WO1997034487A1 - Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material - Google Patents

Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material Download PDF

Info

Publication number
WO1997034487A1
WO1997034487A1 PCT/JP1997/000979 JP9700979W WO9734487A1 WO 1997034487 A1 WO1997034487 A1 WO 1997034487A1 JP 9700979 W JP9700979 W JP 9700979W WO 9734487 A1 WO9734487 A1 WO 9734487A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
water
plants
growing
plant growing
Prior art date
Application number
PCT/JP1997/000979
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Tojo
Minehiro Kamiyama
Osamu Yoshimoto
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to JP53336697A priority Critical patent/JP3990457B2/en
Priority to AU19451/97A priority patent/AU1945197A/en
Publication of WO1997034487A1 publication Critical patent/WO1997034487A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a plant breeding substance for promoting plant cultivation, such as agricultural plants, terrestrial plants such as trees, aquatic plants such as aquatic plants, and cultivation of plant cells, a method for producing the cultivated substance, and a method for producing the same.
  • the present invention relates to a method of growing plants. Background art
  • Plant hormonal agents are conventionally known as substances that promote plant growth, but when this phytohormonal agent is applied to plants, growth, flower bud formation, etc. are promoted, but the effect is not sustained It also causes adverse effects such as malformation and is not generally preferred.
  • an object of the present invention is to provide a plant cultivation technique capable of cultivating a plant while at the same time elucidating the cause of the remarkable growth of the plant described above. Disclosure of the invention
  • the plant-growing substance of the present invention comprises a group of chemical species having a mass number per charge of 1,000 to 10,000. This plant-growing substance was found as a result of the present inventors' research on the water electrolyzed using a carbon electrode, in order to investigate the cause of the above-mentioned plant growth.
  • a carbon electrode in addition to the generation of carbon dioxide at the anode, the presence of a product is found, and the product promotes plant growth as described below (Hereinafter referred to as plant growth substance).
  • TOF-MS is an abbreviation of Time Of Filt ght-Mass Spectrometer, a laser ionization time-of-flight mass spectrometer).
  • M / C 100OOOMassZCharge
  • Figure 1 shows the distribution. According to Fig. 1, the largest peak is around 2600MZC.
  • Figure 1 shows a graph of relative comparison with the intensity set to 100. The second peak is near 3700MZ C and the third peak is near 6100MZ C. This profile changes with the electrolysis time.
  • Laser-ionized T ⁇ F-MS is a technique of flying a molecule ionized by a laser by applying a constant voltage and measuring the time it takes to reach a detector. Is measured.
  • the plant-growing substance reduces iron ions of cytochrome c from trivalent to divalent by a one-electron reduction reaction.
  • One-electron reduced form of cytochrome c has an absorption increase at 550 nm. It was found that the plant-growing substance reduced cytochrome c, the absorption at 550 nm increased over time, and there was an isosbestic point.
  • FIG. 2 shows the change over time in the absorption curve.
  • FIG. 3 shows the change over time in the absorption at 550 nm. 24 hours after the addition of cytochrome c, the reaction is approaching convergence.
  • cytochrome c After 24 hours from the addition of cytochrome c, the reaction was considered to be concentrated, and the stability of the plant-growing substance was tested. Using a carbon electrode, water was electrolyzed to produce the plant-growing substance according to the present invention. After completion of the electrolysis, the dispersed water was stored in a dark room at room temperature. The dispersed water was collected every 24 hours, and cytochrome c was added to react. After 24 hours, the absorption intensity at 550 nm was measured. The measurement conditions were the same as in Fig. 3. Fig. 4 shows the results. As is clear from Fig. 4, it was confirmed that it was stable for 7 days.
  • the term “homogeneous negative charge” as used herein means that the grown substance shows a band-like migration in the direction of the positive electrode when measured by the gel electrophoresis method.
  • Japanese Patent Application Laid-Open No. 6-305921 describes that active oxygen groups are generated by electrolysis of water and applied to plants to enhance the physiological activity of the plants. Since the plant-growing substance according to the present invention is generated by electrolysis of water, active oxygen groups may be generated in the present system. Therefore, in order to confirm this, the active oxygen group was
  • ESR electron spin resonance
  • the electrode for generating the plant-growing substance according to the present invention by electrolysis of water may be any electrode mainly composed of carbon.
  • the shape and structure of the electrode may be a solid monolithic material or a material in which a powder is placed in an ion-permeable container and a conducting wire is inserted.
  • the electrode structure is not particularly limited.
  • the crystal structure of carbon is not limited to carbonaceous, graphitic, and vitreous states.
  • the electrode is preferably one that does not easily disintegrate, fall off, or become cloudy when electrolyzed in water.
  • 50 to 90 wt% of carbonaceous material and resin An electrode for electrolysis comprising a composition of 10 to 50 wt% of the cured product can be suitably used.
  • the carbon electrode may be an anode alone, and the material of the cathode is not particularly limited. It should be noted that plant-growing substances are not produced on the platinum electrode, and probably not produced on electrode materials other than carbon-based electrodes.
  • the current density is 10 mA or less.
  • the reason is 10mA cnf When used at a current density exceeding the above, although the plant-growing substance according to the present invention is produced, the electrodes are greatly consumed and have a short life.
  • the water to be electrolyzed may be a water used for plant cultivation, such as agricultural water, river water, groundwater, well water, tap water, etc.
  • the degree is preferably at least 0.1 lmS / m. The reason is that if the electric conductivity is less than 0.1 lmSZm, although the plant growth material according to the present invention is generated, the current does not easily flow and the output voltage of the electrolysis power supply becomes extremely high. It is not practical. If the electric conductivity is low, appropriate electrolytes that do not participate in the reaction in this electrolysis system as needed to increase the electric conductivity, such as various acids, carbonates, chlorides, sulfides, nitrates, and phosphorus Acid salts, etc. may be added. Since the plant-growing substance according to the present invention is also produced by an electrochemical reaction, the amount produced is considered to be proportional to the quantity of electricity according to Faraday's law.
  • plant culture as used in the present invention is used in a broad sense including cultivation of plants, cell culture of plants, and the like.
  • the method of supplying to plants is not particularly limited. If it is a terrestrial plant, it can be used for foliar application and irrigation. Aquatic plants and cell cultures can be supplied to the surrounding water. Substances generally used for growing plants, such as chemicals and fertilizers, may be added and used.
  • the electrolyzed water of the present invention is not caused by sulfuric acid or nitric acid such as acid rain, which has recently become an environmental problem, but by carbonic acid (dissolved carbon dioxide). It is estimated to be much more minor. This is because sulfate and nitrate remain on the plant surface even after water evaporates without washing, whereas carbonic acid diffuses into the atmosphere as water evaporates.
  • FIG. 1 is a graph showing a mass number per charge of a plant-growing substance according to the present invention measured by TOF-MS. The relative comparison was made with the maximum peak being 100.
  • FIG. 2 is a graph showing changes over time in an absorbance curve obtained by adding cytochrome c to a plant-growing substance according to the present invention and taking a difference from a blank test.
  • FIG. 3 is a graph showing the change over time in the absorbance at 550 nm, which was obtained by adding cytochrome c to the plant-growing substance according to the present invention and taking the difference from the blank test.
  • Fig. 4 is a graph showing the absorbance measured by storing the plant-growing substance of the present invention in a dark room at room temperature, collecting it every 24 hours, adding cytochrome c, and taking the difference from the blank test 24 hours later. It is.
  • the technique for growing plants according to the present invention will be described in detail based on examples thereof, but the present invention is not limited to these embodiments.
  • the test was performed on a variety called rose rotose.
  • the test was carried out on a variety of Delphinium, Belladonna.
  • the plant height was 78 cm, the number of nodes was 14, and the number of flowers was 25, whereas in the comparative example, the plant height was 61 cm, the number of nodes was 12, and the number of flowers was 19.
  • the occurrence of powdery mildew was smaller in the inventive examples than in the comparative examples.
  • the test was performed on aquatic plants.
  • Cultivar Cryptocoryne affinis
  • the weight of the aquatic plant of the example was increased by 30% as compared with the comparative example.
  • the weight of the aquatic plant of the example was increased by 50% compared to the comparative example.
  • the test was carried out in a meticulous cultivation of a houseplant, spattiphyllum (Spathi phyllum, taro).
  • the electrolyzed water is sprayed twice a day (approximately 6 (Tor z times) Sprayed with a spraying device so that the entire surface of the plant was covered with uniform water droplets.
  • the testing period was from late October to 21 years.
  • only spraying was performed in the adjacent greenhouse under the same conditions as in the example using tap water. The results are as follows.
  • the amount of irrigation supplied to the roots of the rock wool cultivated rose was 20% larger than that of the comparative example.
  • irrigation contains a certain concentration of liquid fertilizer, resulting in an increase in fertilizer absorption as well.
  • the medium was uncovered, many new rose roots appeared.
  • the occurrence of powdery mildew was lower than that of the comparative example.
  • Powdery mildew belongs to a filamentous fungus, and although the species of fungus varies depending on the plant, it is a generic term for those that appear to have the same process of occurrence and growth.
  • the plant-growing substance according to the present invention promotes plant growth and also has an action of suppressing germination and spread of filamentous fungi that grow similarly to powdery mildew. Is done.
  • the electrolyzed water of the present invention contains about 60 to 80 mgZ liters of dissolved carbon dioxide.However, when growing plants using dissolved carbon dioxide by gas-liquid contact, Dissolved amount ⁇ ⁇ It is not so much affected by the number of sprayings, and it is only to the extent that the growth is slightly better than in the case of regular watering as in the comparative example. It is considered to be due to the plant-growing substance according to the present invention.
  • a method of foliar spraying in which water containing a plant-growing substance is mainly applied to the leaf surface is adopted.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • a method of spraying water and supplying water to the roots can also be adopted.
  • the breeding substance according to the present invention is easily absorbed by plants, which seems to be more effective.
  • plants can grow quickly and largely without adverse effects such as abnormal growth and malformation caused by plant hormones, and the rate of excellent products can be greatly improved.
  • the industrial effect is expected to be extremely large, such as the ability to improve resistance.
  • the method of supplying the plant with the electrolyzed water containing the growing substance according to the present invention is not limited to foliar spraying, but may be watering, or spraying and watering outdoors outside a closed space such as a greenhouse to improve the effect. You can expect.
  • the growth substance according to the present invention can be expected to be naturally concentrated and purified, and it can be expected that the grown substance can be stored in a concentrated state and dissolved in water when necessary for use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A plant growing material containing a group of chemical species having a mass number of 1,000-10,000 per electric charge. This plant growing material has a function of decreasing the ionic valence of iron ions of cytochrome c by one-electron reduction from three to two and significantly promotes growth of plants. A method of producing the plant growing material including the step of performing water electrolysis using a carbon electrode. Performing electrolysis of water using a carbon electrode produces a material promoting growth of plants (plant growing material) as well as carbon dioxide at an anode. A method of growing plants using the plant growing material including the step of spraying onto leaves or supplies water containing the plant growing material to culture the plants. The method promotes the growth of plants significantly.

Description

明 細 書 植物類の育成物質及びその製造方法並びに該育成物質を使用した植物類の育 成方法 技術分野  Description: Plant breeding substance, method for producing the same, and plant cultivation method using the growing substance
本発明は、 農作物、 木などの陸生植物、 水草などの水生植物、 植物細胞の 培養など、 植物類の育成を促進するための植物類の育成物質及びその育成物 質の製造方法並びにその物質を用いた植物類の育成方法に関する。 背景技術  The present invention relates to a plant breeding substance for promoting plant cultivation, such as agricultural plants, terrestrial plants such as trees, aquatic plants such as aquatic plants, and cultivation of plant cells, a method for producing the cultivated substance, and a method for producing the same. The present invention relates to a method of growing plants. Background art
植物の育成を促進する物質としては、 従来より植物ホルモン剤が知られて はいるが、 この植物ホルモン剤を植物に施用した場合、 成長、 花芽形成等は 促進されるものの、 効果が持続しなかったり、 奇形が発生するなどの弊害も 生じ、 一般にはあまり好まれていない。  Plant hormonal agents are conventionally known as substances that promote plant growth, but when this phytohormonal agent is applied to plants, growth, flower bud formation, etc. are promoted, but the effect is not sustained It also causes adverse effects such as malformation and is not generally preferred.
一方、 本発明者等は、 上記の植物ホルモン剤とは関係なく、 二酸化炭素を 水に溶存させて植物に供給すると光合成が活発になり育成効果があると考え 、 その溶存二酸化炭素の供給による植物の育成効果について調査、 研究を進 め、 これまでに、 炭素電極を用いて水を電気分解し、 これにより二酸化炭素 を水に効率的に溶存せしめる技術、 及びその水を使用する植物類の育成技術 などを開発し、 その開発成果を、 特願平 6— 257698号 「植物類生育方法」 、 特願平 6 - 257697号 「植物類生育用二酸化炭素溶液の製造方法」 、 特願平 6 一 341042号 「植物類生育用二酸化炭素溶液の供給装置」 、 特願平 7— 143845 号 「植物類生育用二酸化炭素溶液の供給装置」 などに提案してきた。  On the other hand, the present inventors believe that irrespective of the above-mentioned phytohormonal agent, dissolving carbon dioxide in water and supplying it to plants will activate photosynthesis and have a breeding effect. Research and research on the breeding effect of water, and to date, a technology to electrolyze water using a carbon electrode, thereby dissolving carbon dioxide efficiently in water, and cultivating plants that use the water Developing technologies, etc. and applying the development results to Japanese Patent Application No. 6-257698, "Method of Plant Growth", Japanese Patent Application No. 6-257697, "Method of Manufacturing Carbon Dioxide Solution for Plant Growth", Japanese Patent Application No. No. 341042, "Supply device for carbon dioxide solution for plant growth", and Japanese Patent Application No. 7-143845, "Supply device for carbon dioxide solution for plant growth".
ところが、 本発明者等は上述した溶存二酸化炭素の供給による植物の育成 研究の過程で、 既に提案した方法や装置を用いた場合に溶存二酸化炭素によ る光合成反応の増大だけでは説明がつきにくい植物の育成を観察した。 それ は、 従来より行われているガスボンベ等の二酸化炭素ガスを気液接触によつ て水に溶存させた溶存二酸化炭素を供給する場合、 あるいは水に溶解させた ものと同量の二酸化炭素ガスを供給する場合と比較して植物の育成が極めて 著しいことである。 However, in the process of plant growth research by supplying dissolved carbon dioxide as described above, the present inventors cannot easily explain by simply increasing the photosynthetic reaction due to dissolved carbon dioxide when using the method and apparatus already proposed. Plant growth was observed. It The conventional method is to supply dissolved carbon dioxide by dissolving carbon dioxide gas such as a gas cylinder in water by gas-liquid contact, or to use the same amount of carbon dioxide gas as dissolved in water. The cultivation of plants is extremely remarkable compared to the case of supply.
そこで、 本発明の目的は、 上述した植物の著しい育成原因を究明するとと もに植物類の育成を行い得る植物類の育成技術を提供することである。 発明の開示  Therefore, an object of the present invention is to provide a plant cultivation technique capable of cultivating a plant while at the same time elucidating the cause of the remarkable growth of the plant described above. Disclosure of the invention
本発明の植物類の育成物質は、 電荷当たりの質量数が 1000〜 10000の値に ある化学種群からなるものである。 この植物類の育成物質は、 本発明者等が 上述した植物の育成が著しし、原因を究明すベく、 炭素電極を用 L、て電気分解 した水を調査した結果見出された。 炭素電極を用 L、て水を電気分解すると、 陽極で二酸化炭素が発生することの他に、 生成物の存在が見出され、 その生 成物が後述するように植物の育成を促す物質 (以下植物類育成物質と言う) であることを見出した。  The plant-growing substance of the present invention comprises a group of chemical species having a mass number per charge of 1,000 to 10,000. This plant-growing substance was found as a result of the present inventors' research on the water electrolyzed using a carbon electrode, in order to investigate the cause of the above-mentioned plant growth. When water is electrolyzed using a carbon electrode, in addition to the generation of carbon dioxide at the anode, the presence of a product is found, and the product promotes plant growth as described below ( (Hereinafter referred to as plant growth substance).
前記植物類育成物質は、 レーザーイオン化 T O F— M S ( T O F— M Sと は Time Of Fl i ght -Mass Spectrometer の略で、 レーザーイオン化飛行時間 型質量分析計) で測定すると、 電荷当たりの質量数 (MassZClmrge) の値が 1000〜 lOOOOMassZCharge (以下、 M/ Cと略称する) 付近に主なピークが あることが見出された。 第 1図にその分布を示す。 第 1図によると、 最大の ピークが 2600MZ C付近にある。 その強度を 100とした相対比較のグラフに 第 1図はなっている。 2番目のピークが 3700MZ C付近にあり、 3番目のピ —クが 6100MZ C付近にある。 このプロファイルは電気分解時間により変化 する。 MZ Cで示されるピークの分布は 1000〜 10000M/ C付近に広がって おり、 10000MZ Cより大きい物はほとんど存在していない。 なお、 レーザ 一イオン化 T〇F— M Sとは、 レーザーでイオン化した分子を定電圧をかけ て飛行させ、 検出器までの到達時間を計測し、 電荷当たり質量数とその分布 を測定するものである。 電荷当たり質量数は電圧、 飛行距離、 及び到達時間 の関係式で次のように表される。 すなわち、 MZ C = 2 Y X t 2 Zし 2 ただし、 ここで、 Mはイオンの質量、 Cはイオンの電荷量、 Vは電位差(V) 、 tは検出器まで到達する時間(s) 、 Lは飛行距離 (in) を表す。 The above-mentioned plant-growing substance is measured by laser ionization TOF-MS (TOF-MS is an abbreviation of Time Of Filt ght-Mass Spectrometer, a laser ionization time-of-flight mass spectrometer). ) Was found to have a main peak near 1000 ~ 100OOOMassZCharge (hereinafter abbreviated as M / C). Figure 1 shows the distribution. According to Fig. 1, the largest peak is around 2600MZC. Figure 1 shows a graph of relative comparison with the intensity set to 100. The second peak is near 3700MZ C and the third peak is near 6100MZ C. This profile changes with the electrolysis time. The distribution of the peak indicated by MZC spreads around 1000-10000 M / C, and there is almost no thing larger than 10,000 MZC. Laser-ionized T〇F-MS is a technique of flying a molecule ionized by a laser by applying a constant voltage and measuring the time it takes to reach a detector. Is measured. The mass per charge is expressed by the relational expression of voltage, flight distance, and arrival time as follows. That, however MZ C = 2 YX t 2 Z 2, where, M is the mass of the ion, C is the charge of the ion, V is the potential difference (V), t is the time to reach the detector (s), L Represents the flight distance (in).
また、 前記植物類育成物質は、 チトクロム cの鉄イオンを 3価から 2価に 1電子還元反応で還元することが見出された。 なお、 チ卜クロム cの 1電子 還元体は 550 n mに吸収増大がある。 前記植物類育成物質はチトクロム cを 還元し、 550 n mの吸収は経時的に増大し、 等吸収点があることが見出され た。 その吸収曲線の経時変化を第 2図に示す。  It has also been found that the plant-growing substance reduces iron ions of cytochrome c from trivalent to divalent by a one-electron reduction reaction. One-electron reduced form of cytochrome c has an absorption increase at 550 nm. It was found that the plant-growing substance reduced cytochrome c, the absorption at 550 nm increased over time, and there was an isosbestic point. FIG. 2 shows the change over time in the absorption curve.
前記植物類育成物質は、 化学的に極めて安定な物質である。 550 n mの吸 収の経時変化を第 3図に示す。 チトクロム cを加えて 24時間後に反応が収束 に近づいている。  The plant growing substance is a chemically extremely stable substance. Figure 3 shows the change over time in the absorption at 550 nm. 24 hours after the addition of cytochrome c, the reaction is approaching convergence.
チトクロム cを加えて 24時間後を反応が集結したものとみなし、 前記植物 類育成物質の安定性を試験した。 炭素電極を用い、 水を電気分解して本発明 に係る植物類の育成物質を製造した。 電気分解終了後に分散した水を常温暗 所に保管した。 分散された水を 24時間毎に採取してチトクロム cを加え反応 させて 24時間後に 550 n mの吸収強度を測定した。 測定条件は第 3図のとき と同一にした。 その結果を第 4図に示す。 第 4図から明らかなように 7日間 安定に存在することが確認された。  After 24 hours from the addition of cytochrome c, the reaction was considered to be concentrated, and the stability of the plant-growing substance was tested. Using a carbon electrode, water was electrolyzed to produce the plant-growing substance according to the present invention. After completion of the electrolysis, the dispersed water was stored in a dark room at room temperature. The dispersed water was collected every 24 hours, and cytochrome c was added to react. After 24 hours, the absorption intensity at 550 nm was measured. The measurement conditions were the same as in Fig. 3. Fig. 4 shows the results. As is clear from Fig. 4, it was confirmed that it was stable for 7 days.
また、 この植物類育成物質は、 分子全体が均質な負電荷を持っていること が電気泳動法により見出された。 ここで言う均質な負電荷とは、 ゲル電気泳 動法で測定すると、 この育成物質が正極の方向にバンド状の泳動を示すこと をいうものである。  It was also found by electrophoresis that the whole plant molecule had a uniform negative charge. The term “homogeneous negative charge” as used herein means that the grown substance shows a band-like migration in the direction of the positive electrode when measured by the gel electrophoresis method.
一方、 水の電気分解により活性酸素群が発生し、 これを植物に施用するこ とにより、 植物の生理活性を高めることが特開平 6— 305921号公報に記載さ れている。 本発明に係る植物類の育成物質が水の電気分解により生成してい ることから、 本発明系においても活性酸素群が生成している可能性がある。 そこで、 このことを確認するため、 スピン卜ラップ剤を用いて活性酸素群のOn the other hand, Japanese Patent Application Laid-Open No. 6-305921 describes that active oxygen groups are generated by electrolysis of water and applied to plants to enhance the physiological activity of the plants. Since the plant-growing substance according to the present invention is generated by electrolysis of water, active oxygen groups may be generated in the present system. Therefore, in order to confirm this, the active oxygen group was
E S R (電子スピン共鳴) スペク トルを測定した。 スペク トル中には、 ラジ カル、 活性酸素、 スーパーオキサイ ドなど不対電子を持つ物質の E S Rシグ ナルは検出されなかった。 また、 カタラーゼを用いて活性酸素を過酸化水素 にし、 酸素電極で測定する方法を併用して活性酸素群の存在を確認したが、 過酸化水素の酸化電流は検出されなかった。 これらのことより、 本発明系に おいては、 活性酸素群は存在せず、 植物類の育成にも全く関与しないもので あった。 また、 テ卜ラ社の試薬により、 本発明系には常温 (約 20°C ) で飽和 量の酸素が溶存していることが確認された。 一般的に二酸化炭素は植物の葉 面から吸収され光合成を活発化し、 溶存酸素は根から吸収され主に根の成長 を促進し、 植物の成長に寄与することが知られている。 し力、し、 後記する本 発明の実施例に見られる植物体の成長は、 検出された溶存炭酸ガスあるいは 溶存酸素量の作用と比較して極めて成長が著しく、 上述した植物類育成物質 の存在によって植物の著しい育成がなされることがわかる。 ESR (electron spin resonance) spectra were measured. ESR signals of substances with unpaired electrons, such as radicals, active oxygen, and superoxide, were not detected in the spectrum. In addition, the presence of an active oxygen group was confirmed using a method in which active oxygen was converted to hydrogen peroxide using catalase and measurement was performed using an oxygen electrode, but no oxidation current of hydrogen peroxide was detected. From these facts, in the system of the present invention, there was no active oxygen group, and there was no involvement in growing plants. In addition, it was confirmed that a saturated amount of oxygen was dissolved in the system of the present invention at room temperature (about 20 ° C.) using the reagent of Tetra. In general, it is known that carbon dioxide is absorbed from the leaves of plants and activates photosynthesis, and dissolved oxygen is absorbed from roots and mainly promotes root growth, contributing to plant growth. The growth of the plant, which will be described in the examples of the present invention, which will be described later, is extremely remarkable in comparison with the effect of the detected dissolved carbon dioxide or dissolved oxygen, and the presence of the above-mentioned plant growing substance It can be seen that the plant is remarkably grown by the method.
本発明に係る植物類の育成物質を水の電気分解により生成する際の電極は 、 炭素を主体としたものであればよい。 また、 電極の形状及び構造は固体の 一体物や、 粉体をィォン透過性の容器に入れ導線を挿入したものなどが考え られるが、 電極構造は特に限定されない。 さらに、 炭素の結晶構造も炭素質 、 黒鉛質、 ガラス質などの状態を選ばない。 電極は、 水中で電気分解した場 合に崩壊、 脱落、 黒濁することが少ないものが好ましく、 例えば、 特開平 7 - 34280 号公報に提案されている如き、 炭素質物質 50~90wt %と樹脂硬化物 10~50wt %との組成物からなる電解用電極などが好適に使用できる。 炭素電 極は陽極だけでも構わず、 陰極の材質は特に限定されない。 なお、 植物類の 育成物質は、 白金電極では生成しておらず、 恐らく炭素を主体とする電極以 外の電極材では生成しないものと思われる。 また前記特開平 7— 34280 号公 報に提案の電極を用いて本発明に係る植物類の育成物質を製造する場合、 電 流密度は 10mAノ cnf以下で使用することが好ましい。 その理由は、 10mAノ cnfを 越える電流密度で使用すると、 本発明に係る植物類の育成物質は生成される ものの、 電極の消耗が激しくなり短寿命となるからである。 The electrode for generating the plant-growing substance according to the present invention by electrolysis of water may be any electrode mainly composed of carbon. In addition, the shape and structure of the electrode may be a solid monolithic material or a material in which a powder is placed in an ion-permeable container and a conducting wire is inserted. However, the electrode structure is not particularly limited. Furthermore, the crystal structure of carbon is not limited to carbonaceous, graphitic, and vitreous states. The electrode is preferably one that does not easily disintegrate, fall off, or become cloudy when electrolyzed in water.For example, as disclosed in JP-A-7-34280, 50 to 90 wt% of carbonaceous material and resin An electrode for electrolysis comprising a composition of 10 to 50 wt% of the cured product can be suitably used. The carbon electrode may be an anode alone, and the material of the cathode is not particularly limited. It should be noted that plant-growing substances are not produced on the platinum electrode, and probably not produced on electrode materials other than carbon-based electrodes. When producing the plant growth material according to the present invention using the electrode proposed in the above-mentioned Japanese Patent Application Laid-Open No. 7-34280, it is preferable that the current density is 10 mA or less. The reason is 10mA cnf When used at a current density exceeding the above, although the plant-growing substance according to the present invention is produced, the electrodes are greatly consumed and have a short life.
また、 電気分解する水は、 農業用水、 河川水、 地下水、 井戸水、 水道水な ど植物育成に通常使用されている水ゃィォン交換水、 蒸留水など 、ずれでも よく特に限定されないが、 電気伝導度は 0. lmS/m以上が好ましい。 その理 由は、 電気伝導度が 0. lmSZm より小さいと、 本発明に係る植物類の育成物 質は生成されるものの、 電流が流れにく く電解用電源装置の出力電圧が非常 に高くなつて実用的で無くなるからである。 電気伝導度が低い場合、 電気伝 導度を上げるため必要に応じてこの電気分解系で反応に関与しない適当な電 解質、 例えば、 各種酸、 炭酸塩、 塩化物、 硫化物、 硝酸塩、 りん酸塩、 など を添加してもよい。 本発明に係る植物類の育成物質も電気化学反応により生 成するので、 その生成量はファラディの法則に従い電気量に比例すると考え られる。  The water to be electrolyzed may be a water used for plant cultivation, such as agricultural water, river water, groundwater, well water, tap water, etc. The degree is preferably at least 0.1 lmS / m. The reason is that if the electric conductivity is less than 0.1 lmSZm, although the plant growth material according to the present invention is generated, the current does not easily flow and the output voltage of the electrolysis power supply becomes extremely high. It is not practical. If the electric conductivity is low, appropriate electrolytes that do not participate in the reaction in this electrolysis system as needed to increase the electric conductivity, such as various acids, carbonates, chlorides, sulfides, nitrates, and phosphorus Acid salts, etc. may be added. Since the plant-growing substance according to the present invention is also produced by an electrochemical reaction, the amount produced is considered to be proportional to the quantity of electricity according to Faraday's law.
本発明に係る植物類の育成物質を含む水を、 農作物、 木などの陸生植物や 水草などの水生植物、 メリク口ン栽培などの細胞培養に供給することで植物 類の育成促進が期待できる。 本発明で言う植物培養とは植物の栽培、 植物の 細胞培養などを含む広い意味で使用している。 植物類に供給する方法は特に 限定されない。 陸生植物であれば葉面散布や灌水に使用できる。 水生植物や 細胞培養であれば周囲の水に供給できる。 薬剤や肥料など一般に植物育成に 用いる物質を加えて使用してもよい。  By supplying water containing the plant-growing substance according to the present invention to terrestrial plants such as agricultural crops and trees, aquatic plants such as aquatic plants, and cell cultures such as cultivation of merrick, promotion of plant growth can be expected. The term “plant culture” as used in the present invention is used in a broad sense including cultivation of plants, cell culture of plants, and the like. The method of supplying to plants is not particularly limited. If it is a terrestrial plant, it can be used for foliar application and irrigation. Aquatic plants and cell cultures can be supplied to the surrounding water. Substances generally used for growing plants, such as chemicals and fertilizers, may be added and used.
炭素電極を用いて水を電気分解した上記植物類育成物質を含む電解水を後 述する実施例に示す植物に供給したところ、 植物の育成が著しく促進された 。 これは、 植物類育成物質が植物に与える生理作用はまだ明らかにされてい ないが、 植物類育成物質が何らかの形で植物の育成を司る組織に刺激を与え 、 育成を促進すると共に植物の耐病性を向上させるためと考えられる。 また、 炭素電極を用いて水を電気分解することで水中の二酸化炭素濃度が 増加し、 その結果、 電解水の p Hが電解前の水よりも低下する。 植物に上か ら水がかかった場合の適正な p H値は植物により異なるが、 一般的には p H が 5程度までは問題がないと言われている。 そこで、 電解水の p H値を 5よ り大きく通常の水の p H値との範囲で調節することが好ましい。 し力、し、 本 発明の電解水は近年環境問題になっている酸性雨などの硫酸や硝酸に起因す るものではなく、 炭酸 (溶解した二酸化炭素) によるものなので、 植物に与 える悪影響は、 はるかに軽微なものと推定される。 それは、 硫酸根や硝酸根 は洗浄を行わないと水分が蒸発した後も植物の表面に留まるのに対し、 炭酸 は水分の蒸発と共に大気中に拡散してしまうからである。 図面の簡単な説明 When electrolyzed water containing the above plant-growing substance obtained by electrolyzing water using a carbon electrode was supplied to the plants described in Examples below, plant growth was significantly promoted. Although the physiological effects of plant-growing substances on plants have not been elucidated yet, plant-growing substances stimulate the tissues responsible for plant growth in some way to promote plant growth and prevent plant disease resistance. It is thought that it is to improve. In addition, electrolysis of water using a carbon electrode increases the concentration of carbon dioxide in the water, and as a result, the pH of the electrolyzed water becomes lower than that of the water before electrolysis. On the plant The appropriate pH value when exposed to water depends on the plant, but it is generally said that there is no problem up to a pH value of about 5. Therefore, it is preferable to adjust the pH value of the electrolyzed water to a value larger than 5 and the pH value of normal water. The electrolyzed water of the present invention is not caused by sulfuric acid or nitric acid such as acid rain, which has recently become an environmental problem, but by carbonic acid (dissolved carbon dioxide). It is estimated to be much more minor. This is because sulfate and nitrate remain on the plant surface even after water evaporates without washing, whereas carbonic acid diffuses into the atmosphere as water evaporates. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る植物類育成物質を T O F - M Sで測定した電荷当 たり質量数のグラフ図である。 なお、 最大ピークを 100とした相対比較にな つている。  FIG. 1 is a graph showing a mass number per charge of a plant-growing substance according to the present invention measured by TOF-MS. The relative comparison was made with the maximum peak being 100.
第 2図は、 本発明に係る植物類育成物質にチトクロム cを加え空白試験と の差をとつた吸光度曲線の経時変化を記録したグラフ図である。  FIG. 2 is a graph showing changes over time in an absorbance curve obtained by adding cytochrome c to a plant-growing substance according to the present invention and taking a difference from a blank test.
第 3図は、 本発明に係る植物類育成物質にチトクロム cを加え空白試験と の差をとった 550 n mの吸光度の経時変化を記録したグラフ図である。 第 4図は、 本発明に係る植物類育成物質を常温暗所に保管し、 24時間毎に 採取し、 チトクロム cを加え 24時間後に空白試験との差をとつた吸光度を測 定したグラフ図である。 以下、 本発明に係る植物類の育成技術を、 その実施例に基づき詳細に説明 するが、 本発明はこれらの実施態様に拘束されるものではない。  FIG. 3 is a graph showing the change over time in the absorbance at 550 nm, which was obtained by adding cytochrome c to the plant-growing substance according to the present invention and taking the difference from the blank test. Fig. 4 is a graph showing the absorbance measured by storing the plant-growing substance of the present invention in a dark room at room temperature, collecting it every 24 hours, adding cytochrome c, and taking the difference from the blank test 24 hours later. It is. Hereinafter, the technique for growing plants according to the present invention will be described in detail based on examples thereof, but the present invention is not limited to these embodiments.
〔実施例 1〕  (Example 1)
バラのローテローゼ (Ro te Rose ) という品種で試験を行った。  The test was performed on a variety called rose rotose.
まず、 200リッ トルの水道水を合成樹脂製容器に入れ、 特開平 7— 34280 号公報に提案した炭素電極を用い 1. 6 Aで 18時間電気分解し、 その電解水中 に植物類育成物質が存在することを初回製造時に一度レーザーイオン化 T〇 F— MS (島津製作所製 KRATOS KOMP ACT MALD I 3) で測定した。 測定は、 試料を励起するために DHB (Di Hydroxy Benzoic a cid ) をマトリックスとして加えレーザーでイオン化し、 発生した陽イオン を 20kVの定電圧で加速しリニア型質量分析計で行った。 (レーザ一イオン化 は照射条件を工夫することによりイオン化が極めてソフ 卜となり分子量が 10 万を超える蛋白質のような試料でも分子を分解させずにィォン化することが できる。 ) その後、 温室の 1棟 (約 250坪) にその電解水を 1日に 1回 (約 100リッ 卜ル 回) 葉の表面が均一な水滴で覆われる程度に噴霧器で葉面散 布した。 試験期間は 8月下旬から 35日間とした。 その試験期間中で雨天、 曇 天、 農薬の散布をした日は、 葉が常時濡れて病気が発生するのを防ぐため、 あるいは農薬が流れ落ちないようにするために葉面散布しなかった。 結果、 散布回数は 21回であった。 一方、 比較例として隣接した温室で水道水による 実施例と同一条件での散布のみを行った。 これらの結果は次の通りである。 本発明例では、 ベィサルシュート (基台部からの発芽) が平均 3本と多く 、 また枝シュート (枝部からの側枝) が太く長いものとなったのに対して、 比較例では、 ベィサルシュートが平均 0〜 1本と少なく、 枝シュートも細く 短いものであった。 また収穫本数は本発明例では比較例の 3割り増しであつ た。 更に、 本発明例では比較例よりうどんこ病の発生も少なかった。 First, 200 liters of tap water was placed in a synthetic resin container, and electrolyzed at 1.6 A for 18 hours using a carbon electrode proposed in JP-A-7-34280 for 18 hours. The presence of plant-growing substances was measured by laser ionization T〇F-MS (KRATOS KOMP ACT MALD I 3 manufactured by Shimadzu Corporation) once at the time of initial production. The measurement was performed by adding DHB (Di Hydroxy Benzoic acid) as a matrix to excite the sample, ionizing it with a laser, accelerating the generated cations at a constant voltage of 20 kV, and using a linear mass spectrometer. (In laser-ionization, by devising irradiation conditions, ionization becomes extremely soft, and even proteins such as proteins having a molecular weight of more than 100,000 can be ionized without decomposing molecules.) Then, one greenhouse The electrolyzed water was sprayed once a day (about 100 liters) on a leaf sprayer (about 250 tsubo) so that the leaf surface was covered with uniform water droplets. The test period was 35 days from late August. During the test, rain, cloudy, and pesticide sprays were not sprayed on the foliage to prevent the leaf from getting wet and causing disease or to prevent the pesticide from running off. As a result, the number of application was 21 times. On the other hand, as a comparative example, only spraying was performed with tap water in the adjacent greenhouse under the same conditions as in the example. The results are as follows. In the present invention example, the number of basal shoots (germination from the base) was as large as three on average, and the branch shoots (side branches from the branches) were thick and long. The average number of monkey shoots was as low as 0 to 1, and the branch shoots were thin and short. Also, the number of harvests was 30% higher than that of the comparative example in the present invention. Furthermore, the occurrence of powdery mildew was lower in the inventive examples than in the comparative examples.
〔実施例 2〕 (Example 2)
デルフィ二ユウム (Delphinium、 キンボウゲ枓) のベラ ドンナ (Belladon na) という品種で試験を行った。  The test was carried out on a variety of Delphinium, Belladonna.
本発明例では、 200リ ッ トルの井戸水を特開平 7— 34280 号公報に提案し た炭素電極を用い 1. OAで 24時間電気分解し、 その電解水中に植物類育成物 質が存在することを初回製造時に一度チトクロム cを用し、て測定し確認した 。 測定方法は 「活性酸素」 (共立出版) に記載の方法に従った。 その後、 温 室の 1棟 (約 80坪) にその電解水を通常 1日に 2回 (約 40リッ トル Z回) 葉 の表面が均一な水滴で覆われる程度に細霧装置で葉面散布した。 試験期間は 9月上旬から 48日間とした。 その試験期間中毎日葉面散布を行った。 結果、 散布回数は 96回であった。 一方、 比較例は、 同じ温室で井戸水による実施例 と同一条件での散布のみを行った。 これらの結果は次の通りである。 In the example of the present invention, 200 liters of well water was electrolyzed with OA for 24 hours using the carbon electrode proposed in Japanese Patent Application Laid-Open No. 7-34280, and the plant growing substance was present in the electrolyzed water. Was measured and confirmed once using cytochrome c at the time of initial production. The measuring method followed the method described in "Active oxygen" (Kyoritsu Shuppan). Then warm The electrolyzed water was sprayed twice a day (approximately 40 liters Z times) on one building (about 80 tsubo) of the room with a fine mist device so that the leaf surface was covered with uniform water droplets. The test period was 48 days from the beginning of September. Foliar spraying was performed every day during the test period. As a result, the number of applications was 96. On the other hand, in the comparative example, only spraying was performed in the same greenhouse under the same conditions as in the example using well water. The results are as follows.
本発明例では、 草丈 78cm、 節数 14、 着花数 25個であったのに対して、 比較 例では、 草丈 61cm、 節数 12、 着花数 19個であった。 また、 本発明例では比較 例よりうどんこ病の発生も少なかった。 〔実施例 3〕  In the example of the present invention, the plant height was 78 cm, the number of nodes was 14, and the number of flowers was 25, whereas in the comparative example, the plant height was 61 cm, the number of nodes was 12, and the number of flowers was 19. In addition, the occurrence of powdery mildew was smaller in the inventive examples than in the comparative examples. (Example 3)
観葉植物のディフェンバキア (Di e f fenbach i a 、 サトイモ科) で試験を行 つた。  The test was conducted on the houseplant Dieffenbachia (Dieffenbachia, Araceae).
本発明例では、 200リ ッ トルの水道水を炭素電極を用い 1. 0 Λで 10時間電 気分解し、 その電解水中に植物類育成物質が存在することを初回製造時に一 度ァガロース (寒天の一種) を用いたミニゲル電気泳動法 (A D V A N C E 社製) で測定し確認した後、 温室の 1棟 (約 10坪) にその電解水を通常 1日 に行われる定期散水の内 2回 (約 10リッ トル Z回) 葉の表面が均一な水滴で 覆われる程度に噴霧装置で葉面散布した。 試験期間は 1月中旬から 46日間で あった。 一方、 比較例は、 連続した温室で水道水による実施例と同一条件で の散布のみを行った。 これらの結果は次の通りである。  In the example of the present invention, 200 liters of tap water was electrolyzed at 1.0 mm for 10 hours using a carbon electrode for 10 hours, and the presence of a plant-growing substance in the electrolyzed water was determined once at the time of initial production using agarose (agar). After measuring and confirming with a mini-gel electrophoresis method (ADVANCE Co., Ltd.) using one of the above), the electrolyzed water was sprayed twice a day (approx. (10 liters Z times) The leaves were sprayed with a spraying device so that the leaf surface was covered with uniform water droplets. The test period was 46 days from mid January. On the other hand, in the comparative example, only spraying was performed in the continuous greenhouse under the same conditions as in the example using tap water. The results are as follows.
