WO1997037795A1 - Procede et installation de coulee continue des metaux - Google Patents

Procede et installation de coulee continue des metaux Download PDF

Info

Publication number
WO1997037795A1
WO1997037795A1 PCT/FR1997/000596 FR9700596W WO9737795A1 WO 1997037795 A1 WO1997037795 A1 WO 1997037795A1 FR 9700596 W FR9700596 W FR 9700596W WO 9737795 A1 WO9737795 A1 WO 9737795A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
walls
injected
metal
mold
Prior art date
Application number
PCT/FR1997/000596
Other languages
English (en)
Inventor
Jean-Marc Jolivet
Eric Perrin
Cosimo Salaris
Jacques Spiquel
Edouard Weisseldinger
Marc Burty
Original Assignee
Ugine Savoie
Sogepass
Sollac
Ascometal
Societe Anonyme Des Forges Et Acieries De Dilling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Savoie, Sogepass, Sollac, Ascometal, Societe Anonyme Des Forges Et Acieries De Dilling filed Critical Ugine Savoie
Priority to AT97919471T priority Critical patent/ATE220581T1/de
Priority to AU23930/97A priority patent/AU2393097A/en
Priority to CA002251007A priority patent/CA2251007C/fr
Priority to US09/155,206 priority patent/US6260605B1/en
Priority to DE69714078T priority patent/DE69714078T2/de
Priority to BR9709160-0A priority patent/BR9709160A/pt
Priority to JP9535904A priority patent/JP2000508244A/ja
Priority to EP97919471A priority patent/EP0958073B1/fr
Publication of WO1997037795A1 publication Critical patent/WO1997037795A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head

Definitions

  • the present invention relates to the continuous casting of metals, in particular steel.
  • the continuous casting operation consists schematically of pouring a molten metal into an ingot mold, essentially consisting of a tubular element without bottom defining a passage for the cast metal, but the walls of which, in copper or more generally made of copper alloy, are energetically cooled by water circulation, and from which a product already solidified externally over a few centimeters in thickness is also continuously extracted. Solidification then progresses towards the axis of the product and ends during the descent of the latter downstream of the mold in the so-called "secondary cooling" zone under the effect of water spray bars. The product obtained, bloom, billet or slab, is then cut to length, then laminated before shipment to the customer or processing on site, into bars, wires, profiles, plates, sheets, etc.
  • the ring contraction is all the more important that the heat extraction is strong and that the cast metal has a natural tendency to contract during cooling, for example by change of solid phase at the end of solidification, as it is the case in particular for grades of steel with 0.1% carbon or AISI 304 stainless steel.
  • This perimeter contraction tends to cause a separation of the solidified skin relative to the wall of the mold, and therefore a reduction in the heat exchange due to the fact that the contact of said skin with the cold walls is degraded.
  • This detachment is generally uneven depending on the perimeter of the solidified skin, which is a source of surface defects in the product finally obtained.
  • an improvement consists in injecting into the ingot mold, at the level of said enhancement and at least just at the interface between it and the cooled metal walls. , an inert gas under pressure.
  • This gas injection produced by a thin annular slot formed between said walls and the riser, forms jets perpendicular to the walls and directed towards the liquid metal, which shear any solidified skins which may have formed in contact with the refractory riser, so as to ensure an effective start to solidification precisely at the upper edge of the cooled walls.
  • the present invention aims to solve these problems and aims particularly to allow, in the technique of continuous casting under vertical load, easy control and adaptation of the conditions of extraction of the heat flux, in particular in the zone where solidification begins. .
  • the invention relates to a process for the continuous casting of metals according to which an ingot mold having metal walls is used.
  • an ingot mold having metal walls is used.
  • energetically cooled surmounted by an extension made of thermally insulating material the free surface of the molten metal contained in the ingot mold is maintained at the level of said enhancement during casting, and injected into the ingot mold, around its entire periphery, a gas under pressure, at the level of said riser and at least at the interface between the latter and the cooled walls.
  • this process is characterized in that said injected gas is a gas or gas mixture having an adjustable thermal expansion capacity, to adjust, depending on the composition of the cast metal alloy and the casting conditions , the density of the heat flux extracted from said metal alloy in the zone where it begins to solidify at a specific predetermined value of the cast alloy.
  • the method according to the invention thus offers a possibility of easily adapting as required the density of heat flux extracted from the cast metal to the level where the solidified skin is formed, in particular as a function of the composition of said metal, in particular the shade in the case of steel casting.
  • the inventors have in fact observed, during casting tests carried out by injecting an inert gas, such as argon or helium, at the interface between the riser and the cooled metal walls, that the flux density extract was strongly influenced by the thermal expansion capacity of the gas.
  • an inert gas such as argon or helium
  • the flux density extracted over the first 40 millimeters from the upper edge of the metal walls was around 5 MW / m 2 when the temperature of the injected argon was around 500 ° C, and was only 4.2 or even 3.2 MW / m 2 when the temperature of the argon injected was around 100 ° C.
  • the temperature of said gas is therefore adjusted.
  • the temperature of the injected gas is adjustable between 50 and 600 ° C., this range of adjustment making it possible to fix the temperature of the gas at a predetermined value such that the density of extracted heat flux is between 2 , 5 and 6 MW / m 2 , thus providing wide possibilities for adaptation depending on the composition of the cast metal alloy and the various other casting parameters.
  • the temperature of the gas is adjusted by mixing, in a determined volumetric ratio, gas coming from a hot source at a substantially constant temperature, for example at 700 ° C. with gas coming from a cold source also at a substantially constant temperature, by example at 20 ° C.
  • the total gas flow injected is the sum of the gas flows from the two sources respectively. The report between these flows makes it possible to vary the temperature of the injected gas, while making it possible to maintain a substantially constant total flow. In practice, taking into account the inevitable heat losses, and with the temperatures of the two sources mentioned above, it will be possible to vary the temperature of the injected gas between 50 and 600 ° C.
  • the gas mixing is carried out in a mixing chamber situated in the walls of the ingot mold and / or in the enhancement, the temperature of the injected gas being adjusted by adjusting the gas flow rates coming respectively from hot and cold sources and introduced into said chamber.
  • the injected gas is a mixture of at least two gases constituting the mixture, for example argon and helium, the thermal expansion capacity of which is adjusted by adjusting the relative proportions of said gases constitutive.
  • the gases constituting the mixture have different physical properties, in particular different densities, to adjust, as a function of their relative proportions, the density of the mixture.
  • the invention also relates to a continuous metal casting installation comprising an ingot mold whose walls are formed by cooled metal walls surmounted by an extension in thermally insulating material, and injection orifices opening into the ingot mold for injecting into the ingot mold a gas under pressure in the form of jets distributed around the periphery of the ingot mold at the level of the extension and at least at the interface between said extension and the metal wall, characterized in that it comprises means for supplying said gases, connected to said orifices, making it possible to adjust the thermal expansion capacity of the injected gas.
  • Said gas supply means may comprise means for adjusting the temperature of the injected gas, or means for adjusting the relative proportion of at least two gases constituting a gas mixture forming the injected gas.
  • the casting installation comprises two sources of gas connected to a mixing chamber, itself connected to said orifices, and means for adjusting the gas flow rates coming respectively from said sources and introduced into the mixing chamber.
  • the mixing chamber is located outside the mold and connected to a distribution channel arranged in the wall of the mold.
  • the mixing chamber is located in the wall of the mold.
  • the mixing chamber can in particular consist of a first distribution chamber arranged in the riser and connected to the source of hot gases and a second distribution chamber arranged in the metal walls and connected to the cold source.
  • FIG. 1 is a schematic representation of a first variant, showing the upper part of the mold in partial longitudinal section,
  • FIG. 2 illustrates a second alternative embodiment
  • the walls 1 of the mold shown in FIG. 1 consist of metal walls 2, made of copper or copper alloy, surmounted by an extension 3 made of thermally insulating refractory material.
  • the metal walls 2 are energetically cooled by an internal circulation of water in channels 4, shown schematically in the figure.
  • the riser 3 consists of an upper part 5, of a height of 200 mm for example, made of a very insulating material and of a lower part 6 made of a refractory material possibly less insulating but having better mechanical resistance, for example the material known under the designation SiAlON, and having for example a thickness of 20 mm.
  • the walls 1 of the ingot mold define a passage for the cast product, in which the molten steel 7 is conventionally supplied by a nozzle 8 comprising gills 9 situated at the height of said riser 3.
  • the ingot mold also comprises gas injection orifices, opening onto the inner surface of the walls 1, at the interface between the extension 3 and the metal wall 2, preferably formed by a continuous slot around the periphery of the ingot mold, ensuring thus a regular injection of gas all around.
  • This narrow slot 10 has a height of a few tenths of a millimeter, for example 0.2 mm, determined by a spacer 11 inserted between the lower part 6 of the extension and the metal wall 2, on the outside of the walls.
  • the slot 10 opens onto the interior surface of the walls of the mold, around the entire periphery thereof.
  • a distribution channel 12 is arranged in the metal wall 2, in the form of a groove made on the upper face of said metal wall and communicating with the slot 10 over the entire periphery of the mold.
  • the casting installation also comprises a hot source 13 of inert gas, for example argon, heated to a temperature of around 700 ° C. by heating means known per se, and a cold source 14 of the same gas, maintained at room temperature, for example 20 ° C.
  • a hot source 13 of inert gas for example argon
  • a cold source 14 of the same gas maintained at room temperature, for example 20 ° C.
  • the pressurized gas from the mixing chamber 17 is distributed in the channel 12 and is injected into the ingot mold through the slot 10.
  • the temperature of the gas thus injected can be adjusted by means of the valves 15 and 16 by acting on the ratio of the gas flow rates coming from each source respectively.
  • the distribution channel 12 could also be produced in the refractory riser 3, which has the advantage of limiting the heat losses of the gas due to the high temperature, of the order of 800 ° C., of the said riser. It is however easier to carry out the machining of the distribution channel in the metal wall 2, and in this case, to limit the cooling of the gas in contact with the metal of the wall, the temperature of which is only of the order of 100 ° C, the walls of said channel may be coated with an insulating material, such as zirconia or boron nitride.
  • a second groove 22 is produced in the lower part 6 of the extension, opposite the groove 12 and also in communication with the slot 10.
  • the hot source 13 of gas is connected via the valve 15 directly to this groove 22, and the cold source 14 is connected via the valve 16 to the groove 12.
  • the volume defined by these two grooves constitutes both a distribution and a mixing chamber located entirely in the wall 1 of the mold.
  • the invention is not limited to the variants described above solely by way of example, and in in particular, the temperature of the injected gas may be adjusted by other means than the mixture of hot and cold gases indicated above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Coating With Molten Metal (AREA)

Abstract

L'installation de coulée continue comporte une lingotière dont les parois (1) sont formées par des parois métalliques refroidies (2) surmontées par une rehausse (3) en matériau thermiquement isolant. Des orifices d'injection d'un gaz sous pression, tels qu'une fente (10), débouchent dans la lingotière au moins à l'interface entre la rehausse et la paroi métallique. L'installation comprend des moyens (13 à 17), reliés auxdits orifices, de fourniture d'un gaz ou mélange gazeux ayant une capacité d'expansion thermique ajustable en fonction de la composition de l'alliage métallique coulé et des conditions de coulée. Le réglage de la capacité d'expansion thermique du gaz injecté permet d'ajuster la densité du flux thermique extrait du métal coulé dans la zone où il commence à se solidifier. Application notamment à la coulée continue de l'acier.

