WO1997025276A1 - Compound based on zinc, gallium and oxygen, preparation process and utilization - Google Patents

Compound based on zinc, gallium and oxygen, preparation process and utilization Download PDF

Info

Publication number
WO1997025276A1
WO1997025276A1 PCT/FR1996/002101 FR9602101W WO9725276A1 WO 1997025276 A1 WO1997025276 A1 WO 1997025276A1 FR 9602101 W FR9602101 W FR 9602101W WO 9725276 A1 WO9725276 A1 WO 9725276A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcination
mixture
gallium
zinc
compound
Prior art date
Application number
PCT/FR1996/002101
Other languages
French (fr)
Inventor
Denis Huguenin
Pierre Macaudiere
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to JP9524899A priority Critical patent/JPH11506413A/en
Publication of WO1997025276A1 publication Critical patent/WO1997025276A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)

Definitions

  • the present invention relates to a compound, more particularly a luminescent compound, based on zinc, gallium and oxygen, its preparation process and its use.
  • a compound more particularly a luminescent compound, based on zinc, gallium and oxygen, its preparation process and its use.
  • display devices in the electronics field using low energy electrons as an excitation source, ie of the order of 200 to 800V. This is the case with screens with field effect or fluorescent screens under vacuum.
  • low energy electrons will excite a phosphor material placed on the screen.
  • This phosphor material must have sufficient luminescence properties, it must emit effectively in the desired color. It must also have an electrical conductivity allowing it to evacuate the charges during its use.
  • Zinc gailates are already known as materials of this type.
  • these products have the drawback of requiring a certain time, which can be several minutes, to reach their maximum emission when they are subjected to electronic excitation.
  • the object of the invention is therefore to provide a product which is effective as soon as the excitation is applied.
  • the compound of the invention is based on zinc, gallium and oxygen, and it is characterized in that it has a spinel structure and in that it has an atomic ratio Ga / Zn d 'at least 2.5 and an X-ray spectrum in which the position of the lines on the axis 2 ⁇ is between those of the lines of the compositions Ga2 ⁇ 3 and ZnGa2 ⁇ 4.
  • the invention also relates to a luminescent compound based on zinc, gallium and oxygen and on a doping element, characterized in that it has a spinel structure and in that it has an atomic ratio Ga / Zn d 'at least 2.5 and an X-ray spectrum in which the position of the lines on the axis 2 ⁇ is between those of the lines of the compositions Ga2 ⁇ 3 and ZnGag ⁇ 4.
  • the invention also relates to a luminescent compound based on zinc, gallium and oxygen and a doping element, with a spinel structure, characterized in that it achieves, under electronic or photonic excitation, a steady state of luminescence in less than a second after the start of excitation.
  • the invention also relates to a compound based on zinc, gallium and oxygen and optionally a doping element, with a spinel structure, characterized in that it is capable of being obtained by a preparation process comprising the steps following:
  • a homogeneous mixture is prepared on the atomic scale of a zinc, gallium compound and optionally the dopant;
  • a first calcination is carried out in air of the mixture; - A second calcination of the product resulting from the first calcination is carried out, under a reducing atmosphere.
  • the invention also relates to the process for the preparation of the above-mentioned compounds, this process being as described above.
  • FIG. 1 is an RX spectrum of a compound according to the invention.
  • - Figure 2 is a curve of the emission intensity of a compound of the invention as a function of time when it is subjected to an excitation
  • - Figure 3 is an emission spectrum of a compound of the invention under photonic excitation.
  • the compound of the invention is based on zinc, gallium and oxygen and optionally a doping element.
  • the structure of this compound is of spinel type (AB2O4).
  • the compound of the invention has different characteristics.
  • this ratio has a Ga / Zn atomic ratio of at least 2.5. More particularly, this ratio can be between 2.5 and 4.
  • the compound of the invention has a specific structure which can be demonstrated by its X-ray spectrum.
  • the specific lines of the compound on the axis 2 ⁇ have a position which is located between the positions of the lines of the compositions Ga £ ⁇ 3 and ZnGa2 ⁇ 4- These latter compositions constitute the two limits marking the ends of the domain of existence of the solid solution of spinel structure.
  • the compound of the invention therefore appears as a solid solution of chemical elements or compounds in a phase of spinel structure.
  • the compound of the invention may further comprise a doping element.
  • the doping elements of this type of material are known. These are those which can confer luminescence properties on the compound or improve these properties.
  • Manganese is used more particularly.
  • the amount of dopant, expressed as oxide, can generally range up to 10% by weight of the compound. The minimum amount is preferably 0.001%. In the case of the use of manganese, the amount of manganese can more particularly be between 0.1 and 2% by weight.
  • the compound of the invention can also be characterized in that, when it is subjected to electronic or photonic excitation, it reaches its stationary state of luminescence in less than a second after the start of the excitation.
  • stationary state of luminescence is meant the fact that the material emits with an essentially constant emission intensity. According to an advantageous embodiment of the invention, this stationary state can be obtained in less than a hundredth of a second.
  • the deviation from the stoichiometry ZnGa2 ⁇ 4 of the Ga / Zn ratio of the compound of the invention can be demonstrated by X-ray diffraction which makes it possible to determine revolution of the parameter of the mesh.
  • the first step of the process of the invention consists in producing a homogeneous mixture on the atomic scale of a compound of zinc, gallium and, optionally of dopant.
  • homogeneous mixture on the atomic scale is meant that there is no difference in the chemical composition of the mixture thus obtained on the atomic scale. This can be demonstrated by measurement by the energy dispersive spectroscopy (EDS) mapping method using a transmission electron microscopy (TEM) microprobe.
  • EDS energy dispersive spectroscopy
  • TEM transmission electron microscopy
  • the intimate mixture of this type can be obtained by a chemical route, for example by coprecipitation or co-drying of salts of the constituent elements of the compositions of the invention (zinc, gallium and optionally doping).
  • salts the salts of inorganic acids such as nitrates, sulfates or chlorides can be chosen, nitrates being the preferred salts.
  • organic acids such as nitrates, sulfates or chlorides
  • the salts of organic acids and in particular the salts of saturated aliphatic carboxylic acids or the salts of hydroxycarboxylic acids.
  • the liquid medium in which the mixture is formed is water. Therefore, water-soluble salts are used more particularly.
  • a base is then added to the medium formed previously.
  • Hydroxide type products can be used in particular as a base. Mention may be made of alkali or alkaline-earth hydroxides. It is also possible to use ammonia and the secondary, tertiary or quaternary amines.
  • the operation is carried out under conditions such that the pH of the reaction medium is at most 8.
  • a precipitate or a suspension is obtained which can be separated from the reaction mixture by any known means.
  • the separated precipitate can optionally be washed with water. It is also possible to dry the precipitate at a temperature of about 100 ° C.
  • the mixture of salts of the constituent elements of the compound is formed in a liquid medium, as described above, then this mixture is dried.
  • This drying can be done by any known means. However, according to a preferred embodiment of the invention, this drying is carried out by atomization. that is to say by spraying the mixture in a hot atmosphere (spray-drying). This type of drying makes it possible to obtain products with a fine and tight particle size.
  • the atomization can be carried out by means of any sprayer known per se, for example by a spray nozzle of the sprinkler apple type or the like.
  • the temperature at the start of gas drying is usually between 200 and 300 ° C, that of the outlet can vary between 110 and 200 ° C.
  • the pressure can be for example between 2 and 3 bars.
  • the dried product can also be optionally washed with water.
  • Another method of preparing this mixture is freeze-drying.
  • the process then comprises two stages of calcination.
  • a first calcination is carried out in air of the mixture obtained previously. It will be noted here that it may be advantageous to carry out this first calcination in the presence of a flow.
  • suitable fluxes mention may in particular be made of lithium fluoride, lithium chloride, potassium chloride, ammonium chloride, boron oxide and ammonium phosphates.
  • the flux and the precipitate are intimately mixed before calcination, with a proportion of flux of approximately 1% by weight relative to the whole of the powder, for example.
  • a second calcination of the product resulting from the first calcination is then carried out, under a reducing atmosphere.
  • the reducing atmosphere can be hydrogen or a hydrogen / neutral gas mixture such as argon.
  • argon a hydrogen / neutral gas mixture
  • the mixture is prepared in such a way that it has a Ga / Zn atomic ratio of less than 2.5 or less than the desired value in the final compound which it is desired to prepare.
  • the calcination is carried out at a temperature which is lower than that which would be necessary, all the other conditions being identical elsewhere, in order to obtain the formation of a crystallized spinel phase.
  • a temperature will be chosen which will allow the appearance of a poorly crystallized or pre-crystallized spinel phase.
  • poorly crystallized or precrystallized is meant a product whose RX diffraction spectrum presents halos in place of the peaks of a perfectly crystallized product.
  • the temperature of this first calcination is at most 500 ° C. It is usually between 300 and 500 * 0.
  • the second calcination is then carried out at a temperature which is higher than that of the first calcination.
  • the temperature and the duration of this calcination are fixed so as to obtain the spinel phase in a well crystallized form.
  • the maximum temperature is that beyond which there is a risk of demixing and the appearance of parasitic phases. Usually this temperature is between 700 and 1000 * 0.
  • This second calcination makes it possible to remove the zinc from your composition obtained at the end of the first calcination.
  • the Ga / Zn ratio of the final compound can be varied and adjusted. Indeed, the increase in temperature as well as that of the ratio h ⁇ / Ar, that is to say the increase in the reducing nature of the atmosphere, in particular, makes it possible to vary the Ga / Zn ratio upwards.
  • the second embodiment of the invention relates to the case where the mixture is prepared in such a way that it has an atomic ratio Ga / Zn equal to the desired value in the final compound.
  • the first calcination is carried out at a higher temperature than that given for the previous embodiment and which may be equal to the temperature at which the second calcination is carried out. In this case, the temperature again remains below the demixing temperature.
  • the first calcination is carried out at two distinct temperatures, firstly at a relatively low temperature and secondly at a higher temperature.
  • the first temperature is chosen to be high enough to be able to remove traces of salts, for example nitrates, and it can for example be between 300 and 500 ° C.
  • the second temperature can be between 700 and 900 ° C.
  • the remainder of the process according to this second mode is ia calcination in a reducing atmosphere.
  • This calcination can take place at a temperature between 700 and 900 ⁇ C.
  • the compounds of the invention can be used as luminophores. They can be used in particular in low voltage luminescence, in particular in the manufacture of any device implementing this low voltage luminescence, such as for example screens with field effect. They can also be used in cathode ray tubes.
  • the invention also relates to luminescent devices, of the screen type with field effect for example, incorporating the compounds described above or as obtained by the methods described above.
  • the compounds are placed on the screens subjected to low energy excitation.
  • This implementation of phosphors in the manufacture of low-voltage luminescence devices is done according to well-known techniques, for example by deposition on screens by screen printing or electrophoresis.
  • the RX spectrum of the compounds of this example is given in FIG. 1.
  • the vertical lines designated by arrows are lines characteristic of ZnGa2 ⁇ 4-
  • the shift observed with respect to the lines of the compounds of the invention highlights the modification of the parameter of mesh.
  • the absence of a peak corresponding to the Ga2O3 phase proves that the products of the invention are in the form of a solid solution.
  • FIG. 2 is a curve of the emission intensity of the compounds of Example 1, obtained by subjecting them to photon excitation at 254nm.
  • the point E indicates on the time axis the beginning of the excitation. The figure shows that the stationary state is obtained practically immediately.
  • FIG. 3 gives the emission spectrum of the compounds of Example 1 under photonic excitation at 254nm and at room temperature. Luminescent products in green.
  • Dried as in Example 1. The product obtained was then calcined in air in the presence of UF at 300 ° C 3 hours and then at 900 ° C 3 hours. A second calcination is carried out at 875 * 0, the other conditions being the same as those of the second calcination of Example 1.
  • the emission intensity curve as a function of time of the product thus obtained is the same as that given in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

The invention relates to a compound, more particularly a luminescent compound, based on zinc, gallium and oxygen, its preparation process and its utilization as luminophore. The compound is characterized in that it has a spinelle structure and in that it has an atomic ratio Ga/Zn of at least 2.5 and an X ray spectrum within which the position of the spectral lines on the 2 υ axis is situated between the line positions of the compositions Ga2O3 and ZnGa2O4. Said compound is obtained by preparing an homogeneous mixture at the atomic scale of the compounds of zinc, gallium and optionally the dopant; by proceeding to a first calcination with the air of the mixture and by carrying out a second calcination of the product obtained from the first calcination in a reducing atmosphere.

Description

COMPOSE A BASE DE ZINC. DE GALLIUM ET D'OXYGENE. PROCEDE DE COMPOUND BASED ON ZINC. GALLIUM AND OXYGEN. PROCESS
PREPARATION ET UTILISATIONPREPARATION AND USE
RHONE-POULENC CHIMIERHONE-POULENC CHEMISTRY
La présente invention concerne un composé, plus particulièrement un composé luminescent, à base de zinc, de gallium et d'oxygène, son procédé de préparation et son utilisation. On sait qu'il existe dans ie domaine de l'électronique des dispositifs de visualisation utilisant comme source d'excitation des électrons à basse énergie, c'est à dire de l'ordre de 200 à 800V. C'est le cas des écrans avec effet de champ ou des écrans fluorescents sous vide. Dans ce type de matériel, des électrons de basse énergie vont exciter un matériau luminophore placé sur l'écran. Ce matériau luminophore doit présenter des propriétés de luminescence suffisantes, il doit émettre d'une manière efficace dans la couleur recherchée. Il doit posséder aussi une conductivtté électrique lui permettant d'évacuer les charges pendant son utilisation.The present invention relates to a compound, more particularly a luminescent compound, based on zinc, gallium and oxygen, its preparation process and its use. It is known that there are display devices in the electronics field using low energy electrons as an excitation source, ie of the order of 200 to 800V. This is the case with screens with field effect or fluorescent screens under vacuum. In this type of material, low energy electrons will excite a phosphor material placed on the screen. This phosphor material must have sufficient luminescence properties, it must emit effectively in the desired color. It must also have an electrical conductivity allowing it to evacuate the charges during its use.
On connaît déjà comme matériaux de ce type les gailates de zinc. Toutefois, ces produits ont pour inconvénient de nécessiter un certain temps, qui peut être de plusieurs minutes, pour atteindre leur maximum d'émission lorsqu'ils sont soumis à une excitation électronique. On retrouve ce même inconvénient à l'arrêt de l'excitation car on note alors, à ce moment, la persistance d'une émission résiduelle. Il s'agit là du problème de la remanence qu'il convient de résoudre lorsqu'on veut utiliser ces produits dans des écrans de visualisation.Zinc gailates are already known as materials of this type. However, these products have the drawback of requiring a certain time, which can be several minutes, to reach their maximum emission when they are subjected to electronic excitation. We find this same drawback when the excitation stops because we then note, at this time, the persistence of a residual emission. This is the problem of remanence that must be solved when we want to use these products in display screens.
L'objet de l'invention est donc de fournir un produit qui soit efficace dès l'application de l'excitation.The object of the invention is therefore to provide a product which is effective as soon as the excitation is applied.
Dans ce but, ie composé de l'invention est à base de zinc, de gallium et d'oxygène, et il est caractérisé en ce qu'il a une structure spinelle et en ce qu'il présente un rapport atomique Ga/Zn d'au moins 2,5 et un spectre de rayons X dans lequel la position des raies sur l'axe 2 θ se situe entre celles des raies des compositions Ga2θ3 et ZnGa2θ4.For this purpose, the compound of the invention is based on zinc, gallium and oxygen, and it is characterized in that it has a spinel structure and in that it has an atomic ratio Ga / Zn d 'at least 2.5 and an X-ray spectrum in which the position of the lines on the axis 2 θ is between those of the lines of the compositions Ga2θ3 and ZnGa2θ4.
L'invention concerne aussi un composé luminescent à base de zinc, de gallium et d'oxygène et d'un élément dopant, caractérisé en ce qu'il a une structure spinelle et en ce qu'il présente un rapport atomique Ga/Zn d'au moins 2,5 et un spectre de rayons X dans lequel ia position des raies sur l'axe 2 θ se situe entre celles des raies des compositions Ga2θ3 et ZnGagθ4.The invention also relates to a luminescent compound based on zinc, gallium and oxygen and on a doping element, characterized in that it has a spinel structure and in that it has an atomic ratio Ga / Zn d 'at least 2.5 and an X-ray spectrum in which the position of the lines on the axis 2 θ is between those of the lines of the compositions Ga2θ3 and ZnGagθ4.
L'invention concerne aussi un composé luminescent à base de zinc, de gallium et d'oxygène et d'un élément dopant, à structure spinelle, caractérisé en ce qu'il atteint, sous excitation électronique ou photonique, un état stationnaire de luminescence en moins d'une seconde après le début de l'excitation.The invention also relates to a luminescent compound based on zinc, gallium and oxygen and a doping element, with a spinel structure, characterized in that it achieves, under electronic or photonic excitation, a steady state of luminescence in less than a second after the start of excitation.
L'invention concerne encore un composé à base de zinc, de gallium et d'oxygène et éventuellement d'un élément dopant, à structure spinelle, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation comportant les étapes suivantes :The invention also relates to a compound based on zinc, gallium and oxygen and optionally a doping element, with a spinel structure, characterized in that it is capable of being obtained by a preparation process comprising the steps following:
• on prépare un mélange homogène à l'échelle atomique d'un composé de zinc, de gallium et éventuellement du dopant;• a homogeneous mixture is prepared on the atomic scale of a zinc, gallium compound and optionally the dopant;
- on effectue une première calcination sous air du mélange; - on effectue une seconde calcination du produit issu de la première calcination, sous atmosphère réductrice.- A first calcination is carried out in air of the mixture; - A second calcination of the product resulting from the first calcination is carried out, under a reducing atmosphere.
L'invention concerne aussi le procédé de préparation des composés précités, ce procédé étant tel que décrit ci-dessus.The invention also relates to the process for the preparation of the above-mentioned compounds, this process being as described above.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre et des dessins annexés dans lesquels :Other characteristics, details and advantages of the invention will appear even more completely on reading the description which follows and the appended drawings in which:
- la figure 1 est un spectre RX d'un composé selon l'invention;- Figure 1 is an RX spectrum of a compound according to the invention;
- la figure 2 est une courbe de l'intensité d'émission d'un composé de l'invention en fonction du temps lorsqu'il est soumis à une excitation; - la figure 3 est un spectre d'émission d'un composé de l'invention sous excitation photonique.- Figure 2 is a curve of the emission intensity of a compound of the invention as a function of time when it is subjected to an excitation; - Figure 3 is an emission spectrum of a compound of the invention under photonic excitation.
Comme indiqué plus haut, le composé de l'invention est à base de zinc, de gallium et d'oxygène et éventuellement d'un élément dopant.As indicated above, the compound of the invention is based on zinc, gallium and oxygen and optionally a doping element.
La structure de ce composé est de type spinelle (AB2O4). Le composé de l'invention présente différentes caractéristiques.The structure of this compound is of spinel type (AB2O4). The compound of the invention has different characteristics.
Il présente tout d'abord un rapport atomique Ga/Zn d'au moins 2,5. Plus particulièrement, ce rapport peut être compris entre 2,5 et 4.First, it has a Ga / Zn atomic ratio of at least 2.5. More particularly, this ratio can be between 2.5 and 4.
Le composé de l'invention possède une structure spécifique qui peut être mise en évidence par son spectre de rayons X. Les raies spécifiques du composé sur l'axe 2 θ ont une position qui est située entre les positions des raies des compositions Ga£θ3 et ZnGa2θ4- Ces dernières compositions constituent les deux limites marquant ies extrémités du domaine d'existence de ia solution solide de structure spinelle. Le composé de l'invention se présente donc comme une solution solide d'éléments ou de composés chimiques dans une phase de structure spinelle. Le composé de l'invention peut comprendre, en outre, un élément dopant. Les éléments dopants de ce type de matériaux sont connus. Il s'agit de ceux pouvant conférer au composé des propriétés de luminescence ou améliorer ces propriétés. On peut citer à titre d'exemple le lithium, les halogènes, le cadmium, le titane, le phosphore, le manganèse et les terres rares. Le manganèse est utilisé plus particulièrement. La quantité de dopant, exprimée en oxyde, peut aller généralement jusqu'à 10% en poids du composé. La quantité minimaie est de préférence de 0,001%. Dans le cas de l'utilisation du manganèse, la quantité de manganèse peut être plus particulièrement comprise entre 0,1 et 2% en poids.The compound of the invention has a specific structure which can be demonstrated by its X-ray spectrum. The specific lines of the compound on the axis 2 θ have a position which is located between the positions of the lines of the compositions Ga £ θ3 and ZnGa2θ4- These latter compositions constitute the two limits marking the ends of the domain of existence of the solid solution of spinel structure. The compound of the invention therefore appears as a solid solution of chemical elements or compounds in a phase of spinel structure. The compound of the invention may further comprise a doping element. The doping elements of this type of material are known. These are those which can confer luminescence properties on the compound or improve these properties. By way of example, mention may be made of lithium, halogens, cadmium, titanium, phosphorus, manganese and rare earths. Manganese is used more particularly. The amount of dopant, expressed as oxide, can generally range up to 10% by weight of the compound. The minimum amount is preferably 0.001%. In the case of the use of manganese, the amount of manganese can more particularly be between 0.1 and 2% by weight.
Le composé de l'invention peut aussi être caractérisé par le fait que, lorsqu'il est soumis à une excitation électronique ou photonique, il atteint son état stationnaire de luminescence en moins d'une seconde après le début de l'excitation. On entend par état stationnaire de luminescence le fait que le matériau émet avec une intensité d'émission pratiquement constante. Selon un mode de réalisation avantageux de l'invention, cet état stationnaire peut être obtenu en moins d'un centième de seconde.The compound of the invention can also be characterized in that, when it is subjected to electronic or photonic excitation, it reaches its stationary state of luminescence in less than a second after the start of the excitation. By stationary state of luminescence is meant the fact that the material emits with an essentially constant emission intensity. According to an advantageous embodiment of the invention, this stationary state can be obtained in less than a hundredth of a second.
Ce qui a été dit plus haut quant à la structure du composé et au rapport Ga/Zn s'applique aussi ici au composé tel qu'il vient d'être défini dans le paragraphe précédent.What has been said above with regard to the structure of the compound and to the Ga / Zn ratio also applies here to the compound as it has just been defined in the preceding paragraph.
L'écart par rapport à la stoechiométrie ZnGa2θ4 du rapport Ga/Zn du composé de l'invention peut être mis en évidence par la diffraction RX qui permet de déterminer révolution du paramètre de la maille.The deviation from the stoichiometry ZnGa2θ4 of the Ga / Zn ratio of the compound of the invention can be demonstrated by X-ray diffraction which makes it possible to determine revolution of the parameter of the mesh.
Le procédé de préparation du composé de l'invention va maintenant être décrit. On rappellera ici que l'invention s'applique aussi au composé susceptible d'être obtenu par le procédé qui va suivre. En conséquence, toute caractéristique donnée dans ia description du procédé peut être prise en compte pour la définition du composé de l'invention.The process for preparing the compound of the invention will now be described. It will be recalled here that the invention also applies to the compound capable of being obtained by the process which will follow. Consequently, any characteristic given in the description of the process can be taken into account for the definition of the compound of the invention.
La première étape du procédé de l'invention consiste à réaliser un mélange homogène à l'échelle atomique d'un composé de zinc, de gallium et, éventuellement de dopant. Par mélange homogène à l'échelle atomique, on entend qu'il n'y a pas de différence dans la composition chimique du mélange ainsi obtenu à l'échelle atomique. Cela peut être mis en évidence par une mesure par la méthode de cartographie par spectroscopie à dispersion d'énergie (EDS) en utilisant une microsonde de microscopie électronique à transmission (MET). Ainsi, dans un mélange homogène à l'échelle atomique, il n'y a pas de différence dans la composition chimique du mélange entre les zones de même surface prises en compte par cette méthode d'analyse.The first step of the process of the invention consists in producing a homogeneous mixture on the atomic scale of a compound of zinc, gallium and, optionally of dopant. By homogeneous mixture on the atomic scale is meant that there is no difference in the chemical composition of the mixture thus obtained on the atomic scale. This can be demonstrated by measurement by the energy dispersive spectroscopy (EDS) mapping method using a transmission electron microscopy (TEM) microprobe. Thus, in a homogeneous mixture on the atomic scale, there is no difference in the chemical composition of the mixture between the zones of the same surface taken into account by this method of analysis.
Le mélange intime de ce type peut être obtenu par une voie chimique, par exemple par coprécipitation ou coséchage de sels des éléments constitutifs des compositions de l'invention (zinc, gallium et éventuellement dopant). A titre de sels, on peut choisir les sels d'acides inorganiques comme les nitrates, les sulfates ou les chlorures, ies nitrates étant les sels préférés. On peut aussi utiliser les sels d'acides organiques et notamment les sels d'acides carboxyliques aliphatiques saturés ou les sels d'acides hydroxycarboxyliques. A titre d'exemples, on peut citer les formiates, acétates, propionates, oxalates ou les citrates.The intimate mixture of this type can be obtained by a chemical route, for example by coprecipitation or co-drying of salts of the constituent elements of the compositions of the invention (zinc, gallium and optionally doping). As salts, the salts of inorganic acids such as nitrates, sulfates or chlorides can be chosen, nitrates being the preferred salts. It is also possible to use the salts of organic acids and in particular the salts of saturated aliphatic carboxylic acids or the salts of hydroxycarboxylic acids. By way of examples, mention may be made of formates, acetates, propionates, oxalates or citrates.
Dans le cas d'une coprécipitation, on mélange tout d'abord en milieu liquide des sels de zinc, de gallium et éventuellement d'un dopant.In the case of coprecipitation, first of all, in a liquid medium, zinc salts, gallium salts and possibly a dopant are mixed.
Généralement le milieu liquide dans lequel on forme le mélange est l'eau. On utilise de ce fait plus particulièrement les sels solubles dans l'eau.Generally the liquid medium in which the mixture is formed is water. Therefore, water-soluble salts are used more particularly.
On ajoute ensuite une base au milieu formé précédemment.A base is then added to the medium formed previously.
On peut utiliser notamment comme base les produits du type hydroxyde. On peut citer ies hydroxydes d'alcaiins ou d'alcalino-terreux. On peut aussi utiliser l'ammoniaque et ies aminés secondaires, tertiaires ou quaternaires.Hydroxide type products can be used in particular as a base. Mention may be made of alkali or alkaline-earth hydroxides. It is also possible to use ammonia and the secondary, tertiary or quaternary amines.
De préférence, on opère dans des conditions telles que le pH du milieu reactionnel est d'au plus 8.Preferably, the operation is carried out under conditions such that the pH of the reaction medium is at most 8.
A l'issue de la réaction, on obtient un précipité ou une suspension qui peut être séparé du mélange reactionnel par tout moyen connu. Le précipité séparé peut être éventuellement lavé à l'eau. Il est aussi possible de sécher ie précipité à une température d'environ 100°C.At the end of the reaction, a precipitate or a suspension is obtained which can be separated from the reaction mixture by any known means. The separated precipitate can optionally be washed with water. It is also possible to dry the precipitate at a temperature of about 100 ° C.
Dans le cas d'un coséchage, on forme en milieu liquide ie mélange des sels des éléments constitutifs du composé, comme décrit précédemment, puis on sèche ce mélange.In the case of co-drying, the mixture of salts of the constituent elements of the compound is formed in a liquid medium, as described above, then this mixture is dried.
Ce séchage peut se faire par tout moyen connu. Toutefois, selon un mode de réalisation préféré de l'invention, ce séchage se fait par atomisation. c'est à dire par pulvérisation du mélange dans une atmosphère chaude (spray-drying). Ce type de séchage permet d'obtenir des produits à granulométrie fine et resserrée. L'atomisation peut être réalisée au moyen de tout pulvérisateur connu en soi, par exemple par une buse de pulvérisation du type pomme d'arrosoir ou autre. On peut également utiliser des atomiseurs dits à turbine. Sur les diverses techniques de pulvérisation susceptibles d'être mises en oeuvre dans le présent procédé, on pourra se référer notamment à l'ouvrage de base de MASTERS intitulé "SPRAY-DRYING" (deuxième édition, 1976, Editions Gerge Godwin - London).This drying can be done by any known means. However, according to a preferred embodiment of the invention, this drying is carried out by atomization. that is to say by spraying the mixture in a hot atmosphere (spray-drying). This type of drying makes it possible to obtain products with a fine and tight particle size. The atomization can be carried out by means of any sprayer known per se, for example by a spray nozzle of the sprinkler apple type or the like. One can also use so-called turbine atomizers. On the various spraying techniques likely to be used in the present process, reference may be made in particular to the basic work by MASTERS entitled "SPRAY-DRYING" (second edition, 1976, Editions Gerge Godwin - London).
A titre d'exemple, la température en début de séchage des gaz est habituellement comprise entre 200 et 300°C, celle de sortie peut varier entre 110 et 200°C. La pression peut être comprise par exemple entre 2 et 3 bars.For example, the temperature at the start of gas drying is usually between 200 and 300 ° C, that of the outlet can vary between 110 and 200 ° C. The pressure can be for example between 2 and 3 bars.
Le produit séché peut aussi être éventuellement lavé à l'eau. On peut aussi envisager de préparer le mélange de zinc, de gallium et éventuellement de dopant, par une évaporation à sec du mélange des sels en milieu liquide.The dried product can also be optionally washed with water. One can also consider preparing the mixture of zinc, gallium and optionally dopant, by dry evaporation of the mixture of salts in a liquid medium.
Une autre méthode de préparation de ce mélange est la lyophilisation. Le procédé comporte ensuite deux étapes de calcination. On effectue une première calcination sous air du mélange obtenu précédemment. On notera ici qu'il peut être avantageux de réaliser cette première calcination en présence d'un flux. A titre de flux convenables, on peut citer notamment le fluorure de lithium, le chlorure de lithium, le chlorure de potassium, le chlorure d'ammonium, l'oxyde de bore et les phosphates d'ammonium. On mélange intimement le flux et le précipité préalablement à la calcination, avec une proportion de flux d'environ 1% en poids par rapport à l'ensemble de la poudre, par exemple.Another method of preparing this mixture is freeze-drying. The process then comprises two stages of calcination. A first calcination is carried out in air of the mixture obtained previously. It will be noted here that it may be advantageous to carry out this first calcination in the presence of a flow. As suitable fluxes, mention may in particular be made of lithium fluoride, lithium chloride, potassium chloride, ammonium chloride, boron oxide and ammonium phosphates. The flux and the precipitate are intimately mixed before calcination, with a proportion of flux of approximately 1% by weight relative to the whole of the powder, for example.
On effectue ensuite une seconde calcination du produit issu de la première calcination, sous atmosphère réductrice. L'atmosphère réductrice peut être de l'hydrogène ou un mélange hydrogène/gaz neutre tel que l'argon. Généralement, on travaille à une pression équivalente à la pression atmosphérique.A second calcination of the product resulting from the first calcination is then carried out, under a reducing atmosphere. The reducing atmosphere can be hydrogen or a hydrogen / neutral gas mixture such as argon. Generally, we work at a pressure equivalent to atmospheric pressure.
Les conditions dans lesquelles on réalise ies calcinations peuvent varier selon différents modes de réalisation de l'invention. Ces modes dépendent de la valeur du rapport Ga/Zn dans le mélange qui a été préparé pour la calcination. Ce qui a été dit plus haut d'une manière générale sur les calcinations s'applique aussi aux modes de réalisation particuliers qui vont être décrits.The conditions under which the calcinations are carried out can vary according to different embodiments of the invention. These modes depend on the value of the Ga / Zn ratio in the mixture which has been prepared for calcination. What has been said above in general about calcinations also applies to the particular embodiments which will be described.
Selon un premier mode de réalisation, le mélange est préparé de telle manière qu'il présente un rapport atomique Ga/Zn inférieur à 2,5 ou inférieur à la valeur souhaitée dans le composé final que l'on désire préparer. Dans un tel cas, la calcination est conduite à une température qui est inférieure à celle qui serait nécessaire, toutes les autres conditions étant identiques par ailleurs, pour obtenir la formation d'une phase spinelle cristallisée. On choisira une température qui permettra d'obtenir l'apparition d'une phase spinelle mal cristallisée ou précristallisée. Par mal cristallisée ou précristallisée, on entend un produit dont le spectre de diffraction RX présente des halos à la place des pics d'un produit parfaitement cristallisé.According to a first embodiment, the mixture is prepared in such a way that it has a Ga / Zn atomic ratio of less than 2.5 or less than the desired value in the final compound which it is desired to prepare. In such a case, the calcination is carried out at a temperature which is lower than that which would be necessary, all the other conditions being identical elsewhere, in order to obtain the formation of a crystallized spinel phase. A temperature will be chosen which will allow the appearance of a poorly crystallized or pre-crystallized spinel phase. By poorly crystallized or precrystallized is meant a product whose RX diffraction spectrum presents halos in place of the peaks of a perfectly crystallized product.
Habituellement, ia température de cette première calcination est d'au plus 500°C. Elle est habituellement comprise entre 300 et 500*0.Usually, the temperature of this first calcination is at most 500 ° C. It is usually between 300 and 500 * 0.
On effectue ensuite ia seconde calcination à une température qui est supérieure à celle de la première calcination. La température et la durée de cette calcination sont fixées de manière à obtenir la phase spinelle sous une forme bien cristallisée. La température maximale est celle au delà de laquelle il y a risque de démixtion et d'apparition de phases parasites.Habituellement cette température est comprise entre 700 et 1000*0. Cette seconde calcination permet d'éliminer le zinc de ta composition obtenue à l'issue de la première calcination. En fonction des conditions de cette seconde calcination, on peut faire varier et ajuster le rapport Ga/Zn du composé final. En effet, l'augmentation de la température ainsi que celle du rapport h^/Ar, c'est à dire l'augmentation du caractère réducteur de l'atmosphère, notamment, permettent de faire varier vers le haut le rapport Ga/Zn.The second calcination is then carried out at a temperature which is higher than that of the first calcination. The temperature and the duration of this calcination are fixed so as to obtain the spinel phase in a well crystallized form. The maximum temperature is that beyond which there is a risk of demixing and the appearance of parasitic phases. Usually this temperature is between 700 and 1000 * 0. This second calcination makes it possible to remove the zinc from your composition obtained at the end of the first calcination. Depending on the conditions of this second calcination, the Ga / Zn ratio of the final compound can be varied and adjusted. Indeed, the increase in temperature as well as that of the ratio h ^ / Ar, that is to say the increase in the reducing nature of the atmosphere, in particular, makes it possible to vary the Ga / Zn ratio upwards.
Le second mode de réalisation de l'invention concerne le cas où le mélange est préparé de telle manière qu'il présente un rapport atomique Ga/Zn égal à la valeur désirée dans le composé final.The second embodiment of the invention relates to the case where the mixture is prepared in such a way that it has an atomic ratio Ga / Zn equal to the desired value in the final compound.
Dans ce cas, la première calcination se fait à une température plus élevée que celle donnée pour le mode de réalisation précédent et qui peut être égale à la température à laquelle on réalise la deuxième calcination. Dans ce cas, la température reste là encore inférieure à la température de démixtion. Selon une variante préférée, on effectue la première calcination à deux températures distinctes, dans un premier temps à une température relativement faible et dans un second temps à une température plus élevée. La première température est choisie suffisamment élevée pour pouvoir éliminer ies traces de sels, par exemple les nitrates et elle peut être comprise par exemple entre 300 et 500°C. La deuxième température peut être comprise entre 700 et 900°C.In this case, the first calcination is carried out at a higher temperature than that given for the previous embodiment and which may be equal to the temperature at which the second calcination is carried out. In this case, the temperature again remains below the demixing temperature. According to a preferred variant, the first calcination is carried out at two distinct temperatures, firstly at a relatively low temperature and secondly at a higher temperature. The first temperature is chosen to be high enough to be able to remove traces of salts, for example nitrates, and it can for example be between 300 and 500 ° C. The second temperature can be between 700 and 900 ° C.
La suite du procédé selon ce second mode est ia calcination en atmosphère réductrice. Cette calcination peut avoir lieu à une température comprise entre 700 et 900βC.The remainder of the process according to this second mode is ia calcination in a reducing atmosphere. This calcination can take place at a temperature between 700 and 900 β C.
Les composés de l'invention peuvent être utilisés comme luminophores. Ils peuvent être utilisés en particulier en luminescence basse tension, notamment dans la fabrication de tout dispositif mettant en oeuvre cette luminescence basse tension, comme par exemple les écrans avec effet de champ. Ils peuvent aussi être utilisés dans les tubes pour rayons cathodiques.The compounds of the invention can be used as luminophores. They can be used in particular in low voltage luminescence, in particular in the manufacture of any device implementing this low voltage luminescence, such as for example screens with field effect. They can also be used in cathode ray tubes.
Enfin, l'invention concerne aussi les dispositifs luminescents, du type écrans avec effet de champ par exemple, incorporant les composés décrits plus haut ou tels qu'obtenus par les procédés décrits ci-dessus. Dans ces dispositifs, ies composés sont disposés sur les écrans soumis à l'excitation de basse énergie. Cette mise en oeuvre des luminophores dans la fabrication des dispositifs à luminescence basse tension se fait selon des techniques bien connues par exemple par dépôts sur les écrans par sérigraphie ou électrophorèse.Finally, the invention also relates to luminescent devices, of the screen type with field effect for example, incorporating the compounds described above or as obtained by the methods described above. In these devices, the compounds are placed on the screens subjected to low energy excitation. This implementation of phosphors in the manufacture of low-voltage luminescence devices is done according to well-known techniques, for example by deposition on screens by screen printing or electrophoresis.
Des exemples vont maintenant être donnés.Examples will now be given.
Exemple 1Example 1
On mélange des nitrates de manganèse, de zinc et de gallium dans des proportions correspondant à [Ga]/lZn+Mn]->2 et [MnJ/[Zn+Mn}=0,005. La solution est ensuite atomisée sur un appareil Bûchi (température d'entrée : 250°C, température de sortie : 115°C) pour obtenir un produit sec. Ce dernier est ensuite calciné 3 heures sous air en présence de LiF (1 % en masse de mélange) à 500°C ce par quoi on étimine la majeure partie des nitrates. On effectue ensuite une seconde calcination de 3 heures sous atmosphère réductrice (Ar/H2). Le débit de gaz réducteur est de 321/h, le rapport H2/Ar est de 10% en volume. En fonction de la température de cette seconde calcination on obtient des produits présentant les rapports Ga/Zn donnés ci-dessous.Manganese, zinc and gallium nitrates are mixed in proportions corresponding to [Ga] / lZn + Mn] -> 2 and [MnJ / [Zn + Mn} = 0.005. The solution is then atomized on a Buchi device (inlet temperature: 250 ° C, outlet temperature: 115 ° C) to obtain a dry product. The latter is then calcined for 3 hours in air in the presence of LiF (1% by mass of mixture) at 500 ° C. whereby the most of the nitrates. A second calcination is then carried out for 3 hours under a reducing atmosphere (Ar / H2). The reducing gas flow rate is 321 / h, the H2 / Ar ratio is 10% by volume. Depending on the temperature of this second calcination, products with the Ga / Zn ratios given below are obtained.
Figure imgf000009_0001
Figure imgf000009_0001
Le spectre RX des composés de cet exemple est donné par la figure 1. Les raies verticales désignées par des flèches sont des raies caractéristiques de ZnGa2θ4- Le décalage observé par rapport aux raies des composés de l'invention met en évidence ia modification du paramètre de maille. Par ailleurs, l'absence de pic correspondant à la phase Ga2Û3 prouve que ies produits de l'invention se présentent sous forme d'une solution solide.The RX spectrum of the compounds of this example is given in FIG. 1. The vertical lines designated by arrows are lines characteristic of ZnGa2θ4- The shift observed with respect to the lines of the compounds of the invention highlights the modification of the parameter of mesh. Furthermore, the absence of a peak corresponding to the Ga2O3 phase proves that the products of the invention are in the form of a solid solution.
La figure 2 est une courbe de l'intensité d'émission des composés de l'exemple 1 , obtenue en soumettant ceux-ci à une excitation photonique à 254nm. Le point E indique sur l'axe du temps le début de l'excitation. La figure montre que l'état stationnaire est obtenu pratiquement immédiatement.FIG. 2 is a curve of the emission intensity of the compounds of Example 1, obtained by subjecting them to photon excitation at 254nm. The point E indicates on the time axis the beginning of the excitation. The figure shows that the stationary state is obtained practically immediately.
La figure 3 donne le spectre d'émission des composés de l'exemple 1 sous excitation photonique à 254nm et à température ambiante. Les produits luminescent dans ie vert.FIG. 3 gives the emission spectrum of the compounds of Example 1 under photonic excitation at 254nm and at room temperature. Luminescent products in green.
Exemple 2Example 2
On mélange des nitrates de manganèse, de zinc et de gallium dans des proportions correspondant à [Gal/lZn+Mn]=3 et [Mn]/IZn+Mn]=0,005. On sèche comme dans l'exemple 1. Le produit obtenu est ensuite calciné sous air en présence de UF à 300*C 3 heures puis à 900*C 3 heures. On effectue une seconde calcination à 875*0, les autres conditions étant les mêmes que celles de la seconde calcination de l'exemple 1.Manganese, zinc and gallium nitrates are mixed in proportions corresponding to [Gal / lZn + Mn] = 3 and [Mn] / IZn + Mn] = 0.005. Dried as in Example 1. The product obtained was then calcined in air in the presence of UF at 300 ° C 3 hours and then at 900 ° C 3 hours. A second calcination is carried out at 875 * 0, the other conditions being the same as those of the second calcination of Example 1.
Exemple 3 On mélange des nitrates de manganèse, de zinc et de gallium dans des proportions correspondant à [Ga]/[Zn+lvln]=3 et [Mnjy[Zn+MnJ=0,005. On ajoute ensuite une solution de soude sous agitation, ce par quoi on précipite un hydroxyde mixte. L'addition de soude est arrêtée dès l'obtention d'un pH de 8. Le précipité est ensuite filtré, lavé à l'eau pour éliminer le sodium puis séché à 100*0. Il est ensuite calciné comme dans l'exemple 2.EXAMPLE 3 Manganese, zinc and gallium nitrates are mixed in proportions corresponding to [Ga] / [Zn + lvln] = 3 and [Mnjy [Zn + MnJ = 0.005. A sodium hydroxide solution is then added with stirring, whereby a mixed hydroxide is precipitated. The addition of sodium hydroxide is stopped as soon as a pH of 8 is obtained. The precipitate is then filtered, washed with water to remove the sodium and then dried at 100 * 0. It is then calcined as in Example 2.
La courbe d'intensité d'émission en fonction du temps du produit ainsi obtenu est la même que celle donnée à l'exemple 1. The emission intensity curve as a function of time of the product thus obtained is the same as that given in Example 1.

Claims

REVENDICATIONS
1- Composé à base de zinc, de gallium et d'oxygène, caractérisé en ce qu'il a une structure spinelle et en ce qu'il présente un rapport atomique Ga/Zn d'au moins 2,5 et un spectre de rayons X dans lequel la position des raies sur l'axe 2 θ se situe entre celles des raies des compositions Ga2θ3 et ZnGa2θ4-1- Compound based on zinc, gallium and oxygen, characterized in that it has a spinel structure and in that it has an atomic ratio Ga / Zn of at least 2.5 and a spectrum of rays X in which the position of the lines on the axis 2 θ is between those of the lines of the compositions Ga2θ3 and ZnGa2θ4-
2- Composé luminescent à base de zinc, de gallium et d'oxygène et d'un élément dopant, caractérisé en ce qu'il a une structure spinelle et en ce qu'il présente un rapport atomique Ga/Zn d'au moins 2,5 et un spectre de rayons X dans lequel la position des raies sur l'axe 2 θ se situe entre celles des raies des compositions Ga2θ3 et ZnGa2θ4-2- Luminescent compound based on zinc, gallium and oxygen and a doping element, characterized in that it has a spinel structure and in that it has an Ga / Zn atomic ratio of at least 2 , 5 and an X-ray spectrum in which the position of the lines on the 2 l'axe axis is between those of the lines of the compositions Ga2θ3 and ZnGa2θ4-
3- Composé luminescent à base de zinc, de gallium et d'oxygène et d'un élément dopant, à structure spinelle, caractérisé en ce qu'il atteint, sous excitation électronique ou photonique, un état stationnaire de luminescence en moins d'une seconde après le début de l'excitation, plus particulièrement en moins d'un centième de seconde.3- Luminescent compound based on zinc, gallium and oxygen and a doping element, with spinel structure, characterized in that it reaches, under electronic or photonic excitation, a steady state of luminescence in less than one second after the start of excitement, more specifically in less than a hundredth of a second.
4- Composé luminescent selon la revendication 3, caractérisé en ce qu'il présente un rapport atomique Ga/Zn d'au moins 2,5.4- Luminescent compound according to claim 3, characterized in that it has a Ga / Zn atomic ratio of at least 2.5.
5- Composé à base de zinc, de gallium et d'oxygène et éventuellement d'un élément dopant, à structure spinelle, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation comportant les étapes suivantes : • on prépare un mélange homogène à l'échelle atomique d'un composé de zinc, de gallium et éventuellement du dopant;5- Compound based on zinc, gallium and oxygen and optionally a doping element, with a spinel structure, characterized in that it is capable of being obtained by a preparation process comprising the following steps: • prepares a homogeneous mixture on the atomic scale of a zinc, gallium compound and optionally the dopant;
- on effectue une première calcination sous air du mélange;- A first calcination is carried out in air of the mixture;
- on effectue une seconde calcination du produit issu de la première calcination, sous atmosphère réductrice.- A second calcination of the product resulting from the first calcination is carried out, under a reducing atmosphere.
6- Composé selon la revendication 5, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation dans lequel on prépare le mélange homogène précité en mélangeant en milieu liquide des sels de zinc, de gallium et éventuellement d'un dopant puis en séchant ledit mélange, notamment par atomisation.6- Compound according to claim 5, characterized in that it is capable of being obtained by a preparation process in which the above-mentioned homogeneous mixture is prepared by mixing zinc, gallium salts and optionally a doping and then drying said mixture, in particular by atomization.
7- Composé selon la revendication 5, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation dans lequel on prépare le mélange homogène précité en mélangeant en milieu liquide des sels de zinc, de gallium et éventuellement d'un dopant puis en ajoutant une base audit mélange pour précipiter ledit milieu.7- A compound according to claim 5, characterized in that it is capable of being obtained by a preparation process in which the homogeneous mixture is prepared above by mixing zinc, gallium and possibly a dopant in a liquid medium, then adding a base to said mixture to precipitate said medium.
8- Composé selon l'une des revendications 5 à 7, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation dans lequel on prépare un mélange présentant un rapport atomique Ga/Zn inférieur à 2,5 ou inférieur à la valeur désirée dans ledit composé, puis on effectue la première calcination sous air, à une température inférieure à la température de cristallisation de la phase spinelle et enfin, on effectue la seconde calcination sous atmosphère réductrice à une température supérieure à la température de ia première calcination.8- Compound according to one of claims 5 to 7, characterized in that it is capable of being obtained by a preparation process in which a mixture having a Ga / Zn atomic ratio of less than 2.5 or less is prepared at the desired value in said compound, then the first calcination is carried out in air, at a temperature below the crystallization temperature of the spinel phase and finally, the second calcination is carried out in a reducing atmosphere at a temperature above the temperature of ia first calcination.
9- Composé selon l'une des revendications 7 ou 8, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation dans lequel, avant la première calcination, le mélange est séché.9- Compound according to one of claims 7 or 8, characterized in that it is capable of being obtained by a preparation process in which, before the first calcination, the mixture is dried.
10- Composé selon l'une des revendications 5 à 9, caractérisé en ce qu'il est susceptible d'être obtenu par un procédé de préparation dans lequel on effectue la première calcination en présence d'un flux.10- Compound according to one of claims 5 to 9, characterized in that it is capable of being obtained by a preparation process in which the first calcination is carried out in the presence of a flux.
11- Composé selon l'une des revendications 2 à 10, caractérisé en ce que l'élément dopant est ie manganèse.11- Compound according to one of claims 2 to 10, characterized in that the doping element is ie manganese.
12- Procédé de préparation d'un composé selon l'une des revendications 1 à 4 ou 11 , caractérisé en ce qu'il comporte les étapes suivantes : • on prépare un précurseur par mélange intime des sels de zinc, de gallium et éventuellement du dopant;12- Process for the preparation of a compound according to one of claims 1 to 4 or 11, characterized in that it comprises the following steps: • a precursor is prepared by intimate mixing of the zinc, gallium salts and optionally doping;
- on effectue une première calcination sous air du mélange;- A first calcination is carried out in air of the mixture;
• on effectue une seconde calcination du produit issu de ia première calcination, sous atmosphère réductrice.• a second calcination of the product resulting from the first calcination is carried out, under a reducing atmosphere.
13- Procédé selon ia revendication 12, caractérisé en ce qu'on prépare le mélange précité en mélangeant en milieu liquide des sels de zinc, de gallium et éventuellement d'un dopant puis en séchant ledit mélange, notamment par atomisation.13- A method according to ia claim 12, characterized in that the above mixture is prepared by mixing in a liquid medium zinc salts, gallium and optionally a dopant and then drying said mixture, in particular by atomization.
14- Procédé selon la revendication 12, caractérisé en ce qu'on prépare ie mélange précité en mélangeant en milieu liquide des sels de zinc, de gallium et éventuellement d'un dopant puis en ajoutant une base audit mélange pour précipiter ledit milieu. 15- Procédé selon l'une des revendications 12 à 14, caractérisé en ce qu'on prépare un mélange présentant un rapport atomique Ga/Zn inférieur à 2,5 ou inférieur à la valeur désirée dans le composé que l'on cherche à préparer, puis on effectue la première calcination sous air, à une température inférieure à la température de cristallisation de la phase spinelle et enfin, on effectue la seconde calcination sous atmosphère réductrice à une température supérieure à la température de la première calcination.14- A method according to claim 12, characterized in that the aforementioned mixture is prepared by mixing in a liquid medium zinc salts, gallium and optionally a dopant and then adding a base to said mixture to precipitate said medium. 15- Method according to one of claims 12 to 14, characterized in that one prepares a mixture having an atomic ratio Ga / Zn less than 2.5 or less than the desired value in the compound which one seeks to prepare , then the first calcination is carried out in air, at a temperature lower than the crystallization temperature of the spinel phase and finally, the second calcination is carried out under a reducing atmosphere at a temperature higher than the temperature of the first calcination.
16- Procédé seion l'une des revendications 14 ou 15, caractérisé en ce qu'avant la première calcination, le mélange est séché.16- Method according to one of claims 14 or 15, characterized in that before the first calcination, the mixture is dried.
17- Procédé selon l'une des revendications 12 à 16, caractérisé en ce qu'on effectue la première calcination en présence d'un flux.17- Method according to one of claims 12 to 16, characterized in that the first calcination is carried out in the presence of a flow.
18- Utilisation à titre de luminophore d'un composé seion l'une des revendications 1 à 11.18- Use as a phosphor of a compound according to one of claims 1 to 11.
19- Utilisation à titre de luminophore dans la fabrication de dispositifs mettant en oeuvre une luminescence basse tension d'un composé selon l'une des revendications 1 à 11. 19- Use as a phosphor in the manufacture of devices using low voltage luminescence of a compound according to one of claims 1 to 11.
PCT/FR1996/002101 1996-01-03 1996-12-30 Compound based on zinc, gallium and oxygen, preparation process and utilization WO1997025276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9524899A JPH11506413A (en) 1996-01-03 1996-12-30 Zinc, gallium and oxygen based compounds, methods of preparation and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/00017 1996-01-03
FR9600017A FR2743062A1 (en) 1996-01-03 1996-01-03 ZINC, GALLIUM AND OXYGEN BASED COMPOUND, PROCESS FOR PREPARATION AND USE

Publications (1)

Publication Number Publication Date
WO1997025276A1 true WO1997025276A1 (en) 1997-07-17

Family

ID=9487869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/002101 WO1997025276A1 (en) 1996-01-03 1996-12-30 Compound based on zinc, gallium and oxygen, preparation process and utilization

Country Status (3)

Country Link
JP (1) JPH11506413A (en)
FR (1) FR2743062A1 (en)
WO (1) WO1997025276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540941B2 (en) 2000-09-28 2003-04-01 Electronics And Telecommunications Research Institute Green phosphor for fluorescent display and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2016743A1 (en) * 1969-04-23 1972-02-24 Philips Nv Luminescent screen
JPS63135481A (en) * 1986-11-28 1988-06-07 Futaba Corp Phosphor excited with electron beam
SU1753308A1 (en) * 1990-08-03 1992-08-07 Московский химико-технологический институт им.Д.И.Менделеева Material for temperature fiber-optic pickups
FR2705968A1 (en) * 1993-05-31 1994-12-09 Futaba Denshi Kogyo Kk Fluorescent substance of luminous blue colour, excited by low-speed electrons
JPH07149519A (en) * 1991-12-24 1995-06-13 Kawaken Fine Chem Co Ltd Production of spinel-type double oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2016743A1 (en) * 1969-04-23 1972-02-24 Philips Nv Luminescent screen
JPS63135481A (en) * 1986-11-28 1988-06-07 Futaba Corp Phosphor excited with electron beam
SU1753308A1 (en) * 1990-08-03 1992-08-07 Московский химико-технологический институт им.Д.И.Менделеева Material for temperature fiber-optic pickups
JPH07149519A (en) * 1991-12-24 1995-06-13 Kawaken Fine Chem Co Ltd Production of spinel-type double oxide
FR2705968A1 (en) * 1993-05-31 1994-12-09 Futaba Denshi Kogyo Kk Fluorescent substance of luminous blue colour, excited by low-speed electrons

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9332, Derwent World Patents Index; Class L03, AN 93-256693, XP002012752 *
DATABASE WPI Section Ch Week 9532, Derwent World Patents Index; Class E19, AN 95-243517, XP002012751 *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 391 (C - 537)<3238> 18 October 1988 (1988-10-18) *
SHEA L E ET AL: "LOW VOLTAGE CATHODOLUMINESCENCE OF MN2+-ACTIVATED ZNGA2O4", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 141, no. 8, 1 August 1994 (1994-08-01), pages 2198 - 2200, XP000471073 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540941B2 (en) 2000-09-28 2003-04-01 Electronics And Telecommunications Research Institute Green phosphor for fluorescent display and method of manufacturing the same

Also Published As

Publication number Publication date
FR2743062A1 (en) 1997-07-04
JPH11506413A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
EP2297384B1 (en) Method of preparing luminescent nanocrystals
CN109796976B (en) Copper-doped red-light perovskite quantum dot and preparation method thereof
FR2755122A1 (en) COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE
EP0498689B1 (en) Mixed lanthanum terbium and cerium phosphate, process for its preparation
FR2745584A1 (en) New electron-excited gallium nitride-based phosphor
EP1399525B1 (en) Compound based on an alkaline-earth, sulphur and aluminium, gallium or indium, method for preparing same and use thereof as luminophore
EP0751201B1 (en) Use as phosphor of a rare earth phosphate compound for plasma systems
CN111057542A (en) Method for preparing CsPbX by room-temperature water emulsion method3Method for perovskite quantum dots
WO1997025276A1 (en) Compound based on zinc, gallium and oxygen, preparation process and utilization
Kang et al. Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD
CN101068890B (en) Group III nitride coatings and methods
Ronot‐Limousin et al. Cerium Concentration and Temperature Dependence of the Luminescence of SrGa2 S 4: Ce, Na, a Blue‐Emitting Material for Electroluminescent and High Current Density Cathodoluminescent Displays
US7772288B2 (en) Group III nitride coatings and methods
Zavyalova et al. ZnS: Mn electroluminescent films prepared from chelate metal organic compounds
FR2747686A1 (en) New doped gallium-indium nitride fluorescent material
US20030057821A1 (en) Nanoparticle phosphor
EP0690116A1 (en) Rare earth oxysulfide, process for its manufacturing and its use as phosphor
Zhao et al. The effect of Al and B on the luminescent property of porous silicon
CN109385272B (en) Gallium sulfide quantum dot material and preparation method thereof
García‐Hipólito et al. Characterization of ZnAl2O4: Tb luminescent films deposited by ultrasonic spray pyrolysis technique
TWI755125B (en) Preparation of high-quality all-inorganic perovskite quantum dot emitters and their applied light-emitting diodes
FR2782229A1 (en) LUMINOPHORE AND METHOD FOR PRODUCING THE SAME
EP1242309A2 (en) Method for producing rare earth borates and use of the resulting borates in luminescence
Nakajima et al. Rubidium metavanadate formation at room temperature under vacuum ultraviolet irradiation from metal-organic compositions
FR2466497A1 (en) Luminophores for colour TV screens or other visual display appts. - esp. using zinc sulphide activated by oxysulphide contg. yttrium plus europium, terbium or thulium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 524899

Kind code of ref document: A

Format of ref document f/p: F