C-|-C4, - et du dioxyde de titane.
2- Composition stabilisante selon la revendication précédente, caractérisée en ce que le composé de formule (I) présente des radicaux R, identiques ou différents, correspondant à un radical alkyle, alcényle, linéaire ou ramifié, en C1-C24 ; un radical aryle en C6-C30, substitué ou non par au moins un radical alkyle et/ou un atome d'halogène et/ou un atome de silicium ; un radical cycloaliphatique en C3-C14 et pouvant éventuellement comporter des liaisons doubles carbone - carbone.
3- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en composé de formule (I) est comprise entre 0,01 et 5 g pour 100 g de polymère halogène, plus particulièrement, entre 0,05 et 2 g par rapport à la même référence.
4- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce que le dioxyde de titane est sous forme de rutile.
5- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce que la teneur en dioxyde de titane est comprise entre 0,1 et 20 g pour 100 g de polymère halogène, de préférence entre 2 et 15 g par rapport à ta même référence.
6- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend au moins un capteur d'acide chlorhydrique.
FEUILLE RECTIFIEE (REGLE 91) ISA/EP 7- Composition stabilisante selon la revendication précédente, caractérisé en ce que le capteur d'acide chlorhydrique est de type minéral, organique ou leurs mélanges.
8- Composition stabilisante selon l'une quelconque des revendications 6 et 7, caractérisé en ce qu'elle comprend à titre de capteur d'acide chlorhydrique, au moins un capteur de type minéral et au moins un capteur de type organique choisi parmi les sels de calcium et/ou de zinc d'acides carboxyliques.
9- Composition stabilisante selon la revendication précédente, caractérisée en ce que le capteur de type minéral est choisi parmi les composés de formule suivante : Mgι-xAlx(OH)2An- x/n . mH20, dans laquelle x est compris entre 0 exclu et 0,5, An- représente un anion tel que le carbonate notamment, n varie de 1 à 3 et m est positif.
10- Composition stabilisante selon l'une quelconque des revendications 6 à 9, caractérisée en ce que la teneur en capteur de type minéral est comprise entre 0,1 et 10 g pour 100 g pour 100 g de polymère halogène, de préférence entre 0,3 et 3 g par rapport à la même référence.
11- Composition stabilisante selon l'une quelconque des revendications 6 à 10, caractérisée en ce que la teneur en capteur de type organique est comprise entre 0,1 et 4 g pour 100 g de polymère halogène, de préférence entre 0,3 et 2 g par rapport à la même référence.
12- Composition stabilisante selon l'une quelconque des revendications 6 à 11 , caractérisée en ce que la teneur en dioxyde de titane est comprise entre 3 et 7 g pour 100 g de polymère halogène.
13- Composition stabilisante selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comprend à titre de capteur d'acide chlorhydrique, au moins un capteur organique choisi parmi les composés à base de plomb.
14- Composition stabilisante selon la revendication 13, caractérisée en ce que la teneur en capteur de type organique est comprise entre 1 et 10 g pour 100 g de polymère halogène. 15- Composition stabilisante selon l'une quelconque des revendications 13 ou 14, caractérisée en ce qu'elle comprend en outre au moins un capteur de type organique choisi parmi les sels d'acides carboxyliques de calcium.
16- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en capteur de type organique précité est comprise entre 0,1 et 3 g pour 100 g de polymère halogène.
17- Composition stabilisante selon l'une quelconque des revendications 13 à 16, caractérisée en ce que la teneur en dioxyde de titane est comprise entre 3 et 7 g pour
100 g de polymère halogène.
18- Composition stabilisante selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comprend à titre de capteur d'acide chlorhydrique, au moins un capteur organique choisi parmi les composés à base d'étain.
19- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en capteur de type organique est comprise entre 0,1 et 3 g pour 100 g de polymère halogène, de préférence comprise entre 0,2 et 2 g par rapport à la même référence.
20- Composition stabilisante selon l'une quelconque des revendications 18 ou 19, caractérisée en ce que la teneur en dioxyde de titane est comprise entre 5 et 12 g pour 100 g de polymère halogène.
21- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins une β-dicétone libre.
22- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en β-dicétone libre est comprise entre 0,05 et 1 g pour 100 g de polymère halogène.
23- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins un polyol.
24- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en polyol est comprise entre 0,05 et 5 g pour 100 g de polymère halogène. 25- Composition stabilisante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins un phosphite organique.
26- Composition stabilisante selon la revendication précédente, caractérisée en ce que la teneur en phosphite organique est comprise entre 0,1 et 2 g pour 100 g de polymère halogène.
27- Utilisation d'une composition stabilisante telle que revendiquée dans l'une quelconque des revendications 1 à 26 dans le but de stabiliser des polymères halogènes vis-à-vis de la lumière.
28- Utilisation d'une composition stabilisante selon l'une quelconque des revendications 1 à 26, dans le but de stabiliser des polymères halogènes vis-à-vis de traitements thermiques conduits à des températures inférieures ou égales à 100°C, et plus particulièrement à des températures inférieures ou égales 80°C.
29- Articles en polymères halogènes, destinés notamment à une application dans le domaine du bâtiment, comprenant la composition selon l'une quelconque des revendications 1 à 26.
PCT/FR1997/000728 1996-04-23 1997-04-23 Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes WO1997040094A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU27779/97A AU2777997A (en) 1996-04-23 1997-04-23 Stabilization of halogenated polymers with respect to light, and stabilizing compositions
EP97921871A EP0895524A1 (fr) 1996-04-23 1997-04-23 Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/05212 1996-04-23
FR9605212A FR2747684B1 (fr) 1996-04-23 1996-04-23 Stabilisation de polymeres halogenes vis-a-vis de la lumiere

Publications (1)

Publication Number Publication Date
WO1997040094A1 true WO1997040094A1 (fr) 1997-10-30

Family

ID=9491576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000728 WO1997040094A1 (fr) 1996-04-23 1997-04-23 Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes

Country Status (4)

Country Link
EP (1) EP0895524A1 (fr)
AU (1) AU2777997A (fr)
FR (1) FR2747684B1 (fr)
WO (1) WO1997040094A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046322A1 (fr) * 1998-03-12 1999-09-16 Rhodia Chimie Utilisation d'acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
US6316118B1 (en) * 1998-05-11 2001-11-13 Takiron Co., Ltd. Fire-retardant vinyl chloride resin molding
US6448314B1 (en) 1998-08-06 2002-09-10 Rhodia Chimie Use of monohydrate zinc acetylacetonate as halogenated polymer stabilizer and preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764295B1 (fr) * 1997-06-04 1999-07-16 Rhodia Chimie Sa Utilisation de composes beta-dicetoniques comme fondants et/ou solubilisants de l'acetylacetonate de calcium
JP5709246B2 (ja) 2010-08-20 2015-04-30 株式会社Adeka 塩化ビニル系樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB559043A (en) * 1940-08-02 1944-02-02 Carbide & Carbon Chem Corp Improvements in polyvinyl resin compositions
US3492267A (en) * 1966-12-02 1970-01-27 Grace W R & Co Stabilizing poly(vinyl chloride)
EP0040286A2 (fr) * 1980-01-14 1981-11-25 Phoenix Chemical Corporation Compositions de résines d'halogénure de polyvinyle contenant des composés 1,3-dicarbonyle
EP0046161A2 (fr) * 1980-08-14 1982-02-24 Phoenix Chemical Corporation Resine d'halogénure de polyvinyle stabilisée
EP0290391A2 (fr) * 1987-05-05 1988-11-09 Ciba-Geigy Ag Polyoléfines stabilisées contre la dégradation par la lumière
DE4134325A1 (de) * 1991-10-17 1993-04-22 Henkel Kgaa Verfahren zur stabilisierung von polymerisaten auf basis chlorhaltiger olefine und mittel zur durchfuehrung des verfahrens
EP0750009A1 (fr) * 1995-06-14 1996-12-27 Rhone-Poulenc Chimie Composition pour polymère chloré à base de béta-dicétone et d'acétylacétonate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB559043A (en) * 1940-08-02 1944-02-02 Carbide & Carbon Chem Corp Improvements in polyvinyl resin compositions
US3492267A (en) * 1966-12-02 1970-01-27 Grace W R & Co Stabilizing poly(vinyl chloride)
EP0040286A2 (fr) * 1980-01-14 1981-11-25 Phoenix Chemical Corporation Compositions de résines d'halogénure de polyvinyle contenant des composés 1,3-dicarbonyle
EP0046161A2 (fr) * 1980-08-14 1982-02-24 Phoenix Chemical Corporation Resine d'halogénure de polyvinyle stabilisée
EP0290391A2 (fr) * 1987-05-05 1988-11-09 Ciba-Geigy Ag Polyoléfines stabilisées contre la dégradation par la lumière
DE4134325A1 (de) * 1991-10-17 1993-04-22 Henkel Kgaa Verfahren zur stabilisierung von polymerisaten auf basis chlorhaltiger olefine und mittel zur durchfuehrung des verfahrens
EP0750009A1 (fr) * 1995-06-14 1996-12-27 Rhone-Poulenc Chimie Composition pour polymère chloré à base de béta-dicétone et d'acétylacétonate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046322A1 (fr) * 1998-03-12 1999-09-16 Rhodia Chimie Utilisation d'acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
US6316118B1 (en) * 1998-05-11 2001-11-13 Takiron Co., Ltd. Fire-retardant vinyl chloride resin molding
US6448314B1 (en) 1998-08-06 2002-09-10 Rhodia Chimie Use of monohydrate zinc acetylacetonate as halogenated polymer stabilizer and preparation method

Also Published As

Publication number Publication date
FR2747684B1 (fr) 1998-07-24
EP0895524A1 (fr) 1999-02-10
FR2747684A1 (fr) 1997-10-24
AU2777997A (en) 1997-11-12

Similar Documents

Publication Publication Date Title
EP0508857B1 (fr) Compositions de polymère halogéné stabilisées à l&#39;aide d&#39;un additif minéral
EP0750009A1 (fr) Composition pour polymère chloré à base de béta-dicétone et d&#39;acétylacétonate
EP0988271B1 (fr) Acetylacetonate de calcium ou de magnesium, enrobe et son utilisation comme stabilisant de polymeres halogenes
WO1997040094A1 (fr) Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes
CA2292740C (fr) Composition a base d&#39;acetylacetonate de calcium ou de magnesium et de .beta.-dicetones libres ou chelatees, sa preparation et son utilisation
CA2322984A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
CA2065600C (fr) Compositions stabilisees de polymere halogene contenant un compose du plomb ou un organo etain
FR2782087A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
WO2002002685A2 (fr) Stabilisation de polymeres halogenes au moyen de pyrroles ou derives et compositions les comprenant
FR2811673A1 (fr) Utilisation de composes insatures comprenant un heterocycle comme stabilisants de polymeres halogenes
FR2816313A1 (fr) Utilisation de composes beta dicarbonyles silyles comme stabilisants de polymeres halogenes
EP1383830A1 (fr) UTILISATION DE $g(b)-DICETONE DIAROMATIQUE SUBSTITUEE COMME STABILISANT DE POLYMERES HALOGENES ET POLYMERE OBTENU
WO2004016682A2 (fr) Composition associant un compose mineral ou de l’acetylacetonate de zinc et un melange comprenant au moins un compose b-dicarbonyle, utilisation comme stabilisant de polymeres halogenes
EP0617080A1 (fr) Utilisation comme additif d&#39;amélioration de Propriétés optiques, d&#39;huiles silicones y-hydroxy-alkylées dans les compositions à base de polymère chloré
FR2670214A1 (fr) Compositions stabilisees de polymere chlore.
MXPA99011160A (en) Coated calcium or magnesium acetylacetonate, and its use for stabilising halogenated polymers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HU IL IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO RU SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997921871

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997921871

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97537795

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997921871

Country of ref document: EP