本実施例では、 病死などの枯死が無く、 葉の色調、 枚数、 厚みなどに優位 性が認められたのに対して、 比較例では、 枯死 12. 5%、 育成不良 16. 7%であ つた。 〔実施例 4〕  In this example, there was no withering such as sickness and death, and superiority was observed in leaf color, number, thickness, etc., whereas in the comparative example, 12.5% withered and 16.7% with poor growing. I got it. (Example 4)
水生植物で試験を行った。  The test was performed on aquatic plants.
本発明例では、 60リッ トルの水槽に井戸水を入れ、 炭素電極を用い 0. 3 A で 1日 11時間電気分解し、 その電解水中に植物類育成物質が存在することを 初回製造時に一度チトクロム cを用いて測定し確認した。 測定方法は 「活性 酸素」 (共立出版) に記載の方法に従った。 その後、 後記する水生植物類を 水槽中に入れ栽培した。 電気分解は水草育成用蛍光灯と連動させ、 毎日 11時 間通電した。 試験期間は 6月下旬から 55日間であった。 一方、 比較例は、 同 じ大きさの別の水槽に水生植物を人れ、 水中の二酸化炭素濃度が実施例と同 じになるように二酸化炭素ガスを気液接触させ溶解させた。 これらの結果は 次の通りである。 In the example of the present invention, well water was placed in a 60 liter water tank, and 0.3 A was used using a carbon electrode. And electrolyzed for 11 hours a day, and the presence of plant growth substances in the electrolyzed water was measured and confirmed once using cytochrome c at the time of initial production. The measuring method followed the method described in "Active oxygen" (Kyoritsu Shuppan). After that, the aquatic plants described below were cultivated in an aquarium. The electrolysis was linked to a fluorescent light for growing aquatic plants and energized every day for 11 hours. The test period was 55 days from late June. On the other hand, in the comparative example, an aquatic plant was placed in another aquarium of the same size, and dissolved in carbon dioxide gas by gas-liquid contact so that the concentration of carbon dioxide in the water was the same as in the example. The results are as follows.
品種: クリプトコリネ アツフフイニス (Cryptocoryne af f i n i s) 試験後、 実施例の水生植物の重量が比較例に比べ 1割増えた。  Cultivar: Cryptocoryne affinis After the test, the weight of the aquatic plant of the example increased by 10% compared to the comparative example.
品種: ァヌピアス (Anub i sa spp )  Variety: Anupias (Anub i sa spp)
試験後、 実施例の水生植物の重量が比較例に比べ 3割増えた。  After the test, the weight of the aquatic plant of the example was increased by 30% as compared with the comparative example.
品種: ヽィグロフイラ (Hi grophi l a pol ysperma )  Cultivar: Hi grophi la pol ysperma
試験後、 実施例の水生植物の重量が比較例に比べ 5割増えた。  After the test, the weight of the aquatic plant of the example was increased by 50% compared to the comparative example.
品種:和名 マツモ (松藻) (Ceratophy l lum spp )  Cultivar: Japanese name Matsumo (pine algae) (Ceratophy l lum spp)
試験後、 本実施例の水生植物の重量が比較例に比べ 2倍に増えた。  After the test, the weight of the aquatic plant of this example was doubled as compared with the comparative example.
〔実施例 5〕 (Example 5)
観葉植物のスパティフィラム (Spathi phy l lum 、 サトイモ枓) のメ リ ク口 ン栽培で試験を行った。  The test was carried out in a meticulous cultivation of a houseplant, spattiphyllum (Spathi phyllum, taro).
本発明例では、 200リ ッ トルの水道水を炭素電極を用い 1. OAで 10時間電 気分解し、 その電解水中に植物類育成物質が存在することを初回製造時に一 度チトクロム cを用いて測定し確認した。 測定方法は 「活性酸素」 (共立出 版) に記載の方法に従った。 その後、 メリクロン栽培し成長可能な苗を採取 した後の塊状のメリクロン苗 (通常廃棄される部分) を卜レイ上に並べ熱帯 気候を再現した育苗温室 (温度 26°C、 温度 95% ) に入れた。 育苗温室の 1棟 (約 6坪) にその電解水を通常 1日に行われる定期散水の内 2回 (約 6リ ッ トル z回) 植物体全体の表面が均一な水滴で覆われる程度に噴霧装置で散布 した。 試験期間は 10月下旬から 21曰間であった。 一方、 比較例は、 隣接した 温室で水道水による実施例と同一条件での散布のみを行った。 これらの結果 は次の通りである。 In the example of the present invention, 200 liters of tap water was electrolyzed with OA for 10 hours using a carbon electrode, and the presence of plant-growing substances in the electrolyzed water was determined using cytochrome c once during the initial production. Measured and confirmed. The measurement method was in accordance with the method described in "Active oxygen" (Kyoritsu version). After collecting the seedlings that can be grown by cultivation of Mericlone, the lumpy Mercuron seedlings (usually discarded parts) are arranged on a tray and placed in a nursery greenhouse (26 ° C, 95% temperature) that reproduces the tropical climate. Was. In one nursery greenhouse (approximately 6 tsubo), the electrolyzed water is sprayed twice a day (approximately 6 (Tor z times) Sprayed with a spraying device so that the entire surface of the plant was covered with uniform water droplets. The testing period was from late October to 21 years. On the other hand, in the comparative example, only spraying was performed in the adjacent greenhouse under the same conditions as in the example using tap water. The results are as follows.
本実施例では、 苗が 8割生存し、 成長を続けたが、 比較例では、 ¾-は 1割 しか生存しなかった。  In this example, 80% of the seedlings survived and continued to grow, but in the comparative example, only 10% of ¾- survived.
〔実施例 6〕 (Example 6)
各種のバラのロックウール栽培で試験を行った。  Tests were performed on rock wool cultivation of various roses.
本発明例では、 200リッ トルの井戸水を特開平 7— 34280 号公報に提案し た炭素電極を用い 1. O Aで 24時間電気分解し、 その電解水中に植物類育成物 質が存在することを初回製造時に一度チトクロム cを用し、て測定し確認した 。 測定方法は 「活性酸素」 (共立出版) に記載の方法に従った。 その後、 温 室の 1棟 (約 200坪) にその電解水を 1日に 1回 (約 100リッ トル Z回) 葉 の表面が均一な水滴で覆われる程度に細霧装置で葉面散布した。 試験期間は 11月中旬から約 60日間とした。 その試験期間中で雨天、 曇天、 農薬の散布を ' した日は、 葉が常時濡れて病気が発生するのを防ぐため、 あるいは農薬が流 れ落ちないようにするために葉面散布しなかった。 結果、 散布回数は 46回で あった。 一方、 比較例として隣接した温室で井戸水による実施例と同一条件 での散布のみを行った。 本発明例のロックウール栽培のバラの根に供給する 灌水は液面を制御しており、 植物が吸収した量を自動的に供給し、 供給量が 記録できる。 これらの結果は次の通りである。  In the example of the present invention, 200 liters of well water was electrolyzed with OA for 24 hours using a carbon electrode proposed in Japanese Patent Application Laid-Open No. 7-34280, and it was confirmed that plant growing substances were present in the electrolyzed water. It was measured and confirmed once using cytochrome c at the time of initial production. The measuring method followed the method described in "Active oxygen" (Kyoritsu Shuppan). Thereafter, the electrolyzed water was sprayed once a day (about 100 liters Z times) into one greenhouse (approximately 200 tsubo) using a fine mist device so that the leaf surface was covered with uniform water droplets. . The test period was about 60 days from mid-November. On the days of rain, cloudy weather, and pesticide spraying during the test period, foliar spraying was not performed to prevent the leaf from constantly getting wet and causing disease, or to prevent the pesticide from flowing down. . As a result, the application frequency was 46 times. On the other hand, as a comparative example, only spraying was performed in the adjacent greenhouse under the same conditions as in the example using well water. The irrigation supplied to the roots of the rock wool cultivated rose of the present invention controls the liquid level, so that the amount absorbed by the plant is automatically supplied and the supplied amount can be recorded. The results are as follows.
本発明例では、 ロックウール栽培のバラの根に供給する灌水の量が、 比較 例に対し 2割り多くなつた。 ロックウール栽培では灌水に一定濃度の液肥が 含まれており、 結果として肥料の吸収量も同様に増えたことになる。 培地の 被覆を外して見ると新しいバラの根が多数発生していた。 また、 本発明例の ラは比較例に対しうどんこ病の発生が少なかつた。 〔実施例 7〕 In the example of the present invention, the amount of irrigation supplied to the roots of the rock wool cultivated rose was 20% larger than that of the comparative example. In rock wool cultivation, irrigation contains a certain concentration of liquid fertilizer, resulting in an increase in fertilizer absorption as well. When the medium was uncovered, many new rose roots appeared. In the case of the present invention, the occurrence of powdery mildew was lower than that of the comparative example. (Example 7)
イチゴ、 キユウリ、 メロン、 スターチス、 千鳥草、 イチジクなどを対象に 実施例 1、 2、 3、 5、 6と同様な試験を行った。 その結果、 これらの植物 でも前記試験結果と同様に植物の大きな成長が見られ、 また果実も大きく成 長することが確認された。 またうどんこ病の発生が少ないことが判明した。 うどんこ病は糸条菌類に属し、 植物により菌種が異なるが、 発生、 成長の過 程が同じょうに見えるものを総称した呼び方である。 上述の試験結果から、 本発明に係る植物類の育成物質は植物の成長を促進するとともに、 うどんこ 病と同様な成長をする糸条菌類の発芽と拡散を抑制する作用のあることが推 定される。 なお、 上述した各実施例においては、 本発明の電解水には溶存二酸化炭素 が約 60〜80mgZリツ トル程度含まれているが、 気液接触による溶存ニ酸化炭 素による植物の育成の場合その溶存量ゃ散布回数にはあまり左右されること はなく比較例の如き定期散水の場合と比べて僅かに育成の良いことが認めら れる程度であり、 上記結果は明らかに溶存二酸化炭素以外の即ち本発明に係 ' る植物類育成物質によるものと考えられる。  The same tests as in Examples 1, 2, 3, 5, and 6 were performed on strawberries, cucumber, melon, starches, houndstooth, and figs. As a result, it was confirmed that, in these plants as well, large growth of the plants was observed as in the test results, and that the fruits also grew greatly. It was also found that the occurrence of powdery mildew was small. Powdery mildew belongs to a filamentous fungus, and although the species of fungus varies depending on the plant, it is a generic term for those that appear to have the same process of occurrence and growth. From the above test results, it is estimated that the plant-growing substance according to the present invention promotes plant growth and also has an action of suppressing germination and spread of filamentous fungi that grow similarly to powdery mildew. Is done. In each of the above embodiments, the electrolyzed water of the present invention contains about 60 to 80 mgZ liters of dissolved carbon dioxide.However, when growing plants using dissolved carbon dioxide by gas-liquid contact, Dissolved amount こ と It is not so much affected by the number of sprayings, and it is only to the extent that the growth is slightly better than in the case of regular watering as in the comparative example. It is considered to be due to the plant-growing substance according to the present invention.
また、 上述した実施例では、 植物類育成物質を含む水を主に葉の表面にか ける葉面散布という方法を採用したが、 本発明はこれに限定されるものでは なく、 葉の裏面への散布や根に供給する灌水による方法も採用できることは いうまでもない。 葉面散布した場合、 葉、 茎、 枝、 地面などに一様に供給で き、 本発明に係る育成物質が植物体に吸収され易くなり、 より効果があるも のと思われる。  Further, in the above-described embodiment, a method of foliar spraying in which water containing a plant-growing substance is mainly applied to the leaf surface is adopted. However, the present invention is not limited to this, and the present invention is not limited to this. Needless to say, a method of spraying water and supplying water to the roots can also be adopted. When sprayed on the foliage, it can be supplied uniformly to leaves, stems, branches, the ground, and the like, and the breeding substance according to the present invention is easily absorbed by plants, which seems to be more effective.
また、 葉面散布する場合、 葉の表面が一様に水滴で濡れる程度、 あるいは 約 1時間以内で葉の表面が乾燥する程度の散布量で十分育成促進効果が得ら れている。 一般には、 葉が常時濡れた状態にあると植物の病気が発生し蔓延 しゃすいとされているので、 葉の表面が一時的に一様に濡れる範囲で少量散 布するのが好ましい。 ただし、 植物に病気の発生が無い場合はこの限りでは ない。 根に灌水する場合病気の恐れはなく、 通常の灌水量で良いと思われる o In the case of foliar spraying, a sufficient amount of water is applied to the leaf surface so that the leaf surface is uniformly wetted with water droplets, or the leaf surface is dried within about one hour, and a sufficient growth promoting effect is obtained. In general, it is said that if the leaves are constantly wet, plant diseases will occur and they will spread. Cloth is preferred. However, this does not apply if the plant has no disease. When irrigating the roots, there is no risk of illness, and normal irrigation volume seems to be o
以上説明した如く、 本発明によれば、 植物ホルモンによる異常成長、 奇形 のような弊害も無く、 植物が早く大きく育成し得るとともに、 秀品率の向上 が大いに期待できる他、 ある種の病気に対する抵抗力を向上させることがで きるなど、 その産業的効果は極めて大きなものが期待される。  As described above, according to the present invention, plants can grow quickly and largely without adverse effects such as abnormal growth and malformation caused by plant hormones, and the rate of excellent products can be greatly improved. The industrial effect is expected to be extremely large, such as the ability to improve resistance.
また、 本発明に係る育成物質を含む電解水を植物に供給する方法は、 葉面 散布に限らず、 灌水でも良いし、 また温室などの閉鎖空間以外の屋外でも散 布、 灌水して効果を期待することができる。  In addition, the method of supplying the plant with the electrolyzed water containing the growing substance according to the present invention is not limited to foliar spraying, but may be watering, or spraying and watering outdoors outside a closed space such as a greenhouse to improve the effect. You can expect.
さらに、 本発明に係る育成物質は、 捋来的に濃縮、 精製することも期待で き、 濃縮した状態で保存し、 必要時に水に溶かして使用することの可能性も 期待できる。  Furthermore, the growth substance according to the present invention can be expected to be naturally concentrated and purified, and it can be expected that the grown substance can be stored in a concentrated state and dissolved in water when necessary for use.

