JP3990457B2 - Plant growth material, method for producing the same, and plant growth method using the growth material - Google Patents

Plant growth material, method for producing the same, and plant growth method using the growth material Download PDF

Info

Publication number
JP3990457B2
JP3990457B2 JP53336697A JP53336697A JP3990457B2 JP 3990457 B2 JP3990457 B2 JP 3990457B2 JP 53336697 A JP53336697 A JP 53336697A JP 53336697 A JP53336697 A JP 53336697A JP 3990457 B2 JP3990457 B2 JP 3990457B2
Authority
JP
Japan
Prior art keywords
plant
water
plant growth
growth
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53336697A
Other languages
Japanese (ja)
Inventor
哲朗 東城
峰宏 上山
修 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Application granted granted Critical
Publication of JP3990457B2 publication Critical patent/JP3990457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

技術分野
本発明は、農作物、木などの陸生植物、水草などの水生植物、植物細胞の培養など、植物類の育成を促進するための植物類の育成物質及びその物質を用いた植物類の育成方法に関する。
背景技術
植物の育成を促進する物質としては、従来より植物ホルモン剤が知られてはいるが、この植物ホルモン剤を植物に施用した場合、成長、花芽形成等は促進されるものの、効果が持続しなかったり、奇形が発生するなどの弊害も生じ、一般にはあまり好まれていない。
一方、本発明者等は、上記の植物ホルモン剤とは関係なく、二酸化炭素を水に溶存させて植物に供給すると光合成が活発になり育成効果があると考え、その溶存二酸化炭素の供給による植物の育成効果について調査、研究を進め、これまでに、炭素電極を用いて水を電気分解し、これにより二酸化炭素を水に効率的に溶存せしめる技術、及びその水を使用する植物類の育成技術などを開発し、その開発成果を、特願平6−257698号「植物類生育方法」、特願平6−257697号「植物類生育用二酸化炭素溶液の製造方法」、特願平6−341042号「植物類生育用二酸化炭素溶液の供給装置」、特願平7−143845号「植物類生育用二酸化炭素溶液の供給装置」などに提案してきた。
ところが、本発明者等は上述した溶存二酸化炭素の供給による植物の育成研究の過程で、既に提案した方法や装置を用いた場合に溶存二酸化炭素による光合成反応の増大だけでは説明がつきにくい植物の育成を観察した。それは、従来より行われているガスボンベ等の二酸化炭素ガスを気液接触によって水に溶存させた溶存二酸化炭素を供給する場合、あるいは水に溶解させたものと同量の二酸化炭素ガスを供給する場合と比較して植物の育成が極めて著しいことである。
そこで、本発明の目的は、上述した植物の著しい育成原因を究明するとともに植物類の育成を行い得る植物類の育成技術を提供することである。
発明の開示
本発明の植物類の育成物質は、電荷当たりの質量数が1000〜10000の値にある化学種群からなるものである。この植物類の育成物質は、本発明者等が上述した植物の育成が著しい原因を究明すべく、炭素電極を用いて電気分解した水を調査した結果見出された。炭素電極を用いて水を電気分解すると、陽極で二酸化炭素が発生することの他に、生成物の存在が見出され、その生成物が後述するように植物の育成を促す物質(以下植物類育成物質と言う)であることを見出した。
前記植物類育成物質は、レーザーイオン化TOF−MS(TOF−MSとはTime Of Flight−Mass Spectrometerの略で、レーザーイオン化飛行時間型質量分析計)で測定すると、電荷当たりの質量数(Mass/Charge)の値が1000〜10000Mass/Charge(以下、M/Cと略称する)付近に主なピークがあることが見出された。第1図にその分布を示す。第1図によると、最大のピークが2600M/C付近にある。その強度を100とした相対比較のグラフに第1図はなっている。2番目のピークが3700M/C付近にあり、3番目のピークが6100M/C付近にある。このプロファイルは電気分解時間により変化する。M/Cで示されるピークの分布は1000〜10000M/C付近に広がっており、10000M/Cより大きい物はほとんど存在していない。なお、レーザーイオン化TOF−MSとは、レーザーでイオン化した分子を定電圧をかけて飛行させ、検出器までの到達時間を計測し、電荷当たり質量数とその分布を測定するものである。電荷当たり質量数は電圧、飛行距離、及び到達時間の関係式で次のように表される。すなわち、M/C=2×V×t2/L2ただし、ここで、Mはイオンの質量、Cはイオンの電荷量、Vは電位差(V)、tは検出器まで到達する時間(s)、Lは飛行距離(m)を表す。
また、前記植物類育成物質は、チトクロムcの鉄イオンを3価から2価に1電子還元反応で還元することが見出された。なお、チトクロムcの1電子還元体は550nmに吸収増大がある。前記植物類育成物質はチトクロムcを還元し、550nmの吸収は経時的に増大し、等吸収点があることが見出された。その吸収曲線の経時変化を第2図に示す。
前記植物類育成物質は、化学的に極めて安定な物質である。550nmの吸収の経時変化を第3図に示す。チトクロムcを加えて24時間後に反応が収束に近づいている。
チトクロムcを加えて24時間後を反応が集結したものとみなし、前記植物類育成物質の安定性を試験した。炭素電極を用い、水を電気分解して本発明に係る植物類の育成物質を製造した。電気分解終了後に分散した水を常温暗所に保管した。分散された水を24時間毎に採取してチトクロムcを加え反応させて24時間後に550nmの吸収強度を測定した。測定条件は第3図のときと同一にした。その結果を第4図に示す。第4図から明らかなように7日間安定に存在することが確認された。
また、この植物類育成物質は、分子全体が均質な負電荷を持っていることが電気泳動法により見出された。ここで言う均質な負電荷とは、ゲル電気泳動法で測定すると、この育成物質が正極の方向にバンド状の泳動を示すことをいうものである。
一方、水の電気分解により活性酸素群が発生し、これを植物に施用することにより、植物の生理活性を高めることが特開平6−305921号公報に記載されている。本発明に係る植物類の育成物質が水の電気分解により生成していることから、本発明系においても活性酸素群が生成している可能性がある。そこで、このことを確認するため、スピントラップ剤を用いて活性酸素群のESR(電子スピン共鳴)スペクトルを測定した。スペクトル中には、ラジカル、活性酸素、スーパーオキサイドなど不対電子を持つ物質のESRシグナルは検出されなかった。また、カタラーゼを用いて活性酸素を過酸化水素にし、酸素電極で測定する方法を併用して活性酸素群の存在を確認したが、過酸化水素の酸化電流は検出されなかった。これらのことより、本発明系においては、活性酸素群は存在せず、植物類の育成にも全く関与しないものであった。また、テトラ社の試薬により、本発明系には常温(約20℃)で飽和量の酸素が溶存していることが確認された。一般的に二酸化炭素は植物の葉面から吸収され光合成を活発化し、溶存酸素は根から吸収され主に根の成長を促進し、植物の成長に寄与することが知られている。しかし、後記する本発明の実施例に見られる植物体の成長は、検出された溶存炭酸ガスあるいは溶存酸素量の作用と比較して極めて成長が著しく、上述した植物類育成物質の存在によって植物の著しい育成がなされることがわかる。
本発明に係る植物類の育成物質を水の電気分解により生成する際の電極は、炭素を主体としたものであればよい。また、電極の形状及び構造は固体の一体物や、粉体をイオン透過性の容器に入れ導線を挿入したものなどが考えられるが、電極構造は特に限定されない。さらに、炭素の結晶構造も炭素質、黒鉛質、ガラス質などの状態を選ばない。電極は、水中で電気分解した場合に崩壊、脱落、黒濁することが少ないものが好ましく、例えば、特開平7−34280号公報に提案されている如き、炭素質物質50〜90wt%と樹脂硬化物10〜50wt%との組成物からなる電解用電極などが好適に使用できる。炭素電極は陽極だけでも構わず、陰極の材質は特に限定されない。なお、植物類の育成物質は、白金電極では生成しておらず、恐らく炭素を主体とする電極以外の電極材では生成しないものと思われる。また前記特開平7−34280号公報に提案の電極を用いて本発明に係る植物類の育成物質を製造する場合、電流密度は10mA/cm2以下で使用することが好ましい。その理由は、10mA/cm2を越える電流密度で使用すると、本発明に係る植物類の育成物質は生成されるものの、電極の消耗が激しくなり短寿命となるからである。
また、電気分解する水は、農業用水、河川水、地下水、井戸水、水道水など植物育成に通常使用されている水やイオン交換水、蒸留水などいずれでもよく特に限定されないが、電気伝導度は0.1mS/m以上が好ましい。その理由は、電気伝導度が0.1mS/mより小さいと、本発明に係る植物類の育成物質は生成されるものの、電流が流れにくく電解用電源装置の出力電圧が非常に高くなって実用的で無くなるからである。電気伝導度が低い場合、電気伝導度を上げるため必要に応じてこの電気分解系で反応に関与しない適当な電解質、例えば、各種酸、炭酸塩、塩化物、硫化物、硝酸塩、りん酸塩、などを添加してもよい。本発明に係る植物類の育成物質も電気化学反応により生成するので、その生成量はファラディの法則に従い電気量に比例すると考えられる。
本発明に係る植物類の育成物質を含む水を、農作物、木などの陸生植物や水草などの水生植物、メリクロン栽培などの細胞培養に供給することで植物類の育成促進が期待できる。本発明で言う植物培養とは植物の栽培、植物の細胞培養などを含む広い意味で使用している。植物類に供給する方法は特に限定されない。陸生植物であれば葉面散布や灌水に使用できる。水生植物や細胞培養であれば周囲の水に供給できる。薬剤や肥料など一般に植物育成に用いる物質を加えて使用してもよい。
炭素電極を用いて水を電気分解した上記植物類育成物質を含む電解水を後述する実施例に示す植物に供給したところ、植物の育成が著しく促進された。これは、植物類育成物質が植物に与える生理作用はまだ明らかにされていないが、植物類育成物質が何らかの形で植物の育成を司る組織に刺激を与え、育成を促進すると共に植物の耐病性を向上させるためと考えられる。
また、炭素電極を用いて水を電気分解することで水中の二酸化炭素濃度が増加し、その結果、電解水のpHが電解前の水よりも低下する。植物に上から水がかかった場合の適正なpH値は植物により異なるが、一般的にはpHが5程度までは問題がないと言われている。そこで、電解水のpH値を5より大きく通常の水のpH値との範囲で調節することが好ましい。しかし、本発明の電解水は近年環境問題になっている酸性雨などの硫酸や硝酸に起因するものではなく、炭酸(溶解した二酸化炭素)によるものなので、植物に与える悪影響は、はるかに軽微なものと推定される。それは、硫酸根や硝酸根は洗浄を行わないと水分が蒸発した後も植物の表面に留まるのに対し、炭酸は水分の蒸発と共に大気中に拡散してしまうからである。
【図面の簡単な説明】
第1図は、本発明に係る植物類育成物質をTOF−MSで測定した電荷当たり質量数のグラフ図である。なお、最大ピークを100とした相対比較になっている。
第2図は、本発明に係る植物類育成物質にチトクロムcを加え空白試験との差をとった吸光度曲線の経時変化を記録したグラフ図である。
第3図は、本発明に係る植物類育成物質にチトクロムcを加え空白試験との差をとった550nmの吸光度の経時変化を記録したグラフ図である。
第4図は、本発明に係る植物類育成物質を常温暗所に保管し、24時間毎に採取し、チトクロムcを加え24時間後に空白試験との差をとった吸光度を測定したグラフ図である。
以下、本発明に係る植物類の育成技術を、その実施例に基づき詳細に説明するが、本発明はこれらの実施態様に拘束されるものではない。
〔実施例1〕
バラのローテローゼ(Rote Rose)という品種で試験を行った。
まず、200リットルの水道水を合成樹脂製容器に入れ、特開平7−34280号公報に提案した炭素電極を用い1.6Aで18時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度レーザーイオン化TOF−MS(島津製作所製KRATOS KOMPACT MALDI 3)で測定した。測定は、試料を励起するためにDHB(Di Hydroxy Benzoic acid)をマトリックスとして加えレーザーでイオン化し、発生した陽イオンを20kVの定電圧で加速しリニア型質量分析計で行った。(レーザーイオン化は照射条件を工夫することによりイオン化が極めてソフトとなり分子量が10万を超える蛋白質のような試料でも分子を分解させずにイオン化することができる。)その後、温室の1棟(約250坪)にその電解水を1日に1回(約100リットル/回)葉の表面が均一な水滴で覆われる程度に噴霧器で葉面散布した。試験期間は8月下旬から35日間とした。その試験期間中で雨天、曇天、農薬の散布をした日は、葉が常時濡れて病気が発生するのを防ぐため、あるいは農薬が流れ落ちないようにするために葉面散布しなかった。結果、散布回数は21回であった。一方、比較例として隣接した温室で水道水による実施例と同一条件での散布のみを行った。これらの結果は次の通りである。
本発明例では、ベイサルシュート(基台部からの発芽)が平均3本と多く、また枝シュート(枝部からの側枝)が太く長いものとなったのに対して、比較例では、ベイサルシュートが平均0〜1本と少なく、枝シュートも細く短いものであった。また収穫本数は本発明例では比較例の3割り増しであった。更に、本発明例では比較例よりうどんこ病の発生も少なかった。
〔実施例2〕
デルフィニュウム(Delphinium、キンポウゲ科)のベラドンナ(Belladonna)という品種で試験を行った。
本発明例では、200リットルの井戸水を特開平7−34280号公報に提案した炭素電極を用い1.0Aで24時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度チトクロムcを用いて測定し確認した。測定方法は「活性酸素」(共立出版)に記載の方法に従った。その後、温室の1棟(約80坪)にその電解水を通常1日に2回(約40リットル/回)葉の表面が均一な水滴で覆われる程度に細霧装置で葉面散布した。試験期間は9月上旬から48日間とした。その試験期間中毎日葉面散布を行った。結果、散布回数は96回であった。一方、比較例は、同じ温室で井戸水による実施例と同一条件での散布のみを行った。これらの結果は次の通りである。
本発明例では、草丈78cm、節数14、着花数25個であったのに対して、比較例では、草丈61cm、節数12、着花数19個であった。また、本発明例では比較例よりうどんこ病の発生も少なかった。
〔実施例3〕
観葉植物のディフェンバキア(Dieffenbachia、サトイモ科)で試験を行った。
本発明例では、200リットルの水道水を炭素電極を用い1.0Aで10時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度アガロース(寒天の一種)を用いたミニゲル電気泳動法(ADVANCE社製)で測定し確認した後、温室の1棟(約10坪)にその電解水を通常1日に行われる定期散水の内2回(約10リットル/回)葉の表面が均一な水滴で覆われる程度に噴霧装置で葉面散布した。試験期間は1月中旬から46日間であった。一方、比較例は、連続した温室で水道水による実施例と同一条件での散布のみを行った。これらの結果は次の通りである。
本実施例では、病死などの枯死が無く、葉の色調、枚数、厚みなどに優位性が認められたのに対して、比較例では、枯死12.5%、育成不良16.7%であった。
〔実施例4〕
水生植物で試験を行った。
本発明例では、60リットルの水槽に井戸水を入れ、炭素電極を用い0.3Aで1日11時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度チトクロムcを用いて測定し確認した。測定方法は「活性酸素」(共立出版)に記載の方法に従った。その後、後記する水生植物類を水槽中に入れ栽培した。電気分解は水草育成用蛍光灯と連動させ、毎日11時間通電した。試験期間は6月下旬から55日間であった。一方、比較例は、同じ大きさの別の水槽に水生植物を入れ、水中の二酸化炭素濃度が実施例と同じになるように二酸化炭素ガスを気液接触させ溶解させた。これらの結果は次の通りである。
品種:クリプトコリネ アッフフィニス(Cryptocoryne affinis)
試験後、実施例の水生植物の重量が比較例に比べ1割増えた。
品種:アヌビアス(Anubisa spp)
試験後、実施例の水生植物の重量が比較例に比べ3割増えた。
品種:ハイグロフィラ(Higrophila polysperma)
試験後、実施例の水生植物の重量が比較例に比べ5割増えた。
品種:和名 マツモ(松藻)(Ceratophyllum spp)
試験後、本実施例の水生植物の重量が比較例に比べ2倍に増えた。
〔実施例5〕
観葉植物のスパティフィラム(Spathiphyllum、サトイモ科)のメリクロン栽培で試験を行った。
本発明例では、200リットルの水道水を炭素電極を用い1.0Aで10時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度チトクロムcを用いて測定し確認した。測定方法は「活性酸素」(共立出版)に記載の方法に従った。その後、メリクロン栽培し成長可能な苗を採取した後の塊状のメリクロン苗(通常廃棄される部分)をトレイ上に並べ熱帯気候を再現した育苗温室(温度26℃、湿度95%)に入れた。育苗温室の1棟(約6坪)にその電解水を通常1日に行われる定期散水の内2回(約6リットル/回)植物体全体の表面が均一な水滴で覆われる程度に噴霧装置で散布した。試験期間は10月下旬から21日間であった。一方、比較例は、隣接した温室で水道水による実施例と同一条件での散布のみを行った。これらの結果は次の通りである。
本実施例では、苗が8割生存し、成長を続けたが、比較例では、苗は1割しか生存しなかった。
〔実施例6〕
各種のバラのロックウール栽培で試験を行った。
本発明例では、200リットルの井戸水を特開平7−34280号公報に提案した炭素電極を用い1.0Aで24時間電気分解し、その電解水中に植物類育成物質が存在することを初回製造時に一度チトクロムcを用いて測定し確認した。測定方法は「活性酸素」(共立出版)に記載の方法に従った。その後、温室の1棟(約200坪)にその電解水を1日に1回(約100リットル/回)葉の表面が均一な水滴で覆われる程度に細霧装置で葉面散布した。試験期間は11月中旬から約60日間とした。その試験期間中で雨天、曇天、農薬の散布をした日は、葉が常時濡れて病気が発生するのを防ぐため、あるいは農薬が流れ落ちないようにするために葉面散布しなかった。結果、散布回数は46回であった。一方、比較例として隣接した温室で井戸水による実施例と同一条件での散布のみを行った。本発明例のロックウール栽培のバラの根に供給する灌水は液面を制御しており、植物が吸収した量を自動的に供給し、供給量が記録できる。これらの結果は次の通りである。
本発明例では、ロックウール栽培のバラの根に供給する灌水の量が、比較例に対し2割り多くなった。ロックウール栽培では灌水に一定濃度の液肥が含まれており、結果として肥料の吸収量も同様に増えたことになる。培地の被覆を外して見ると新しいバラの根が多数発生していた。また、本発明例のバラは比較例に対しうどんこ病の発生が少なかった。
〔実施例7〕
イチゴ、キュウリ、メロン、スターチス、千鳥草、イチジクなどを対象に実施例1、2、3、5、6と同様な試験を行った。その結果、これらの植物でも前記試験結果と同様に植物の大きな成長が見られ、また果実も大きく成長することが確認された。またうどんこ病の発生が少ないことが判明した。うどんこ病は糸条菌類に属し、植物により菌種が異なるが、発生、成長の過程が同じように見えるものを総称した呼び方である。上述の試験結果から、本発明に係る植物類の育成物質は植物の成長を促進するとともに、うどんこ病と同様な成長をする糸条菌類の発芽と拡散を抑制する作用のあることが推定される。
なお、上述した各実施例においては、本発明の電解水には溶存二酸化炭素が約60〜80mg/リットル程度含まれているが、気液接触による溶存二酸化炭素による植物の育成の場合その溶存量や散布回数にはあまり左右されることはなく比較例の如き定期散水の場合と比べて僅かに育成の良いことが認められる程度であり、上記結果は明らかに溶存二酸化炭素以外の即ち本発明に係る植物類育成物質によるものと考えられる。
また、上述した実施例では、植物類育成物質を含む水を主に葉の表面にかける葉面散布という方法を採用したが、本発明はこれに限定されるものではなく、葉の裏面への散布や根に供給する灌水による方法も採用できることはいうまでもない。葉面散布した場合、葉、茎、枝、地面などに一様に供給でき、本発明に係る育成物質が植物体に吸収され易くなり、より効果があるものと思われる。
また、葉面散布する場合、葉の表面が一様に水滴で濡れる程度、あるいは約1時間以内で葉の表面が乾燥する程度の散布量で十分育成促進効果が得られている。一般には、葉が常時濡れた状態にあると植物の病気が発生し蔓延しやすいとされているので、葉の表面が一時的に一様に濡れる範囲で少量散布するのが好ましい。ただし、植物に病気の発生が無い場合はこの限りではない。根に灌水する場合病気の恐れはなく、通常の灌水量で良いと思われる。
以上説明した如く、本発明によれば、植物ホルモンによる異常成長、奇形のような弊害も無く、植物が早く大きく育成し得るとともに、秀品率の向上が大いに期待できる他、ある種の病気に対する抵抗力を向上させることができるなど、その産業的効果は極めて大きなものが期待される。
また、本発明に係る育成物質を含む電解水を植物に供給する方法は、葉面散布に限らず、灌水でも良いし、また温室などの閉鎖空間以外の屋外でも散布、灌水して効果を期待することができる。
さらに、本発明に係る育成物質は、将来的に濃縮、精製することも期待でき、濃縮した状態で保存し、必要時に水に溶かして使用することの可能性も期待できる。
TECHNICAL FIELD The present invention relates to a plant growth material for promoting the growth of plants, such as agricultural crops, terrestrial plants such as trees, aquatic plants such as aquatic plants, and cultivation of plant cells, and plant growth using the materials. Regarding the method.
Background Art As a substance that promotes plant growth, a plant hormone agent has been known, but when this plant hormone agent is applied to a plant, growth, flower bud formation, etc. are promoted, but the effect is sustained. In general, it is not preferred because it does not work or causes malformations.
On the other hand, the present inventors consider that photosynthesis becomes active and has a growth effect when carbon dioxide is dissolved in water and supplied to the plant, regardless of the above-mentioned plant hormone agent, and the plant by supplying the dissolved carbon dioxide Research and research on the growth effect of water, so far, the technology of electrolyzing water using a carbon electrode, thereby efficiently dissolving carbon dioxide in water, and the technology of breeding plants that use the water No. 6-257698 “Plant growth method”, Japanese Patent Application No. 6-257697 “Method for producing carbon dioxide solution for plant growth”, Japanese Patent Application No. 6-341042 No. 7 “Supplying device for carbon dioxide solution for plant growth” and Japanese Patent Application No. 7-143845 “Supplying device for carbon dioxide solution for plant growth”.
However, in the process of plant growth research by supplying dissolved carbon dioxide as described above, the present inventors are unable to explain the plant that is difficult to explain only by increasing the photosynthetic reaction by dissolved carbon dioxide when using the already proposed method and apparatus. The growth was observed. When supplying dissolved carbon dioxide in which water or carbon dioxide gas such as conventional gas cylinders is dissolved in water by gas-liquid contact, or when supplying the same amount of carbon dioxide gas as dissolved in water The growth of plants is extremely remarkable compared to
Accordingly, an object of the present invention is to provide a plant growth technique capable of investigating the above-mentioned significant plant growth causes and capable of growing plants.
DISCLOSURE OF THE INVENTION The plant-growing substance of the present invention comprises a chemical species group having a mass number per charge of 1000 to 10,000. This plant-growing substance was found as a result of investigating water electrolyzed using a carbon electrode in order to investigate the cause of the remarkable plant growth described above by the present inventors. When water is electrolyzed using a carbon electrode, in addition to the generation of carbon dioxide at the anode, the presence of a product is found, and the product promotes plant growth as described later (hereinafter referred to as plants). It was found to be a growing substance).
The plant growth material is measured by laser ionization TOF-MS (TOF-MS is an abbreviation of Time Of Flight-Mass Spectrometer, a laser ionization time-of-flight mass spectrometer). ) Was found to have a main peak in the vicinity of 1000 to 10000 Mass / Charge (hereinafter abbreviated as M / C). FIG. 1 shows the distribution. According to FIG. 1, the maximum peak is around 2600 M / C. FIG. 1 is a relative comparison graph with the intensity as 100. The second peak is around 3700 M / C and the third peak is around 6100 M / C. This profile varies with the electrolysis time. The distribution of the peak indicated by M / C extends in the vicinity of 1000 to 10,000 M / C, and there is almost no thing larger than 10000 M / C. Laser ionization TOF-MS is a method in which molecules ionized by a laser are applied with a constant voltage to fly, the arrival time to a detector is measured, and the number of masses per charge and their distribution are measured. The number of masses per charge is expressed as follows in relation to voltage, flight distance, and arrival time. That is, M / C = 2 × V × t 2 / L 2 where M is the mass of the ion, C is the charge amount of the ion, V is the potential difference (V), and t is the time to reach the detector (s ), L represents the flight distance (m).
Further, it has been found that the plant-growing substance reduces cytochrome c iron ions from trivalent to divalent by a one-electron reduction reaction. The one-electron reduced form of cytochrome c has an increased absorption at 550 nm. It was found that the plant-growing substance reduces cytochrome c, the absorption at 550 nm increases with time, and has an isosbestic point. The change with time of the absorption curve is shown in FIG.
The plant growth material is a chemically extremely stable material. FIG. 3 shows changes with time in absorption at 550 nm. The reaction is close to convergence 24 hours after adding cytochrome c.
Cytochrome c was added and the reaction was considered 24 hours later, and the stability of the plant growth material was tested. Using a carbon electrode, water was electrolyzed to produce a plant growth material according to the present invention. The water dispersed after the electrolysis was stored in a dark room temperature. The dispersed water was collected every 24 hours, cytochrome c was added and reacted, and the absorption intensity at 550 nm was measured after 24 hours. The measurement conditions were the same as in FIG. The results are shown in FIG. As is clear from FIG. 4, it was confirmed that it was stable for 7 days.
Moreover, it was found by electrophoresis that this plant-growing substance has a homogeneous negative charge throughout the molecule. The homogeneous negative charge mentioned here means that the growth material exhibits band-like migration in the direction of the positive electrode when measured by gel electrophoresis.
On the other hand, Japanese Patent Application Laid-Open No. 6-305921 discloses that active oxygen groups are generated by electrolysis of water, and that these are applied to plants to enhance the physiological activity of the plants. Since the plant growth material according to the present invention is generated by electrolysis of water, the active oxygen group may be generated in the present invention system. In order to confirm this, an ESR (electron spin resonance) spectrum of the active oxygen group was measured using a spin trap agent. In the spectrum, an ESR signal of a substance having an unpaired electron such as a radical, active oxygen or superoxide was not detected. Moreover, although the active oxygen was changed to hydrogen peroxide using catalase and the presence of the active oxygen group was confirmed by using the method of measuring with an oxygen electrode, the oxidation current of hydrogen peroxide was not detected. From these facts, in the system of the present invention, the active oxygen group does not exist and is not involved in plant growth at all. It was also confirmed by Tetra's reagent that a saturated amount of oxygen was dissolved in the system of the present invention at room temperature (about 20 ° C.). It is generally known that carbon dioxide is absorbed from the leaves of plants and activates photosynthesis, and dissolved oxygen is absorbed from roots, mainly promoting root growth and contributing to plant growth. However, the growth of the plant found in the examples of the present invention described later is extremely high in comparison with the action of the detected dissolved carbon dioxide gas or dissolved oxygen amount. It can be seen that significant growth is made.
The electrode used when the plant growth material according to the present invention is generated by electrolysis of water may be any electrode that is mainly composed of carbon. In addition, the shape and structure of the electrode may be a solid monolith, or a powder inserted in an ion-permeable container and a conducting wire inserted, but the electrode structure is not particularly limited. Furthermore, the crystal structure of carbon is not limited to carbonaceous, graphite, or glassy. The electrode is preferably one that is less likely to disintegrate, drop off, or become blackish when electrolyzed in water. For example, as proposed in JP-A-7-34280, the carbonaceous material is 50 to 90 wt% and the resin is cured. An electrode for electrolysis made of a composition of 10 to 50 wt% of the product can be suitably used. The carbon electrode may be the anode alone, and the material of the cathode is not particularly limited. The plant growth material is not produced by the platinum electrode, and is probably not produced by any electrode material other than carbon-based electrodes. Further, when the plant growth material according to the present invention is produced using the electrode proposed in JP-A-7-34280, the current density is preferably 10 mA / cm 2 or less. The reason is that, when used at a current density exceeding 10 mA / cm 2 , the plant growth material according to the present invention is produced, but the electrode wears out and the life becomes short.
The water to be electrolyzed may be any water that is usually used for plant growth such as agricultural water, river water, ground water, well water, tap water, ion exchange water, distilled water, etc., and is not particularly limited. 0.1 mS / m or more is preferable. The reason is that if the electrical conductivity is less than 0.1 mS / m, the plant growth material according to the present invention is generated, but the current does not flow easily and the output voltage of the power supply device for electrolysis becomes very high, which is practical. Because it will disappear. If the electrical conductivity is low, an appropriate electrolyte that does not participate in the reaction in this electrolysis system as necessary to increase the electrical conductivity, such as various acids, carbonates, chlorides, sulfides, nitrates, phosphates, Etc. may be added. Since the plant growth material according to the present invention is also produced by an electrochemical reaction, the amount produced is considered to be proportional to the amount of electricity according to Faraday's law.
The growth of plants can be expected to be promoted by supplying water containing plant growth substances according to the present invention to cultivated plants, terrestrial plants such as trees, aquatic plants such as aquatic plants, and cell culture such as meliclon cultivation. The plant culture referred to in the present invention is used in a broad sense including plant cultivation, plant cell culture, and the like. The method of supplying to plants is not particularly limited. Any terrestrial plant can be used for foliar spraying or irrigation. Aquatic plants and cell culture can be supplied to the surrounding water. You may add and use the substance generally used for plant cultivation, such as a medicine and a fertilizer.
When electrolyzed water containing the above plant-growing substance obtained by electrolyzing water using a carbon electrode was supplied to the plant shown in the examples described later, the growth of the plant was remarkably promoted. This is because the physiological effects of plant-growing substances on plants have not yet been clarified, but the plant-growing substances in some way stimulate the tissues that control the growth of the plants, promote the growth, and the disease resistance of the plants It is thought to improve.
Moreover, the carbon dioxide concentration in water increases by electrolyzing water using a carbon electrode, and as a result, the pH of electrolyzed water falls rather than the water before electrolysis. An appropriate pH value when water is applied to a plant from above varies depending on the plant, but it is generally said that there is no problem until the pH is about 5. Therefore, it is preferable to adjust the pH value of the electrolyzed water in the range of more than 5 and normal water. However, since the electrolyzed water of the present invention is not caused by sulfuric acid or nitric acid such as acid rain, which has been an environmental problem in recent years, but is caused by carbonic acid (dissolved carbon dioxide), the adverse effect on plants is much less severe. Estimated. This is because sulfate radicals and nitrate radicals remain on the surface of the plant even after moisture evaporates unless they are washed, whereas carbon dioxide diffuses into the atmosphere as moisture evaporates.
[Brief description of the drawings]
FIG. 1 is a graph of the number of mass per electric charge obtained by measuring the plant growth material according to the present invention with TOF-MS. The relative comparison is based on the maximum peak of 100.
FIG. 2 is a graph recording the time course of the absorbance curve obtained by adding cytochrome c to the plant growth material according to the present invention and taking the difference from the blank test.
FIG. 3 is a graph recording the time-dependent change in absorbance at 550 nm obtained by adding cytochrome c to the plant growth material according to the present invention and taking the difference from the blank test.
FIG. 4 is a graph of the plant growth material according to the present invention stored at room temperature in a dark place, sampled every 24 hours, added with cytochrome c, and measured for the absorbance after 24 hours and the difference from the blank test. is there.
Hereinafter, although plant cultivation technology concerning the present invention is explained in detail based on the example, the present invention is not restricted to these embodiments.
[Example 1]
Tests were conducted on a variety called Rose Rose.
First, 200 liters of tap water is put in a synthetic resin container and electrolyzed at 1.6 A for 18 hours using the carbon electrode proposed in Japanese Patent Laid-Open No. 7-34280, and plant growth substances are present in the electrolytic water. Was measured once with the laser ionization TOF-MS (Kuratos Kompact MALDI 3 manufactured by Shimadzu Corporation) during the initial production. In order to excite the sample, DHB (Di Hydroxy Benzoic acid) was added as a matrix and ionized with a laser, and the generated cations were accelerated at a constant voltage of 20 kV, and the measurement was performed with a linear mass spectrometer. (Laser ionization makes ionization extremely soft by devising the irradiation conditions, and even a sample such as a protein with a molecular weight exceeding 100,000 can be ionized without decomposing the molecule.) The surface water was sprayed with a sprayer once a day (about 100 liters / time) to the extent that the leaf surface was covered with uniform water droplets. The test period was 35 days from the end of August. During the test period, rainy, cloudy, and pesticides were not sprayed on the day when the leaves were always wet to prevent the disease from developing or to prevent the pesticides from flowing down. As a result, the number of spraying was 21 times. On the other hand, as a comparative example, only spraying with tap water was performed in an adjacent greenhouse under the same conditions as in the example. These results are as follows.
In the example of the present invention, the number of basal shoots (germination from the base part) was as large as 3 on average, and the branch shoots (side branches from the branch part) were thick and long, whereas in the comparative example, the basal shoots There were few on average, and the branch shoots were thin and short. The number of harvests was 30% higher than that of the comparative example in the present invention example. Further, powdery mildew occurred less in the inventive examples than in the comparative examples.
[Example 2]
Tests were conducted on a cultivar called Belladonna from Delphinium.
In the example of the present invention, 200 liters of well water was electrolyzed at 1.0 A for 24 hours using the carbon electrode proposed in Japanese Patent Laid-Open No. 7-34280, and the presence of plant-growing substances in the electrolytic water was confirmed once during the initial production. Measurement was performed using cytochrome c. The measuring method followed the method described in “Active oxygen” (Kyoritsu Shuppan). Thereafter, the electrolyzed water was sprayed onto a building (about 80 tsubo) in a greenhouse twice a day (about 40 liters / time) with a fine fog device so that the surface of the leaf was covered with uniform water droplets. The test period was 48 days from the beginning of September. Foliar spraying was performed every day during the test period. As a result, the number of spraying was 96 times. On the other hand, the comparative example performed only spraying on the same conditions as the Example by well water in the same greenhouse. These results are as follows.
In the example of the present invention, the plant height was 78 cm, the number of nodes was 14, and the number of flowers was 25, whereas in the comparative example, the plant height was 61 cm, the number of nodes was 12, and the number of flowers was 19. In addition, powdery mildew occurred less in the inventive examples than in the comparative examples.
Example 3
Tests were carried out in the houseplant Dieffenbachia.
In the example of the present invention, 200 liters of tap water was electrolyzed at 1.0 A for 10 hours using a carbon electrode, and agarose (a kind of agar) was used once at the time of initial production that plant growth substances were present in the electrolytic water. After measuring and confirming by mini-gel electrophoresis (manufactured by ADVANCE), leaves the electrolytic water twice a day (about 10 liters / time) in the regular watering of one day in a greenhouse (about 10 tsubo). The leaf surface was sprayed with a spraying device to such an extent that the surface was covered with uniform water droplets. The test period was 46 days from mid-January. On the other hand, the comparative example performed only the spreading | spreading on the same conditions as the Example by a tap water in the continuous greenhouse. These results are as follows.
In this example, there was no death such as disease death, and superiority was observed in the color tone, number of sheets, thickness, etc. of the leaves, whereas in the comparative example, it was 12.5% death and 16.7% growth failure.
Example 4
Tests were performed on aquatic plants.
In the present invention, well water is put into a 60 liter water tank, electrolyzed at 0.3 A for 11 hours a day using a carbon electrode, and the presence of plant-growing substances in the electrolytic water is once used for the initial production using cytochrome c. Measured and confirmed. The measuring method followed the method described in “Active oxygen” (Kyoritsu Shuppan). Then, the aquatic plants described later were put in a water tank and cultivated. The electrolysis was linked to a fluorescent lamp for aquatic plants and energized for 11 hours every day. The test period was 55 days from late June. On the other hand, in the comparative example, an aquatic plant was put in another water tank of the same size, and carbon dioxide gas was gas-liquid contacted and dissolved so that the carbon dioxide concentration in the water was the same as in the example. These results are as follows.
Variety: Cryptocoryne affinis
After the test, the weight of the aquatic plant of the example increased by 10% compared to the comparative example.
Variety: Anubisa spp
After the test, the weight of the aquatic plant of the example increased by 30% compared to the comparative example.
Variety: Higrophila polysperma
After the test, the weight of the aquatic plant of the example increased by 50% compared to the comparative example.
Variety: Japanese name Matsumo (Ceratophyllum spp)
After the test, the weight of the aquatic plant of this example was doubled compared to the comparative example.
Example 5
The experiment was conducted in the melicron cultivation of the spatium phyllum (Spathiphyllum).
In the example of the present invention, 200 liters of tap water was electrolyzed at 1.0 A for 10 hours using a carbon electrode, and the presence of a plant-growing substance in the electrolytic water was once measured and confirmed using cytochrome c at the first production. . The measuring method followed the method described in “Active oxygen” (Kyoritsu Shuppan). After that, after harvesting seedlings that can be grown and grown in Mericlon, bulky Mericlon seedlings (usually discarded parts) were placed on a tray and placed in a nursery greenhouse (temperature 26 ° C., humidity 95%) reproducing the tropical climate. A spraying device that covers the surface of the whole plant with uniform water droplets twice (about 6 liters / time) of regular water sprays that are usually performed on a single day (about 6 tsubo) in a nursery greenhouse. Scattered with. The test period was 21 days from late October. On the other hand, the comparative example performed only the spreading | spreading on the same conditions as the Example by a tap water in the adjacent greenhouse. These results are as follows.
In this example, 80% of the seedlings survived and continued to grow, but in the comparative example, only 10% of the seedlings survived.
Example 6
Tests were conducted in various wool rock wool cultivations.
In the example of the present invention, 200 liters of well water was electrolyzed at 1.0 A for 24 hours using the carbon electrode proposed in Japanese Patent Laid-Open No. 7-34280, and the presence of plant-growing substances in the electrolytic water was confirmed once during the initial production. Measurement was performed using cytochrome c. The measuring method followed the method described in “Active oxygen” (Kyoritsu Shuppan). Thereafter, the electrolyzed water was sprayed on the surface of the greenhouse (about 200 tsubo) once a day (about 100 liters / time) with a fine fog device so that the surface of the leaf was covered with uniform water droplets. The test period was about 60 days from mid-November. During the test period, rainy, cloudy, and pesticides were not sprayed on the day when the leaves were always wet to prevent the disease from developing or to prevent the pesticides from flowing down. As a result, the number of spraying was 46 times. On the other hand, as a comparative example, only spraying under the same conditions as in the example using well water was performed in an adjacent greenhouse. The irrigation supplied to the roots of rose wool grown in the example of the present invention controls the liquid level, automatically supplies the amount absorbed by the plant, and can record the supply amount. These results are as follows.
In the example of the present invention, the amount of irrigation supplied to the roots of roses grown in rock wool increased by 20% compared to the comparative example. In rock wool cultivation, liquid fertilizer with a certain concentration is included in the irrigation, resulting in an increase in the amount of fertilizer absorbed as well. When the coating of the medium was removed, many new rose roots were generated. In addition, the rose of the inventive example had less occurrence of powdery mildew than the comparative example.
Example 7
The same tests as in Examples 1, 2, 3, 5, and 6 were performed on strawberries, cucumbers, melons, statice, chives, figs, and the like. As a result, it was confirmed that, in these plants, large growth of the plants was observed as in the test results, and the fruits also grew greatly. It was also found that the incidence of powdery mildew was small. Powdery mildew belongs to filamentous fungi and is a generic term for things that appear to have the same process of development and growth, although the species of the fungus varies from plant to plant. From the above test results, it is estimated that the plant growth material according to the present invention has an action of promoting the growth of plants and suppressing the germination and diffusion of filamentous fungi that grow similarly to powdery mildew. The
In each of the above-described examples, the electrolyzed water of the present invention contains about 60 to 80 mg / liter of dissolved carbon dioxide. However, in the case of growing a plant with dissolved carbon dioxide by gas-liquid contact, the amount of dissolved carbon dioxide And the number of times of spraying is not so much affected, and it is recognized that the growth is slightly better than in the case of regular watering as in the comparative example. This is considered to be due to the plant growth material.
Further, in the above-described embodiment, a method of foliar application in which water containing a plant-growing substance is mainly applied to the surface of the leaf is adopted, but the present invention is not limited to this, and is applied to the back surface of the leaf. Needless to say, spraying and irrigation to the roots can be used. When sprayed on the foliage, it can be supplied uniformly to leaves, stems, branches, ground, etc., and the growth substance according to the present invention is easily absorbed by the plant body, which seems to be more effective.
In the case of spraying on the leaf surface, the effect of promoting growth is sufficiently obtained with a spraying amount so that the surface of the leaf is uniformly wetted with water droplets or the surface of the leaf is dried within about 1 hour. In general, when the leaves are always wet, plant diseases are likely to occur and spread easily. Therefore, it is preferable to spray a small amount within a range where the leaf surface is temporarily wet uniformly. However, this does not apply when there is no disease in the plant. When irrigating the roots, there is no risk of illness, and normal irrigation is considered acceptable.
As described above, according to the present invention, there is no harmful growth such as abnormal growth or malformation caused by plant hormones, plants can grow quickly and greatly, and an improvement in the excellent product rate can be greatly expected. The industrial effect is expected to be extremely large, such as the ability to improve resistance.
In addition, the method of supplying electrolyzed water containing a growth substance according to the present invention to plants is not limited to foliar spraying, and irrigation may be used, and spraying and irrigation can be expected even when outdoors other than enclosed spaces such as greenhouses. can do.
Furthermore, the growing substance according to the present invention can be expected to be concentrated and purified in the future, and it can be expected to be stored in a concentrated state and dissolved in water when necessary.

Claims (5)

炭素質物質50〜90wt%と樹脂硬化物50〜10wt%との組成物からなる炭素電極を陽極として用いて、水を電気分解して得られた、質量分析値:TOF−MSスペクトル、m/z=1000〜10000である化学種群からなることを特徴とする植物類の育成物質(活性酸素群が含まれるものを除く) Mass analysis value: TOF-MS spectrum obtained by electrolyzing water using a carbon electrode composed of 50 to 90 wt% of a carbonaceous material and 50 to 10 wt% of a cured resin as an anode, m / A plant-growing substance (excluding those containing an active oxygen group) , characterized by comprising a chemical species group of z = 1000 to 10,000. 炭素質物質50〜90wt%と樹脂硬化物50〜10wt%との組成物からなる炭素電極を陽極として用いて、水を電気分解して得られた、チトクロムcの鉄イオンを3価から2価に1電子還元反応させ、化学的に安定な化学種群(活性酸素群を除く)からなることを特徴とする植物類の育成物質。Trivalent to divalent iron ions of cytochrome c obtained by electrolyzing water using a carbon electrode composed of 50 to 90 wt% of a carbonaceous material and 50 to 10 wt% of a cured resin as an anode. A plant growth material characterized by comprising a chemical species group (excluding the active oxygen group) that is subjected to a one-electron reduction reaction to 請求項1又は請求項2記載の植物類の育成物質において、分子全体が均質な負の電荷を帯びている化学種群からなる植物類の育成物質。The plant growth material according to claim 1 or 2, wherein the plant growth material is composed of a group of chemical species having a uniform negative charge throughout the molecule. 前記水の電気伝導度が0.1mS/m以上であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の植物類の育成物質。 The plant-growing substance according to any one of claims 1 to 3, wherein the water has an electric conductivity of 0.1 mS / m or more . 請求項1乃至請求項の少なくとも一つに記載された植物類の育成物質を含む水を植物培養に用いることを特徴とする植物類の育成方法。Growing method of claim 1 or a water containing growing material of plants such as described in at least one of claims 4, characterized by using a plant cultured plant compounds.
JP53336697A 1996-03-21 1997-03-19 Plant growth material, method for producing the same, and plant growth method using the growth material Expired - Fee Related JP3990457B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6461996 1996-03-21
PCT/JP1997/000979 WO1997034487A1 (en) 1996-03-21 1997-03-19 Plant growing material, process for producing the plant growing material, and method of growing plants using the plant growing material

Publications (1)

Publication Number Publication Date
JP3990457B2 true JP3990457B2 (en) 2007-10-10

Family

ID=13263465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53336697A Expired - Fee Related JP3990457B2 (en) 1996-03-21 1997-03-19 Plant growth material, method for producing the same, and plant growth method using the growth material

Country Status (4)

Country Link
JP (1) JP3990457B2 (en)
AU (1) AU1945197A (en)
TW (1) TW344646B (en)
WO (1) WO1997034487A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020001692A (en) * 2017-08-11 2020-12-11 Co2 Gro Inc Plant growth acceleration system and methods.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279217A (en) * 1993-03-26 1994-10-04 Japan Carlit Co Ltd:The Fungicidal plant growth promoting agent and application method
JPH0755881B2 (en) * 1993-04-14 1995-06-14 松尾 至明 Sterilization / plant growth promotion solution

Also Published As

Publication number Publication date
TW344646B (en) 1998-11-11
WO1997034487A1 (en) 1997-09-25
AU1945197A (en) 1997-10-10

Similar Documents

Publication Publication Date Title
CN108094175B (en) Hazelnut twig cutting seedling method
EP1943900B1 (en) Low light cultivation method and plant growth promoting agent
Garnier et al. The influence of drought on stomatal conductance and water potential of peach trees growing in the field
JP7085735B2 (en) How to produce crops
US5951839A (en) Method of producing a water-based fluid having magnetic resonance of a selected material
JP3990457B2 (en) Plant growth material, method for producing the same, and plant growth method using the growth material
AU2021105643A4 (en) Use of a Spatial Electric Field for Improved Plant Growth, Biomass Yield and Soil Moisture Retention
RU2261588C2 (en) Method for electric stimulation of plant vital activity
JPH0645523B2 (en) Growth promotion supplementary water for plant cultivation of agricultural products
Briggs Electroculture
JP3642434B2 (en) How to use special active water for plants
CN109479640A (en) A kind of implantation methods improving milled glutinous broomcorn millet yield
US6361715B1 (en) Method for reducing the redox potential of substances
El-Sheibany et al. Effect of application of growth retardant ALAR on some foliage characters of local cultivar of Chrysanthemum
Dorchester The effect of electric current on certain crop plants
CN113207563A (en) Method for planting vegetables by using electrolyzed water
Mortensen Effects of foliar sprays of methanol on growth of some greenhouse plants
JPH08154510A (en) Water culture apparatus and culture process using the same
Acuña et al. Influence of the Electrical Stimulation Using IrO2-Ta2O5| Ti and RuO2-Ta2O5| Ti Anodes in the Edaphological Properties for the Germination and Growth of Zea mays L
JPH055805B2 (en)
JPH1175549A (en) Composition for improving food nutrient ingredient of plant and improvement in food nutrient ingredient of plant
CN110250003B (en) Outdoor propagation method for sugarcane tissue culture seedlings
JP6758681B2 (en) How to produce agricultural products
RU2111652C1 (en) Nutrient medium for microfloral reproduction of apple-tree stock
US20210298292A1 (en) Bioavailable minerals for the mitigation of pathogens in plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees