WO1997019326A1 - Ultraschall-durchflussmessverfahren - Google Patents
Ultraschall-durchflussmessverfahren Download PDFInfo
- Publication number
- WO1997019326A1 WO1997019326A1 PCT/EP1996/005082 EP9605082W WO9719326A1 WO 1997019326 A1 WO1997019326 A1 WO 1997019326A1 EP 9605082 W EP9605082 W EP 9605082W WO 9719326 A1 WO9719326 A1 WO 9719326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- reynolds number
- profile
- determined
- medium
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
- G01F1/668—Compensating or correcting for variations in velocity of sound
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F7/00—Volume-flow measuring devices with two or more measuring ranges; Compound meters
Definitions
- the known methods and devices for the ultrasonic flow measurement of the average speed or flow rate of a flowing medium use a large number of measurement paths which form the bases of a numerical integration method which is as optimal as possible.
- the integration method is usually determined by the dimension or geometry of the measuring path and the measuring tube.
- various classic optimal integration methods for example from Tschebycheff, Gauß or Taylor, which, for. B. are published in the published documents CH-A-610 038, DE-A-30 38 213 and EP-A-0 125 845. With regard to their accuracy, the methods and devices known from these published documents are dependent on the viscosity of the medium and thus on the Reynolds number. To this fact z. B.
- Fig. 2 a) - f) is a flow chart with explanatory representations of the sequence of a
- FIG. 6 shows a block diagram of an exemplary embodiment for a flow profile corrector
- FIG. 7 shows a block diagram of an exemplary embodiment of a Reynolds number meter
- the measuring paths that are less dependent on the Reynolds number are those at a distance of half a radius of the measuring tube from the wall of the measuring tube.
- the measuring paths, which are more dependent on the Reynolds number are, for example, in the middle or close to the walls of the measuring tube. In the latter measurement paths, the flow profile has a maximum influence on the Reynolds number.
- the device according to the invention can also work with more or with less than five measuring paths, of which, however, there must be at least one measuring path which is relatively little dependent on the Reynolds number.
- the velocities of the flowing medium measured on the measurement paths are preferably used to determine the Reynolds number.
- Reynolds numbers e.g. B. base rend to determine the measurement of ultrasonic damping.
- the value of the Reynolds number determined from this is then used to correct the flow rate on the basis of the error curve.
- a value for the volume can also be determined from the average speed and the flow rate.
- V w and V m are the flow rates of water and a second medium.
- ⁇ ⁇ and ⁇ m are the kinematic viscosities of water and the medium, while D is the diameter of the measuring tube 1.
- the calibration profile matrix has five measurement paths
- ⁇ Vp is the corresponding average speed or flow rate per measuring tube cross-section for the calibration flow profile
- Vlb ... V5b are the speeds along the corresponding measurement paths in the operating flow profile
- ⁇ Vb is the corresponding average speed or flow rate per measuring tube cross-section in the operating flow profile
- GI ⁇ GI, ... G5 are the weighting factors of the measuring paths.
- the flow rates in the measuring tube are artificially adjusted in a uniform area, that is to say with Reynolds numbers greater than 100,000, in accordance with the flow rates when recording the calibration flow profile - for example with the aid of a mobile, calibrated flow rate generator.
- a uniform area that is to say with Reynolds numbers greater than 100,000
- Equation 3 is converted into the following form:
- Equation 3a ⁇ is an integulation factor for correcting the fact that the same flow rates cannot generally be set. Equation 3a is equivalent to
- ⁇ Vbgec are the correspondingly corrected average speeds or flow rates per cross-sectional area of the measuring tube in the measuring tube at the current flow profile.
- Equation 6 in the form shown applies only to media which behave linearly over the range from 10% to 100% of the nominal flow rate.
- the corrections of the velocities of the medium along the measurement paths are made with the help of the associated coefficients from the calibration profile matrix and the operating profile matrix, e.g. B. Vlp50% / V l bso% for a speed of the flowing medium on the measuring path M l of V lb50%.
- the coefficients ßj, ß2 ... ß5 - cf. also equation 3a.
- the correction coefficients are also integrated between the only discretely known values.
- the relative error of the average speeds or flow rates can be calculated using the following equation:
- the processing using the profile matrices mentioned proceeds as follows. First, the speeds of the medium on the measuring paths and the associated average speeds or flow rates were measured with an undisturbed calibration flow profile and then with an operating flow profile using a calibration. Then the relationship between the average velocities or flow rates during the recording of the calibration flow profiles and the operating flow profiles is recorded. The currently measured speeds of the medium along the measurement paths are then changed in the current flow profile in accordance with this ratio. The ratios of the velocities of the medium along the measuring paths in the calibration flow profile and the deviating velocities of the medium along the measuring paths in the operating flow profile are then formed and the corresponding velocities of the medium along the measuring paths in the current flow profile are multiplied by these ratios. This correction is of course, if necessary, carried out with an interpolation.
- the Reynolds number can be determined on the basis of this flow profile.
- ⁇ V ⁇ V
- hydrodynamic equation 8 For large Reynolds numbers, the hydrostatic basis vector equation follows from the hydrodynamic equation 8:
- a calibration profile for the device for carrying out the ultrasonic flow measuring method according to the invention can be stored in dimensionless form with compensation for tolerances (cf. FIG. 2a).
- the speeds on the measuring paths and the average speed that is to say the flow rate per cross-sectional area of the measuring tube.
- the dimensionless operating profile matrix is shown in Fig. 2b.
- the Reynolds number is determined in the zero approximation Ren using equations to be explained.
- the speeds on the measurement paths which can also be represented as functions in analytical form, are determined from the calibration flow profiles using equation 10 for a matching Reynolds number of the calibration Rep (cf. FIG. 2c).
- the average speed Vpgem is determined simultaneously from these speeds on the measurement paths. This profile is then compared with the current flow profile (see FIG.
- the Reynolds number can therefore be determined both on the basis of speed ratios (case a) of the speeds on the measurement paths and on the basis of the speed differences (case b) of the speeds on the measurement paths both for flow profiles with a turbulent character and for flow profiles with a laminar character .
- R A- «V 2 + V 4 ) - (V, + V,) / 2) 2 + ß 3 ((V 2 + V 4 ) - (V, + V,)) / 2 + C, ( GI. 22)
- the current flow profile is checked in particular for deviations from the calibration flow profiles or asymmetries.
- This check takes place with the aid of a profile knife 7 and a profile corrector 9, connected between the converter 2 and the adder 3. These are explained below with reference to FIGS. 5 and 6.
- the profile knife 7 compares the speeds on the measuring paths and, in the event of profile deviations or a defective sensor, emits a special signal from its output 23 to the profile corrector 9 and to an alarm device 8.
- the switch 11 is in position a when the device according to the invention for carrying out an ultrasonic flow measurement method for flowing media is calibrated with an undisturbed reference flow profile.
- the calibration profile matrix ⁇ EPM ⁇ is stored in the calibration flow profile memory 12 (cf. also equation 1).
- the flow rate in the line connected to the device according to the invention is initially set to the maximum possible flow rate during operation.
- the switch 11 is in position b in this case.
- the operating profile matrix ⁇ BPM ⁇ is stored in an operating profile memory 13 (cf. also equation 2).
- a profile comparator 14 determines the profile determinant
- the values for the velocities at the output of the profile knife 7 are also supplied to the Reynolds number meter 5 in addition to the adder 3 (cf. also FIGS. 7 and 8).
- a turbulent laminar switch 16 located in this Reynolds number meter 5 operates based on equations 13 and 14 or 18 and 19. This turbulent laminar switch 16 is connected to a laminar flow meter 17, a turbulent flow meter 18 and a transition Flow meter 19, these flow meters 17, 18 and 19 working based on equations 15, 16 and 17 or 20, 21 and 22.
- the values for the Reynolds number at the outputs of these flow meters 17, 18 and 19 are then fed to an operational output amplifier 20.
- FIGS. 9a to 9d graphically illustrate the relationships on which the functioning of the Reynolds number meter 5 is based.
- 9a shows a graphical representation of the ratio (V2 + V4) / V3 as a function of the Reynolds number, which is plotted in millions, on the course of which the effect of the turbulent-laminar switch 16 is based.
- 9b shows a graphical representation of the Reynolds number as a function of the ratio (V2 + V4) / V3, on the course of which the mode of operation of the laminar flow meter 17 is based.
- 9b experimental data as well as theoretical data are plotted.
- the viscosity value present at the outlet of the viscosity meter 10 is passed on to the display device 4 on the one hand and to a medium identifier 24 on the other hand.
- the medium ultrasound speed determined by the transducer 2 and / or the ultrasound damping of the medium are also available to this medium identifier 24.
- the medium identifier 24 determines the type of medium, e.g. B. the petroleum type, by comparing with data stored for known media.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Nozzles (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002209789A CA2209789C (en) | 1995-11-22 | 1996-11-18 | Process and apparatus for ultrasound flow rate measurement |
DK96939839T DK0804717T3 (da) | 1995-11-22 | 1996-11-18 | Fremgangsmåde til gennemstrømningsmåling med ultralyd |
JP51938297A JP3478833B2 (ja) | 1995-11-22 | 1996-11-18 | 超音波流量測定方法 |
AU76931/96A AU7693196A (en) | 1995-11-22 | 1996-11-18 | Ultrasound flow measurement method |
EP96939839A EP0804717B1 (de) | 1995-11-22 | 1996-11-18 | Ultraschall-durchflussmessverfahren |
US08/836,016 US5987997A (en) | 1995-11-22 | 1996-11-18 | Ultrasound flow measurement method |
DE59609187T DE59609187D1 (de) | 1995-11-22 | 1996-11-18 | Ultraschall-durchflussmessverfahren |
NO19973364A NO326813B1 (no) | 1995-11-22 | 1997-07-21 | Fremgangsmate og anordning for med ultralyd a male et strommende mediums stromningsrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1001719 | 1995-11-22 | ||
NL1001719A NL1001719C2 (nl) | 1995-11-22 | 1995-11-22 | Werkwijze en inrichting voor de ultrasone meting van de snelheid en doorstroomhoeveelheid van een medium in een buisleiding. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997019326A1 true WO1997019326A1 (de) | 1997-05-29 |
Family
ID=19761898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/005082 WO1997019326A1 (de) | 1995-11-22 | 1996-11-18 | Ultraschall-durchflussmessverfahren |
Country Status (10)
Country | Link |
---|---|
US (1) | US5987997A (de) |
EP (1) | EP0804717B1 (de) |
JP (2) | JP3478833B2 (de) |
AU (1) | AU7693196A (de) |
CA (1) | CA2209789C (de) |
DE (1) | DE59609187D1 (de) |
DK (1) | DK0804717T3 (de) |
NL (1) | NL1001719C2 (de) |
NO (1) | NO326813B1 (de) |
WO (1) | WO1997019326A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0875737A1 (de) * | 1997-04-29 | 1998-11-04 | Krohne AG | Ultraschall-Durchflussmessverfahren |
WO2013017447A1 (de) * | 2011-08-03 | 2013-02-07 | Endress+Hauser Flowtec Ag | Verfahren zum ermitteln des durchflusses mittels ultraschall |
WO2016127601A1 (zh) * | 2015-02-13 | 2016-08-18 | 广东奥迪威传感科技股份有限公司 | 超声波测量系统及其测量方法 |
EP3418697A1 (de) * | 2017-06-23 | 2018-12-26 | Flexim Flexible Industriemesstechnik Gmbh | Vorrichtung und verfahren zur ultraschall-durchflussmessung |
DE102019133391A1 (de) * | 2019-12-06 | 2021-06-10 | Endress+Hauser SE+Co. KG | Verfahren zur Bestimmung und/oder Überwachung zumindest einer rheologischen Eigenschaft eines Mediums |
WO2024126384A1 (de) * | 2022-12-15 | 2024-06-20 | Endress+Hauser Flowtec Ag | Verfahren zur korrektur von durchflussmesswerten bei einem ultraschall-durchflussmessgerät und ein solches ultraschall-durchflussmessgerät |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161915A1 (de) * | 2000-12-27 | 2002-08-29 | Surpass Industry Co | Durchflußleistung-Meßverfahren, Ultraschall-Durchflußleistungsmesser, Strömungsgeschwindigkeit-Meßverfahren, Temperatur- oder Druck-Meßverfahren, Ultraschall-Thermometer und Ultraschall-Drucksensor |
FR2827050B1 (fr) * | 2001-07-06 | 2005-02-11 | Univ Paris 7 Denis Diderot | Tomographe ultrasonore, systeme et procede de mesure tomographique ultrasonore au moyen d'un tel tomographe |
DE10158947A1 (de) * | 2001-12-03 | 2003-06-12 | Sick Ag | Vorrichtung zum Messen der Strömungsgeschwindigkeit und/oder des Durchflusses eines Fluids |
DE102005018396A1 (de) * | 2005-04-20 | 2006-10-26 | Endress + Hauser Flowtec Ag | Verfahren zur Bestimmung des Volumen- oder Massedurchflusses eines Mediums |
US7152490B1 (en) | 2005-08-15 | 2006-12-26 | Daniel Measurement And Control, Inc. | Methods for determining transducer delay time and transducer separation in ultrasonic flow meters |
DE102005047790A1 (de) * | 2005-10-05 | 2007-04-12 | Endress + Hauser Flowtec Ag | Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung |
US7299140B2 (en) * | 2005-12-14 | 2007-11-20 | Thermo Fisher Scientific Inc. | Method and system for multi-path ultrasonic flow measurement of partially developed flow profiles |
US7523676B2 (en) * | 2006-12-07 | 2009-04-28 | General Electric Company | Ultrasonic flow rate measurement method and system |
EP2072972B1 (de) * | 2007-12-21 | 2016-04-13 | SICK Engineering GmbH | Vorrichtung zum Messen der Bewegung eines Fluids in einem Rohr |
JP5282955B2 (ja) * | 2008-12-10 | 2013-09-04 | 本多電子株式会社 | 超音波流量計の補正方法、及び超音波流量計 |
DE102008055165A1 (de) | 2008-12-29 | 2010-07-01 | Endress + Hauser Flowtec Ag | Messrohr eines Messsystems zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall |
DE102008055164A1 (de) | 2008-12-29 | 2010-07-01 | Endress + Hauser Flowtec Ag | Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall |
KR101043344B1 (ko) | 2009-01-30 | 2011-06-21 | 박준관 | 다회선 외벽부착식 초음파 트랜스듀서 제조방법 |
US7942068B2 (en) * | 2009-03-11 | 2011-05-17 | Ge Infrastructure Sensing, Inc. | Method and system for multi-path ultrasonic flow rate measurement |
WO2012032617A1 (ja) * | 2010-09-08 | 2012-03-15 | トヨタ自動車株式会社 | 流量検出装置 |
SE536017C2 (sv) * | 2010-10-12 | 2013-04-02 | Braennstroem Gruppen Ab | Förfarande och anordning för indikering av ett vätskeflöde |
DE102010063789A1 (de) | 2010-12-21 | 2012-06-21 | Endress + Hauser Flowtec Ag | Ultraschall-Durchflussmessgerät |
KR101204705B1 (ko) | 2011-02-17 | 2012-11-23 | 주식회사 대덕기술 | 초음파 유량계의 편차보정 방법 |
US9777659B2 (en) * | 2011-05-13 | 2017-10-03 | Toyota Jidosha Kabushiki Kaisha | Control device of internal combustion engine |
EP2855997B1 (de) * | 2012-05-30 | 2017-10-11 | Rubicon Research Pty Ltd. | Verfahren zur schlickerkennung in fluidnetzwerken |
US8874924B2 (en) * | 2012-11-07 | 2014-10-28 | The Nielsen Company (Us), Llc | Methods and apparatus to identify media |
US9068870B2 (en) | 2013-02-27 | 2015-06-30 | Daniel Measurement And Control, Inc. | Ultrasonic flow metering with laminar to turbulent transition flow control |
DE102013106108A1 (de) * | 2013-06-12 | 2014-12-31 | Endress + Hauser Flowtec Ag | Verfahren zur Ermittlung eines kompensierten Durchflusses und/oder einer kompensierten Strömungsgeschwindigkeit, Ultraschall-Durchflussmessgerät und Computerprogrammprodukt |
US9453749B1 (en) * | 2015-03-10 | 2016-09-27 | Honeywell International Inc. | Hybrid sensing ultrasonic flowmeter |
FR3046602B1 (fr) * | 2016-01-12 | 2022-08-05 | Centre Nat Rech Scient | Solution d'ions tungstates et dispositif photovoltaique hybride |
WO2018079269A1 (ja) * | 2016-10-25 | 2018-05-03 | 富士電機株式会社 | 流体計測装置 |
US10809107B2 (en) | 2017-12-19 | 2020-10-20 | Daniel Measurement And Control, Inc. | Multi-fluid calibration |
DE102020104066A1 (de) * | 2020-02-17 | 2021-08-19 | Endress+Hauser SE+Co. KG | Vibronischer Sensor |
US20240019286A1 (en) * | 2020-10-30 | 2024-01-18 | Micro Motion, Inc. | Using a reynolds number to correct a mass flow rate measurement |
EP4092393A1 (de) * | 2021-05-18 | 2022-11-23 | Kamstrup A/S | Ultraschall-durchflussmesser mit schätzung der flussratenverteilung |
CN118765367A (zh) * | 2021-11-21 | 2024-10-11 | Abb瑞士股份有限公司 | 流量计的流率测量校正方法和系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940985A (en) * | 1975-04-18 | 1976-03-02 | Westinghouse Electric Corporation | Fluid flow measurement system for pipes |
DE2552072A1 (de) * | 1974-11-21 | 1976-05-26 | Nat Res Dev | Einrichtung zur messung der stroemungsmittelstroemung in einer achssymmetrischen rohrleitung |
EP0017475A1 (de) * | 1979-04-05 | 1980-10-15 | Westinghouse Electric Corporation | Akustischer Strömungsmesser mit von der Reynold'schen Zahl abhängiger Kompensation |
DE3038213A1 (de) * | 1979-10-09 | 1981-04-23 | Panametrics Inc., Waltham, Mass. | Verfahren und vorrichtung zur durchflussmessung |
EP0125845A1 (de) * | 1983-05-11 | 1984-11-21 | British Gas Corporation | Ultraschall-Strömungsmessgerät |
EP0605944A2 (de) * | 1992-10-06 | 1994-07-13 | Caldon, Inc. | Vorrichtung zur Messung eines Flüssigkeitsströmen |
EP0639776A1 (de) * | 1993-08-17 | 1995-02-22 | Instromet Ultrasonics B.V. | Verfahren und Vorrichtung zur Bestimmung der Eigenschaften des Flusses einer Mediums |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4102186A (en) * | 1976-07-23 | 1978-07-25 | E. I. Du Pont De Nemours And Company | Method and system for measuring flow rate |
US4432243A (en) * | 1979-02-28 | 1984-02-21 | Ocean Research Equipment, Inc. | Flow calculator with velocity curve fitting circuit means |
US4331025A (en) * | 1980-10-14 | 1982-05-25 | Mapco, Inc. | Methods of measuring fluid viscosity and flow rate |
US5597962A (en) * | 1995-03-31 | 1997-01-28 | Caldon, Inc. | Apparatus for determining fluid flow |
-
1995
- 1995-11-22 NL NL1001719A patent/NL1001719C2/nl not_active IP Right Cessation
-
1996
- 1996-11-18 JP JP51938297A patent/JP3478833B2/ja not_active Expired - Fee Related
- 1996-11-18 WO PCT/EP1996/005082 patent/WO1997019326A1/de active IP Right Grant
- 1996-11-18 EP EP96939839A patent/EP0804717B1/de not_active Expired - Lifetime
- 1996-11-18 DK DK96939839T patent/DK0804717T3/da active
- 1996-11-18 US US08/836,016 patent/US5987997A/en not_active Expired - Lifetime
- 1996-11-18 AU AU76931/96A patent/AU7693196A/en not_active Abandoned
- 1996-11-18 CA CA002209789A patent/CA2209789C/en not_active Expired - Fee Related
- 1996-11-18 DE DE59609187T patent/DE59609187D1/de not_active Expired - Lifetime
-
1997
- 1997-07-21 NO NO19973364A patent/NO326813B1/no not_active IP Right Cessation
-
2001
- 2001-06-06 JP JP2001171647A patent/JP2002013957A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2552072A1 (de) * | 1974-11-21 | 1976-05-26 | Nat Res Dev | Einrichtung zur messung der stroemungsmittelstroemung in einer achssymmetrischen rohrleitung |
US3940985A (en) * | 1975-04-18 | 1976-03-02 | Westinghouse Electric Corporation | Fluid flow measurement system for pipes |
EP0017475A1 (de) * | 1979-04-05 | 1980-10-15 | Westinghouse Electric Corporation | Akustischer Strömungsmesser mit von der Reynold'schen Zahl abhängiger Kompensation |
DE3038213A1 (de) * | 1979-10-09 | 1981-04-23 | Panametrics Inc., Waltham, Mass. | Verfahren und vorrichtung zur durchflussmessung |
GB2060169A (en) * | 1979-10-09 | 1981-04-29 | Panametrics | Method and apparatus for determining fluid flow |
EP0125845A1 (de) * | 1983-05-11 | 1984-11-21 | British Gas Corporation | Ultraschall-Strömungsmessgerät |
EP0605944A2 (de) * | 1992-10-06 | 1994-07-13 | Caldon, Inc. | Vorrichtung zur Messung eines Flüssigkeitsströmen |
EP0639776A1 (de) * | 1993-08-17 | 1995-02-22 | Instromet Ultrasonics B.V. | Verfahren und Vorrichtung zur Bestimmung der Eigenschaften des Flusses einer Mediums |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0875737A1 (de) * | 1997-04-29 | 1998-11-04 | Krohne AG | Ultraschall-Durchflussmessverfahren |
DE19717940C2 (de) * | 1997-04-29 | 1999-04-15 | Krohne Ag | Ultraschall-Durchflußmeßverfahren |
WO2013017447A1 (de) * | 2011-08-03 | 2013-02-07 | Endress+Hauser Flowtec Ag | Verfahren zum ermitteln des durchflusses mittels ultraschall |
WO2016127601A1 (zh) * | 2015-02-13 | 2016-08-18 | 广东奥迪威传感科技股份有限公司 | 超声波测量系统及其测量方法 |
EP3418697A1 (de) * | 2017-06-23 | 2018-12-26 | Flexim Flexible Industriemesstechnik Gmbh | Vorrichtung und verfahren zur ultraschall-durchflussmessung |
WO2018233984A1 (de) * | 2017-06-23 | 2018-12-27 | Flexim Flexible Industriemesstechnik Gmbh | Vorrichtung und verfahren zur ultraschall-durchflussmessung |
CN110799808A (zh) * | 2017-06-23 | 2020-02-14 | 弗莱克森柔性工业计量有限公司 | 用于进行超声流测量的装置和方法 |
CN110799808B (zh) * | 2017-06-23 | 2021-09-24 | 弗莱克森柔性工业计量有限公司 | 用于进行超声流测量的装置和方法 |
US11237034B2 (en) | 2017-06-23 | 2022-02-01 | Flexim Flexible Industriemesstechnik Gmbh | Device and method for ultrasonic flow measurement |
DE102019133391A1 (de) * | 2019-12-06 | 2021-06-10 | Endress+Hauser SE+Co. KG | Verfahren zur Bestimmung und/oder Überwachung zumindest einer rheologischen Eigenschaft eines Mediums |
WO2024126384A1 (de) * | 2022-12-15 | 2024-06-20 | Endress+Hauser Flowtec Ag | Verfahren zur korrektur von durchflussmesswerten bei einem ultraschall-durchflussmessgerät und ein solches ultraschall-durchflussmessgerät |
Also Published As
Publication number | Publication date |
---|---|
CA2209789A1 (en) | 1997-05-29 |
EP0804717A1 (de) | 1997-11-05 |
DK0804717T3 (da) | 2002-08-05 |
CA2209789C (en) | 2002-01-29 |
NO973364L (no) | 1997-09-22 |
JP2002013957A (ja) | 2002-01-18 |
AU7693196A (en) | 1997-06-11 |
NO973364D0 (no) | 1997-07-21 |
NO326813B1 (no) | 2009-02-23 |
NL1001719C2 (nl) | 1997-05-23 |
EP0804717B1 (de) | 2002-05-08 |
US5987997A (en) | 1999-11-23 |
JPH10512966A (ja) | 1998-12-08 |
DE59609187D1 (de) | 2002-06-13 |
JP3478833B2 (ja) | 2003-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0804717A1 (de) | Ultraschall-durchflussmessverfahren | |
DE69222052T2 (de) | Sensor für verschiedene gaseigenschaften | |
DE69811044T2 (de) | Verfahren zur Messung der Viskosität eines Fluidums | |
DE102016112002B4 (de) | Verfahren zum Bestimmen eines physikalischen Parameters eines kompressiblen Mediums mit einem Messaufnehmer vom Vibrationstyp und Messaufnehmer zur Durchführung eines solchen Verfahrens | |
EP4028731B1 (de) | Verfahren zum betreiben eines messgerätes mit mindestens einem oszillator und messgerät zur durchführung des verfahrens | |
DE69907913T2 (de) | Kreuzmessen von akustischen signalen eines durchflussmessers | |
DE2852572A1 (de) | Einrichtung und verfahren zum messen einer fluiddichte | |
DE2732236A1 (de) | Durchflussmessvorrichtung und -verfahren | |
DE2753543A1 (de) | Massendurchflussmesser | |
DE102020129074A1 (de) | Durchflussmessgerät, Verfahren zum Betreiben eines Durchflussmessgeräts, Anlage und Verfahren zum Betreiben einer Anlage | |
WO2020244855A1 (de) | Messgerät zum bestimmen der dichte, des massedurchflusses und/oder der viskosität einer mit gas beladenen flüssigkeit, prozessanlage mit einem solchen messgerät, und verfahren zum überwachen einer mit gas beladenen flüssigkeit | |
WO2018219492A1 (de) | Verfahren zur bestimmung des drucks eines fluids | |
WO2005119185A1 (de) | Durchflussmengenfühler und verfahren zur messung des volumens und/oder durchflussgeschwindigkeit eines medlums | |
EP3887771B1 (de) | Verfahren zum bestimmen einer durchflussmenge eines strömungsfähigen mediums und messstelle dafür | |
DE112004000355B4 (de) | Verfahren und Vorrichtung zur Aufbereitung einer Gasströmung zur Verbesserung einer Messung der Änderungsgeschwindigkeit des Druckes | |
WO2024126384A1 (de) | Verfahren zur korrektur von durchflussmesswerten bei einem ultraschall-durchflussmessgerät und ein solches ultraschall-durchflussmessgerät | |
DE102017213084A1 (de) | Verfahren und Vorrichtung für eine sichere Durchflussmessung | |
EP1043569B1 (de) | Verfahren zum Offsetabgleich zweier orthogonaler Sensorsignale | |
EP3376176A1 (de) | Verfahren zur bestimmung des strömungsprofils, messwertumformer, magnetisch-induktives durchflussmessgerät und verwendung eines magnetisch-induktiven durchflussmessgeräts | |
WO2022063812A1 (de) | Coriolis-durchflussmessgerät sowie verfahren zum betrieb des coriolis-durchflussmessgeräts | |
EP4060295A1 (de) | Verfahren zur kompensation des einflusses der reynolds-zahl auf die messung eines coriolis-massendurchflussmessgeräts und derartiges gerät | |
DE102010003948A1 (de) | Verfahren zum Bearbeiten eines zeitdiskreten, eindimensionalen Messsignals | |
EP0934504A1 (de) | Verfahren zur pneumatischen längenmessung | |
WO2010085980A1 (de) | Coriolis-massendurchflussmesser und verfahren zur berechnung des gasanteils in einer flüssigkeit | |
WO1996000375A1 (de) | Ultraschall-durchflussmesser mit kontinuierlicher nullfluss-kalibrierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AU BB BG BR BY CA CN CZ EE GE HU JP KE KG KP KR KZ LK LR LT LV MD MG MN MW MX NO NZ PL RO RU SD SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref document number: 2209789 Country of ref document: CA Ref country code: CA Ref document number: 2209789 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996939839 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 519382 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 08836016 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1996939839 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996939839 Country of ref document: EP |