Description

PROCEDE ET INSTALLATION DE COULEE CONTINUE DES METAUX
La présente invention concerne la coulée continue des métaux, notamment de l'acier.
L'opération de coulée continue consiste schématiquement comme on le sait, à verser un métal en fusion dans une lingotière, essentiellement constituée d'un élément tubulaire sans fond définissant un passage pour le métal coulé, mais dont les parois, en cuivre ou plus généralement en alliage de cuivre, sont énergiquement refroidies par circulation d'eau, et de laquelle on extrait également en continu un produit déjà solidifié extérieurement sur quelques centimètres d'épaisseur. La solidification progresse ensuite vers l'axe du produit et s'achève au cours de la descente de celui-ci en aval de la lingotière dans la zone dite du "refroidissement secondaire" sous l'effet de rampes d'arrosage d'eau. Le produit obtenu, bloom, billette ou brame, est ensuite découpé à longueur, puis laminé avant expédition à la clientèle ou transformation sur place, en barres, fils, profilés, plaques, tôles, etc.. Les défauts de surface ou sous-cutanés des produits issus de la coulée continue de l'acier sont souvent cause de rebut, car l'opération de laminage les supporte mal, voire les amplifie jusqu'à dégrader de façon intolérable la qualité métallurgique des produits laminés. Au cours de la coulée, le métal en fusion, amené dans la lingotière par une busette, forme une pellicule solide lors de son entrée en contact avec les parois refroidies de la lingotière. Cette pellicule est entraînée vers le bas lors de l'extraction du produit, par mouvements saccadés au rythme des oscillations verticales de la lingotière, et simultanément son épaisseur croît du fait de la poursuite de l'extraction de chaleur réalisée par les parois de la lingotière. Il y a donc continuellement création d'une nouvelle pellicule de métal solide au niveau de la surface libre du métal dans la lingotière, cette pellicule se solidifiant sur tout le périmètre de la paroi interne de la lingotière et constituant un anneau solide susceptible de se contracter du fait du refroidissement subi lors de sa descente dans la lingotière.
La contraction de anneau est d'autant plus importante que l'extraction de chaleur est forte et que le métal coulé a une tendance naturelle à se contracter lors du refroidissement, par exemple par changement de phase solide en fin de solidification, comme c'est le cas notamment pour des nuances d'acier à 0,1% de carbone ou d'acier inoxydable AISI 304. Cette contraction périmétrique tend à provoquer un écartement de la peau solidifiée par rapport à la paroi de la lingotière, et donc une diminution de l'échange thermique du fait que le contact de la dite peau avec les parois froides est dégradé. Ce décollement est généralement inégal selon le périmètre de la peau solidifiée, ce qui est source de défauts de surface dans le produit finalement obtenu.
Pour éviter ou limiter ces défauts, une technique particulière non encore industrialisée, connue sous le nom de coulée continue en charge verticale, consiste à placer au dessus des parois métalliques refroidies de la lingotière une rehausse en un matériau réfractaire thermiquement isolant, et à maintenir en cours de coulée la surface libre du bain métallique au niveau de la dite rehausse (brevet français n°2000365) . Ainsi le métal en fusion ne se solidifie pas au contact de la rehausse, la première peau solidifiée commençant seulement à se former à partir des arêtes supérieures de la paroi métallique refroidie. Et comme ces arêtes sont situées suffisamment en dessous de la zone agitée voisine de la surface libre, la création et la croissance de la peau solide est réalisée en continu toujours au même niveau de la lingotière, dans un environnement calme au plan hydrodynamique, là où la pression ferrostatique exercée par la masse de métal liquide située au dessus contrarie les velléités de décollement de la première peau solidifiée contre la paroi froide de la lingotière.
Dans cette dernière technique, un perfectionnement, connu par le document EP-A-0 620 062, consiste à injecter dans la lingotière, au niveau de la dite rehausse et au moins juste à l'interface entre celle-ci et les parois métalliques refroidies, un gaz inerte sous pression. Cette injection de gaz, réalisée par une mince fente annulaire ménagée entre les dites parois et la rehausse, forme des jets perpendiculaires aux parois et dirigés vers le métal liquide, qui cisaillent les éventuelles peaux solidifiées qui se seraient formées au contact de la rehausse réfractaire, de manière à assurer un début de solidification effectif précisément au niveau du bord supérieur des parois refroidies . Si cette technique permet en principe de réduire l'apparition de certains défauts de surface du produit fini, elle ne permet cependant pas de résoudre les problèmes concernant l'adaptation du procédé de coulée aux différentes familles de nuances d'acier coulables en continu, pour tenir compte des spécificités de chacune quant à leur comportement thermomécanique au moment de la solidification.
La présente invention a pour but de résoudre ces problèmes et vise particulièrement à permettre, dans la technique de la coulée continue en charge verticale, un contrôle et une adaptation aisée des conditions d'extraction du flux thermique, notamment dans la zone où débute la solidification.
Avec ces objectifs en vue, l'invention a pour objet un procédé de coulée continue des métaux selon lequel on utilise une lingotière comportant des parois métalliques énergiquement refroidies surmontées d'une rehausse en matériau thermiquement isolant, on maintient au cours de la coulée, la surface libre du métal en fusion contenu dans la lingotière au niveau de la dite rehausse, et on injecte dans la lingotière, sur tout son pourtour, un gaz sous pression, au niveau de la dite rehausse et au moins à l'interface entre celle-ci et les parois refroidies. Selon l'invention, ce procédé est caractérisé en ce que le dit gaz injecté est un gaz ou mélange gazeux ayant une capacité d'expansion thermique ajustable, pour ajuster, en fonction de la composition de l'alliage métallique coulé et des conditions de coulée, la densité du flux thermique extrait du dit alliage métallique dans la zone où il commence à se solidifier à une valeur prédéterminée spécifique de l'alliage coulé.
Le procédé selon l'invention offre ainsi une possibilité d'adapter aisément selon les besoins la densité de flux thermique extrait du métal coulé au niveau où se forme la peau solidifiée, en particulier en fonction de la composition du dit métal, notamment de la nuance dans le cas de la coulée d'acier.
Les inventeurs ont en effet constaté, lors d'essai de coulée réalisés en injectant un gaz inerte, tel que de l'argon ou de l'hélium, à l'interface entre la rehausse et les parois métalliques refroidies, que la densité de flux extrait était fortement influencée par la capacité d'expansion thermique du gaz. Ainsi, dans le cas de la coulée d'un acier à 0,8 % de carbone dans une lingotière dont les parois refroidies étaient en réalisées en alliage de cuivre non revêtu, et avec une vitesse de coulée de 1,5 m/mn, la densité de flux extrait sur les 40 premiers millimètres à partir du bord supérieur des parois métalliques était d'environ 5 MW/m2 lorsque la température de l'argon injecté était d'environ 500°C, et était seulement de 4,2 ou même 3,2 MW/m2 lorsque la température de l'argon injecté était d'environ 100°C. Lors d'un autre essai réalisé avec une lingotière dont les parois refroidies étaient revêtues sur leur face supérieure d'une couche de 1,5 mm de nickel, pour la coulée d'un acier à 0,09 % de carbone et avec une vitesse de coulée de 2 m/mn, le flux extrait était de 5,5 MW/m2 pour une température d'argon injecté de 500°C, et de seulement 3,5 MW/m2 pour une température d'argon de 100°C.
Ces écarts importants de la valeur du flux extrait ne pouvaient pas s'expliquer par l'influence de la seule température du gaz sur l'acier coulé, lequel est à une température de l'ordre de 1600°C dans la partie supérieure de la lingotière. Une hypothèse formulée par les inventeurs est que cet écart résulte d'une part de l'effet de brassage de l'acier liquide provoqué par le gaz injecté au voisinage direct de l'arrête supérieure des parois métalliques refroidies, où s'initie la solidification, et d'autre part, et de manière prépondérante, de l'influence des bulles de gaz formées juste à la sortie des orifices d'injection. Concernant cette influence, on peut considérer que les dites bulles ont, juste avant de passer dans l'acier liquide, une dimension à peu près uniforme, déterminée par les dimensions des orifices d'injection, et cela quelle que soit la température du gaz injecté. Lorsque ces bulles arrivent dans l'acier en fusion, leur température passe quasi instantanément à la température de l'acier. Il en résulte une augmentation de volume des bulles par dilatation du gaz dont elles sont formées. L'expansion volumique des bulles est d'autant plus forte que la variation de température est grande. Il en résulte que, une fois portées à la température de l'acier en fusion, les bulles sont d'autant plus grosses que la température du gaz injecté est faible. Or des bulles plus grosses formées juste à la sortie des orifices d'injection, et donc juste au niveau de l'arête supérieure des parois refroidies, vont en quelque sorte empêcher l'acier liquide d'arriver en contact direct avec le bord supérieur de ces parois, et donc réduire de manière importante le flux thermique extrait par ces parois, alors que des bulles plus petites empêcheront moins ce contact direct, ne réduisant donc que peu le flux extrait. On notera que l'importance de l'effet de ces bulles est dû au fait que le flux thermique extrait par les parois refroidies, en cas d'un contact direct du métal coulé sur ces dites parois, décroît très rapidement en fonction de la distance verticale à partir de la dite arête, et que l'effet de barrière thermique des bulles de gaz se produit essentiellement à proximité directe de la dite arête, et donc justement dans la zone où le flux thermique normalement extrait par les parois refroidies est le plus élevé.
Selon une première variante, pour ajuster la capacité d'expansion thermique du gaz injecté, on règle donc la température du dit gaz. Selon une disposition particulière de l'invention, la température du gaz injecté est réglable entre 50 et 600° C, cette plage de réglage permettant de fixer la température du gaz à une valeur prédéterminée telle que la densité de flux thermique extrait soit comprise entre 2 , 5 et 6 MW/m2, fournissant ainsi de larges possibilités d'adaptation en fonction de la composition de l'alliage métallique coulé et des divers autres paramètres de coulée .
Préférentiellement, la température du gaz est réglée en mélangeant dans un rapport volumétrique déterminé du gaz provenant d'une source chaude à température sensiblement constante, par exemple à 700°C avec du gaz provenant d'une source froide également à température sensiblement constante, par exemple à 20°C. Le débit total de gaz injecté est la somme des débits de gaz issus respectivement des deux sources. Le rapport entre ces débits permet de faire varier la température du gaz injecté, tout en permettant de conserver un débit total sensiblement constant. Pratiquement, en tenant compte des pertes thermiques inévitables, et avec les températures des deux sources mentionnées ci-dessus, on pourra faire varier la température du gaz injecté entre 50 et 600° C.
Selon une disposition particulière, permettant notamment de réduire le plus possible les pertes thermiques, le mélange de gaz est effectué dans une chambre de mélange située dans les parois de la lingotière et/ou dans la rehausse, la température du gaz injecté étant ajustée en réglant les débits des gaz provenant respectivement des sources chaudes et froides et introduits dans la dite chambre.
Selon une autre variante, le gaz injecté est un mélange d'au moins deux gaz constitutifs du mélange, par exemple de l'argon et de l'hélium, dont on ajuste la capacité d'expansion thermique en réglant les proportions relatives des dits gaz constitutifs. Dans cette variante, on utilise le fait que les gaz constitutifs du mélange ont des propriétés physiques différentes, en particulier des densités différentes, pour ajuster, en fonction de leurs proportions relatives, la densité du mélange. De manière similaire à l'effet, décrit précédemment, de l'influence de l'écart de température entre le gaz injecté et celle de l'acier sur l'expansion volumique des bulles lors de leur arrivée au contact de 1 ' acier en fusion, des propriétés physiques différentes des gaz injectés, telles que diffusivité thermique et surtout masse volumique, influencent, pour un même écart entre la température du gaz injecté et celle de l'acier en fusion, l'expansion des bulles des dits gaz. Dans le cas d'un mélange d'argon et d'hélium, on notera que la masse volumique de l'hélium est environ dix fois plus faible que celle de l'argon. Il s'ensuit que lorsque des bulles de ces deux gaz sont soumises à une même élévation de température, leur expansion volumique est très différente. On comprend alors que l'effet de l'expansion des bulles d'un mélange de ces gaz, injecté à température sensiblement homogène, varie en fonction de leur proportion dans le mélange, et qu'il suffit donc de régler cette proportion pour ajuster l'intensité du flux thermique extrait de l'acier coulé par les parois refroidies de la lingotière. L'invention a aussi pour objet une installation de coulée continue des métaux comportant une lingotière dont les parois sont formées par des parois métalliques refroidies surmontées par une rehausse en matériau thermiquement isolant, et des orifices d'injection débouchant dans la lingotière pour injecter dans la lingotière un gaz sous pression sous forme de jets répartis sur le pourtour de la lingotière au niveau de la rehausse et au moins à 1 ' interface entre la dite rehausse et la paroi métallique, caractérisée en ce qu'elle comprend des moyens de fourniture du dit gaz, reliés aux dit orifices, permettant d'ajuster la capacité d'expansion thermique du gaz injecté.
Les dits moyens de fourniture de gaz peuvent comporter des moyens de réglage de la température du gaz injecté, ou des moyens de réglage de la proportion relative d'au moins deux gaz constitutifs d'un mélange gazeux formant le gaz injecté.
Préférentiellement, en vue de pouvoir régler aisément la température du gaz injecté ou la proportion des gaz constituant le mélange injecté, l'installation de coulée comporte deux sources de gaz reliées à une chambre de mélange, elle même reliée aux dits orifices, et des moyens de réglage des débits de gaz provenant respectivement des dites sources et introduits dans la chambre de mélange.
Selon une disposition, la chambre de mélange est située à l'extérieur de lingotière et reliée à un canal de répartition aménagé dans .la paroi de la lingotière.
Selon une autre disposition, la chambre de mélange est située dans la paroi de la lingotière. Dans ce cas, particulièrement adapté au cas du réglage de la température du gaz injecté, la chambre de mélange peut notamment être constituée par une première chambre de répartition aménagée dans la rehausse et reliée à la source de gaz chauds et une deuxième chambre de répartition aménagée dans les parois métalliques et reliée à la source froide.
Pour faciliter la réalisation, la chambre de mélange ou le canal de répartition peuvent aussi être aménagés entièrement dans les parois métalliques refroidies. Dans ce cas, afin de réduire au minimum le refroidissement du gaz lors de son passage dans la dite chambre de mélange, ou dans le dit canal, les parois de ces derniers peuvent être revêtues d'un matériau thermiquement isolant . D'autres caractéristiques et avantages apparaîtront dans la description qui va être faite à titre d'exemple de deux variantes de réalisation d'une installation de coulée continue en charge verticale d'acier, conformes à 1 ' invention. On se reportera aux dessins annexés dans lesquels : -la figure 1 est une représentation schématique d'une première variante, montrant la partie supérieure de la lingotière en coupe longitudinale partielle,
-la figure 2 illustre une deuxième variante de réalisation.
Les parois 1 de la lingotière représentée figure 1 sont constituées de parois métalliques 2, en cuivre ou alliage de cuivre, surmontées d'une rehausse 3 en matériau réfractaire thermiquement isolant . Les parois métalliques 2 sont énergiquement refroidies par une circulation interne d'eau dans des canaux 4, représentés schématiquement sur la figure. La rehausse 3 est constituée d'une partie supérieure 5, d'une hauteur de 200 mm par exemple, en un matériau très isolant et d'une partie inférieure 6 en un matériau réfractaire éventuellement moins isolant mais présentant une meilleure résistance mécanique, par exemple le matériau connu sous la désignation SiAlON, et ayant par exemple une épaisseur de 20 mm.
Les parois 1 de la lingotière définissent un passage pour le produit coulé, dans lequel l'acier en fusion 7 est classiquement amené par une busette 8 comportant des ouïes 9 situées à hauteur de la dite rehausse 3.
La lingotière comporte par ailleurs des orifices d'injection de gaz, débouchant à la surface intérieure des parois 1, à l'interface entre la rehausse 3 et la paroi métallique 2, constitués préférentiellement par une fente continue sur le pourtour de la lingotière, assurant ainsi une injection régulière de gaz sur tout ce pourtour.
Cette fente étroite 10 a une hauteur de quelques dixièmes de millimètres, par exemple 0,2 mm, déterminée par une entretoise 11 insérée entre la partie inférieure 6 de la rehausse et la paroi métallique 2, du coté extérieur des parois. La fente 10 débouche à la surface intérieure des parois de la lingotière, sur tout le pourtour de celle-ci.
Un canal de répartition 12 est aménagé dans la paroi métallique 2, sous forme d'une rainure réalisée sur la face supérieure de la dite paroi métallique et communiquant avec la fente 10 sur tout le pourtour de la lingotière.
L'installation de coulée comporte par ailleurs une source chaude 13 de gaz inerte, par exemple de l'argon, chauffé à une température d'environ 700°C par des moyens de chauffage connus en soi, et une source froide 14 du même gaz, maintenu à la température ambiante, par exemple 20°C. Ces deux sources de gaz sont reliées par des conduits pourvus de vannes de réglage 15, 16 à une chambre de mélange 17 elle même reliée au canal de répartition 12.
Lors d'une coulée, le gaz sous pression provenant de la chambre de mélange 17 se répartit dans le canal 12 et est injecté dans la lingotière par la fente 10. La température du gaz ainsi injectée peut être réglée au moyens des vannes 15 et 16 en agissant sur le rapport des débits de gaz provenant respectivement de chaque source.
Le canal de répartition 12 pourrait également être réalisé dans la rehausse réfractaire 3, ce qui présente l'avantage de limiter les pertes thermiques du gaz du fait de la température élevée, de l'ordre de 800°C, de la dite rehausse. Il est cependant plus aisé de réaliser l'usinage du canal de répartition dans la paroi métallique 2, et dans ce cas, pour limiter le refroidissement du gaz au contact du métal de la paroi, dont la température est seulement de l'ordre de 100°C, les parois du dit canal pourront être revêtues d'un matériau isolant, tel que du zircone ou du nitrure de bore .
Dans la variante de réalisation représentée figure 2 , en plus de la rainure 12 réalisée dans la paroi métallique 2, une seconde rainure 22 est réalisée dans la partie inférieure 6 de la rehausse, en face de la rainure 12 et en communication également avec la fente 10. La source chaude 13 de gaz est reliée via la vanne 15 directement à cette rainure 22, et la source froide 14 est reliée via la vanne 16 à la rainure 12. Le volume défini par ces deux rainures constitue à la fois une chambre de répartition et une chambre de mélange située entièrement dans la paroi 1 de la lingotière . L'invention n'est pas limitée aux variantes décrites ci-dessus uniquement à titre d'exemple, et en particulier la température du gaz injecté pourra être réglée par d'autres moyens que le mélange de gaz chauds et froids indiqué ci dessus.
Dans le cas où on utilise un mélange d'argon et d'hélium dont on ajuste les proportions, on pourra utiliser par exemple une installation telle que celle représentée figure 1, en remplaçant respectivement les sources chaude 13 et froide 14 par des sources d'argon et d'hélium, les vannes de réglage 15 et 16 permettant alors de régler les débits respectifs de ces deux gaz qui se mélangent dans la chambre 17.

Claims

REVENDICATIONS
1. Procédé de coulée continue des métaux selon lequel on utilise une lingotière comportant des parois métalliques (2) énergiquement refroidies surmontées d'une rehausse (3) en matériau thermiquement isolant, on maintient, au cours de la coulée, la surface libre du métal en fusion (7) contenu dans la lingotière au niveau de la dite rehausse, et on injecte dans la lingotière, sur tout son pourtour, un gaz sous pression, au niveau de la dite rehausse et au moins à l'interface entre celle-ci et les parois refroidies, caractérisé en ce que le dit gaz injecté est un gaz ou mélange gazeux ayant une capacité d'expansion thermique ajustable, pour ajuster, en fonction de la composition de l'alliage métallique coulé et des conditions de coulée, la densité du flux thermique extrait du dit alliage métallique dans la zone où il commence à se solidifier.
2. Procédé selon la revendication 1, caractérisé en ce que la capacité d'expansion thermique du gaz est déterminée de manière que la densité de flux thermique extrait soit comprise entre 2,5 et 6 MW/irr .
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que, pour ajuster la capacité d'expansion thermique du gaz injecté, on règle la température du dit gaz.
4. Procédé selon la revendication 3, caractérisé en ce que la température du gaz injecté est réglable entre 50 et 600°.
5. Procédé selon la revendication 3 , caractérisé en ce que le gaz est un gaz inerte, tel que de l'argon.
6. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le gaz injecté est un mélange d'au moins deux gaz constitutifs du mélange, dont on ajuste la capacité d'expansion thermique en réglant les proportions relatives des dits gaz constitutifs.
7. Procédé selon la revendication 6, caractérisé en ce que le gaz injecté est un mélange d'argon et d'hélium.
8. Procédé selon la revendication 1, caractérisé en ce que la capacité d'expansion thermique du gaz injecté est réglée en mélangeant dans un rapport volumétrique déterminé des gaz provenant de deux sources (13, 14) .
9. Procédé selon la revendication 8 en combinaison avec la revendication 3, caractérisé en ce que le mélange de gaz est effectué dans une chambre de mélange (12, 22) située dans les parois (1) de la lingotière et/ou dans la rehausse (3) , la température du gaz injecté étant ajustée en réglant les débits des gaz provenant respectivement d'une source chaude (13) à température sensiblement constante et d'une source froide (14) également à température sensiblement constante.
10. Installation de coulée continue des métaux comportant une lingotière dont les parois (1) sont formées par des parois métalliques refroidies (2) surmontées par une rehausse (3) en matériau thermiquement isolant et des orifices d'injection (10) débouchant dans la lingotière pour injecter dans la lingotière un gaz sous pression sous forme de jets répartis sur le pourtour de la lingotière au niveau de la rehausse et au moins à l'interface entre la dite rehausse et la paroi métallique, caractérisée en ce qu'elle comprend des moyens (13 à 17) de fourniture du dit gaz, reliés aux dit orifices, permettant d'ajuster la capacité d'expansion thermique du gaz injecté.
11. Installation selon le revendication 10, caractérisée en ce que les dits moyens de fourniture de gaz comportent des moyens de réglage de la température du gaz injecté.
12. Installation selon le revendication 11, caractérisée en ce que les dits moyens de fourniture de gaz comportent des moyens de réglage de la proportion relative d'au moins deux gaz constitutifs d'un mélange gazeux formant le gaz injecté.
13. Installation selon la revendication 10, caractérisée en ce que les dits moyens de fourniture de gaz comportent deux sources (13 et 14) de gaz reliées à une chambre de mélange (17; 12,22) , elle même reliée aux dits orifices, et des moyens (15,16) de réglage des débits de gaz provenant respectivement des dites sources et introduits dans la chambre de mélange.
14. Installation selon la revendication 13, caractérisée en ce que la chambre de mélange (17) est située à l'extérieur de lingotière et reliée à un canal de répartition (12) aménagé dans la paroi (1) de la lingotière.
15. Installation selon la revendication 13, caractérisée en ce que la chambre de mélange (12,22) est située dans la paroi (1) de la lingotière.
16. Installation selon la revendication 15 en combinaison avec la revendication 11, caractérisée en ce que la chambre de mélange est constituée par une première chambre de répartition (22) aménagée dans la rehausse (3) et reliée à une source (13) de gaz chaud et une deuxième chambre de répartition (12) aménagée dans les parois métalliques (2) et reliée à une source froide (14) .
17. Installation selon la revendication 15, caractérisée en ce que les parois de la dite chambre de mélange (12) sont revêtues d'un matériau thermiquement isolant .
PCT/FR1997/000596 1996-04-05 1997-04-03 Procede et installation de coulee continue des metaux WO1997037795A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT97919471T ATE220581T1 (de) 1996-04-05 1997-04-03 Verfahren und anlage stranggiessen von metall
AU23930/97A AU2393097A (en) 1996-04-05 1997-04-03 Facility and method for the continuous casting of metals
CA002251007A CA2251007C (fr) 1996-04-05 1997-04-03 Procede de coulee continue des metaux et installation de coulee pour sa mise oeuvre
US09/155,206 US6260605B1 (en) 1996-04-05 1997-04-03 Facility and method for the continuous casting of metals
DE69714078T DE69714078T2 (de) 1996-04-05 1997-04-03 Verfahren und anlage stranggiessen von metall
BR9709160-0A BR9709160A (pt) 1996-04-05 1997-04-03 Processo contìnuo de fundição de metal e instalação de fundição para sua implementação
JP9535904A JP2000508244A (ja) 1996-04-05 1997-04-03 金属の連続鋳造方法および設備
EP97919471A EP0958073B1 (fr) 1996-04-05 1997-04-03 Procede et installation de coulee continue des metaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604303A FR2747060B1 (fr) 1996-04-05 1996-04-05 Procede de coulee continue des metaux et installation de coulee pour sa mise en oeuvre
FR96/04303 1996-04-05

Publications (1)

Publication Number Publication Date
WO1997037795A1 true WO1997037795A1 (fr) 1997-10-16

Family

ID=9490957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000596 WO1997037795A1 (fr) 1996-04-05 1997-04-03 Procede et installation de coulee continue des metaux

Country Status (13)

Country Link
US (1) US6260605B1 (fr)
EP (1) EP0958073B1 (fr)
JP (1) JP2000508244A (fr)
KR (1) KR100449675B1 (fr)
AT (1) ATE220581T1 (fr)
AU (1) AU2393097A (fr)
BR (1) BR9709160A (fr)
CA (1) CA2251007C (fr)
DE (1) DE69714078T2 (fr)
ES (1) ES2176732T3 (fr)
FR (1) FR2747060B1 (fr)
PT (1) PT958073E (fr)
WO (1) WO1997037795A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470959B1 (en) 2000-09-18 2002-10-29 Alcan International Limited Control of heat flux in continuous metal casters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012325A3 (fr) * 1998-12-08 2000-09-05 Centre Rech Metallurgique Dispositif pour la coulee continue en charge verticale d'un metal en fusion.
BE1012626A3 (fr) * 1999-04-23 2001-01-09 Ct De Rech S Metallurg Asbl Ve Dispositif pour fabriquer des produits plats par la coulee continue en charge verticale d'un metal en fusion.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2000365A7 (fr) * 1968-01-18 1969-09-05 United States Steel Corp
EP0035958A2 (fr) * 1980-03-07 1981-09-16 Herbert Dipl.-Ing. Woithe Coquille pour coulée continue
EP0218855A1 (fr) * 1985-09-20 1987-04-22 Vereinigte Aluminium-Werke Aktiengesellschaft Procédé et appareil de coulée continue
EP0620062A1 (fr) * 1993-03-30 1994-10-19 Sollac S.A. Procédé de coulée continue en charge des métaux et lingotière pour sa mise en oeuvre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458843A1 (fr) 1979-06-07 1981-01-02 Gachot Jean Manette de commande pour vanne et vanne munie de cette manette

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2000365A7 (fr) * 1968-01-18 1969-09-05 United States Steel Corp
EP0035958A2 (fr) * 1980-03-07 1981-09-16 Herbert Dipl.-Ing. Woithe Coquille pour coulée continue
EP0218855A1 (fr) * 1985-09-20 1987-04-22 Vereinigte Aluminium-Werke Aktiengesellschaft Procédé et appareil de coulée continue
EP0620062A1 (fr) * 1993-03-30 1994-10-19 Sollac S.A. Procédé de coulée continue en charge des métaux et lingotière pour sa mise en oeuvre

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470959B1 (en) 2000-09-18 2002-10-29 Alcan International Limited Control of heat flux in continuous metal casters
US6725904B2 (en) 2000-09-18 2004-04-27 Alcan International Limited Control of heat flux in continuous metal casters

Also Published As

Publication number Publication date
KR20000005256A (ko) 2000-01-25
FR2747060B1 (fr) 1998-06-12
CA2251007A1 (fr) 1997-10-16
FR2747060A1 (fr) 1997-10-10
CA2251007C (fr) 2004-09-14
DE69714078T2 (de) 2003-03-06
BR9709160A (pt) 2000-05-09
AU2393097A (en) 1997-10-29
EP0958073A1 (fr) 1999-11-24
ES2176732T3 (es) 2002-12-01
ATE220581T1 (de) 2002-08-15
DE69714078D1 (de) 2002-08-22
PT958073E (pt) 2002-10-31
US6260605B1 (en) 2001-07-17
EP0958073B1 (fr) 2002-07-17
KR100449675B1 (ko) 2005-01-15
JP2000508244A (ja) 2000-07-04

Similar Documents

Publication Publication Date Title
CH628260A5 (fr) Procede de coulee de lingots.
EP0620062B1 (fr) Procédé de coulée continue en charge des métaux et lingotière pour sa mise en oeuvre
FR2480154A1 (fr) Procede et appareil de coulee electromagnetique de bandes minces
EP0092477A1 (fr) Procédé et dispositif de fabrication d'un lingot d'acier creux
CA2251007C (fr) Procede de coulee continue des metaux et installation de coulee pour sa mise oeuvre
EP0743114B2 (fr) Procédé de lubrification des parois d'une lingotière de coulée continue des métaux et lingotière pour sa mise en oeuvre
EP3475012B1 (fr) Four de refroidissement par solidification dirigée et procédé de refroidissement utilisant un tel four
EP0907439B1 (fr) Lingotiere de coulee continue pour la coulee continue en charge verticale des metaux
WO2006108874A1 (fr) Procede pour la coulee continue d'ebauches de profiles en metal
FR2704786A3 (fr) Procédé de coulée continue en charge des métaux, notamment de l'acier, et lingotière pour sa mise en Óoeuvre.
CA2250786C (fr) Procede de coulee continue des metaux et lingotiere pour sa mise en oeuvre
EP0160635A2 (fr) Procédé et dispositif pour la lubrification d'une lingotière de coulée continue
EP1007247B1 (fr) Procede et dispositif pour la coulee continue en charge des metaux
EP1056559B1 (fr) Lingotiere pluriangulaire de coulee continue en charge d'un produit metallurgique
EP0943380A1 (fr) Installation de coulée en continu d'un produit métallique et procédés de mise en oeuvre d'une telle installation
EP0452294B1 (fr) Procédé et installation pour la coulée continue d'un métal
EP0382702B1 (fr) Procédé de fabrication d'une brame mince en acier par coulée continue
BE895357A (fr) Coulee continue des metaux
EP0203867A1 (fr) Machine de coulée continue de métal sous forme de bandes
FR2607738A3 (fr) Dispositif pour l'alimentation en metal en fusion des lingotieres de coulee continue
CA2017043A1 (fr) Dispositif d'alimentation en metal liquide d'une installation de coulee continue de produits minces et procede pour sa mise en oeuvre
FR2618704A3 (fr) Procede et dispositif d'alimentation d'une lingotiere de coulee continue de produits minces
FR2547518A1 (fr) Procede et installation de fabrication de toles d'acier par coulee continue
BE891949A (fr) Procede et dispositif de fabrication de lingots plaques
LU86395A1 (fr) Dispositif et procede pour la coulee continue de l'acier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CN CZ HU JP KR MX NO PL RO RU SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997919471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980707947

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2251007

Country of ref document: CA

Ref country code: CA

Ref document number: 2251007

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09155206

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997919471

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707947

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997919471

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980707947

Country of ref document: KR