Claims

請 求 の 範 囲 1 . 電荷当たりの質量数が 1000〜 10000の値にある化学種群からなることを 特徴とする植物類の育成物質。 Scope of Claim 1. A plant-growing substance characterized by being composed of a group of chemical species having a mass number per charge of 1,000 to 10,000.
2 . チトクロム cの鉄イオンを 3価から 2価に 1電子還元反応させ、 化学的 に安定な化学種群からなることを特徴とする植物類の育成物質。  2. A plant-growing substance characterized by a chemically stable chemical group consisting of a one-electron reduction reaction of the iron ion of cytochrome c from trivalent to divalent.
3 . 請求項 1又は請求項 2記載の植物類の育成物質において、 分子全体が均 質な負の電荷を帯びてし、る化学種群からなる植物類の育成物質。  3. The plant-growing substance according to claim 1 or 2, wherein the whole molecule has a uniform negative charge and is composed of a group of chemical species.
4 . 炭素電極を用い水を電気分解する際に生成する請求項 1乃至請求項 3の 少なくとも一つに記載の植物類の育成物質。  4. The plant-growing substance according to at least one of claims 1 to 3, which is produced when water is electrolyzed using a carbon electrode.
5 . 炭素電極を用い水を電気分解することによって製造する請求項 1乃至請 求項 3の少なくとも一つに記載の植物類の育成物質の製造方法。  5. The method for producing a plant-growing substance according to at least one of claims 1 to 3, wherein the substance is produced by electrolyzing water using a carbon electrode.
6 . 請求項 1乃至請求項 3の少なくとも一つに記載された植物類の育成物質 を含む水を植物培養に用いることを特徴とする植物類の育成方法。  6. A method for growing plants, comprising using water containing the substance for growing plants according to at least one of claims 1 to 3 for plant culture.
7 . 炭素電極を用いて電気分解した水を植物培養に用いることを特徴とする 植物類の育成方法。 ' 7. A method for growing plants, comprising using water electrolyzed using a carbon electrode for plant culture. '
PCT/JP1997/000979 1996-03-21 1997-03-19 Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material WO1997034487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53336697A JP3990457B2 (en) 1996-03-21 1997-03-19 Plant growth material, method for producing the same, and plant growth method using the growth material
AU19451/97A AU1945197A (en) 1996-03-21 1997-03-19 Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6461996 1996-03-21
JP8/64619 1996-03-21

Publications (1)

Publication Number Publication Date
WO1997034487A1 true WO1997034487A1 (en) 1997-09-25

Family

ID=13263465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000979 WO1997034487A1 (en) 1996-03-21 1997-03-19 Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material

Country Status (4)

Country Link
JP (1) JP3990457B2 (en)
AU (1) AU1945197A (en)
TW (1) TW344646B (en)
WO (1) WO1997034487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3664615A4 (en) * 2017-08-11 2020-12-23 CO2 GRO Inc. Plant growth acceleration system and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279217A (en) * 1993-03-26 1994-10-04 Japan Carlit Co Ltd:The Fungicidal plant growth promoting agent and application method
JPH06321719A (en) * 1993-04-14 1994-11-22 Yukiaki Matsuo Germicidal solution for promoting rearing of plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279217A (en) * 1993-03-26 1994-10-04 Japan Carlit Co Ltd:The Fungicidal plant growth promoting agent and application method
JPH06321719A (en) * 1993-04-14 1994-11-22 Yukiaki Matsuo Germicidal solution for promoting rearing of plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3664615A4 (en) * 2017-08-11 2020-12-23 CO2 GRO Inc. Plant growth acceleration system and methods

Also Published As

Publication number Publication date
TW344646B (en) 1998-11-11
JP3990457B2 (en) 2007-10-10
AU1945197A (en) 1997-10-10

Similar Documents

Publication Publication Date Title
EP1943900B1 (en) Low light cultivation method and plant growth promoting agent
JP7085735B2 (en) How to produce crops
US5951839A (en) Method of producing a water-based fluid having magnetic resonance of a selected material
CN109699675A (en) A method of Ozone Water being made with water and replaces pesticide and is replaced with Pipe spraying manually spraying
JP3990457B2 (en) Plant growth material, method for producing the same, and plant growth method using the growth material
RU2261588C2 (en) Method for electric stimulation of plant vital activity
US5894696A (en) Method of and apparatus for supplying a solution for raising of terrestrial plants
AU2021105643A4 (en) Use of a Spatial Electric Field for Improved Plant Growth, Biomass Yield and Soil Moisture Retention
CN103636434A (en) High-efficiency planting greenhouse
JP3642434B2 (en) How to use special active water for plants
JPH0645523B2 (en) Growth promotion supplementary water for plant cultivation of agricultural products
JPH0884530A (en) Method for growing plants
US6361715B1 (en) Method for reducing the redox potential of substances
CN113207563A (en) Method for planting vegetables by using electrolyzed water
JP2843772B2 (en) Method for producing carbon dioxide solution for plant growth
JP2603051B2 (en) Method for producing oxidized water for sterilization and oxidized water for sterilization
JP2021061178A (en) Microbial fuel cell and power storage system
JPH08154510A (en) Water culture apparatus and culture process using the same
JPS6360904A (en) Growth promoting adjuvant water for cultivating plant such as field crop or the like
Mortensen Effects of foliar sprays of methanol on growth of some greenhouse plants
Acuña et al. Influence of the Electrical Stimulation Using IrO2-Ta2O5| Ti and RuO2-Ta2O5| Ti Anodes in the Edaphological Properties for the Germination and Growth of Zea mays L
JP3928980B2 (en) Method of soil sterilization and fertilization
WO2003030627A1 (en) Method of producing rooted cutting of arboreous plant
US20240023491A1 (en) Enhanced plant growth, yield, chlorophyll content and nutrition value through high frequency impulse waves
CN112588105A (en) Cultivation method for promoting formaldehyde adsorption and degradation capability of plants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase