WO1997033140A1 - Device and process for optically scanning surfaces - Google Patents

Device and process for optically scanning surfaces Download PDF

Info

Publication number
WO1997033140A1
WO1997033140A1 PCT/EP1997/000898 EP9700898W WO9733140A1 WO 1997033140 A1 WO1997033140 A1 WO 1997033140A1 EP 9700898 W EP9700898 W EP 9700898W WO 9733140 A1 WO9733140 A1 WO 9733140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
mirror chip
scanning area
scanning
projection
Prior art date
Application number
PCT/EP1997/000898
Other languages
German (de)
French (fr)
Inventor
Johannes Reichle
Andreas RÖNNER
Original Assignee
Eos Gmbh Electro Optical Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eos Gmbh Electro Optical Systems filed Critical Eos Gmbh Electro Optical Systems
Priority to AU20933/97A priority Critical patent/AU2093397A/en
Publication of WO1997033140A1 publication Critical patent/WO1997033140A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence

Definitions

  • the invention relates to a device and a method for the optical scanning of surfaces according to the preamble of claim 1 and claim 9.
  • Such a method is generally known under the terms triangulation, strip light projection, binary code method or Moir ⁇ method.
  • a stripe pattern is projected onto the surface to be scanned or measured and viewed by a CCD camera.
  • Information about the spatial position of each individual point on the surface can be obtained by projecting different phase positions (phase shift) or different lattice constants.
  • Either one or more line gratings with corresponding shifting or rotating mechanisms or an LCD projector are usually used to generate the fringe projection.
  • these known devices are not optimal with regard to strip contrast, reaction time when shifting or rotating, flexibility with regard to different measuring methods, size and price.
  • An important aspect of the invention is that the known devices for strip projection mentioned above are replaced by a mirror chip, for example of the DMD type.
  • a mirror chip was developed, for example, by Texas Instruments for use in projectors, printers and television sets and is described, for example, in the article by Larry J. Hornbeck, "Current Status of the Digital Micromirror Device (DMD) for Projection Television Applications ", International Electron Devices Meeting, December 5-8, 1993, Washington, US, or in Larry J.
  • the figure shows a measuring head 1 which is positioned to scan a scanning area 2 of the surface 3 opposite it.
  • the measuring head 1 has a projection device 4 and a viewing device 5.
  • the projection device 4 comprises a light source 6, for example a laser or a white light source in the form of a halogen lamp or a flash light, which emits a light beam 9, which is bundled via optics 7 and reflected on a mirror 8, at a predetermined angle, for example 20 °, aimed at a mirror chip 10 of the DMD type.
  • the known mirror chip has a multiplicity of micromirrors arranged in the form of a matrix, each individually by the deflection angle of one first stable position can be deflected into a second stable position.
  • Typical technical data are:
  • micromirrors that can be deflected jointly in columns or with micromirrors shaped like columns. Individual micromirrors can also be used in certain scanning methods such as triangulation.
  • the projection device 4 also has a projection lens 11 which projects a beam 16 reflected by the mirror chip 10 onto the scanning area 2 in accordance with the individual deflection of the micromirrors as a stripe pattern 12.
  • the viewing device 5 has a camera 13 with a CCD chip 14 and a viewing lens 15;
  • the lens 15 is set with its axis angularly with respect to the axis of the projection lens 11 so that the camera 13, 14 views the scanning area 2 via the viewing lens 15.
  • control unit for coupling and controlling the projection device 4, in particular for the selective control of the individual micromirrors of the mirror chip 10, and the viewing device 5 for carrying out the scanning and evaluation described below.
  • the measuring head 1 is positioned opposite a surface 3 to be scanned and the objectives 11 and 15 are each aligned with the scanning area 2.
  • Individual selected micromirrors in the mirror chip 10 are then controlled in such a way that they reflect the incident light beam 9 to the lens 11; For example, individual columns of the mirror field in the mirror chip 10 can be controlled so that the light beam 9 is reflected as a reflected beam 16 in the form of a strip pattern to the lens.
  • the part of the light beam 9 falling on the non-controlled micromirrors is deflected further by an angle corresponding to the deflection angle, so that the corresponding reflected beam 17 does not strike the objective 11.
  • the stripe pattern 12 is thus projected onto the scanning area 2 by the objective 11.
  • the stripe pattern projected onto the scanning area 2 is viewed by the camera 13 via the viewing lens 15. This is done in a manner known per se by evaluating the strip pattern on the surface 3, e.g. by comparison with a stored reference pattern, obtain geometric information about the surface that can be evaluated in the control unit or in a separate connected computer.
  • the control of the individual micromirrors and thus the projected stripe pattern can be selected according to the surface to be scanned; an adaptation to the surface, for example the gradients of the surface, and in accordance with the required accuracy and resolution is thus possible. Since the masses moved during the deflection of the micromirrors are very small, an extremely short deflection time (almost "real time") and thus a quick sequence of individual measurements or shifted strips is possible.
  • By deflecting either individual micromirrors or mirror groups, for example columns or rows a plurality of different measurement methods such as point triangulation, line triangulation, Moir ⁇ projection, strip light projection or absolute measurement by binary code method can be controlled by appropriate control be carried out in a single device. Further modifications of the described device are possible.
  • the projection device 4 can thus contain any other suitable light source, for example a sodium lamp, instead of the laser or the white light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A device for optically scanning a surface is provided in the customary way with a projection device (4) for projecting a light beam (9, 12, 16) onto the surface (3) and a viewing device (5) for viewing the light (12) projected onto the surface at an angle to the projection device. To improve the scanning speed and accuracy and create a flexible all-purpose scanning device, the projection device (4) is provided with a mirror chip (10), e.g. of the DMD (digital micromirror device) type, for controlled deflection of the light beam (9).

Description

Vorrichtung und Verfahren zur optischen Abtastung von Oberflächen Device and method for the optical scanning of surfaces
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur optischen Abtastng von Oberflächen nach dem Oberbegriff des An¬ spruchs 1 bzw. des Anspruchs 9.The invention relates to a device and a method for the optical scanning of surfaces according to the preamble of claim 1 and claim 9.
Ein derartiges Verfahren ist allgemein unter den Begriffen Tri¬ angulation, Streifenlichtprojektion, Binär-Code-Verfahren oder Moirό-Verfahren bekannt. Bei den letzteren drei Verfahren wird ein auf die abzutastende bzw. zu messende Oberfläche ein Strei¬ fenmuster projiziert und von einer CCD-Kamera betrachtet. Durch Projektion verschiedener Phasenlagen (Phasenshift) bzw. unter¬ schiedlicher Gitterkonstanten kann eine Information über die räumliche Lage jedes einzelnen Punktes der Oberfläche gewonnen werden.Such a method is generally known under the terms triangulation, strip light projection, binary code method or Moirό method. In the latter three methods, a stripe pattern is projected onto the surface to be scanned or measured and viewed by a CCD camera. Information about the spatial position of each individual point on the surface can be obtained by projecting different phase positions (phase shift) or different lattice constants.
Zur Erzeugung der Streifenprojektion werden üblicherweise ent¬ weder ein oder mehrere Liniengitter mit entsprechenden Ver¬ schiebe- oder Drehmechanismen oder ein LCD-Projektor verwendet. Diese bekannten Vorrichtungen sind jedoch hinsichtlich Strei¬ fenkontrast, Reaktionszeit bei der Verschiebung oder Drehung, Flexibilität in Bezug auf verschiedene Meßverfahren, Größe und Preis nicht optimal.Either one or more line gratings with corresponding shifting or rotating mechanisms or an LCD projector are usually used to generate the fringe projection. However, these known devices are not optimal with regard to strip contrast, reaction time when shifting or rotating, flexibility with regard to different measuring methods, size and price.
Es ist daher Aufgabe der Erfindung, eine Vorrichtung sowie ein Verfahren zum optischen Abtasten einer Oberfläche zu schaffen, die bzw. das im Hinblick auf die genannten Aspekte wesentlich verbessert ist.It is therefore an object of the invention to provide a device and a method for optically scanning a surface, which is or is substantially improved with regard to the aspects mentioned.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 bzw. durch ein Verfahren mit den Merkmalen des Anspruchs 9 gelöst. Ein wesentlicher Aspekt der Erfindung liegt darin, daß die obengenannten bekannten Vorrichtungen zur Streifenprojektion durch einen Spiegelchip, beispielsweise vom DMD-Typ, ersetzt werden. Ein derartiger Spiegelchip wurde beispielsweise von der Firma Texas Instruments für den Einsatz bei Projektoren, Druk- kern und Fernsehgeräten entwickelt und ist beispielsweise be¬ schrieben im Artikel von Larry J. Hornbeck, "Current Status of the Digital Micromirror Device (DMD) for Projection Television Applications", International Electron Devices Meeting, 5. - 8. Dezember 1993, Washington, US, oder in Larry J. Hornbeck, "Deformable-Mirror Spatial Light Modulators", Proceedings of SPIE The International Society for Optical Engineering, Volume 1150, San Diego, US, 6. - 11. August 1989. Ein entsprechender Spiegelchip ist ferner auch in c't 1994, Heft 9, Seite 38, be¬ schrieben sowie von der britischen Firma Rank Brimar vorge¬ stellt worden.This object is achieved according to the invention by a device with the features of claim 1 or by a method with the features of claim 9. An important aspect of the invention is that the known devices for strip projection mentioned above are replaced by a mirror chip, for example of the DMD type. Such a mirror chip was developed, for example, by Texas Instruments for use in projectors, printers and television sets and is described, for example, in the article by Larry J. Hornbeck, "Current Status of the Digital Micromirror Device (DMD) for Projection Television Applications ", International Electron Devices Meeting, December 5-8, 1993, Washington, US, or in Larry J. Hornbeck," Deformable-Mirror Spatial Light Modulators ", Proceedings of SPIE The International Society for Optical Engineering, Volume 1150, San Diego, US, August 6-11, 1989. A corresponding mirror chip has also been described in c't 1994, number 9, page 38 and has been introduced by the British company Rank Brimar.
Weitere Merkmale der Erfindung ergeben sich aus der Beschrei¬ bung eines Ausführungsbeispieles anhand der Figur, die schema¬ tisch den Aufbau der erfindungsgemäßen Vorrichtung darstellt.Further features of the invention result from the description of an embodiment with reference to the figure, which schematically represents the structure of the device according to the invention.
Die Figur zeigt einen Meßkopf 1, der zur Abtastung eines Ab¬ tastbereiches 2 der Oberfläche 3 dieser gegenüberliegend posi¬ tioniert ist. Der Meßkopf 1 weist eine Projektionsvorrichtung 4 und eine Betrachtungsvorrichtung 5 auf. Die Projektionsvorrich¬ tung 4 umfaßt eine Lichtquelle 6, beispielsweise einen Laser oder eine Weißlichtquelle in Form einer Halogenlampe oder eines Blitzlichtes, die einen über eine Optik 7 gebündelten und an einem Spiegel 8 reflektierten Lichtstrahl 9 unter einem vorbe¬ stimmten Winkel, beispielsweise 20°, auf einen Spiegelchip 10 vom DMD-Typ richtet.The figure shows a measuring head 1 which is positioned to scan a scanning area 2 of the surface 3 opposite it. The measuring head 1 has a projection device 4 and a viewing device 5. The projection device 4 comprises a light source 6, for example a laser or a white light source in the form of a halogen lamp or a flash light, which emits a light beam 9, which is bundled via optics 7 and reflected on a mirror 8, at a predetermined angle, for example 20 °, aimed at a mirror chip 10 of the DMD type.
Dieser Spiegelchip 10 ist im einzelnen in den oben angegebenen Literaturstellen beschrieben, so daß eine detaillierte Be¬ schreibung hier nicht erforderlich ist. Der bekannte Spiegel¬ chip besitzt eine Vielzahl von matrixförmig angeordneten Mikro- spiegeln, die jeweils einzeln um den Auslenkwinkel von einer ersten stabilen Lage in eine zweite stabile Lage auslenkbar sind. Typische technische Daten sind:This mirror chip 10 is described in detail in the references cited above, so that a detailed description is not necessary here. The known mirror chip has a multiplicity of micromirrors arranged in the form of a matrix, each individually by the deflection angle of one first stable position can be deflected into a second stable position. Typical technical data are:
Auflösung 640*480 bis 2048*1152 Bildpunkte (Pixel)Resolution 640 * 480 to 2048 * 1152 pixels
Pixelgröße 16*16 μmPixel size 16 * 16 μm
Pixelabstand 17 μmPixel pitch 17 μm
Auslenkwinkel +/-100 Deflection angle +/- 10 0
Auslenkzeit 10 μsDeflection time 10 μs
Chipgröße ca. 1*1 cmChip size approx. 1 * 1 cm
Anstelle eines derartigen Spiegelchips ist auch ein Chip mit jeweils spaltenweise gemeinsam auslenkbaren Mikrospiegeln oder mit spaltenförmig geformten Mikrospiegeln einsetzbar. Auch ein¬ zelne Mikrospiegel können bei bestimmten Abtastverfahren wie Triangulation verwendet werden.Instead of such a mirror chip, it is also possible to use a chip with micromirrors that can be deflected jointly in columns or with micromirrors shaped like columns. Individual micromirrors can also be used in certain scanning methods such as triangulation.
Die Projektionsvorrichtung 4 weist ferner ein Projektionsobjek¬ tiv 11 auf, das einen vom Spiegelchip 10 reflektierten Strahl 16 entsprechend der einzelnen Auslenkung der Mikrospiegel als Streifenmuster 12 auf den Abtastbereich 2 projiziert.The projection device 4 also has a projection lens 11 which projects a beam 16 reflected by the mirror chip 10 onto the scanning area 2 in accordance with the individual deflection of the micromirrors as a stripe pattern 12.
Die Betrachtungsvorrichtung 5 weist eine Kamera 13 mit CCD-Chip 14 sowie ein Betrachtungsobjektiv 15 auf; das Objektiv 15 ist mit seiner Achse winkelmäßig gegenüber der Achse des Projekti¬ onsobjektivs 11 so angestellt, daß die Kamera 13, 14 über das Betrachtungsobjektiv 15 den Abtastbereich 2 betrachtet.The viewing device 5 has a camera 13 with a CCD chip 14 and a viewing lens 15; The lens 15 is set with its axis angularly with respect to the axis of the projection lens 11 so that the camera 13, 14 views the scanning area 2 via the viewing lens 15.
Es ist ferner eine nicht gezeigte Steuereinheit zur Koppelung und Steuerung der Projektionsvorrichtung 4, insbesondere zur selektiven Ansteuerung der einzelnen Mikrospiegel des Spiegel¬ chips 10, und der Betrachtungsvorrichtung 5 zur Durchführung der nachfolgend beschriebenen Abtastung und Auswertung vorhan¬ den.There is also a control unit, not shown, for coupling and controlling the projection device 4, in particular for the selective control of the individual micromirrors of the mirror chip 10, and the viewing device 5 for carrying out the scanning and evaluation described below.
Im Betrieb wird der Meßkopf 1 gegenüber einer abzutastenden Oberfläche 3 positioniert und die Objektive 11 und 15 jeweils auf den Abtastbereich 2 ausgerichtet. Einzelne ausgewählte Mikrospiegel im Spiegelchip 10 werden daraufhin so angesteuert, daß sie den einfallenden Lichtstrahl 9 zum Objektiv 11 reflek¬ tieren; beispielsweise können jeweils einzelne Spalten des Spiegelfeldes im Spiegelchip 10 angesteuert werden, so daß der Lichtstrahl 9 als reflektierter Strahl 16 in Form eines Strei¬ fenmusters zum Objektiv reflektiert wird. Der auf die nicht an¬ gesteuerten Mikrospiegel fallende Teil des Lichtstrahls 9 wird dagegen um einen dem Auslenkwinkel entsprechenden Winkel weiter abgelenkt, so daß der entsprechende reflektierte Strahl 17 nicht auf das Objektiv 11 trifft. Damit wird vom Objektiv 11 das Streifenmuster 12 auf den Abtastbereich 2 projiziert.In operation, the measuring head 1 is positioned opposite a surface 3 to be scanned and the objectives 11 and 15 are each aligned with the scanning area 2. Individual selected micromirrors in the mirror chip 10 are then controlled in such a way that they reflect the incident light beam 9 to the lens 11; For example, individual columns of the mirror field in the mirror chip 10 can be controlled so that the light beam 9 is reflected as a reflected beam 16 in the form of a strip pattern to the lens. The part of the light beam 9 falling on the non-controlled micromirrors, on the other hand, is deflected further by an angle corresponding to the deflection angle, so that the corresponding reflected beam 17 does not strike the objective 11. The stripe pattern 12 is thus projected onto the scanning area 2 by the objective 11.
Das auf den Abtastbereich 2 projizierte Streifenmuster wird von der Kamera 13 über das Betrachtungsobjektiv 15 betrachtet. Da¬ bei wird in an sich bekannter Weise durch Auswertung des Strei¬ fenmusters auf der Oberfläche 3, z.B. durch Vergleich mit einem gespeicherten Referenzmuster, eine geometrische Information über die Oberfläche erhalten, die in der Steuereinheit oder ei¬ nem separaten angeschlossenen Rechner ausgewertet werden kann.The stripe pattern projected onto the scanning area 2 is viewed by the camera 13 via the viewing lens 15. This is done in a manner known per se by evaluating the strip pattern on the surface 3, e.g. by comparison with a stored reference pattern, obtain geometric information about the surface that can be evaluated in the control unit or in a separate connected computer.
Die Ansteuerung der einzelnen Mikrospiegel und damit das proji- zierte Streifenmuster, beispielsweise der Streifenabstand, kann entsprechend der abzutastenden Oberfläche gewählt werden; damit ist eine Anpassung an die Oberfläche, beispielsweise die Gradi¬ enten der Oberfläche, und entsprechend der geforderten Genauig¬ keit und Auflösung möglich. Da die bei der Auslenkung der Mi¬ krospiegel bewegten Massen sehr klein sind, ist eine extrem kleine Auslenkzeit (nahezu "Echtzeit") und damit eine schnelle Folge einzelner Messungen bzw. verschobener Streifen möglich. Durch Auslenkung wahlweise einzelner Mikrospiegel oder Spiegel¬ gruppen, z.B. Spalten oder Zeilen, kann eine Mehrzahl unter¬ schiedlicher Meßverfahren wie z.B. Punkt-Triangulation, Linien- Triangulation, Moirό-Projektion, Streifenlicht-Projektion oder Absolutmessung durch Binär-Code-Verfahren durch entsprechende Steuerung einer einzigen Vorrichtung durchgeführt werden. Weitere Modifikationen der beschriebenen Vorrichtung sind mög¬ lich. So kann die Projektionsvorrichtung 4 anstelle des Lasers oder der Weißlichtquelle jede andere geeignete Lichtquelle, beispielsweise eine Natrium-Lampe, enthalten. The control of the individual micromirrors and thus the projected stripe pattern, for example the stripe spacing, can be selected according to the surface to be scanned; an adaptation to the surface, for example the gradients of the surface, and in accordance with the required accuracy and resolution is thus possible. Since the masses moved during the deflection of the micromirrors are very small, an extremely short deflection time (almost "real time") and thus a quick sequence of individual measurements or shifted strips is possible. By deflecting either individual micromirrors or mirror groups, for example columns or rows, a plurality of different measurement methods such as point triangulation, line triangulation, Moirό projection, strip light projection or absolute measurement by binary code method can be controlled by appropriate control be carried out in a single device. Further modifications of the described device are possible. The projection device 4 can thus contain any other suitable light source, for example a sodium lamp, instead of the laser or the white light source.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Vorrichtung zur optischen Abtastung einer Oberfläche, mit einer Projektionsvorrichtung (4) zum Projizieren eines Licht¬ strahls (9, 12) auf die Oberfläche (3) und einer Betrachtungs¬ vorrichtung (5) zum Erfassen des auf die Oberfläche projizier- ten Lichtstrahls (12) unter einem Winkel zur Projektionsrich¬ tung, dadurch gekennzeichnet, daß die Projektionsvorrichtung (4) einen Spiegelchip (10) zur selektiven Ablenkung des Lichtstrah¬ les (9, 12) aufweist.1. Device for optically scanning a surface, with a projection device (4) for projecting a light beam (9, 12) onto the surface (3) and a viewing device (5) for detecting the light beam projected onto the surface (12) at an angle to the projection direction, characterized in that the projection device (4) has a mirror chip (10) for the selective deflection of the light beam (9, 12).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Spiegelchip (10) mindestens einen Mikrospiegel mit jeweils mindestens zwei stabilen Lagen aufweist.2. Device according to claim 1, characterized in that the mirror chip (10) has at least one micromirror, each with at least two stable layers.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Spiegelchip (10) eine Mehrzahl von Mikrospiegeln aufweist, die in einer Zeile oder Spalte an¬ geordnet und einzeln in jeweils eine von mindestens zwei stabi¬ len Lagen steuerbar sind.3. Apparatus according to claim 1, characterized in that the mirror chip (10) has a plurality of micromirrors which are arranged in a row or column and can be individually controlled in one of at least two stable positions.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Spiegelchip (10) eine Mehrzahl von Mikrospiegeln aufweist, die matrixförmig angeordnet und einzeln, Zeilen- oder spaltenweise in jeweils eine von minde¬ stens zwei stabilen Lagen steuerbar sind.4. The device according to claim 1, characterized in that the mirror chip (10) has a plurality of micromirrors, which are arranged in a matrix and individually, row or column by column in each of at least two stable positions are controllable.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Spiegelchip (10) in einem von einer Lichtquelle (6) emittierten gebündelten Lichtstrahl (9) so angeordnet ist, daß in einer erεten stabilen Auslenkposition der Mikrospiegel der Lichtstrahl (9) mit einem ersten Reflexi¬ onswinkel so reflektiert wird, daß er über ein Projektionsob¬ jektiv (11) auf einen Abtastbereich (2) der Oberfläche (3) auf trifft, und in einer zweiten stabilen Auslenkposition der Mi¬ krospiegel der Lichtstrahl (9) mit einem zweiten Reflexionswinkel reflektiert wird, so daß er nicht auf den Abtastbereich (2) der Oberfläche (3) auftrifft.5. Device according to one of claims 1 to 4, characterized in that the mirror chip (10) is arranged in a bundled light beam (9) emitted by a light source (6) so that in a first stable deflection position of the micromirror the light beam (9 ) is reflected with a first angle of reflection so that it is directed via a projection lens (11) onto a scanning area (2) of the surface (3) hits, and in a second stable deflection position of the micromirror the light beam (9) is reflected with a second angle of reflection so that it does not strike the scanning area (2) of the surface (3).
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Projektionsvorrichtung (4) eine als Laser oder Weißlichtquelle ausgebildete Lichtquelle (6) aufweist.6. Device according to one of claims 1 to 5, characterized in that the projection device (4) has a light source (6) designed as a laser or white light source.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Betrachtungsvorrichtung (5) eine Kamera (13) mit einem CCD-Chip (14) aufweist.7. Device according to one of claims 1 to 6, characterized in that the viewing device (5) has a camera (13) with a CCD chip (14).
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Projektionsvorrichtung (4) und die Betrachtungsvorrichtung (5) gemeinsam in einem relativ zur Oberfläche (3) positionierbaren Meßkopf (1) angeordnet sind.8. Device according to one of claims 1 to 7, characterized in that the projection device (4) and the viewing device (5) are arranged together in a relative to the surface (3) positionable measuring head (1).
9. Verfahren zum optischen Abtasten von Oberflächen, bei dem ein Lichtstrahl (9, 12) mit einer ersten Richtung auf einen Ab¬ tastbereich (2) der Oberfläche (3) projiziert und dieser Ab¬ tastbereich (2) unter einer zweiten Richtung betrachtet wird, dadurch gekennzeichnet, daß der Lichtstrahl (9) auf einen Spie¬ gelchip (10) gerichtet und der Spiegelchip (10) derart ange¬ steuert wird, daß in einer ersten stabilen Lage eines Spiegels des Spiegelchips (10) der reflektierte Lichtstrahl (16) auf den Abtastbereich projiziert wird und in einer zweiten stabilen Lage der reflektierte Lichtstrahl (17) nicht in dem Abtastbe¬ reich (2) auftrifft.9. A method for the optical scanning of surfaces, in which a light beam (9, 12) with a first direction is projected onto a scanning area (2) of the surface (3) and this scanning area (2) is viewed under a second direction , characterized in that the light beam (9) is directed onto a mirror chip (10) and the mirror chip (10) is controlled such that in a first stable position of a mirror of the mirror chip (10) the reflected light beam (16) is projected onto the scanning area and, in a second stable position, the reflected light beam (17) does not strike the scanning area (2).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Spiegelchip (10) so angesteuert wird, daß auf den Abtastbereich (2) einzelne Lichtpunkte oder Linien projiziert werden. 10. The method according to claim 9, characterized in that the mirror chip (10) is controlled so that individual light spots or lines are projected onto the scanning area (2).
11. Verfahren nach Anεpruch 9, dadurch gekennzeichnet, daß der Spiegelchip (10) so angesteuert wird, daß auf den Abtastbereich (2) ein Streifenmuster proji¬ ziert wird.11. The method according to claim 9, characterized in that the mirror chip (10) is controlled such that a stripe pattern is projected onto the scanning area (2).
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Abtastung der Oberfläche (3) mittels Triangulation erfolgt bzw. durch Auswertung des Strei¬ fenmusters durchgeführt wird. 12. The method according to claim 10 or 11, characterized in that the scanning of the surface (3) takes place by means of triangulation or is carried out by evaluating the Strei¬ fen pattern.
PCT/EP1997/000898 1996-03-06 1997-02-25 Device and process for optically scanning surfaces WO1997033140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20933/97A AU2093397A (en) 1996-03-06 1997-02-25 Device and process for optically scanning surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996108632 DE19608632B4 (en) 1996-03-06 1996-03-06 Apparatus for determining the topography of a surface and method for determining the topography of a surface
DE19608632.9 1996-03-06

Publications (1)

Publication Number Publication Date
WO1997033140A1 true WO1997033140A1 (en) 1997-09-12

Family

ID=7787378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000898 WO1997033140A1 (en) 1996-03-06 1997-02-25 Device and process for optically scanning surfaces

Country Status (3)

Country Link
AU (1) AU2093397A (en)
DE (1) DE19608632B4 (en)
WO (1) WO1997033140A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323317A1 (en) * 2003-05-23 2004-12-16 Conti Temic Microelectronic Gmbh Car object detection or distance measurement optical system path folding unit uses silicon micromirror reflectors
US7317251B2 (en) 2003-04-11 2008-01-08 Infineon Technologies, Ag Multichip module including a plurality of semiconductor chips, and printed circuit board including a plurality of components
US9036159B2 (en) 2013-01-17 2015-05-19 Sypro Optics Gmbh Device for generating an optical dot pattern

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742264C2 (en) * 1997-09-25 2001-09-20 Vosseler Erste Patentverwertun endoscope
DE19748967B4 (en) * 1997-11-06 2009-04-02 Bundesdruckerei Gmbh Method and device for producing a variable security hologram
DE19757773A1 (en) * 1997-12-24 1999-07-01 Bernward Maehner Detailed simulation of plastic changes in human face to prepare cosmetic corrections using plastic surgery
DE19824709A1 (en) * 1998-06-03 1999-12-09 Bundesdruckerei Gmbh Producing luminance distribution array from rays projected onto medium using digital array radiation processors
DE10244819B4 (en) * 2002-09-26 2007-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for detecting a fluorescent substance on a technical surface
US7064810B2 (en) 2003-09-15 2006-06-20 Deere & Company Optical range finder with directed attention
JP5356650B2 (en) 2004-01-15 2013-12-04 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 3D video scanner
DE102004050355A1 (en) * 2004-10-15 2006-04-27 Steinbichler Optotechnik Gmbh Method and device for testing the surface of a tire
DE102006048234A1 (en) * 2006-10-11 2008-04-17 Steinbichler Optotechnik Gmbh Method and device for determining the 3D coordinates of an object
US8219274B2 (en) * 2009-07-02 2012-07-10 Robert Bosch Gmbh 3-dimensional perception system and method for mobile platform
US8274507B2 (en) * 2009-07-02 2012-09-25 Robert Bosch Gmbh Method and apparatus for obtaining 3-dimensional data with a portable device
DE102010022827A1 (en) 2010-06-05 2011-12-08 TSK Prüfsysteme GmbH Height surveying device for measuring the height of a motor vehicle central electrics
DE102012001307A1 (en) 2012-01-19 2013-07-25 Friedrich-Schiller-Universität Jena Method for three dimensional measurement of objects, particularly under obstructive lighting conditions, involves detecting to be changed or multiple different patterns by detector, where patterns are projected on object surface
DE102012002161A1 (en) 2012-01-31 2013-08-01 Friedrich-Schiller-Universität Jena Method for three-dimensional optical surface measurement of objects by measurement device, involves projecting spectral narrow band optical patterns on object, and detecting patterns as location-differing image pattern of object surface
AT520794B1 (en) * 2017-12-20 2019-11-15 Prinoth Ag snow vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726706A (en) * 1980-07-24 1982-02-12 Mitsubishi Electric Corp Detector for shape of body
EP0460889A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829925C2 (en) * 1988-09-02 1994-03-03 Kaltenbach & Voigt Device for the optical measurement of teeth in the oral cavity
US5208766A (en) * 1990-11-13 1993-05-04 Hughes Aircraft Company Automated evaluation of painted surface quality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726706A (en) * 1980-07-24 1982-02-12 Mitsubishi Electric Corp Detector for shape of body
EP0460889A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ENGELHARDT K: "OPTISCHE 3D-MESSTECHNIK MESSPRINZIPIEN, EIGENSCHAFTEN UND LIMITIERUNGEN", TECHNISCHE RUNDSCHAU, vol. 85, no. 31, 6 August 1993 (1993-08-06), BERN, CH, pages 44 - 51, XP000385451 *
HORNBECK L J: "CURRENT STATUS OF THE DIGITAL MICROMIRROR DEVICE (DMD) FOR PROJECTION TELEVISION APPARATUS", PROCEEDINGS OF THE INTERNATIONAL ELECTRON DEVICES MEETING, WASHINGTON, DEC. 5 - 8, 1993, 5 December 1993 (1993-12-05), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 381 - 384, XP000481639 *
HORNBECK L J: "DEFORMABLE-MIRROR SPATIAL LIGHT MODULATORS", SPATIAL LIGHT MODULATORS AND APPLICATIONS III, 7-8 AUGUST 1989, SAN DIEGO, vol. 1150, 7 August 1989 (1989-08-07), pages 86 - 102, XP000351394 *
KRAMER J ET AL: "AN INEXPENSIVE REAL-TIME 3-D CAMERA WITH A SMART OPTICAL SENSOR", SENSORS AND ACTUATORS A, vol. A31, no. 1 / 03, 1 March 1992 (1992-03-01), pages 241 - 244, XP000276433 *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 088 (P - 118) 26 May 1982 (1982-05-26) *
SANSONI G ET AL: "A NOVEL, ADAPTIVE SYSTEM FOR 3-D OPTICAL PROFILOMETRY USING A LIQUID CRYSTAL LIGHT PROJECTOR", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 43, no. 4, August 1994 (1994-08-01), pages 558 - 565, XP000466818 *
WAGNER E P ET AL: "CONSTRUCTION AND EVALUATION OF A VISIBLE SPECTROMETER USING DIGITAL MICROMIRROR SPATIAL LIGHT MODULATION", APPLIED SPECTROSCOPY, vol. 49, no. 11, 1 November 1995 (1995-11-01), pages 1715 - 1719, XP000537252 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317251B2 (en) 2003-04-11 2008-01-08 Infineon Technologies, Ag Multichip module including a plurality of semiconductor chips, and printed circuit board including a plurality of components
DE10323317A1 (en) * 2003-05-23 2004-12-16 Conti Temic Microelectronic Gmbh Car object detection or distance measurement optical system path folding unit uses silicon micromirror reflectors
US9036159B2 (en) 2013-01-17 2015-05-19 Sypro Optics Gmbh Device for generating an optical dot pattern
US9441960B2 (en) 2013-01-17 2016-09-13 Sypro Optics Gmbh Device for generating an optical dot pattern

Also Published As

Publication number Publication date
DE19608632B4 (en) 2005-12-29
DE19608632A1 (en) 1997-09-11
AU2093397A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
WO1997033140A1 (en) Device and process for optically scanning surfaces
DE2926168C2 (en) Device for measuring the circumference of an object
DE4338390C2 (en) Scene simulator, especially for testing infrared sensors in homing heads
EP0892280A2 (en) Method for operating an opto-electronic sensor device
DE2506628A1 (en) OPTICAL DEVICE
DE4008605A1 (en) MULTIPLEXER FOR A CONTINUOUS, HIGH-PERFORMANCE LASER
DE4037901A1 (en) METHOD FOR CONTROLLING THE TOTAL ENERGY AMOUNT OF A VARIETY OF LASER PULSES
EP0719434B1 (en) Arrangement for generating a matrix image on a photosensitive recording medium
EP0860727A2 (en) Device to switch optical images between different channels
DE4415834C2 (en) Device for measuring distances and spatial coordinates
DE19732668C2 (en) Device and method for the calibration of beam scanners
DE69116852T2 (en) Alignment of a tilted mirror
DE3939838A1 (en) DEVICE FOR CORRECTING A SCAN BEAM BASED ON THE TILTING OF SURFACE SEGMENTS OF A RECTANGULAR MIRROR USED IN SCAN PATTERN CHARACTERS
DE10160172B4 (en) Laser scanning microscope and laser scanning microscopy method
DE4304815A1 (en) Optical sensor
DE4113279C2 (en) Confocal scanning optical microscope
DE3242002C2 (en)
DE69114550T2 (en) Variable pixel density printhead for electrophotographic printers.
EP0893685A2 (en) Apparatus and method for optically detecting the distortion of a surface
EP0689664B1 (en) Device for determining the position of a body to be positioned with respect to a reference body
EP0463565A1 (en) Recticle display device
DE3736987A1 (en) METHOD AND DEVICE FOR DETERMINING THE REMOVAL OF A REMOVED OBJECT
EP0680681B1 (en) Videoprojector with polygonal error with pyramidal error correction
DE19535283C2 (en) Optical scanning system
DE2702448A1 (en) METHOD OF POSITIONING A BRANDED WORKPIECE RELATIVE TO A SCANING AREA TO A MASK

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR MX RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531411

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA