WO1997028370A1 - Turbomachinery driving apparatus and method of controlling the same - Google Patents

Turbomachinery driving apparatus and method of controlling the same Download PDF

Info

Publication number
WO1997028370A1
WO1997028370A1 PCT/JP1996/000760 JP9600760W WO9728370A1 WO 1997028370 A1 WO1997028370 A1 WO 1997028370A1 JP 9600760 W JP9600760 W JP 9600760W WO 9728370 A1 WO9728370 A1 WO 9728370A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
parallel
inverters
turbomachine
speed
Prior art date
Application number
PCT/JP1996/000760
Other languages
French (fr)
Japanese (ja)
Inventor
Kouiti Satou
Takayuki Oshiga
Hiroshi Fujii
Jun Ohta
Hiroshi Onoh
Original Assignee
Hitachi, Ltd.
Hitachi Techno Engineering Co., Ltd.
Hitachi Keiyo Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Techno Engineering Co., Ltd., Hitachi Keiyo Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to KR1019980705923A priority Critical patent/KR100290496B1/en
Priority to JP52747697A priority patent/JP3758191B2/en
Publication of WO1997028370A1 publication Critical patent/WO1997028370A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/84Redundancy

Definitions

  • the present invention relates to a plurality of inverters for driving a plurality of turbomachines and an application device thereof.
  • the water supply and air flow are proportional to the operating speed
  • the water supply pressure and wind pressure are proportional to the square of the operating speed
  • their outputs are proportional to the cube of the operating speed.
  • turbo machines are driven by a plurality of inverters to control the speed and the number of operating units, the water supply, air flow, water supply pressure and wind pressure can be controlled relatively easily and efficiently according to the load fluctuation. . For this reason, speed control using inverters is expected to become more and more popular in the future.
  • Fig. 1 is a block diagram of the water supply system, where 1 is a water distribution pipe, 2-1, 2 and 2 are distribution pipe branches, 3-1, 3-2, 3-3 and 3-4 are gate valves, 4-1, 4-1 is a pump, 5-1, 5-2 is a motor, 6-1, 6-2 is a check valve, 7 is a water supply pipe, 8 is a pressure tank with an air reservoir inside, Reference numerals 9 and 10 denote pressure sensors for detecting the pressures on the pump suction side and the pump discharge side, respectively, and emit electric signals corresponding to the pressures of the detecting portions.
  • the FS 1 and FS 2 are flow switches, which are turned on when the amount of water is less than QS shown in FIGS. 2 and 3 described later.
  • the CNU is a control device.
  • the power circuits and relay circuits R and RV consist of inverters INV 1 and INV 2 that drive the motors 5-1 and 5-2 at variable speeds, and earth leakage breakers ELB 1 and ELB 2 that protect against electric leakage. It consists of a controller CU.
  • the relay circuit R includes a transformer TR, a stabilized power supply Z, relays 52 X 1 and 52 X 2, and an interface I ZO between the relay TR and the controller CU.
  • the controller CU is an arithmetic processing unit CPU (hereinafter abbreviated as CPU), an AZD converter for converting signals (analog amount) from the pressure sensors 9 and 10 into digital signals, and an inverter INV. 1, a DZA converter for commanding the speed command signals Nl, N2 desired by the water supply system to INV2, a power supply terminal E for supplying power to the controller CU, and a relay 52x1, described above. Equipped with an output port PIO-1 to transmit signal S4 to interface IZ ⁇ for driving 5 2 X2. Similarly, the input port PI ⁇ -2 for reading the set value set by the setting means C to operate according to the operating characteristics of the pump shown in Figs.
  • FIG. 2 is an operation characteristic diagram when one pump is operated alone or two pumps are alternately operated by the above-described water supply device.
  • Figure 2 shows the water volume Q.
  • Curve A shows the curves B, C, and D as well as the Q-.H performance curve c when the pump is driven by the inverter at the operating speed N3, that is, 100% operating speed.
  • Curve F is a pipeline resistance curve.For example, when the amount of water used changes from the amount of water Q 1 to the amount of water Q 0, if water is supplied at a pressure along the curve F on the discharge side of the pump, the end faucet is The water supply system shows that the desired pressure is obtained.
  • the above-mentioned inverters I NV 1 and INV 2 determine the conditions under which the motor rotates under acceleration / deceleration time, V / F (output voltage and output frequency characteristics, etc.). Set externally by 2. That is, the water supply device operates the pump on the curve F along O 3 ⁇ ⁇ O 2 ⁇ O 1 —O 0.
  • Fig. 1 when the earth leakage and the breakers ELB1 and ELB2 are turned on and the control power circuit breaker CB is turned on, the power supply of the control unit CU is established, and the CPU is stored in the memory M in advance.
  • Initial setting is performed based on the program, setting information is read from setting means C, and the inverter, earth leakage, and breaker status (no failure) are read from input port PIO-3, and furthermore. Read the signals of the pressure sensors 9 and 10 via the AZD converter.
  • a pipeline resistance curve F is stored in advance, and the feedwater pressure is changed along the resistance curve F in response to a change in the operating speed when the load condition changes. .
  • the operation preparation is completed.
  • the CPU cancels the currently output energizing signal of the relay 52 x 1 and the speed command signal N 1 to the inverter INV.1. This stops pump 4-1.
  • a signal of relay 52 2 ⁇ 2 and operation speed ⁇ 2 is issued, and the other inverter INV 2 and motor 5 — 2, is driven, and pumps 4-2 are operated. Thereafter, similarly, the switching control is performed and the alternate operation is performed.
  • FIG. 3 is a characteristic diagram when two pumps are operated in parallel, and those indicated by the same reference numerals as those in FIG. 2 have the same meaning. That is, as shown in FIG. 2, two pumps are operated alternately, and when the amount of water used further increases, the pumps 411 and 412 are simultaneously operated. When the amount of water used exceeds Q3, the operation speed ⁇ 3 is the maximum speed, so the water supply capacity is insufficient, and the water supply pressure drops to HL. This causes the CPU to emit both the relay 52 x 1 and 52 x 2 signals and the speeds N 1 and N 2. In this way, the inverters INV 1 and INV 2 and the motors 5-1 and 5-2 operate simultaneously, and the pumps 41 and 4-2 operate in parallel. After operation, control based on the signal of the pressure sensor 10 is performed so that the feedwater pressure is on the curve F.
  • Japanese Patent Publication No. Hei 5—2 3 1 3 3 2 can be referred to as a well-known example.
  • the conventional main control for controlling two inverters by controlling the inverters on the upper ranks Equipment needed.
  • the above-described conventional technology has the following problems. That is, (1) In the conventional system, there is a problem that even if the two inverters are normal, if the main control device stops operating due to an abnormality, the system goes down and water is cut off. (2) When the system is configured with dual inverters, each has its own control function, so even if one unit goes down due to a failure, the other unit can perform the backup operation. However, it is difficult to convey each other's control status because they have individual control functions. For alternate and parallel operation of inverters. It is necessary to detect and to issue an operation command. In addition, there are many interlock signals, and the control port has a complicated system. Disclosure of the invention
  • the present invention has been made in view of the above points, and has as its object the purpose of eliminating the need for external peripheral devices, facilitating signal exchange, realizing small size, light weight, and low cost.
  • the goal is to obtain a dual inverter and its application equipment.
  • the present invention provides two turbo machines, two inverters each for driving the turbo machine, and a plurality of sensors for detecting a load state of the turbo machine.
  • the turbomachine driving device for controlling the speed of the turbomachine the inverters are connected to each other by four kinds of connection signals indicating an operation state, and the signals of the plurality of sensors are connected to the two inverters.
  • an inverter set in advance as a priority machine is started, and the priority machine is started. Is the parallel operation start condition
  • the inverter driving the priority unit issues a start request to the inactive inverter to start the inactive inverter.
  • the gearbox was operated with the inverter so that the discharge pressure was controlled at the discharge-side maximum target pressure during single-unit operation, and the priority units were started in parallel.
  • FIG. 1 is a configuration diagram of a conventional turbomachine driving device.
  • FIG. 2 is an operation characteristic diagram when the pump is operated independently or alternately.
  • FIG. 3 is an operation characteristic diagram when two pumps are operated in parallel.
  • FIG. 4 is an overall configuration diagram of a system illustrating a water supply device as a turbomachine according to the present invention.
  • FIG. 5 shows the details of the terminals of the dual inverter according to the present invention and the explanation of the connection signals.
  • FIG. 6 is a time chart showing the procedure of power-on processing of the apparatus shown in FIG. 4 according to the present invention.
  • FIG. 7 is a time chart showing a method of controlling the parallel operation of the apparatus shown in FIG. 4 according to the present invention.
  • FIG. 8 is a flowchart for realizing the processing of FIGS. 6 and 7 according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION The outline of the embodiment of the present invention is as follows.
  • the ZO port as it is.
  • the complicated interaction signals between the inverters are simplified, and the mutual Are connected by the smallest signal, preferably two outputs and two input signals, to send and receive signals to and from each other.
  • these inverters are set in advance by the setting unit to set the driving force of the inverter or the operation pattern of the load, and to set the priority machine to which of the inverters is operated first. . In this way, alternate and parallel operation, retry in case of abnormality, and backup operation are performed.
  • the earth leakage breaker protects the short circuit of the main circuit and the earth leakage of the secondary side, and cuts off the main circuit.
  • the inverter drives the turbomachine and is composed of a double system.
  • the signals from the pressure sensor for detecting the load condition, the means for detecting the underload condition, and the pressure sensor on the suction side are taken in parallel and directly at the same level.
  • Each inverter incorporates a software program for operating the microcomputer, describing the control method and procedure in advance, and operates according to input signals from sensors and the like. At the beginning of use, when a short circuit or a breaker is turned on, the power for both inverters is established, and the one that is externally set as the priority unit in advance waits for operation. If the pressure sensor that detects the load condition detects the preset starting pressure, the inverter that is on standby will start.
  • the sensor that detects the underload condition detects this, and when the preset stop condition is established, the inverter stops, and the inactive inverter can be operated by the stop signal of the preceding machine. Start and stop as described above. Further, if the pressure sensor for detecting the load state detects a preset parallel operation pressure state, the operating inverter is in contact with the inactive inverter. And outputs a parallel operation request signal, and the inverter that is at rest operates in parallel from the operable state. In addition, in the event of a short circuit, trip of the breaker, or trip of the inverter, this condition is transmitted to each other by the signal line connecting the two inverters. Operation, and the abnormal side generates an internal signal and retries.
  • this condition is indicated by an error code on the panel display of the inverter, and a signal is issued externally.
  • the display unit displays pressure, current, voltage, and frequency values.
  • FIG. 4 is an overall configuration diagram showing an embodiment in which the present invention is applied to a water supply device.
  • the components denoted by the same reference numerals as those in FIG. 1 cited in the description of the prior art are the same as those in FIG. .
  • control device CNU is provided with a ground fault and a breaker ELB1, ELB2, inverters NV1, NV2, and noise filters ZCL0, ZCL1, ZCL2.
  • the relay circuit R and the control unit (both hardware and software) CU shown in Fig. 1 are incorporated in the inverters INV1 and INV2 described above.
  • the inverters INV 1 and INV 2 output the electric leakage and the trip signal AL of the breakers ELB 1 and ELB 2 to the external terminal of the control panel via the signal lines S 1 and S 2. Output as a signal.
  • the signal lines S9 and S10 are signals for outputting a fault of the inverters I NV1 and I NV2 to a central monitoring panel or the like.
  • Figure 5 and Table 1 show the details of the interlocking signal S3 for the inverters INV1 and INV2.
  • Table 1 is a symbol table showing the output state and the control state of the interlocking signal of the dual inverter according to the present invention.
  • the interface signals of inverter 1 and inverter 2 each have two outputs and two inputs. By turning on and off these 2-bit signals, four types of states can be set. You can let the other person know.
  • state A is a state in which D 01 and DO 2 are both ON and oneself. If the pump is running ahead, the "parallel start request" signal is shown.
  • a pump stop condition is detected, and inverter 1 stops and outputs B state to C state.
  • the inverter 2 outputs the C state from the D state.
  • Inverter 1 shifts from independent operation to alternate and parallel operation because inverter 2 is in the C-down state and alternate or parallel operation is possible.
  • the pump start condition is detected. At this time, the start condition is satisfied at the same time because both Invert 1 and Inverter 2 are receiving the same sensor signal, but since Inverter 1 is set as the priority device, Inverter 1 starts first and state C Outputs B from Inverter 2 is already connected to C when power is turned on.
  • inverter 2 stops running because inverter 1 operates first and outputs state B. By delaying the timing in this way, simultaneous activation is prevented. After time 5, the preceding aircraft and the next engine arrived, so stop at time 6, start condition is satisfied at time 7, and inverter 2 operates. Thereafter, the alternate operation is performed in the same manner. If a fault occurs in inverter 1 at time 10, the state of inverter 1 changes from B to D.
  • the stopped inverter 2 judges that the inverter 1 has failed because the state of the inverter 1 has changed from B to D, and starts the operation because the start condition has been detected, and changes the state from C to B.
  • the parallel operation will be described using the time chart in FIG. At time 1 in the same figure, in the same state as time 4 in FIG. 6, if a start condition is detected at time 2 in the same figure, as in time 5 in FIG.
  • Inverter 1 which is set to starts operation first. If the parallel start condition is satisfied in Hidaka 3, the inverter 1 outputs a “parallel start request” A to the inverter 2 if the inverter 2 is in the state C in which the inverter 2 can automatically operate. Inverter 2 starts operation after confirming that inverter 1 has output status A. At this time, the inverter 2 outputs B from the state C and gradually increases the speed to the set speed (preferably the MAX speed). Inverter 1 keeps the discharge pressure constant by setting O 3 (point of the maximum target pressure on the first discharge side) of the F curve in FIG. Perform gear shifting operation as required. At time 4, inverter 2 reaches the set speed. Outputs "Parallel constant speed state" from B to A.
  • the speed change operation based on the constant control of the estimated end pressure according to the change of the water amount at the target value on the O3 to O5 of the F curve in FIG. I do.
  • inverter 1 detects the parallel release condition at time 5
  • pump 4-1 is stopped and the status is output from A to C.
  • Inverter 2 confirms that inverter 1 is in the C state, and changes the estimated end pressure from the constant speed operation to the target value on the 0 to 03 of the F curve in Fig. 3 according to the change in water flow.
  • the shift operation is performed based on the constant control.
  • the priority device is determined in advance by the external terminal of the inverter.
  • the priority unit is forcibly set as the preceding unit and the non-priority unit is set as the next unit.
  • the state becomes a standby state until the start condition is satisfied, and when the start condition is satisfied, the processing shifts to 804, where the processing is performed by setting the preceding or next engine.
  • the turbomachine is constituted by two turbomachines and two inverters for driving the turbomachines one by one.
  • These inverters are provided with a microcomputer, a status display unit and a control constant setting unit.
  • the control constant setting unit is set in advance so as to operate based on the load state by receiving a signal of a sensor group for detecting a load state of the turbo machine, and the operation state and the failure state are mutually performed.
  • the two inverters take control of each other while performing constant control of the estimated terminal pressure.
  • a "parallel start request” signal is provided in the system, and when the preceding machine detects a parallel operation start condition, the parallel start request signal is output to the inactive inverter to start the inactive inverter and the inactive inverter Starts up Output the "autonomous driving” signal, gradually increase the speed with the preset acceleration, and reach the predetermined constant speed (preferably the maximum speed), and send the "parallel constant speed status" signal to the preceding machine.
  • the preceding machine controls the speed change operation so that the target pressure on the first discharge side becomes constant until the inverters started in parallel change from “automatic operation” to "parallel constant speed state".
  • the preceding unit performs speed change operation so that the estimated terminal pressure is controlled constant along the target pressure on the discharge side of the second unit.
  • the parallel release control during the parallel operation, the next engine is operating at a constant speed, so the preceding engine, which is shifting at a constant estimated terminal pressure, has its own rotation speed and load side pressure.
  • a preset parallel release condition can be detected, and the parallel release condition Monitors the pressure when the machine reaches the minimum speed, stops the preceding machine when it reaches the stop pressure, outputs it to the next engine, and receives the "automatic standby" signal for the next engine operating at constant speed Is set in advance from constant speed operation. Since the variable speed operation is performed so that the estimated terminal pressure is kept constant along the target discharge pressure of the first unit, even if it is a dual inverter, the parallel operation can be started with only the preceding inverter. Stop conditions can now be detected.
  • the preceding machine In the control of the transient state during parallel start, when the preceding machine detects the parallel operation start condition, it issues a start request to the inactive inverter and starts the inactive inverter, and the preceding machine starts parallel operation.
  • the inverter that has started the parallel operation at the maximum target pressure on the discharge side of the first unit performs constant-speed control until the inverter reaches the parallel constant-speed state.
  • the gearshift operation is performed so that the estimated terminal pressure is kept constant.
  • the signal that connects the two inverters includes the one that is stopped due to a failure, and this signal is represented by the same state as the state that is output when the inverter is turned off. It is now possible to jump over a fault without separately taking in the trip signal of the earth leakage breaker.
  • a mode switch is provided to connect the manual and automatic signals to the external input terminals of the two inverters.
  • DI 5 is turned on and DI 6 is turned off, and the "automatic” By turning DI5 OFF and DI6 ON, “manual” and by turning both DI5 and DI6 OFF or ON, “OFF” It is now possible to make the control state of Invark the same.
  • a program for operating the inverter according to the load operation pattern is installed in the inverter in advance, and based on the program, the inverter is set to operate by the setting unit of the inverter.
  • the load state detection means detects the starting pressure
  • the inverter set as the priority machine starts
  • the underload detection means detects the underload state of underload and stops when the stop condition is established. Therefore, it is possible to perform alternate operation or alternate / parallel operation without the need for an external communication circuit and complicated arrangement logic when connecting two inverters. It is compact, lightweight and low cost. In addition, reliability is improved because the number of parts is reduced.
  • short-circuits and short-circuits in the main circuit are monitored by the ground fault circuit breaker, and other fault conditions on the load side are monitored by the inverter itself due to changes in the partial state of the inverter. Switching operation at the time of abnormality can be reliably performed. Furthermore, since the priority timing unit can be set externally by an inverter and the start timing is shifted, the operation order is not disturbed (for example, when power is restored).
  • the failure state can be detected reliably.
  • the pressure sensor for detecting the load condition and the pressure sensor for detecting the suction side pressure can be shared by two inverters, it is simple and inexpensive. Industrial applicability
  • two inverters can be used with minimum signal integration.
  • Turbo machine drive unit and its application equipment that can be operated in a coordinated manner by exchanging signals between them, so that external control devices are not required, and simple, compact, lightweight and low cost can be achieved. Can be obtained.

Abstract

A turbomachinery driving apparatus using a dual inverter system and a method of controlling the same, wherein a main control unit for controlling the two inverters is omitted, and an external communication unit for transmitting signals representative of the mutual operational conditions of the inverters is made unnecessary, the exchanging of these signals being done simply, whereby the size, weight, manufacturing cost and the number of parts of the apparatus are reduced. First and second earth leakage breakers (ELB1, ELB2), inverters (INV1, INV2), pumps (4-1, 4-2) and motors (5-1, 5-2) constitute a full duplex feed water system. The inverters (INV1, INV2) are connected to each other by signal lines (S3) and adapted to exchange signals representative of their respective operational conditions and failure conditions and requirements for the operations of the partner systems. Out of the load condition detecting sensors, respective flow rate signal transmitting signal lines (S4, S5) are connected to the inverters directly, and pressure signal transmitting signal lines (S6, S7) in common.

Description

明 細 書  Specification
ターボ機械駆動装置及びその制御方法 技術分野 Turbomachine drive device and control method therefor
本発明は複数のターボ機械を駆動する複数のィンバータとその応用装 置に関する。 背景技術  The present invention relates to a plurality of inverters for driving a plurality of turbomachines and an application device thereof. Background art
ターボ形ポンプ、 ターボ形送風機等のターボ機械においては、 給水量、 風量は運転速度に、 給水圧、 風圧は運転速度の 2乗に、 そ してこれらの 出力は運転速度の 3乗に比例する。 このこ とは負荷量の低減に伴ってそ の運転速度も下げられることを示しており 、 これによつて省エネルギー を図ることができる等のメ リ ッ 卜がある。  For turbo machines such as turbo pumps and turbo blowers, the water supply and air flow are proportional to the operating speed, the water supply pressure and wind pressure are proportional to the square of the operating speed, and their outputs are proportional to the cube of the operating speed. . This indicates that the operating speed can be reduced with a reduction in the load, and this has the advantage that energy can be saved.
従来から複数のイ ンバータを用い、 上記複数のターボ機械の吐出し側 の圧力をある一定の関係に保つよ う速度制御すると共に、 これら複数の イ ンバ一タ、 ターボ機械の運転順序及び台数制御を行っている。  Conventionally, a plurality of inverters have been used to control the speed so that the discharge pressures of the plurality of turbomachines are maintained in a certain relationship, and also to control the operation sequence and the number of the plurality of turbomachines. It is carried out.
そこで、 上記複数のターボ機械を複数のイ ンバータで駆動して、 速度 制御及び運転台数制御すると、 比較的容易にその給水量、 風量、 給水圧、 風圧を負荷変動に応じて効率よ く制御できる。 このため、 今後、 ますま すインバータによる速度制御が普及してく るものと考えられる。  Therefore, if the above-mentioned turbo machines are driven by a plurality of inverters to control the speed and the number of operating units, the water supply, air flow, water supply pressure and wind pressure can be controlled relatively easily and efficiently according to the load fluctuation. . For this reason, speed control using inverters is expected to become more and more popular in the future.
これらのうち、 給水装置にイ ンバータを使用した例を第 1 図〜第 3図 によ り説明する。 第 1 図は給水装置の構成図であり 、 1 は水道配水管、 2— 1 、 2— 2は配水管枝菅、 3 — 1 、 3— 2 、 3 — 3 、 3 — 4は仕切 弁、 4 — 1 、 4一 2はポンプ、 5 — 1 、 5 — 2は電動機、 6— 1 、 6 — 2は逆止め弁、 7は給水管、 8は内部に空気溜ま り を有する圧力タンク、 9, 1 0はそれぞれポンプ吸込側及びポンプ吐出側の圧力を検出する圧 力センサであり、 検出部の圧力に応じた電気信号を発する。 F S 1 , F S 2はフロースィ ッチであり 、 後で述べる第 2図、 第 3図で示す過少水 量 Q S以下で O Nするフ ロ一スィ ツチである。 C N Uは制御装置であり 、 電動機 5 — 1 、 5 — 2を可変速駆動するインバータ I N V 1 , I N V 2、 漏電保護する漏電しゃ断器 E L B 1 , E L B 2から成る動力回路部と リ レー回路部 R、 コン トローラ C Uから構成されている。 リ レー回路 Rは トランス T R、 安定化電源 Z、 リ レー 5 2 X 1 , 5 2 X 2 、 及びこれと コン トローラ C Uとのインターフェース I ZOを備えている。 Of these, examples of using an inverter for the water supply device will be described with reference to FIGS. 1 to 3. Fig. 1 is a block diagram of the water supply system, where 1 is a water distribution pipe, 2-1, 2 and 2 are distribution pipe branches, 3-1, 3-2, 3-3 and 3-4 are gate valves, 4-1, 4-1 is a pump, 5-1, 5-2 is a motor, 6-1, 6-2 is a check valve, 7 is a water supply pipe, 8 is a pressure tank with an air reservoir inside, Reference numerals 9 and 10 denote pressure sensors for detecting the pressures on the pump suction side and the pump discharge side, respectively, and emit electric signals corresponding to the pressures of the detecting portions. FS 1 and FS 2 are flow switches, which are turned on when the amount of water is less than QS shown in FIGS. 2 and 3 described later. The CNU is a control device. The power circuits and relay circuits R and RV consist of inverters INV 1 and INV 2 that drive the motors 5-1 and 5-2 at variable speeds, and earth leakage breakers ELB 1 and ELB 2 that protect against electric leakage. It consists of a controller CU. The relay circuit R includes a transformer TR, a stabilized power supply Z, relays 52 X 1 and 52 X 2, and an interface I ZO between the relay TR and the controller CU.
コ ン ト ローラ C Uは演算処理装置 C P U (以下、 C P Uと略す。 ) 、 圧力センサ 9、 1 0 からの信号 (アナロ グ量) をディ ジタル信号に変換 するための AZD変換器、 インバ一タ I N V 1 , I N V 2 に給水系が所 望する速度指令信号 N l , N 2を指令する DZ A変換器、 コン トローラ C Uに電源を供給するための電源端子 E、 前述したリ レー 5 2 X 1 , 5 2 X 2を駆動するためのインターフェース I Z〇に信号 S 4 を送信する ため出力ポー ト P I O— 1 を備える。 また、 同様に第 2図、 第 3図に示 すポンプの運転特性に応じて運転するよ う設定手段 Cによ り設定した設 定値を読込むための入力ボー ト P I 〇— 2 、 漏電しや断器 E L B 1 , E L B 2のそれぞれが漏電等によ り ト リ ップした時に動作する接点 E L B A L 1 , E L B A L 2、 及びイ ンバータ I N V l , I N V 2が過負荷等 によ り ト リ ップした時に動作する接点 I N V A L 1 , I N V Λ L 2の状 態を読込むための入力ポー ト P I O— 3 を備えている。 即ち、 C P Uは これらの故障状態に応じて、 そのホンプを停止させ、 休止している他方 のポンプへ切替えて運転するよ う指令、 及びその制御を実行する。  The controller CU is an arithmetic processing unit CPU (hereinafter abbreviated as CPU), an AZD converter for converting signals (analog amount) from the pressure sensors 9 and 10 into digital signals, and an inverter INV. 1, a DZA converter for commanding the speed command signals Nl, N2 desired by the water supply system to INV2, a power supply terminal E for supplying power to the controller CU, and a relay 52x1, described above. Equipped with an output port PIO-1 to transmit signal S4 to interface IZ〇 for driving 5 2 X2. Similarly, the input port PI 〇-2 for reading the set value set by the setting means C to operate according to the operating characteristics of the pump shown in Figs. 2 and 3, When the contacts ELBAL1, ELBAL2, and the inverters INVl, INV2 trip due to overload, etc. Operating contacts INVAL 1, INV Λ Input port PIO-3 for reading the status of L2. In other words, in accordance with these fault conditions, the CPU stops the pump, switches to the other pump that is at rest, and issues a command to operate the pump, and executes the control thereof.
第 2図は以上説明した給水装置によって、 ポンプ 1 台を単独、 又はポ ンプ 2台を交互に運転する際の運転特性図であり 、 縦軸に圧力 H、 横軸 に水量 Qを取って示す。 曲線 Aはイ ンバ一タによ り運転速度 N 3, すな わち 1 0 0 %運転速度でポンプを駆動した場合の Q— .H性能曲線である c 同様に、 曲線 B, C , Dはそれぞれ、 N 2, N 1 , N Oの運転速度でポ ンプを駆動した時の Q— H性能曲線である。 又、 曲線 Fは管路抵抗曲線 であり 、 例えば使用水量が水量 Q 1 から水量 Q 0に変化した時、 ポンプ の吐出し側でこの曲線 Fに沿った圧力で給水すれば、 末端水栓において 給水系が所望の圧力が得られることを示している。 尚、 前述したイ ンバ —タ I NV 1 , I N V 2はどのよ うな条件、 例えば加減速時間、 V/ F (出力電圧と出力周波数特性など) で回転するかをコ ンソール C ON S 1 , C O N S 2によ り外部設定してある。 即ち、 給水装置は曲線 F上を O 3 -→ O 2→ O 1 — O 0に沿ってポンプを運転する。 FIG. 2 is an operation characteristic diagram when one pump is operated alone or two pumps are alternately operated by the above-described water supply device. Figure 2 shows the water volume Q. Curve A shows the curves B, C, and D as well as the Q-.H performance curve c when the pump is driven by the inverter at the operating speed N3, that is, 100% operating speed. Are the QH performance curves when the pump is driven at N2, N1, and NO operating speeds, respectively. Curve F is a pipeline resistance curve.For example, when the amount of water used changes from the amount of water Q 1 to the amount of water Q 0, if water is supplied at a pressure along the curve F on the discharge side of the pump, the end faucet is The water supply system shows that the desired pressure is obtained. The above-mentioned inverters I NV 1 and INV 2 determine the conditions under which the motor rotates under acceleration / deceleration time, V / F (output voltage and output frequency characteristics, etc.). Set externally by 2. That is, the water supply device operates the pump on the curve F along O 3 − → O 2 → O 1 —O 0.
さて、 第 1 図において、 漏電しや断器 E L B 1 , E L B 2 を投入し、 制御電源用 しゃ断器 C Bを投入すると、 制御装置 C Uの電源が確立し、 C P Uは予めメモリ Mに記憶させているプログラムに基き、 初期設定を 行い、 設定手段 Cから設定情報を読込み、 イ ンバータ及び漏電しや断器 の状態 (故障していないこ と) を入力ボー ト P I O— 3 よ り読込み、 さ らに圧力センサ 9 、 1 0の信号を AZD変換器を介して読込む。 又、 予 め管路抵抗曲線 Fが記憶してあり 、 給水圧力は、 負荷状態が変化した場 合、 運転速度の変化に対応してこの抵抗曲線 Fに沿って変化するよ う に してある。 こ う して運転準備が完了する。 この状態で水を使用する と給 水圧力が低下し、 第 2図に示す始動圧力 HON以下迄低下する と、 C P Uは出力ボー ト P ί Ο— 1 を介して、 インタ一フェース 1 ダ〇ヘリ レ一 5 2 X 1 を付勢する信号を出力する と共に、 DZA変換器を介して、 ィ ンバータ I N V 1 へ運転速度 Ν 1 の信号を出力する。 これによ り イ ンバ ータ I Ν V 1 が始動し、 電動機 5 — 1 が駆動する。 運転した後は、 給水 圧力が曲線 F上にく るよ う圧力センサ 1 0の信号に基づき制御される。 使用水量が減少し、 ポンプ停止条件が確立すると、 C P Uは現在出力 し ている リ レー 5 2 X 1 の付勢信号とイ ンバータ I N V .1 への速度指令信 号 N 1 を解除する。 これによ り ポンプ 4— 1 は停止する。 再度、 水が使 用され、 給水圧力 HO N以下となり始動条件が確立すると、 リ レー 5 2 Χ 2、 運転速度 Ν 2の信号が発せられ、 今度は他方のインバ一タ I N V 2、 電動機 5 — 2、 が駆動し、 ポンプ 4 一 2 を運転する。 以後、 同様に、 切り替え制御が行われ交互運転が行われる。 In Fig. 1, when the earth leakage and the breakers ELB1 and ELB2 are turned on and the control power circuit breaker CB is turned on, the power supply of the control unit CU is established, and the CPU is stored in the memory M in advance. Initial setting is performed based on the program, setting information is read from setting means C, and the inverter, earth leakage, and breaker status (no failure) are read from input port PIO-3, and furthermore. Read the signals of the pressure sensors 9 and 10 via the AZD converter. In addition, a pipeline resistance curve F is stored in advance, and the feedwater pressure is changed along the resistance curve F in response to a change in the operating speed when the load condition changes. . Thus, the operation preparation is completed. If water is used in this state, the water supply pressure will drop, and if it falls below the starting pressure HON shown in Fig. 2, the CPU will output the interface 1 through the output port P Ο Ο-1. (5) Outputs a signal for energizing 5 2 X 1 and outputs a signal of operation speed Ν 1 to inverter INV 1 via a DZA converter. As a result, the inverter IΝV 1 starts, and the motor 5-1 is driven. After the operation, the feedwater pressure is controlled based on the signal of the pressure sensor 10 so as to be on the curve F. When the amount of water used decreases and the pump stop condition is established, the CPU cancels the currently output energizing signal of the relay 52 x 1 and the speed command signal N 1 to the inverter INV.1. This stops pump 4-1. When water is used again and the water supply pressure becomes HON or less and the starting condition is established, a signal of relay 52 2 、 2 and operation speed Ν2 is issued, and the other inverter INV 2 and motor 5 — 2, is driven, and pumps 4-2 are operated. Thereafter, similarly, the switching control is performed and the alternate operation is performed.
第 3図はポンプ 2台を並列運転した時の特性図であり 、 第 2図と同一 符号で示すものは同じ意味をもつ。 即ち、 第 2図に示すよ うにポンプ 2 台を交互に運転していて、 さ らに使用水量が増大した場合にはポンプ 4 一 1 , 4 一 2 を同時に運転する。 使用水量が Q 3以上となると運転速度 Ν 3は最高速度であるため、 給水能力が足りず、 給水圧力が H Lへ低下 する。 これによ り C P Uはリ レー 5 2 X 1 、 5 2 X 2、 速度 N 1 、 N 2 の信号を共に発する。 こ う してイ ンバータ I N V 1 , I N V 2、 電動機 5— 1 、 5 — 2、 が同時運転となり 、 ポンプ 4 一 1 、 4— 2が並列運転 となる。 運転した後は給水圧力が曲線 F上にく るよ う、 圧力センサ 1 0 の信号に基づく 制御が成される。  FIG. 3 is a characteristic diagram when two pumps are operated in parallel, and those indicated by the same reference numerals as those in FIG. 2 have the same meaning. That is, as shown in FIG. 2, two pumps are operated alternately, and when the amount of water used further increases, the pumps 411 and 412 are simultaneously operated. When the amount of water used exceeds Q3, the operation speed Ν3 is the maximum speed, so the water supply capacity is insufficient, and the water supply pressure drops to HL. This causes the CPU to emit both the relay 52 x 1 and 52 x 2 signals and the speeds N 1 and N 2. In this way, the inverters INV 1 and INV 2 and the motors 5-1 and 5-2 operate simultaneously, and the pumps 41 and 4-2 operate in parallel. After operation, control based on the signal of the pressure sensor 10 is performed so that the feedwater pressure is on the curve F.
第 3図に於いて使用水量が減少し、 運転速度が N 4 + N 3 となり 、 給 水圧力が H Hとなると 2台のうち 1 台が停止して単独運転となる。  In FIG. 3, when the amount of water used decreases, the operation speed becomes N 4 + N 3, and when the water supply pressure reaches H H, one of the two units stops and the unit operates alone.
これらの公知例と しては特公平 5 — 2 3 1 3 3 2号公報が参考になる, このよ うに従来は 2台のインバータを駆動するためにこの上位にィ ン バータを制御する主制御装置が必要であった。  For example, Japanese Patent Publication No. Hei 5—2 3 1 3 3 2 can be referred to as a well-known example. As described above, the conventional main control for controlling two inverters by controlling the inverters on the upper ranks Equipment needed.
上記した従来技術に於いては、 次のよ うな問題点があった。 すなわち、 ( 1 )従来のシステムでは、 2台のイ ンバ一タが正常であっても、 主制御 装置が異常で動作しなく なる とシステムダウンとなり断水に陥るという 問題があった。 ( 2 ) ディ ユアルインバ一タでシステム構成する場合は、 個々に制御機 能を持っため、 1 台が故障でダウンした場合でも他の' 1 台がバックアツ プ運転を行える。 しかし、 個々に制御機能を持つが故にお互いの制御状 態を伝えるのが難しく イ ンバータを交互運転及び並列運転するためには. インバ一タ外部で互いにインタ一ロ ックを取り 、 これらの状態を検出し て運転指令する必要がある。 また、 お互いのイ ンタ一ロ ック信号が多く 、 制御口ジックが複雑なシステムとなっていた。 発明の開示 The above-described conventional technology has the following problems. That is, (1) In the conventional system, there is a problem that even if the two inverters are normal, if the main control device stops operating due to an abnormality, the system goes down and water is cut off. (2) When the system is configured with dual inverters, each has its own control function, so even if one unit goes down due to a failure, the other unit can perform the backup operation. However, it is difficult to convey each other's control status because they have individual control functions. For alternate and parallel operation of inverters. It is necessary to detect and to issue an operation command. In addition, there are many interlock signals, and the control port has a complicated system. Disclosure of the invention
本発明は上記の点に鑑みて成されたものであり 、 その目的とすると こ ろは、 外付けの周辺装置が不要で、 信号取り合いが簡単に行え、 小型軽 量、 低コス ト化が実現できるデュアルインバータ とその応用装置を得る ことにある。  The present invention has been made in view of the above points, and has as its object the purpose of eliminating the need for external peripheral devices, facilitating signal exchange, realizing small size, light weight, and low cost. The goal is to obtain a dual inverter and its application equipment.
上記の目的を達成するため本発明は、 2台のターボ機械と、 前記タ一 ボ機械をそれぞれ駆動する 2台のイ ンバ一タ と、 前記ターボ機械の負荷 状態を検出する複数のセンサーとを備え前記ターボ機械の速度制御を行 う ターボ機械駆動装置において、 前記イ ンバータは互いに運転状態を示 す 4種の取り合い信号によ り連結され、 前記複数のセンサーの信号を前 記 2台のインバータが共通に取り込み且つ前記 2台のイ ンバータが互い に前記取り合い信号によ り インタ一ロ ックをと り ながら前記ターボ機械 の速度制御を行うターボ機械駆動装置と したものであり 、 また、 2台の ターボ機械と、 前記ターボ機械を 1 台毎に駆動する 2台のイ ンバータ と、 前記ターボ機械の負荷状態を検出し前記インバータに共通にその検出信 号を出力する複数のセンサ一とを備え前記ターボ機械の制御を行う もの に於いて、 前記センサが予め定めた始動状態を検出したと きに予め優先 機と して設定されたィンバータが始動し、 前記優先機が並列運転起動条 件を検出したら該優先機を駆動するィンバ一タから休止中のイ ンバ一タ に起動要求をかけて休止中のイ ンバ一タを起動させ、 前記優先機は並列 起動したイ ンバ一タによ り駆動される次発機が並列定速状態になるまで 1 台運転時の吐出側最高目標圧力で吐出圧力一定制御になるよ うにイ ン バータで変速運転し、 前記優先機は並列起動した前記次発機が並列定速 状態運転になったら 2台並列運転時の吐出側目標圧力に沿って推定末端 圧力一定制御になるよ うに変速運転し、 前記センサが予め定めた過少負 荷状態を検出したら前記優先機を停止させることを特徴と したターボ機 械駆動装置の制御方法と したものである。 図面の簡単な説明 In order to achieve the above object, the present invention provides two turbo machines, two inverters each for driving the turbo machine, and a plurality of sensors for detecting a load state of the turbo machine. In the turbomachine driving device for controlling the speed of the turbomachine, the inverters are connected to each other by four kinds of connection signals indicating an operation state, and the signals of the plurality of sensors are connected to the two inverters. A turbomachine driving device for controlling the speed of the turbomachine while taking in common and interlocking the two inverters with each other based on the interlocking signal. Turbomachines, two inverters for driving the turbomachines one by one, and detecting a load state of the turbomachines and outputting a detection signal common to the inverters. In a system having a plurality of sensors for controlling the turbomachine, when the sensor detects a predetermined starting state, an inverter set in advance as a priority machine is started, and the priority machine is started. Is the parallel operation start condition When the priority is detected, the inverter driving the priority unit issues a start request to the inactive inverter to start the inactive inverter. Until the next unit to be driven becomes the parallel constant speed state, the gearbox was operated with the inverter so that the discharge pressure was controlled at the discharge-side maximum target pressure during single-unit operation, and the priority units were started in parallel. When the next generator is operated in the parallel constant speed state, the speed is shifted so that the estimated terminal pressure is controlled to be constant at the estimated pressure on the discharge side during the parallel operation of the two units, and the underload state determined by the sensor is determined in advance. This is a method for controlling a turbomachine driving device, wherein the priority machine is stopped when detected. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は従来のターボ機械駆動装置の構成図である。  FIG. 1 is a configuration diagram of a conventional turbomachine driving device.
第 2図はポンプを単独、 又は交互に運転する際の運転特性図である。 第 3図はポンプ 2台並列運転時の運転特性図である。  FIG. 2 is an operation characteristic diagram when the pump is operated independently or alternately. FIG. 3 is an operation characteristic diagram when two pumps are operated in parallel.
第 4図は本発明によるターボ機械と しての給.水装置を例示したシステ ムの全体構成図である。  FIG. 4 is an overall configuration diagram of a system illustrating a water supply device as a turbomachine according to the present invention.
第 5図は本発明によるデュアルイ ンバータの端子詳細と取合い信号の 説明を示す。  FIG. 5 shows the details of the terminals of the dual inverter according to the present invention and the explanation of the connection signals.
第 6図は本発明による第 4図に示す装置の電源立上げ処理の手順を示 すタイムチヤ一 トである。  FIG. 6 is a time chart showing the procedure of power-on processing of the apparatus shown in FIG. 4 according to the present invention.
第 7図は本発明による第 4図に示す装置の並列運転の制御方法を示す タイムチヤ一トである。  FIG. 7 is a time chart showing a method of controlling the parallel operation of the apparatus shown in FIG. 4 according to the present invention.
第 8図は本発明による第 6図、 第 7図の処理を実現する為のフローチ ヤー トである。 発明を実施するための最良の形態 本発明の実施の形態の概要を説明すると下記のよ うになる。 FIG. 8 is a flowchart for realizing the processing of FIGS. 6 and 7 according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION The outline of the embodiment of the present invention is as follows.
専用イ ンバ一タの信号取り合いに必要な信号内容を極力最小限にし兼用 できると ころは兼用する。 従来からある汎用イ ンバータの持っている IThe signal contents necessary for the signal exchange of the dedicated inverter are minimized as much as possible. I which a conventional general-purpose inverter has
Z Oポー トをそのまま利用 しする。 ポンプ運転、 停止、 並列運転起動の 検出、 解除の検出を先行するイ ンバ一タだけで検出することによ り相互 のインバ一タ間の複雑な取り合い信号を簡略化し、 相互のイ ンタ一口 ッ ク信号を最小の信号、 好ま しく は 2つの出力と 2つの入力信号で連結し、 互いに信号の授受を行う。 さ らに、 これらのイ ンバータは予め設定部に よ り 、 どのよ うにイ ンバータを運転する力 、 あるいは負荷の運転パター ンを設定し、 どちらを先に運転させるか優先機を設定しておく。 このよ うに して、 交互及び並列運転、 異常時のリ トライ及びバックアップ運転 を行う よ うにする。 漏電しゃ断器は主回路の短絡保護及び二次側の漏電 保護を行い、 主回路をしや断する。 イ ンバータはターボ機械を駆動し、 2重系で構成され、 負荷状態を検出する圧力センサー、 過少負荷状態検 出手段、 吸込側圧力センサーの各信号は直接並列に同一レベルで取り込 む。 イ ンバータにはそれぞれ予め制御方法、 手順を記述したマイ ク ロ コ ンピュータを動作させるソフ ト ウェアプログラムが組み込まれセンサー 等の入力信号に従って運転する。 使用初期、 漏電しや断器を投入すると、 両イ ンバータの電源が確立し、 予め優先機と して外部設定されている方 が運転を待機する。 負荷状態を検出する圧力センサーが予め設定してあ る始動圧力を検出したら、 待機している方のイ ンバータが始動する。 過 少負荷状態を検出するセンサーがこれを検出し、 予め設定してある停止 条件が確立したら同イ ンバータが停止し、 休止中のイ ンバ一タは先行機 の停止信号によ り運転可能状態と し、 前述した要領で始動、 停止を行う。 さ らに負荷状態を検出する圧力センサが、 予め設定してある並列運転圧 力伏態を検出したら、 運転中のイ ンバ一タは、 休止中のイ ンバータに対 して並列運転要求信号を出力 し、 休止中のイ ンバータは、 運転可能状態 から、 並列運転する。 さ らに、 漏電しや断器の ト リ ップ、 イ ンバータの ト リ ップ発生時には両ィンバータ間を連結する信号線によ り この状態を 互いに伝達し、 異常発生側の停止から正常側の運転へと切替え、 異常側 は内部信号の発生を行いリ トライを行う。 さ らに、 イ ンバータの盤面表 示部にエラ一コー ドによ り この状態を表示し、 外部に信号を発する。 こ の他この表示部を利用 して、 圧力、 電流、 電圧、 周波数の値を表示する。 以下、 本発明の一実施例を図を用いて更に詳細に説明する。 Use the ZO port as it is. By detecting the pump operation, stop, and parallel operation start and release detection only with the preceding inverter, the complicated interaction signals between the inverters are simplified, and the mutual Are connected by the smallest signal, preferably two outputs and two input signals, to send and receive signals to and from each other. In addition, these inverters are set in advance by the setting unit to set the driving force of the inverter or the operation pattern of the load, and to set the priority machine to which of the inverters is operated first. . In this way, alternate and parallel operation, retry in case of abnormality, and backup operation are performed. The earth leakage breaker protects the short circuit of the main circuit and the earth leakage of the secondary side, and cuts off the main circuit. The inverter drives the turbomachine and is composed of a double system. The signals from the pressure sensor for detecting the load condition, the means for detecting the underload condition, and the pressure sensor on the suction side are taken in parallel and directly at the same level. Each inverter incorporates a software program for operating the microcomputer, describing the control method and procedure in advance, and operates according to input signals from sensors and the like. At the beginning of use, when a short circuit or a breaker is turned on, the power for both inverters is established, and the one that is externally set as the priority unit in advance waits for operation. If the pressure sensor that detects the load condition detects the preset starting pressure, the inverter that is on standby will start. The sensor that detects the underload condition detects this, and when the preset stop condition is established, the inverter stops, and the inactive inverter can be operated by the stop signal of the preceding machine. Start and stop as described above. Further, if the pressure sensor for detecting the load state detects a preset parallel operation pressure state, the operating inverter is in contact with the inactive inverter. And outputs a parallel operation request signal, and the inverter that is at rest operates in parallel from the operable state. In addition, in the event of a short circuit, trip of the breaker, or trip of the inverter, this condition is transmitted to each other by the signal line connecting the two inverters. Operation, and the abnormal side generates an internal signal and retries. In addition, this condition is indicated by an error code on the panel display of the inverter, and a signal is issued externally. In addition, the display unit displays pressure, current, voltage, and frequency values. Hereinafter, an embodiment of the present invention will be described in more detail with reference to the drawings.
第 4図は本発明を給水装置に応用 した実施例を示す全体構成図であり , 従来技術説明に引用した第 1 図と同一符号で表わしているものはこれと 同じものであるから説明を省く。  FIG. 4 is an overall configuration diagram showing an embodiment in which the present invention is applied to a water supply device. The components denoted by the same reference numerals as those in FIG. 1 cited in the description of the prior art are the same as those in FIG. .
同図に於いて、 制御装置 C NUは漏電しや断器 E L B 1 , E L B 2 、 イ ンバータ I NV 1 , I NV 2及びノ イズフィルタ Z C L 0, Z C L 1 , Z C L 2を備える。 これは、 第 1 図で示したリ レー回路部 Rと制御装置 (ハ一 ドウエアと ソフ ト ウェアを共に) C Uを前述したイ ンバータ I N V 1 , I N V 2に組込んだことによるものである。  In the figure, the control device CNU is provided with a ground fault and a breaker ELB1, ELB2, inverters NV1, NV2, and noise filters ZCL0, ZCL1, ZCL2. This is because the relay circuit R and the control unit (both hardware and software) CU shown in Fig. 1 are incorporated in the inverters INV1 and INV2 described above.
即ち、 このイ ンバータ I N V l , I N V 2は漏電しや断器 E L B 1 , E L B 2の ト リ ツプ信号 A Lを信号線 S 1 、 S 2を介して制御盤外部端 子へ E L B ト リ ップ信号と して出力する。  That is, the inverters INV 1 and INV 2 output the electric leakage and the trip signal AL of the breakers ELB 1 and ELB 2 to the external terminal of the control panel via the signal lines S 1 and S 2. Output as a signal.
フ ロースィ ッチ F S 1 又は F S 2の信号 F S l b 、 又は F S 2 b を信 号線 S 4、 又は S 5を介して端子 D 1 4— C OMに入力し、 圧力センサ 9、 1 0の信号をそれぞれ信号線 S 6、 S 7 を介して端子 A N 0, A N 1 , Lに入力する。 尚、 この圧力センサ 9 、 1 0はィンバータ I N V 1 , I N V 2に共通に使用するため、 両者問を信号線 S 8によ り接続する。 イ ンバ一タ I N V 1 , I N V 2の端子 D I 1 , D I 2 , D O l , D O 2間を信号線 S 3で接続し、 運転状態、 故障状態、 運転要求などの信号 のやり取り を行う。 D I 3端子は優先機の選択信号と してイ ンバータ I N V 1 は C OMと短絡する。 . Input the signal FS lb or FS 2 b of the flow switch FS 1 or FS 2 to the terminal D 14-C OM via the signal line S 4 or S 5, and send the signals of the pressure sensors 9 and 10. Input to terminals AN0, AN1, L via signal lines S6, S7, respectively. Since the pressure sensors 9 and 10 are commonly used for the inverters INV1 and INV2, they are connected by a signal line S8. Inverter INV 1 and INV 2 terminals DI 1, DI 2, DO l, and DO 2 are connected by signal line S 3, and signals such as operation status, failure status, and operation request Exchanges. The DI 3 terminal is used as the priority device selection signal, and the inverter INV 1 is short-circuited to the CAM. .
さ らに、 信号線 S 9, S 1 0はイ ンバータ I NV 1 , I N V 2の故障 を中央の監視盤等へ出力するための信号である。  Further, the signal lines S9 and S10 are signals for outputting a fault of the inverters I NV1 and I NV2 to a central monitoring panel or the like.
第 5図及び表 1 にイ ンバ一タ I N V 1 , I N V 2の取合い信号 S 3の 詳細を示す。 なお、 表 1 は本発明によるデュアルインバータの取合い信 号の出力状態と制御状態を示す記号表である。  Figure 5 and Table 1 show the details of the interlocking signal S3 for the inverters INV1 and INV2. Table 1 is a symbol table showing the output state and the control state of the interlocking signal of the dual inverter according to the present invention.
イ ンバータ 1 、 インバータ 2のイ ンター口 ック信号はそれぞれ 2本の 出力、 2本の入力を持っており 、 この 2 b i t の信号を O N , O F Fす るこ とによ り 4種類の状態を相手に知らせることができる。  The interface signals of inverter 1 and inverter 2 each have two outputs and two inputs. By turning on and off these 2-bit signals, four types of states can be set. You can let the other person know.
第 5図では出力 D O 1 、 D 0 2の伏態を仮に表 1 に示した A〜Dの状 態で現すとすると、 状態 Aは、 D 0 1 、 D O 2が両方 O Nの状態で自分 が先行運転しているポンプであれば" 並列起動要求" 信号を示す。  In FIG. 5, assuming that the states of outputs DO 1 and D 02 are expressed in the states A to D shown in Table 1, state A is a state in which D 01 and DO 2 are both ON and oneself. If the pump is running ahead, the "parallel start request" signal is shown.
(表 1 ) (table 1 )
Figure imgf000011_0001
Figure imgf000011_0001
自分が次発ポンプであれば予め設定された最高速一定の状態に達した ときに出力される "並列定速状態" 信号を示す。 これは両方が自動モー ドで、 並列運転を設定されている ときに発生する。 状態 Bは D〇 l が O N、 D O 2が O F F状態で "自動交互 (並列) 運転中:' の状態を示す。 状態 Cは D O 1 が O F F 、 D O 2が O N状態で "自動交互 (並列) 待機 中" の状態を示す。 状態 Dは、 D O 1 、 D O 2が両方 O F Fの状態で "動 単独運転モー ド" 、 "手動モー ド" 、 "故障停止中" 、 あるレ、は "電源 遮断中" の状態を示し、 自分が単独で運転している状態か、 又は、 交互 - 並列で運転できない状態を示す。 以上の信号によ り、 交互、 並列、 故障 時のバックアップ運転等の取合いを実現させることができる。 If it is the next pump, it indicates the "parallel constant speed state" signal that is output when the preset maximum speed constant state is reached. This is because both Occurs when parallel operation is set in mode. State B indicates "Auto-alternating (parallel)" with D〇l on and DO2 off. State C indicates "auto-alternating (parallel) with DO1 off and DO2 on. Indicates the status of “Standby.” Status D indicates “powered stand-alone mode”, “manual mode”, “failure stop”, and “power off” when both DO1 and DO2 are OFF. The status of "medium" indicates that the vehicle is operating alone, or the vehicle cannot be operated alternately / parallel. The above signals enable alternate, parallel, backup operation in case of failure, etc. Can be realized.
その信号の取合いの詳細について第 6図、 第 7図のタイムチヤ一 トに よって説明する。 まず第 6図のタイムチャー トを使用 して、 電源立上げ 後の交互運転動作及び異常時の動作について説明する。 同図の時刻 1 に 於いて、 イ ンバータ 1 の電源が立ち上がり 、 状態が Dから Cに変わる。 この時、 相手インバ一タ 2はまだ電源が立ち上がっていないので、 D状 態のままである。 ポンプ運転可能なのはインバータ 1 だけなのでインバ —タ 1 は自動で単独運転で動作する。 時刻 2おいてイ ンバーク 1 はボン プ起動条件を検出 しイ ンバータ 1 は運転する。 この時、 イ ンバータ 1 は C状態から B状態を出力し運転中であることを示す。 時刻 3 においてポ ンプ停止条件を検出して、 イ ンバータ 1 は停止し B状態から C状態を出 力する。 次に、 時刻 4においてインバータ 2の電源が立ち上がつたので イ ンバータ 2は D状態から C状態を出力する。 イ ンバータ 1 はイ ンバー タ 2が C伏態になり交互又は並列運転が可能になつたので単独運転から 交互、 並列運転状態に移る。 時刻 5 においてポンプ起動条件を検出する。 このときインバーク 1 もインバータ 2 も同じセンサーの信号を取り込ん でいるので同時に起動条件は成立するが、 イ ンバータ 1 は優先機に設定 されているのでイ ンバ一タ 1 が先に起動し、 状態 Cから Bを出力する。 ィ ンバ一タ 2は電源が立ち上がったときにはすでにィ ンバ一タ 1 は Cの 状態なので交互モー ドになっているが、 優先機でない方は起動条件を検 出しても運転するのに遅れを持たせることによ り 、 起動条件が同時に成 立しても優先機であるインバ一タ 1 が先に運転し B状態を出力するので インバータ 2は運転をやめる。 このよ うにタイ ミ ングをづらすことによ り同時に起動するこ とを防止する。 時刻 5以降は、 先行機、 次発機がは つき り したので、 時刻 6で停止、 時刻 7で起動条件が成立しイ ンバータ 2が運転する。 以降同様に交互運転を行う。 時刻 1 0においてイ ンバー タ 1 に故障が発生した場合、 イ ンバータ 1 の状態は Bから Dになる。 こ のとき停止中のイ ンバータ 2はインバータ 1 の状態が Bから Dに変化し たことで故障と判断し、 また、 起動条件が検出されているので運転を開 始し、 状態を Cから Bへ出力する。 イ ンバータ 2が運転中時刻 1 1 でィ ンバ一タ 1 の故障が回復した場合、 イ ンバータ 1 は状態を Dから Cへ出 力し正常な交互運転モー ドが可能になるので、 待機状態になる。 時刻 1 2ではイ ンバータ 2が停止して、 S寺亥 ij 1 3以後正常な交互運転を行う。 次に、 第 7図のタイムチヤ一 トを使用 して、 並列運転動作について説 明する。 同図の時刻 1 に於いては、 第 6図の時刻 4 と同じ状態で、 同図 の時刻 2に於いて、 起動条件を検出してたら、 第 6図の時刻 5 と同様に、 優先機に設定されているィンバータ 1 が先に運転を開始する。 日寺刻 3に おいて並列起動条件が成立したらイ ンバ一タ 1 はイ ンバータ 2が自動運 転可能な状態 Cであればイ ンバータ 2に対して" 並列起動要求" Aを出 力する。 イ ンバータ 2はイ ンバータ 1 が状態 Aを出力 したのを確認して 運転を開始する。 このときイ ンバ一タ 2は状態 Cから Bを出力 し、 設定 した速度 (好ま しく は M A X速度) まで徐々に速度を増していく 。 イ ン バータ 1 は時亥【j 3カゝら時刻 4までは第 3図において F曲線の O 3 ( 1 台 目吐出側の最高目標圧力の点) を目標値と して、 吐出圧一定になるよ う に変速運転を行う。 時刻 4にてイ ンバータ 2は設定速度に達したら状態 Bから Aにして "並列定速状態" になったこ とを出力する。 イ ンバ一タ 1 はィ ンバ一タ 2の状態 Aを確認したら第 3図における F曲線の 0 3 〜 O 5上の目標値で水量の変化に応じて推定末端圧力一定制御に基づいた 変速運転を行う。 時刻 5にてイ ンバータ 1 が並列解除条件を検出 したら、 ポンプ 4 — 1 を停止させ状態を Aから Cに出力する。 インバータ 2はィ ンバータ 1 が C状態になったのを確認して、 定速運転から第 3図におけ る F曲線の 0 0 〜 0 3上の目標値で水量の変化に応じて推定末端圧力一 定制御に基づいた変速運転を行う。 このよ うにして以上の信号の取合い によ り 、 先行機だけで起動、 並列導入、 並列解除、 停止条件を検出する ことができ、 制御の一元化を行う こ とができる。 又、 この方式によ り 、 並列起動の圧力変動を小さ く抑えるこ と ができ、 並列によ り運転機を切 り替えることができる。 Details of the signal exchange will be described with reference to the time charts of FIGS. First, using the time chart in Fig. 6, the alternate operation after power-on and the operation in the event of an abnormality will be described. At time 1 in the figure, the power of inverter 1 rises, and the state changes from D to C. At this time, the other inverter 2 remains in the D state since the power has not been turned on yet. Only inverter 1 can operate the pump, so inverter 1 automatically operates in stand-alone operation. At time 2, inverter 1 detects the pump start condition and inverter 1 operates. At this time, inverter 1 outputs B state from C state, indicating that it is operating. At time 3, a pump stop condition is detected, and inverter 1 stops and outputs B state to C state. Next, at time 4, since the power supply of the inverter 2 is turned on, the inverter 2 outputs the C state from the D state. Inverter 1 shifts from independent operation to alternate and parallel operation because inverter 2 is in the C-down state and alternate or parallel operation is possible. At time 5, the pump start condition is detected. At this time, the start condition is satisfied at the same time because both Invert 1 and Inverter 2 are receiving the same sensor signal, but since Inverter 1 is set as the priority device, Inverter 1 starts first and state C Outputs B from Inverter 2 is already connected to C when power is turned on. Although it is in the alternate mode because it is in the state, the non-priority machine has a delay in operation even if the start condition is detected. Inverter 2 stops running because inverter 1 operates first and outputs state B. By delaying the timing in this way, simultaneous activation is prevented. After time 5, the preceding aircraft and the next engine arrived, so stop at time 6, start condition is satisfied at time 7, and inverter 2 operates. Thereafter, the alternate operation is performed in the same manner. If a fault occurs in inverter 1 at time 10, the state of inverter 1 changes from B to D. At this time, the stopped inverter 2 judges that the inverter 1 has failed because the state of the inverter 1 has changed from B to D, and starts the operation because the start condition has been detected, and changes the state from C to B. Output to If the fault of inverter 1 is recovered at time 11 while inverter 2 is in operation, inverter 1 outputs the status from D to C, and the normal alternating operation mode becomes possible. Become. At time 1 and 2, inverter 2 stops, and normal alternate operation is performed after S terai ij 13. Next, the parallel operation will be described using the time chart in FIG. At time 1 in the same figure, in the same state as time 4 in FIG. 6, if a start condition is detected at time 2 in the same figure, as in time 5 in FIG. Inverter 1 which is set to starts operation first. If the parallel start condition is satisfied in Hidaka 3, the inverter 1 outputs a “parallel start request” A to the inverter 2 if the inverter 2 is in the state C in which the inverter 2 can automatically operate. Inverter 2 starts operation after confirming that inverter 1 has output status A. At this time, the inverter 2 outputs B from the state C and gradually increases the speed to the set speed (preferably the MAX speed). Inverter 1 keeps the discharge pressure constant by setting O 3 (point of the maximum target pressure on the first discharge side) of the F curve in FIG. Perform gear shifting operation as required. At time 4, inverter 2 reaches the set speed. Outputs "Parallel constant speed state" from B to A. After confirming the condition A of the inverter 2 in the inverter 1, the speed change operation based on the constant control of the estimated end pressure according to the change of the water amount at the target value on the O3 to O5 of the F curve in FIG. I do. When inverter 1 detects the parallel release condition at time 5, pump 4-1 is stopped and the status is output from A to C. Inverter 2 confirms that inverter 1 is in the C state, and changes the estimated end pressure from the constant speed operation to the target value on the 0 to 03 of the F curve in Fig. 3 according to the change in water flow. The shift operation is performed based on the constant control. In this way, by the above signal exchange, starting, parallel introduction, parallel release, and stop conditions can be detected only by the preceding machine, and control can be centralized. Further, by this method, the pressure fluctuation in the parallel start can be suppressed to be small, and the operation machine can be switched by the parallel.
次に、 第 8図のフローチャー トを使用 して、 第 6図、 第 7図のタイムチ ヤー 卜のごと く制御を実現する為の流れを説明する。 同図の "〇 " は自 分の状態を出力する記号を示す。 "□" は相手の状態がど う い う状態に 移つたかを記号で示す。 8 0 0において、 予めイ ンバータの外部端子に よ り優先機を決定する。 8 0 1 において、 電源が投入されると、 8 0 2 において、 強制的に優先機を先行機、 優先機でない方を次発機に設定す る。 8 0 3において、 始動条件が成立するまで待機中の状態になり 、 始 動条件が成立する と 8 0 4に処理が移り 、 ここで先行機か次発機かの設 定によ り処理が分かれる。 Next, a flow for realizing control as in the time charts of FIGS. 6 and 7 will be described using the flow chart of FIG. "〇" in the figure indicates a symbol for outputting the own state. "□" indicates with a symbol how the opponent's state has changed. At 800, the priority device is determined in advance by the external terminal of the inverter. At 801, when the power is turned on, at 802, the priority unit is forcibly set as the preceding unit and the non-priority unit is set as the next unit. At 803, the state becomes a standby state until the start condition is satisfied, and when the start condition is satisfied, the processing shifts to 804, where the processing is performed by setting the preceding or next engine. Split.
先行機の場合は、 8 0 5において、 始動開始し、 8 0 6で自分が故障か どうかを確認し、 正常であれば 8 0 7において、 第 3図における F曲線 の 0 0 〜 0 3上の目標値で水量の変化に応じた末端圧一定制御を行い、 その間 8 0 8で過少水量条件を確認し、 条件が成立すれば 8 0 9 におい て、 停止処理に入る。 停止した場合は、 8 2 2 において、 先行機から次 発機に設定を切替え、 交互運転に備える。 8 0 8で過少水量条件を検出 せず、 8 1 ◦で並列条件を確認した場合、 8 1 1 で相手状態を確認し、In the case of the preceding machine, start the engine at 805, check if it is faulty at 806, and if it is normal, at 807, go to the top of the F-curve in Fig. The terminal pressure constant control according to the change in water flow is performed with the target value of, while the underwater flow condition is confirmed in 808, and if the condition is satisfied, stop processing is started in 809. If it stops, the next Switch the setting to the generator to prepare for alternate operation. If the underwater condition was not detected at 8 08 and the parallel condition was confirmed at 81 °, the partner status was confirmed at 8 11
"自動待機中" であれば 8 1 2で "並列起動要求" を相手に出力し、 並 列起動させる。 8 1 3で相手状態を確認し、 8 1 4〜 8 1 6で相手が "並 列定速状態" になるまで 8 1 4において、 第 3図において F曲線の O 3 ( 1 台目吐出側の最高目標圧力の点) を目標値と した、 吐出圧一定で制 御する。 相手状態が "並列定速状態" なのを確認できたら 8 1 8におい て、 第 3図における F曲線の 0 3 〜 0 5上の目標値で水量の変化に応じ た 2台目の末端圧一定で制御を行う。 8 2 0において、 並列解除条件を 確認し、 条件が成立したら 8 2 1 において、 先行機を停止させる。 その 間 8 1 7〜 8 2 0で次発機が故障停止したら、 8 0 7に戻り 1 台のみの 末端圧一定で制御を行う。 8 1 9では先行機 (自分) の故障状態を確認 する。 故障あるいは、 並列解除で先行機が停止した場合は、 過少水量検 出停止と同様に 8 2 2において、 先行機から次癸機に設定を切替え、 次 の交互運転に備える。 以上が第 6図、 第 7図のタイムチャー トを実現す る為の先行機と しての処理である。 If it is "automatic standby", "parallel activation request" is output to the other party in 8 12 and parallel activation is performed. Check the other party's state in 8 13 and until the other party is in the “parallel constant speed state” in 8 14 to 8 16. Is controlled at a constant discharge pressure with the target point of the maximum target pressure of After confirming that the other party's state is "parallel constant speed state", in step 818, set the terminal pressure of the second unit to the target value on 03 to 05 of the F curve in Fig. 3 according to the change in water volume. Control with. At 820, the parallel release condition is checked, and if the condition is satisfied, at 821, the preceding machine is stopped. In the meantime, if the next engine breaks down between 817 and 820, return to 807 and control with the terminal pressure of only one unit kept constant. At 8 19, the failure status of the preceding machine (self) is checked. If the preceding machine stops due to a failure or due to parallel release, the setting is switched from the preceding machine to the next kneading machine at 822 in the same way as the stoppage of detection of underflow, and the next alternate operation is prepared. The above is the processing as a preceding machine for realizing the time charts in FIGS. 6 and 7.
次に、 次発機の処理について、 8 0 4において、 次発機と設定された場 合 8 2 3で相手の先行機が運転したか、 も しく は運転しているかを確認 する。 運転している場合は、 8 2 4において、 並列要求があるかを確認 し、 要求がある場合は 8 2 6において、 並列起動する、 。 起動したら 8 2 9において、 先行機が停止するまで、 一定速で運転する。 起動したら 加速していき、 8 2 8において、 予め設定された一定速なつたら "並列 定速状態" を先行機に知らせる。 8 2 9 において、 先行機が停止したら、 8 3 0において、 次発機を先行機に設定を切替え、 以後は先行機と して 8 0 6に処理を移して末端圧一定制御を行う。 また、 8 2 3 〜 8 2 4で、 並列要求待ち状態 (自動待機中) において、 先行機が故障又は過少水量 4 Next, with regard to the processing of the next engine, in 804, it is confirmed whether or not the opponent's preceding apparatus has been driven or has been driven in 823 when it has been set as the next engine. If it is running, check if there is a parallel request in 8 24, and if so, start it in parallel in 8 26. After the start, in 8 229, it operates at a constant speed until the preceding aircraft stops. When it starts up, it accelerates. At 8 2 8, it notifies the preceding machine of “parallel constant speed state” when it reaches the preset constant speed. When the preceding aircraft stops at 829, the setting is switched to the next engine to the preceding aircraft at 8330, and thereafter, the process is shifted to 806 as the preceding aircraft to perform the terminal pressure constant control. In addition, during the parallel request waiting state (automatic standby) in 823-824, the preceding machine failed or underflowed. Four
検出で停止した場合は 8 2 5において、 次発機を先行機に設定を切替え、 次の始動に備える。 以上が第 6図、 第 7図のタイムチャー トを実現する 為の次発機と しての処理である。 If it stops due to detection, switch the setting of the next engine to the preceding machine in 8 25 to prepare for the next start. The above is the processing as the next engine for realizing the time charts in Figs. 6 and 7.
以上の実施例によれば、 2台のターボ機械と これを 1 台毎に駆動する 2台のイ ンバータで構成され、 これらのインバータはマイコンが搭載さ れ、 状態表示部と制御定数の設定部を備え、 前記ターボ機械の負荷状態 を検出するセンサー群の信号を取り込んで、 予め前記制御定数設定部に 負荷状態に基いて運転されるよ う設定されており 、 互いに運転伏態と故 障状態を示す最少の信号線によ り連結され、 2台のイ ンバ一タが互いに インタ一口 ックをと り ながら推定末端圧力一定制御を行う ものに於いて, 並列起動時の制御では、 取合い信号の中に "並列起動要求" 信号を設け、 先行機が並列運転起動条件を検出したら休止中のィンバークに並列起動 要求信号を出力して休止中のイ ンバータを起動させ、 休止中のイ ンバー タが起動したら "自動運転中"信号を出力し、予め設定された加速で徐々 に速度を上げ予め定めた一定速度 (好ま しく は最高速度) まで達したら、 "並列定速状態" 信号を先行機に対して出力し、 先行機は、 並列起動し たイ ンバ一タが、 "自動運転中" から "並列定速状態" になるまで 1 台 目吐出側の目標圧力が一定になるよ うに変速運転制御し、 先行機は、 並 列起動した次発機が "並列定速状態" 運転になったら、 2台目吐出側目 標圧力に沿って推定末端圧力一定制御になるよ うに変速運転し、 また、 並列解除時の制御では、 並列運転中、 次発機は定速運転を行っているの で、 推定末端圧力一定で変速運転している先行機は、 自分の回転数と負 荷側の圧力によ り 、 予め設定されていた並列解除条件を検出でき、 並列 解除条件と しては、 先行機が最低速度に達したら圧力を監視し停止圧力 になったら先行機を停止させ、 次発機に対して出力 し、 定速運転してい る次発機は、 "自動待機中" 信号を受信したら定速運転から予め設定さ れた 1 台目吐出側目標圧力に沿って推定末端圧力一定制御になるよ うに 変速運転するので、 デュァルインバ一タであっても先行する 1台のイ ン バ一タのみで並列運転の起動、 停止条件を検出することが可能になった。 According to the above-described embodiment, the turbomachine is constituted by two turbomachines and two inverters for driving the turbomachines one by one. These inverters are provided with a microcomputer, a status display unit and a control constant setting unit. The control constant setting unit is set in advance so as to operate based on the load state by receiving a signal of a sensor group for detecting a load state of the turbo machine, and the operation state and the failure state are mutually performed. Are connected by the minimum number of signal lines, and the two inverters take control of each other while performing constant control of the estimated terminal pressure. A "parallel start request" signal is provided in the system, and when the preceding machine detects a parallel operation start condition, the parallel start request signal is output to the inactive inverter to start the inactive inverter and the inactive inverter Starts up Output the "autonomous driving" signal, gradually increase the speed with the preset acceleration, and reach the predetermined constant speed (preferably the maximum speed), and send the "parallel constant speed status" signal to the preceding machine. The preceding machine controls the speed change operation so that the target pressure on the first discharge side becomes constant until the inverters started in parallel change from "automatic operation" to "parallel constant speed state". Then, when the next engine that started in parallel enters the “parallel constant speed state” operation, the preceding unit performs speed change operation so that the estimated terminal pressure is controlled constant along the target pressure on the discharge side of the second unit. In the parallel release control, during the parallel operation, the next engine is operating at a constant speed, so the preceding engine, which is shifting at a constant estimated terminal pressure, has its own rotation speed and load side pressure. As a result, a preset parallel release condition can be detected, and the parallel release condition Monitors the pressure when the machine reaches the minimum speed, stops the preceding machine when it reaches the stop pressure, outputs it to the next engine, and receives the "automatic standby" signal for the next engine operating at constant speed Is set in advance from constant speed operation. Since the variable speed operation is performed so that the estimated terminal pressure is kept constant along the target discharge pressure of the first unit, even if it is a dual inverter, the parallel operation can be started with only the preceding inverter. Stop conditions can now be detected.
また、 並列起動時の過渡状態の制御では、 先行機が並列運転起動条件 を検出したら休止中のインバ一タに起動要求をかけ、 休止中のイ ンバー タを起動させ、 先行機は、 並列起動したインバータが、 並列定速状態に なるまで 1 台目吐出側の最高目標圧力で吐出圧力一定制御になるよ う に 変速運転し、 先行機は、 並列起動した次発機が並列定速状態運転になつ たら、 2台目吐出側目標圧力に沿って吐出目標圧力を変化させながら、 推定末端圧力一定制御になるよ うに変速運転するので、 並列起動時の過 渡状態の不安定時に次発機が安定状態になるまで先行機の吐出側目標圧 力を更新しないことによ り制御状態が発散することを押さえ安定した圧 力制御を行える効果がある。  In the control of the transient state during parallel start, when the preceding machine detects the parallel operation start condition, it issues a start request to the inactive inverter and starts the inactive inverter, and the preceding machine starts parallel operation. The inverter that has started the parallel operation at the maximum target pressure on the discharge side of the first unit performs constant-speed control until the inverter reaches the parallel constant-speed state. Then, while changing the discharge target pressure along the discharge side target pressure of the second unit, the gearshift operation is performed so that the estimated terminal pressure is kept constant. By not updating the target pressure on the discharge side of the preceding machine until the pressure becomes stable, it is possible to suppress the divergence of the control state and perform stable pressure control.
また、 2台のイ ンバータを連結する信号の中に、 故障で停止であるも のも含むよ うにし、 この信号をインバータの電源遮断で出力される状態 と同一の状態で表すこ とによ り漏電遮断器の ト リ ツプ信号を個別に取り 込むことなく故障飛び越しすることが可能になつた。  In addition, the signal that connects the two inverters includes the one that is stopped due to a failure, and this signal is represented by the same state as the state that is output when the inverter is turned off. It is now possible to jump over a fault without separately taking in the trip signal of the earth leakage breaker.
また、 モー ドスィ ッチを設け、 手動一切一自動の信号を 2台のインバ ータの外部入力端子に接続し、 第 4図において、 D I 5を O N、 D I 6 を O F Fにすることで "自動" 、 D I 5 を O F F 、 D I 6 を O Nにする ことで "手動" 、 D I 5 、 D I 6 を両方 O F F又は O Nすることで "切" 、 となるよ うに意味付けすることによ り 2台のインバークの制御状態を同 一にすることが可能になった。  In addition, a mode switch is provided to connect the manual and automatic signals to the external input terminals of the two inverters. In Fig. 4, DI 5 is turned on and DI 6 is turned off, and the "automatic" By turning DI5 OFF and DI6 ON, "manual" and by turning both DI5 and DI6 OFF or ON, "OFF" It is now possible to make the control state of Invark the same.
また、 2台のインバータのうちどちらか一方のある 1 つの外部入力端 子を例えば短絡して "優先機" とするこ とによ り、 電源投入時又は停電 の復電時の同時運転の誤動作が防止でき、 外部端子を利用するこ とによ り優先機の設定が容易にできるよ うになった。 In addition, malfunctioning of simultaneous operation when power is turned on or when power is restored after a power failure by setting one external input terminal of one of the two inverters, for example, to short-circuit and setting it as a “priority device”. Can be prevented, and by using external terminals It has become easier to set priority machines.
また、 第 1 系統と第 2系によ り完全 2重系システムを構成し故障バッ クアップを取っているので、 よ り一層信頼性を向上するこ とができるよ うになった。  In addition, since a complete duplex system is configured by the first system and the second system, and a fault backup is taken, the reliability can be further improved.
また、 予めイ ンバータには負荷運転パターンによ り運転するよ うプロ グラムが搭載されており、 これに基いて、 運転されるよ う前記イ ンバー タの設定部によ り設定されており 、 負荷状態検出手段が始動圧力を検出 した時に、 優先機と して設定されたイ ンバ一タが始動し、 過少負荷検出 手段が過少負荷伏態を検出し停止条件が確立したら停止するよ うにした ので、 2台のイ ンバ一タの取合いに、 外付けの通信回路部及び複雑な取 合いのロジックを必要とせず交互運転又は交互 · 並列運転を行う こ とが できるので、 制御装置が簡略化され、 小形軽量で且つ、 低コ ス ト化が実 施できる。 さ らに、 部品点数が削減されるので信頼性が向上する。 また、 主回路の短絡及び漏電は漏電しゃ断器によ り 、 これ以外の負荷側の故障 状態はイ ンバ一タの內部状態量の変化によ り 、 インバータ 自身が監視し ているため、 簡単で確実に異常時の切替え運転が可能となる。 更に、 予 め優先機をイ ンバ一タで外部設定可能と して起動タイ ミ ングをずら して あるので、 運転順序が乱れるこ とがない (停電復帰時など) 。  In addition, a program for operating the inverter according to the load operation pattern is installed in the inverter in advance, and based on the program, the inverter is set to operate by the setting unit of the inverter. When the load state detection means detects the starting pressure, the inverter set as the priority machine starts, and the underload detection means detects the underload state of underload and stops when the stop condition is established. Therefore, it is possible to perform alternate operation or alternate / parallel operation without the need for an external communication circuit and complicated arrangement logic when connecting two inverters. It is compact, lightweight and low cost. In addition, reliability is improved because the number of parts is reduced. In addition, short-circuits and short-circuits in the main circuit are monitored by the ground fault circuit breaker, and other fault conditions on the load side are monitored by the inverter itself due to changes in the partial state of the inverter. Switching operation at the time of abnormality can be reliably performed. Furthermore, since the priority timing unit can be set externally by an inverter and the start timing is shifted, the operation order is not disturbed (for example, when power is restored).
更にまた、 故障時リ トライ動作を付加してあるので、 故障状態を確実 に検出できる。  Furthermore, since a retry operation at the time of failure is added, the failure state can be detected reliably.
更にまた、 負荷状態を検出する圧力セ ンサ一、 吸込側圧力を検出する 圧力センサ一を 2台のインバータで共有できるよ うにしたので簡単 . 安 価となる。 産業上の利用可能性  Furthermore, since the pressure sensor for detecting the load condition and the pressure sensor for detecting the suction side pressure can be shared by two inverters, it is simple and inexpensive. Industrial applicability
本発明によれば、 2台のイ ンバータで最小の信号取合いでイ ンバータ 間の信号授受を行い、 連係して運転できるよ うにしたため、 外付けの制 御装置が不要で、 簡単、 小形軽量、 低コス ト化を図るこ とのできるター ボ機械駆動装置とその応用装置を得ることができる。 According to the present invention, two inverters can be used with minimum signal integration. Turbo machine drive unit and its application equipment that can be operated in a coordinated manner by exchanging signals between them, so that external control devices are not required, and simple, compact, lightweight and low cost can be achieved. Can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なく と も 2台のターボ機械と、 前記ターボ機械をそれぞれ駆 動する少なく と も 2台のイ ンバータ と、 前記ターボ機械の負荷状態を 検出する複数のセンサーとを備え前記ターボ機械の速度制御を行う タ ーボ機械駆動装置において、 前記インバ一タは互いに運転状態を示す 少なく と も 4種の取り合い信号によ り連結され、 前記複数のセンサー の信号を少なく と も前記 2台のイ ンバータが共通に取り込み且つ少な く と も前記 2台のイ ンバークが互いに前記取り合い信号によ り少なく と も運転停止、 単独運転、 交互運転、 並列運転を判断して前記ターボ 機械の速度制御を行う ターボ機械駆動装置。 1. The speed of the turbomachine, comprising at least two turbomachines, at least two inverters each driving the turbomachine, and a plurality of sensors for detecting a load state of the turbomachine. In a turbomachine driving device for controlling, the inverters are connected to each other by at least four types of interlocking signals indicating an operating state, and the signals of the plurality of sensors are at least connected to the two units. The inverter takes in common and at least the two inverters control the turbomachine speed by judging at least operation stop, independent operation, alternate operation, and parallel operation according to the interlock signal. Turbomachinery drive.
. 前記ターボ機械はターボ形ポンプであることを特徴と した請求の 範囲第 1項記載のターボ機械駆動装置。 The turbomachine driving device according to claim 1, wherein the turbomachine is a turbo pump.
. 前記ターボ機械はターボ形送風機であることを特徴と した請求の 範囲第 1項記載のターボ機械駆動装置。The turbomachine driving device according to claim 1, wherein the turbomachine is a turbo blower.
. 前記 4種の取り合い信号は、 2本の出力信号と 2本の入力信号で 互いに前記ィンバ一タ間で受発信されるこ とを特徴とする請求の範囲 第 1 項記載のターボ機械駆動装置。 The turbomachine driving device according to claim 1, wherein the four kinds of interlocking signals are mutually transmitted and received between the inverters by two output signals and two input signals. .
. 前記 4種の取り合い信号は、 前記イ ンバータのう ち運転中の一方 のィ ンバータから休止中の他方のインバ一タに起動要求をカ す前記休 止中のイ ンバータを起動させる並列起動要求信号と、 運転中の前記一 方のインバータに続いて休止中の前記他方のインバ一タが起動してか ら予め定めた一定速度になるまで前記他方のインバー夕から前記一方 のイ ンバークに出力される自動運転中信号と、 前記他方のィ ンバータ が予め定めた一定速度で運転されているときに前記他方のィ ンバ一タ から前記一方のイ ンバークに出力される並列定速状態信号と、 前記一 方または他方のインバータの片方または両方が停止状態のと き該停止 状態のィ ンバ一タから他のインバ一タに出力される 動停止中信号か らなることを特徴とする請求の範囲第 1項記載のターボ機械駆動装置。. 前記自動停止中信号は、 前記イ ンバータが故障で停止中であるこ とを示す信号と前記イ ンバ一タが電源遮断されて停止中である こと を 示す信号を同一状態の信号と して含んでいることを特徵とする請求の 範囲第 5項記載のターボ機械駆動装置。 The four kinds of interlocking signals are a parallel start request for starting the inactive inverter, in which one of the inverters is in operation and the other is inactive. A signal and an output from the other inverter to the one inverter from the other inverter until the speed becomes a predetermined constant speed after the other inverter at rest, following the one inverter during operation, is activated. An automatic driving signal, a parallel constant speed state signal output from the other inverter to the one inverter when the other inverter is operating at a predetermined constant speed, Said one The method according to claim 1, wherein when one or both of the one or the other inverters is in a stopped state, the signal comprises an operation stop signal output from the stopped inverter to the other inverter. Item 7. A turbomachine driving device according to Item 1. The automatic stop signal includes a signal indicating that the inverter is stopped due to a failure and a signal indicating that the inverter is stopped due to power interruption as the same state signal. 6. The turbomachine driving device according to claim 5, wherein
. 前記イ ンバータは、 続いて並列起動した前記他方のイ ンバ一タが、 前記自動運転中信号を発信してから前記並列定速状態信号を発信する まで前記一方のィンバータによ り駆動される前記ターボ機械の吐出側 目標圧力を一定になるよ うに制御する変速運転する手段と、 前記他方 のイ ンバ一タが前記並列定速状態信号を発信したら 2台並列運転時の 吐出側目標圧力に沿って推定末端圧力一定制御になるよ うに前記ター ボ機械を変速運転する手段と、 前記他方のィ ンバータで駆動されるタ ーボ機械が定速運転で並列運転中に前記他方のィ ンバータで吐出側圧 力一定で変速運転している前記ターボ機械の回転数と負荷側の圧力に 基づき予め設定された並列解除条件を検出する手段と、 前記並列解除 条件を検出したとき前記他方のィンバークに前記自動停止中信号を出 力する手段とを備え、 前記他方のインバータは、 並列運転中に前記自 動停止中信号を受信したとき定速運転制御に代えて予め設定された 1 台運転時の吐出側目標圧力に沿つて推定末端圧力一定制御になるよ う に変速運転する手段を備えたことを特徴とする請求の範囲第 5項記載 のターボ機械駆動装置。 The inverter is driven by the one inverter until the other inverter, which is subsequently started in parallel, transmits the automatic operation in-operation signal and then transmits the parallel constant speed state signal. Means for performing a speed change operation for controlling the discharge side target pressure of the turbomachine so as to be constant; and, when the other inverter transmits the parallel constant speed state signal, the discharge side target pressure in the two-parallel operation at the time of the parallel operation. Means for speed-changing the turbomachine so that the estimated terminal pressure is controlled to be constant along with the other inverter, while the turbomachine driven by the other inverter is in parallel operation at constant speed operation. Means for detecting a preset parallel release condition based on the rotational speed of the turbomachine operating at a constant discharge side pressure and the pressure on the load side; and detecting the other parallel release condition when the parallel release condition is detected. Means for outputting the automatic stop signal during the parallel operation, wherein the other inverter is replaced with a preset one in place of the constant speed operation control when the automatic stop signal is received during the parallel operation. 6. The turbomachine driving device according to claim 5, further comprising: means for performing a speed change operation so that the estimated terminal pressure is controlled to be constant along the discharge-side target pressure during operation.
. 手動一切一自動のモー ドスィ ツチを 2台のイ ンバータの外部入力 端子に共通に接続しその入力端子をモー ド切替専用端子にする こ とに よ り 2台のインバ一タのモ一 ド状態を常に同一レベルに保つこ と を容 易に実現したことを特徴とする請求の範囲第 1項記載のターボ機械駆 動装置。 The mode of the two inverters can be set by connecting a manual and fully automatic mode switch to the external input terminals of the two inverters in common and making the input terminals dedicated to mode switching. It is important to keep the state at the same level 2. The turbomachine driving device according to claim 1, wherein the turbomachine driving device is easily realized.
9 . 前記センサが予め定めた始動状態を検出したときに前記 2台のィ ンバ一タの う ちどちらが優先的に先行して運転されるかを決める外部 入力端子を前記イ ンバータにそれぞれ設け該端子が短絡されたイ ンバ ータによ り駆動されるターボ機を優先機とするこ とを特徴とする請求 の範囲第 1 項記載のターボ機械駆動装置。  9. Each of the inverters is provided with an external input terminal for determining which of the two inverters is to be preferentially operated first when the sensor detects a predetermined starting state. The turbomachine driving device according to claim 1, wherein a turbomachine driven by an inverter whose terminals are short-circuited is set as a priority machine.
1 0 . 第 1 系統と第 2系によ り 2重系システムを構成してあることを 特徴とする請求の範囲第 1 項記載のターボ機械駆動装置。 10. The turbomachine drive device according to claim 1, wherein a double system is configured by the first system and the second system.
1 1 . 少なく と も 2台のターボ機械と、 前記ターボ機械を 1 台毎に駆 動する少なく と も 2台のイ ンバータ と、 前記ターボ機械の負荷状態を 検出し前記イ ンバ一タに共通にその検出信号を出力する複数のセンサ 一とを備え前記ターボ機械の制御を行う ものに於いて、 前記センサが 予め定めた始動状態を検出したときに予め優先機と して設定されたィ ンバ一タが始動し、 前記優先機が並列運転起動条件を検出したら該優 先機を駆動するイ ンバータから休止中のイ ンバータに起動要求をかけ て休止中のィンバータで駆動される次発機を起動させ、 前記優先機は 並列起動したィ ンバ一タによ り駆動される次発機が並列定速状態にな るまで 1 台運転時の吐出側最高目標圧力で吐出圧力一定制御になるよ うにイ ンバ一タで変速運転し、 前記優先機は並列起動した前記次発機 が並列定速状態運転になったら 2台並列運転時の吐出側目標圧力に沿 つて推定末端圧力一定制御になるよ う に変速運転し、 並列運転時に前 記センサの検出信号に基づいて並列解除条件を検出したら前記優先機 の運転を停止し且つ前記優先機を次発機と してまた前記次発機を先行 機と して設定し、 前記センサが予め定めた過少負荷状態を検出したら 前記先行機を停止させ且つ前記先行機と次発機の関係を入れ替えるこ とを特徴と したターボ機械駆動装置の制御方法。 1 1. At least two turbomachines, at least two inverters that drive the turbomachines one by one, and the load state of the turbomachines is detected and shared by the inverters. A plurality of sensors for outputting the detection signal to control the turbomachine, wherein when the sensor detects a predetermined starting state, an inverter set as a priority machine in advance is provided. When the priority machine detects the parallel operation start condition, the inverter that drives the priority machine issues a start request to the inactive inverter to start the next engine driven by the inactive inverter. When the priority unit is started, the discharge pressure constant control is performed at the discharge-side maximum target pressure during operation of one unit until the next engine driven by the parallel-started inverter reaches the parallel constant speed state. Speed change operation with an inverter When the next engine started in parallel enters parallel constant-speed operation, the priority unit performs speed-change operation so that the estimated terminal pressure is kept constant along the discharge-side target pressure during parallel operation. When the parallel release condition is detected based on the detection signal of the sensor, the operation of the priority unit is stopped, the priority unit is set as the next engine, and the next unit is set as the preceding unit, and the sensor is set. If the vehicle detects a predetermined underload condition, it is necessary to stop the preceding aircraft and replace the relationship between the preceding aircraft and the next engine. And a control method for a turbomachine driving device.
1 2 . 2台のターボ機械と、 前記ターボ機械を 1 台毎に駆動する 2台 のイ ンバータ と、 前記ターボ機械の負荷状態を検出 し前記イ ンバータ に共通にその検出信号を出力する複数のセンサーとを備え前記ターボ δ 機械の制御を行う ものに於いて、 2台中 1 台のイ ンバータのみが運転 され他方のィ ンバータが休止中である とき運転中のィ ンバータは先行 機に設定されており 、 先行機が並列運転起動条件を検出 したら該先行 機を駆動するイ ンバータから休止中のイ ンバ一タに起動要求をかけて 休止中のィンバータで駆動される次発機が起動され、 前記先行機は並0 列起動した前記次発機が並列定速状態になるまで 1 台運転時の吐出側 最高目標圧力で吐出圧力一定制御になるよ う に変速運転され、 前記先 行機は並列起動した前記次発機が並列定速状態運転になったら 2台並 列運転時の吐出側目標圧力に沿つて推定末端圧力一定制御になるよ う に変速運転され、 並列運転時に前記センサの検出信号に基づいて並列5 解除条件を検出したら前記先行機の運転が停止され且つ前記先行機と 次発機の関係が入れ替えられ、 前記センサが予め定めた過少負荷状態 を検出したら先行機に設定されているィ ンバ一タを停止させ且つ前記 先行機と次発機の関係が入れ替えられることを特徴と したターボ機械 駆動装置の制御方法。 12.2 Two turbomachines, two inverters that drive the turbomachines one by one, and a plurality of turbomachines that detect the load state of the turbomachines and output the detection signal to the inverters in common In the control of the turbo δ machine provided with a sensor, when only one of the two inverters is operated and the other inverter is inactive, the operating inverter is set to the preceding machine. When the preceding machine detects the parallel operation start condition, the inverter that drives the preceding machine issues a start request to the inactive inverter, and the next engine driven by the inactive inverter is started. The preceding machine is shifted so that the discharge pressure during single-unit operation is controlled to the discharge pressure constant control at the maximum target pressure until the next engine that starts in parallel runs at the parallel constant speed state. The next engine started When the parallel constant-speed operation is performed, the gears are shifted so that the estimated terminal pressure is controlled to be constant along the discharge-side target pressure in the parallel operation of two units, and the parallel operation is released based on the detection signal of the sensor during parallel operation. When the condition is detected, the operation of the preceding machine is stopped and the relationship between the preceding machine and the next engine is replaced.When the sensor detects a predetermined underload condition, the inverter set in the preceding machine is reset. A method for controlling a turbomachine driving device, characterized by stopping the operation and exchanging the relationship between the preceding machine and the next engine.
0 1 3 . 複数台のターボ機械と、 前記ターボ機械をそれぞれ駆動する 複数台のイ ンバータ と、 前記ターボ機械の負荷状態を検出する複数の センサ一とを備え前記ターボ機械の速度制御を行う ターボ機械駆動装 置において、 前記イ ンバ一タは互いに運転状態を示す複数種の取り 合 い信号によ り連結され、 前記複数のセンサ一の信号を前記複数台のィ5 ンバ一タが共通に取り 込み且つ前記複数台のィ ンバータが互いに前記 取り合い信号によ り少なく と も運転停止、 単独運転、 交互運転、 並列 運転を判断して前記ターボ機械の速度制御を行う ターボ機械駆動装置 0 1 3. Turbo machine for controlling the speed of the turbo machine, comprising a plurality of turbo machines, a plurality of inverters each for driving the turbo machine, and a plurality of sensors for detecting a load state of the turbo machine. In the mechanical drive device, the inverters are connected to each other by a plurality of types of connection signals indicating operating states, and the signals of the plurality of sensors are commonly used by the plurality of inverters. Intake and the plurality of inverters are stopped at least by one another, independent operation, alternate operation, parallel operation Turbomachine drive device for judging operation and controlling speed of the turbomachine
PCT/JP1996/000760 1996-01-31 1996-03-22 Turbomachinery driving apparatus and method of controlling the same WO1997028370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980705923A KR100290496B1 (en) 1996-01-31 1996-03-22 Turbomachinery driving apparatus and method of controlling the same
JP52747697A JP3758191B2 (en) 1996-01-31 1996-03-22 Turbomachine drive device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1501396 1996-01-31
JP8/15013 1996-01-31

Publications (1)

Publication Number Publication Date
WO1997028370A1 true WO1997028370A1 (en) 1997-08-07

Family

ID=11877004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000760 WO1997028370A1 (en) 1996-01-31 1996-03-22 Turbomachinery driving apparatus and method of controlling the same

Country Status (4)

Country Link
JP (2) JP3758191B2 (en)
KR (1) KR100290496B1 (en)
CN (1) CN1168899C (en)
WO (1) WO1997028370A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351267A (en) * 2004-05-10 2005-12-22 Ebara Corp Water supply device
JP2011017348A (en) * 2004-09-22 2011-01-27 Ebara Corp Water feed apparatus
CN103075319A (en) * 2011-10-25 2013-05-01 株式会社日立产机系统 Water supply device and operation method of the same
TWI727729B (en) * 2020-03-30 2021-05-11 普新氣體股份有限公司 Pressure control equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853954B2 (en) * 2002-09-24 2005-02-08 John K. Apostolides Methods and systems for collecting and processing data in association with machine operation and maintenance
JP5210147B2 (en) 2008-01-24 2013-06-12 株式会社荏原製作所 Water supply equipment
KR100900409B1 (en) 2009-01-30 2009-06-02 주식회사 두크 One-heatsink booster pump multi-inverter with change drive function using loss power estimation
CN103899559B (en) * 2012-12-27 2016-04-20 北京谊安医疗系统股份有限公司 A kind of high-performance respiratory machine Turbine controller
KR101408675B1 (en) 2014-03-20 2014-06-18 주식회사 두크 Booster pump system and its control method
CN104373158B (en) * 2014-05-30 2017-01-04 门冉 The control method of the Steam Turbine that a kind of boiler drives
US9937990B2 (en) 2014-08-01 2018-04-10 Circor Pumps North America, Llc Intelligent sea water cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115497A (en) * 1982-12-23 1984-07-03 Mitsubishi Heavy Ind Ltd Operation method of turbo blower
JPH01280698A (en) * 1988-05-07 1989-11-10 Taiheiyo Kiko Kk Indicating or controlling method for flow amount of pump using head characteristics and calibrating method of head characteristics
JPH0286974A (en) * 1988-09-22 1990-03-27 Nikoku Kikai Kogyo Kk Automatic alternate parallel operation system
JPH0828456A (en) * 1994-07-11 1996-01-30 Kawamoto Seisakusho:Kk Pump control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872475B2 (en) * 1992-02-20 1999-03-17 株式会社日立製作所 Water supply system
JP2933249B2 (en) * 1992-02-28 1999-08-09 株式会社日立製作所 Water supply device and its pump control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115497A (en) * 1982-12-23 1984-07-03 Mitsubishi Heavy Ind Ltd Operation method of turbo blower
JPH01280698A (en) * 1988-05-07 1989-11-10 Taiheiyo Kiko Kk Indicating or controlling method for flow amount of pump using head characteristics and calibrating method of head characteristics
JPH0286974A (en) * 1988-09-22 1990-03-27 Nikoku Kikai Kogyo Kk Automatic alternate parallel operation system
JPH0828456A (en) * 1994-07-11 1996-01-30 Kawamoto Seisakusho:Kk Pump control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351267A (en) * 2004-05-10 2005-12-22 Ebara Corp Water supply device
JP2011017348A (en) * 2004-09-22 2011-01-27 Ebara Corp Water feed apparatus
CN103075319A (en) * 2011-10-25 2013-05-01 株式会社日立产机系统 Water supply device and operation method of the same
CN103075319B (en) * 2011-10-25 2016-11-09 株式会社日立产机系统 Water supply installation and the method for operation of water supply installation
TWI727729B (en) * 2020-03-30 2021-05-11 普新氣體股份有限公司 Pressure control equipment

Also Published As

Publication number Publication date
KR100290496B1 (en) 2001-11-15
KR19990082198A (en) 1999-11-25
CN1215452A (en) 1999-04-28
JP3758191B2 (en) 2006-03-22
JP5286238B2 (en) 2013-09-11
JP2010065703A (en) 2010-03-25
CN1168899C (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JP5286238B2 (en) Water supply device and control method of water supply device
CN101925706B (en) Water supply
US6133716A (en) High-efficiency high-power uninterrupted power system
JP5499195B2 (en) Water supply equipment
JP2009197792A5 (en)
JP2006009805A (en) Turbomachinery driving device and its control method
JP2008202556A (en) N-multiplex system autonomous distributed control system for water supply system
CN101545493B (en) Autonomous decentralized water supply control system
JP2012506816A (en) Clutch compressor and steering assist pump assembly and method for controlling the assembly
JP4372866B2 (en) Multiple system water supply device and control method thereof
JP3367598B2 (en) Dual inverter
JP5094156B2 (en) Water supply equipment
JP3191576B2 (en) Pump control device
JP3225205B2 (en) Water supply system
JP4242102B2 (en) Variable speed pump controller
JP3005516B2 (en) Water supply system
JP2006153023A (en) Liquid supply device for waterline
JP3313529B2 (en) Water supply device
JP3005504B2 (en) Water supply system
JP3961932B2 (en) Water supply device
JPH05231331A (en) Controlling method for automatic water supply device
JP4693502B2 (en) Operation control system for refrigeration equipment
GB1575724A (en) High pressure water supply systems
JPS6128790A (en) Water supply device
JP2002195187A (en) Piping facility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96180230.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1019980705923

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019980705923

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980705923

Country of ref document: KR