WO1997018551A1 - Reflectores multifocales compuestos para concentrar ondas de choque - Google Patents

Reflectores multifocales compuestos para concentrar ondas de choque Download PDF

Info

Publication number
WO1997018551A1
WO1997018551A1 PCT/MX1995/000008 MX9500008W WO9718551A1 WO 1997018551 A1 WO1997018551 A1 WO 1997018551A1 MX 9500008 W MX9500008 W MX 9500008W WO 9718551 A1 WO9718551 A1 WO 9718551A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflectors
different
shock waves
multifocal
revolution
Prior art date
Application number
PCT/MX1995/000008
Other languages
English (en)
French (fr)
Inventor
Fernando Enrique Prieto Calderon
Achim Max Loske Mehling
Original Assignee
Universidad Nacional Autonoma De Mexico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autonoma De Mexico filed Critical Universidad Nacional Autonoma De Mexico
Priority to AU39373/95A priority Critical patent/AU3937395A/en
Priority to DE19581913T priority patent/DE19581913T1/de
Priority to PCT/MX1995/000008 priority patent/WO1997018551A1/es
Publication of WO1997018551A1 publication Critical patent/WO1997018551A1/es
Priority to MXPA/A/1997/005197A priority patent/MXPA97005197A/es

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the present invention relates to multifocal reflectors composed of segments whose shape is that of sectors and / or ellipsoid rings of revolution that can be truncated at the same or at different heights with the same or different distances between foci, or, with the same or different lengths of the semi-axes of each of the segments that make up said reflectors, it being possible that with the union of more than three segments to form the reflector, some segments are equal, or, that with the union from more than two segments, some come from the same ellipsoid of revolution.
  • the reflector consists solely of annular segments or rings, the resulting composite multifocal reflector will be symmetric with respect to the axis of symmetry of the segments that compose it.
  • Said multifocal reflectors compound, sectorial or annular serve for example, to concentrate shock waves produced by devices that currently use reflectors in the form of ellipsoids of revolution to concentrate them, which allows, among other applications, the most efficient disintegration of certain fragile objects , such as Kidney stones, that is, by using the multifocal reflectors composed in existing extracorporeal lithotripsy clinical equipment, could fracture with a smaller number of shock waves.
  • extracorporeal lithotripsy also called extracorporeal lithotripsy
  • shock waves that is, disintegration of kidney stones with a non-invasive method.
  • extracorporeal lithotripters also called lithotripters
  • the fundamental idea is to generate shock waves outside the human body, pass them through with a minimum of energy losses and concentrate them on the calculation, thereby creating a series of efforts that cause the breakdown of the calculation into several small fragments, which subsequently they can be eliminated by the patient.
  • electrohydraulic devices and electroconductive devices for example, high voltage electrical discharges are generated (tens of thousands of volts) between two electrodes submerged in water or another suitable liquid, which forms a small channel of evaporated water or some other also evaporated liquid (plasma) that expands suddenly, compressing the surrounding medium in a manner similar to what occurs in the explosion of a bomb.
  • This generates a compression wave that, after propagating a few centimeters in the water, becomes a shock wave, which is a discontinuity of pressure that propagates as a spherical wave through the medium.
  • Microexplosive lithotripters use small explosive charges to produce the same effect.
  • the reflector In electrohydraulic, electroconductive and microexplosive lithotripters, an important component is the reflector with truncated revolution ellipsoid geometry.
  • This reflector can be made of brass or some other material with similar mechanical properties. Its function is to concentrate in the second focus (F2) the shock waves generated in the first focus (Fl) of the revolution ellipsoid, that is, in the focus closest to the reflector, which generates a region of maximum energy in the vicinity of the second focus (F2) that is in the focus furthest from the internal surface of the reflector.
  • the second focus in which the waves are not generated, must coincide with the object to be disintegrated, such as a kidney stone.
  • the coincidence of the object with the second focus of the ellipsoid is achieved by means of a fluoroscopy system and / or by means of ultrasound equipment.
  • electrohydraulic lithotripters, electroconductive and microexplosive use reflectors in the form of truncated ellipsoids at one end. The revolution symmetry of these reflectors is with respect to the major axis of the ellipsoid.
  • German patent number 2,351,247.
  • U.S. Patent Number 4,610,249.
  • the shock waves generated in the first focus (Fl) are necessarily concentrated in phase, temporal and spatial, in the second focus (F2). This, as will be seen, is a limitation.
  • Another object of the present invention is to provide a novel arrangement in which, when shock waves are generated in the composite multifocal reflector, these waves are offset both in space and time, thereby generating, torques and stresses on any object placed in the indicated site (F2, F2 ', F2'', ...), which results in greater efficiency to disintegrate them.
  • Figure 1 is a view showing two different ellipsoid-shaped sectors of revolution, in which one of the sectors has semi-axes larger than the other, but with the same focal length, that is, the focal length Fl to F2 of one sector is the same focal length as Fl 'to F2' of the other sector.
  • Figure 2 is a view showing a sectorial multifocal reflector composed of the two sectors shown in Figure 1. It shows that the sectors are joined and also truncated at the same height and that the focal length Fl to F2 of one of them coincides with the focal length Fl 'to F2' of the other. The two sectors joined together so that their Fl and Fl 'bulbs coincided. In the upper part of this sectorial multifocal reflector, two edges are formed at the junction between the two sectors.
  • Figure 3 is the view of section AA 'of the figure
  • Figure 4 is a view where the sectorial multifocal reflector consists of two sectors similar to those shown in Figure 1, but truncated at different heights. It shows that the focal length Fl to F2 of one of them coincides with the focal length Fl 'to F2' of the other. The two sectors joined together so that their Fl and Fl 'bulbs coincided.
  • a step is formed because the vertices of the ellipsoids do not coincide and at the top of it , where they join, two edges are formed, but unlike Figure 2, a step is observed because the sectors are truncated at different height.
  • Figure 5 is a view showing two sectors of revolution ellipsoids with different half-axes and different focal distances, that is, one of the sectors has the focal length Fl to F2 different from the focal distance Fl 'to F2' of the other sector.
  • Figure 6 is a view showing the sectorial multifocal reflector formed by the two sectors that appear in Figure 5. It can be seen that the two sectors were joined so that their Fl and Fl 'foci coincided.
  • Figure 7 is a view corresponding to the section BB 'of the sectorial multifocal reflector shown in Figure 6. It shows how the rays that come out of the focus Fl (or Fl ') reach the vicinity of the foci F2 and F2'. Due to this novel geometry, the reflection of these rays occurs in such a way that the energy of the waves is distributed. The rays show that the energy is mainly concentrated at points F2 and F2 ', which illustrates that the wave arrives out of date in time and space to the region F2 and F2', in which the object that can be placed You want to fracture.
  • Figure 8 is a view where a sectorial multifocal reflector consisting of three sectors of ellipsoids of revolution with different focal distances is observed for each of them, that is, the focal length Fl to F2 does not coincide with the focal distances Fl ' to F2 'and Fl''toF2''.
  • the focal length Fl to F2 does not coincide with the focal distances Fl ' to F2 'and Fl''toF2''.
  • two steps are formed because the three vertices of the three ellipsoids of revolution do not coincide and in the upper part, where join the sectors, three edges are formed with respect to the sector with larger semi-axes.
  • the three sectors were united so that their focuses Fl, Fl 'and Fl''coincided.
  • Figure 9 is a view showing two rings with different revolution ellipsoid geometry, in which, one of the rings has semi-axes larger than the other, but with the same focal length, that is, the focal length Fl to F2 of one ring is the same focal length as Fl 'to F2' of the other ring.
  • Figure 10 is a view showing an annular compound multifocal reflector, formed by two rings such as those shown in Figure 9. It can be seen that the two sectors joined together so that their Fl and Fl 'foci, as well as F2 and F2 ', coincide. This is possible as long as the focal distances corresponding to each of the rings are equal, that is, when the focal length Fl to F2 is equal to the focal length Fl 'to F2'.
  • Figure 11 is a view where two rings of revolution ellipsoids with different semi-axes and different focal distances are presented, that is, one of the rings has the focal length Fl to F2 different from the focal distance Fl 'to F2' of the other ring.
  • Figure 12 is a view showing an annular compound multifocal reflector, formed by two rings such as those shown in Figure 11. It can be seen that the two sectors were joined so that their Fl and Fl 'spots coincided.
  • Figure 13 is a view corresponding to a section of an annular compound multifocal reflector, formed by three rings of the revolution ellipsoid with different focal distances for each of them, that is, the focal length of Fl to F2 does not coincide with the Focal distances from Fl 'to F2' and from Fl '' to F2 ''.
  • the focal length of Fl to F2 does not coincide with the Focal distances from Fl 'to F2' and from Fl '' to F2 ''.
  • the three rings joined together so that their bulbs Fl, Fl 'and Fl''coincided.
  • the structure of the reflector is shown in the figure a section through a plane containing the axis of symmetry.
  • Figure 14 corresponds to a section similar to that of Figure 7, where a possible position of the electrodes is observed with respect to the sectorial multifocal reflector for the generation of the shock wave. In this case, the center position between the electrode tips in the Fl or Fl 'focus is shown. As an example, the case of a multifocal sectorial reflector was selected; however, an annular compound multifocal reflector could well have been taken.
  • Figure 15 corresponds to a section similar to that of Figure 7, where a possible position of the electrodes is observed with respect to the sectorial multifocal reflector for the generation of the shock wave.
  • the case of a multifocal sectorial reflector was selected; however, an annular compound multifocal reflector could well have been taken.
  • Figure 16 corresponds to a section similar to that of Figure 7, where a possible position of the electrodes is observed with respect to the sectorial multifocal reflector for the generation of the shock wave.
  • the center position between the electrode tips outside the focus Fl or Fl 'and outside the semi-major axis of the sectors is shown.
  • a multifocal sectorial reflector however, an annular compound multifocal reflector could well have been taken.
  • Sectoral compound multifocal reflectors are formed by sectors of ellipsoids of revolution, joined together and truncated to it or at different heights. Consequently, the sectorial multifocal reflectors are not symmetrical with respect to the axis of revolution of the different ellipsoids that form them.
  • This novel arrangement of joining sectors of ellipsoids of revolution with different semi-axes and / or different focal distances to form these sectorial reflectors causes the shock waves generated by a source, to be reflected due to the characteristics of the new geometric arrangement being offset so much in the time as in space (figure 7).
  • Figure 1 shows two sectors of ellipsoids of revolution with different axes.
  • the distance between Foci of each ellipsoid is the same, that is, the distance from Fl to F2 of the first sector is equal to the distance of Fl 'to F2' of the second sector. If these two sectors are joined in such a way that the Fl and Fl 'foci coincide, regardless of the equations of the ellipses used, a sectorial multifocal reflector is obtained ( Figure 2).
  • one of the sectors has semi-axes larger than the other, two edges are formed at the junction between both sectors (figure 2.2) at the top and a step at the bottom of the reflector as illustrated in figures 2 , 3 and 3.3.
  • the dimensions of these edges, as well as that of the step, can vary from millimeters to decimeters and will depend on the selected ellipsoids of revolution, derived from the design of the sectorial multifocal reflector in question.
  • Figure 4 the same sector-based multifocal reflector is shown as in Figure 2, but by way of illustration, the truncated sectors at different heights are presented in this particular case, so a step appears at the top ( Figure 4.2) that stands out from the other sector.
  • Figure 5 shows schematically two sectors of another of the possible multifocal reflectors sectorial compounds that can be formed, varying the size of the semi-axes and the focal length of the ellipsoids of revolution and the way to unite the sectors of the ellipsoids of revolution that form it. For this case, the F2 and F2 'foci of the two sectors do not coincide, since the focal distances of both sectors are different.
  • the multifocal sectorial reflector that results from the union of the sections shown in Figure 5, can be seen in Figure 6.
  • the foci F2 and F2 'of both sectors are separated.
  • the wave reflected in this type of sector reflector is formed by a part that converges towards the vicinity of the focus F2 of one of the sectors and another that converges towards the vicinity of the focus F2 'of the other sector of the reflector ( Figure 7.4).
  • this novel arrangement means that the reflected waves are outdated both in time and in space, generating torques and efforts in a generally fragile object located in the region that contains the F2 and F2 'foci ( Figure 7.5 ), causing a different effect than a conventional reflector would produce.
  • Figure 8 shows schematically the case of three sectors, which are joined so that the foci Fl, Fl 'and Fl''coincide, regardless of the equations of the ellipses that are used for the sectors.
  • the choice of the number of sectors and the geometry of the ellipsoids of revolution will depend on the application for which the sectorial multifocal reflector is designed. For some particular application you can also think of a sectorial multifocal reflector composed of more than three sectors of which some have the same focal length and others do not.
  • multifocal reflectors can be designed composed of two sectors or more ellipsoidal sectors with focal distances equal or different from each other and in which the foci Fl, Fl ', Fl''... of the sectors that form it, do not match.
  • the multifocal annular compound reflectors are formed by different or equal revolution ellipsoid rings, joined together. Each ring is a segment that is obtained by cutting a revolution ellipsoid by planes perpendicular to the axis of symmetry. Consequently, these annular reflectors are symmetrical with respect to the axis of revolution of the different ellipsoids that form them.
  • annular compound multifocal reflector is, in fact, a truncated revolution ellipsoid and not properly a ring, although this term is generally used for all segments that form such a reflector.
  • the distance between the foci of each ellipsoid is the same, that is, the focal length of Fl to F2 of the ellipsoid of which the first ring is part is equal to the focal length of Fl 'to F2' corresponding to the second ring. If these two rings are joined so that Fl and Fl 'coincide, regardless of the equations of the ellipses used, the composite multifocal reflector shown in Figure 10 is obtained. Because one of the two rings has larger semi-axes than the other, it is possible that edges form at the junction of both rings (figure 10.6). The dimensions of these edges can vary from millimeters to decimeters and will depend on the ellipsoids of revolution selected for the different rings. Of course, it is also possible to construct an annular composite multifocal reflector formed by more than two rings, with the same focal length but with different lengths of the semi-axes.
  • two rings of another of the possible multifocal reflectors are shown schematically annulars that can be formed, varying the size of the semi-axes and the focal length of the ellipsoids of revolution and the way of joining the rings of the ellipsoids of revolution that form it.
  • the foci F2 and F2 'of the rings do not coincide, since the focal distances of the ellipsoids corresponding to each of the rings are different.
  • the multifocal annular compound reflector that results from the union of the rings shown in Figure 11, can be seen in Figure 12. Taking into account that the Fl and Fl 'foci coincide, regardless of the equations of the ellipses used in the rings and because the distances between the foci of each of the rings are not equal, the foci F2 and F2 'of the rings are separated by a certain distance. At the junction between the two rings, edges are created again (figure 12.6).
  • the wave reflected in this type of annular composite multifocal reflector is formed by a part that converges towards the vicinity of the focus F2 of one of the rings and another that converges towards the vicinity of the focus F2 'of the other ring of the reflector.
  • this novel arrangement causes the reflected waves to be outdated both in time and in space, generating torques and efforts on any object located in the region that contains the F2 and F2 'foci, causing a different effect than which would produce a conventional reflector.
  • FIG. 13 shows schematically a cut through a multifocal reflector annular compound formed by three rings, which are joined so that the foci Fl, Fl 'and Fl''coincide, regardless of the equations of the ellipses used for the rings.
  • the choice of the number of rings and the specific geometry of the ellipsoids of revolution from which these rings are formed will depend on the application for which the composite multifocal reflector is designed. For some particular application, it is also possible to think of a multifocal annular compound reflector formed by more than two rings of which some have the same focal length and others do not.
  • FIG 14 the electrodes placed in such a way that their center coincides with the Fl and Fl 'foci of the sectorial multifocal reflector can be seen, in figure 15 the placement of the center of the electrodes outside the Fl foci can be observed and Fl 'but on the line that joins the Fl bulbs with the F2 bulbs and in figure 16 it shows the position of the center of the electrodes in any region inside the reflector without coincidence with the Fl and Fl 'bulbs and outside the line that joins the Fl bulbs with the F2 bulbs.
  • a composite multifocal reflector can also be designed, in which some segments are sectors and others are ellipsoid rings of revolution with different or equal focal distances and different or equal semi-axes. Again the geometry of each segment as well as the type and number of segments will depend on the specific application.
  • composite multifocal reflectors can be mounted within extracorporeal lithotripters instead of and similar to that of conventional reflectors with Ellipsoid form of revolution.
  • the advantage of these new multifocal composite reflectors is that it is possible to spray the objects, either with a smaller number of shock waves or with a lower initial energy than in the conventional case, obtaining the same result.

Abstract

Reflectores multifocales compuestos para concentrar ondas de choque, formados por dos o más segmentos cuya forma es la de sectores y/o anillos de elipsoides de revolución diferentes o iguales. Estos segmentos están hechos de latón o algún otro metal con propiedades mecánicas similares. Los segmentos que forman uno de estos reflectores pueden estar truncados a la misma o a diferentes alturas; tener semiejes diferentes of iguales y distancias focales diferentes o iguales. Pueden estar unidos de forma que únicamente los focos más cercanos al fondo de los segmentos de elipsoides de revolucíon, generalmente denominados F1, coincidan. Puede darse también el caso de que los focos (F1) de los segmentos de elipsoides de revolución que forman los reflectores multifocales compuestos no coincidan. Este arreglo novedoso permite que las ondas de choque generadas (por ejemplo, por medio de una descarga eléctrica a través de un par de electrodos) en el foco (F1) más cercano al fondo del reflector, se reflejen en las paredes de éste, desfasándose tanto en el tiempo como en el espacio, produciéndose con ello torcas y esfuerzos en ciertos objetos colocados en la vecindad del o de los focos (F2) que se encuentran más alejados del fondo del reflector.

Description

REFLECTORES MULTIFOCALES COMPUESTOS
PARA CONCENTRAR ONDAS DE CHOQUE
Campo de la Invención
La presente invención se refiere a reflectores multifocales compuestos hechos por segmentos cuya forma es la de sectores y/o anillos de elipsoides de revolución que pueden ser truncados a la misma o a diferentes alturas con las mismas o diferentes distancias entre focos, o bien, con las mismas o diferentes longitudes de los semiejes de cada uno de los segmentos que conforman a dichos reflectores, pudiéndose dar el caso de que con la unión de más de tres segmentos para formar al reflector, algunos segmentos sean iguales, o bien, que con la unión de más de dos segmentos, algunos provengan del mismo elipsoide de revolución. Obviamente, si el reflector está formado únicamente por segmentos anulares o anillos, el reflector multifocal compuesto resultante será simétrico con respecto al eje de simetría de los segmentos que lo componen. Dichos reflectores multifocales compuestos, sectoriales o anulares, sirven por ejemplo, para concentrar ondas de choque producidas por dispositivos que actualmente emplean reflectores con forma de elipsoides de revolución para concentrarlas, lo que posibilita, entre otras aplicaciones, la desintegración más eficiente de ciertos objetos frágiles, como por ejemplo los cálculos renales, es decir, al usar los reflectores multifocales compuestos en los equipos clínicos de litotripsia extracorporal existentes, se podrían fracturar con un menor número de ondas de choque. Antecedentes de la Invención
En el año de 1980, en Munich, Alemania, se practicó la primera litotripsia extracorporal (también denominada litotricia extracorpórea) por ondas de choque, esto es, desintegración de cálculos renales con un método no invasivo. Actualmente existen varias compañías que ofrecen litotriptores (también denominados litotriptores) extracorporales, nombre que se da a los aparatos que pulverizan cálculos renales o biliares con ondas de choque. La idea fundamental es generar ondas de choque fuera del cuerpo humano, hacerlas pasar por él con un mínimo de pérdidas de energía y concentrarlas sobre el cálculo, creando con ello, una serie de esfuerzos que originan la ruptura del cálculo en varios fragmentos pequeños, que posteriormente puedan ser eliminados por el paciente. Hoy en día, hay en el mundo más de un millar de litotriptores extracorporales para desintegrar cálculos renales, biliares e incluso salivales. Existen litotriptores extracorporales que generan ondas de choque por diferentes métodos, como el electrohidráulico, el electroconductivo, el electromagnético, el piezoeléctrico y el de microexplosivos.
En los dispositivos electrohidráulicos y en los electroconductivos, por ejemplo, se generan descargas eléctricas de alto voltaje (decenas de miles de voltios) entre dos electrodos sumergidos en agua u otro líquido adecuado, lo cual forma un pequeño canal de agua evaporada o de algún otro líquido también evaporado (plasma) que se expande súbitamente, comprimiendo el medio circundante en forma semejante a lo que ocurre en la explosión de una bomba. Esto genera una onda de compresión que después de propagarse unos cuantos centímetros en el agua se transforma en una onda de choque, que es una discontinuidad de presión que se propaga como onda esférica por el medio. Los litotriptores microexplosivos usan pequeñas cargas explosivas para producir el mismo efecto.
En los litotriptores electrohidráulicos, electroconductivos y microexplosivos, una componente importante es el reflector con geometría de elipsoide de revolución truncado. Este reflector puede estar hecho de latón o de algún otro material con propiedades mecánicas similares. Su función es concentrar en el segundo foco (F2) las ondas de choque generadas en el primer foco (Fl) del elipsoide de revolución, o sea en el foco más cercano al reflector, lo cual genera una región de máxima energía en la vecindad del segundo foco (F2) o sea en el foco más lejano a la superficie interna del reflector.
El segundo foco, en el que no se generan las ondas, deberá coincidir con el objeto que se desee desintegrar, como por ejemplo un cálculo renal. En los equipos clínicos de litotripsia extracorporal, la coincidencia del objeto con el segundo foco del elipsoide se logra por medio de un sistema de fluoroscopía y/o por medio de un equipo de ultrasonido. A la fecha todos los litotriptores electrohidráulicos, los electroconductivos y los de microexplosivos usan reflectores en forma de elipsoides de revolución truncados en uno de sus extremos. La simetría de revolución de estos reflectores es con respecto al eje mayor del elipsoide.
Las patentes encontradas en la literatura se refieren a tecnologías de litotriptores con reflectores convencionales. Por mencionar algunas de ellas citamos las siguientes patentes:
Patente alemana número: 2,351,247. Patente estadounidense número: 4,610,249. Patente estadounidense número: 4,962,753. Patente estadounidense número: 5,195,508. Patente estadounidense número: 5,233,980.
En los reflectores convencionales con forma de elipsdoide de revolución, las ondas de choque generadas en el primer foco (Fl) , se concentran necesariamente en fase, temporal y espacial, en el segundo foco (F2) . Esto, como se verá, es una limitante.
Es por lo tanto objeto de la presente invención proporcionar un nuevo arreglo, llamado reflector multifocal compuesto, con la característica de que está formado por segmentos de elipsoides de revolución, con las mismas o diferentes longitudes de los semiejes y con las mismas o diferentes distancias focales de cada uno de los segmentos de elipsoides de revolución. Otro objeto de la presente invención es proporcionar un arreglo novedoso en el que al generarse ondas de choque en el reflector multifocal compuesto, estas ondas se desfasan tanto en el espacio como en el tiempo, generando con ésto, torcas y esfuerzos en cualquier objeto colocado en el sitio indicado (F2, F2 ' , F2 '', ...) , con lo que se obtiene una mayor eficiencia para desintegrarlos. Descripción de los Dibujos
La Figura 1 es una vista que muestra dos sectores con forma de elipsoides de revolución diferentes, en la cual, uno de los sectores tiene semiejes más grandes que el otro, pero con la misma distancia focal, es decir, la distancia focal Fl a F2 de un sector es la misma distancia focal que Fl ' a F2 ' del otro sector. La Figura 2 es una vista en donde se muestra un reflector multifocal compuesto sectorial formado por los dos sectores que se muestran en la figura 1. En él se observa que los sectores están unidos y además están truncados a la misma altura y que la distancia focal Fl a F2 de uno de ellos coincide con la distancia focal Fl ' a F2 ' del otro. Los dos sectores se unieron de manera que sus focos Fl y Fl ' coincidieran. En la parte superior de este reflector multifocal compuesto sectorial se forman dos bordes en la unión entre los dos sectores. La Figura 3 es la vista del corte AA' de la figura
2, en la que se observa que en la parte de abajo del reflector multifocal compuesto sectorial, en la unión de los dos sectores, se forma un escalón debido a que los vértices de los elipsoides no coinciden.
La Figura 4 es una vista en donde el reflector multifocal compuesto sectorial está formado por dos sectores similares a los que se muestran en la figura 1, pero truncados a diferentes alturas. En ella se observa que la distancia focal Fl a F2 de uno de ellos coincide con la distancia focal Fl ' a F2 ' del otro. Los dos sectores se unieron de manera que sus focos Fl y Fl ' coincidieran. En la parte de abajo del reflector (como en las figuras 2 y 3) , en la unión de los dos sectores de elipsoides de revolución, se forma un escalón debido a que los vértices de los elipsoides no coinciden y en la parte superior del mismo, donde se unen, se forman dos bordes, pero a diferencia de la figura 2, se observa un escalón debido a que los sectores están truncados a diferente altura.
La Figura 5 es una vista en donde se presentan dos sectores de elipsoides de revolución con semiejes diferentes y distancias focales diferentes, es decir, uno de los sectores tiene la distancia focal Fl a F2 diferente a la distancia focal Fl ' a F2 ' del otro sector.
La Figura 6 es una vista en donde se muestra el reflector multifocal compuesto sectorial formado por los dos sectores que aparecen en la figura 5. En ella se observa que los dos sectores se unieron de manera que sus focos Fl y Fl ' coincidieran.
La Figura 7 es una vista que corresponde al corte BB' del reflector multifocal compuesto sectorial mostrado en la figura 6. En él se observa cómo los rayos que salen del foco Fl (o Fl') llegan a la vecindad de los focos F2 y F2 ' . Debido a esta geometría novedosa, la reflexión de dichos rayos se da de tal forma que la energía de las ondas se reparte. Los rayos muestran que la energía se concentra principalmente en los puntos F2 y F2 ' , lo que ilustra que la onda llega desfasada en el tiempo y en el espacio a la región F2 y F2 ' , en la cual se puede colocar el objeto que se desea fracturar. La Figura 8 es una vista en donde se observa un reflector multifocal compuesto sectorial formado por tres sectores de elipsoides de revolución con distancias focales diferentes para cada uno de ellos, es decir, la distancia focal Fl a F2 no coincide con las distancias focales Fl ' a F2 ' y Fl ' ' a F2 ' ' . En la parte inferior del reflector, donde se unen los sectores, de manera similar a las figuras 6 y 7, se forman dos escalones debido a que los tres vértices de los tres elipsoides de revolución no coinciden y en la parte superior, en donde se unen los sectores, se forman tres bordes respecto al sector con semiejes mayores. Los tres sectores se unieron de manera que sus focos Fl, Fl ' y Fl ' ' coincidieran.
La Figura 9 es una vista que muestra dos anillos con geometría de elipsoides de revolución diferentes, en la cual, uno de los anillos tiene semiejes más grandes que el otro, pero con la misma distancia focal, es decir, la distancia focal Fl a F2 de un anillo es la misma distancia focal que Fl' a F2 ' del otro anillo. La Figura 10 es una vista que muestra un reflector multifocal compuesto anular, formado por dos anillos como los que se muestran en la figura 9. En ella se observa que los dos sectores se unieron de manera que sus focos Fl y Fl ' , así como F2 y F2 ' , coincidieran. Esto es posible siempre y cuando las distancias focales correspondientes a cada uno de los anillos sean iguales, esto es, cuando la distancia focal Fl a F2 es igual que la distancia focal Fl' a F2 ' .
La Figura 11 es una vista en donde se presentan dos anillos de elipsoides de revolución con semiejes diferentes y distancias focales diferentes, es decir, uno de los anillos tiene la distancia focal Fl a F2 diferente a la distancia focal Fl' a F2 ' del otro anillo.
La Figura 12 es una vista que muestra un reflector multifocal compuesto anular, formado por dos anillos como los que se muestran en la figura 11. En ella se observa que los dos sectores se unieron de manera que sus focos Fl y Fl ' coincidieran.
La Figura 13 es una vista que corresponde a un corte de un reflector multifocal compuesto anular, formado por tres anillos del elipsoides de revolución con distancias focales diferentes para cada uno de ellos, es decir, la distancia focal de Fl a F2 no coincide con las distancias focales de Fl' a F2 ' y de Fl ' ' a F2 ' ' . En la unión entre anillos se forman bordes debido a que los diámetros de los bordes no coinciden. Los tres anillos se unieron de manera que sus focos Fl, Fl' y Fl ' ' coincidieran. Para hacer más evidente la estructura del reflector se muestra en la figura un corte por un plano que contiene al eje de simetría.
La Figura 14 corresponde a un corte similar al de la figura 7, en donde se observa una posible posición de los electrodos con respecto al reflector multifocal compuesto sectorial para la generación de la onda de choque. En este caso se muestra la posición del centro entre las puntas de los electrodos en el foco Fl o Fl ' . Como ejemplo se seleccionó el caso de un reflector multifocal compuesto sectorial; sin embargo, bien podría haberse tomado un reflector multifocal compuesto anular.
La Figura 15 corresponde a un corte similar al de la figura 7, en donde se observa una posible posición de los electrodos con respecto al reflector multifocal compuesto sectorial para la generación de la onda de choque. En este caso se muestra la posición del centro entre las puntas de los electrodos en el semieje mayor de los sectores pero fuera del foco Fl o Fl ' . Como ejemplo se seleccionó el caso de un reflector multifocal compuesto sectorial; sin embargo, bien podría haberse tomado un reflector multifocal compuesto anular.
La Figura 16 corresponde a un corte similar al de la figura 7, en donde se observa una posible posición de los electrodos con respecto al reflector multifocal compuesto sectorial para la generación de la onda de choque. En este caso se muestra la posición del centro entre las puntas de los electrodos fuera del foco Fl o Fl' y fuera del semieje mayor de los sectores. Como ejemplo se seleccionó el caso de un reflector multifocal compuesto sectorial; sin embargo, bien podría haberse tomado un reflector multifocal compuesto anular. Descripción de la Invención
La invención se describe a continuación en forma más detallada y clara en cuanto a su estructura y función conforme a las figuras. Los tipos de reflectores inventados aquí se dividen en dos grupos: reflectores multifocales compuestos sectoriales y reflectores multifocales compuestos anulares.
Los reflectores multifocales compuestos sectoriales están formados por sectores de elipsoides de revolución, unidos entre sí y truncados a la misma o a diferentes alturas. En consecuencia, los reflectores multifocales compuestos sectoriales no son simétricos respecto al eje de revolución de los diferentes elipsoides que los forman. Este arreglo novedoso de unir sectores de elipsoides de revolución con diferentes semiejes y/o diferentes distancias focales para formar estos reflectores sectoriales, hace que las ondas de choque generadas por una fuente, se reflejen debido a las características del nuevo arreglo geométrico desfasándose tanto en el tiempo como en el espacio (figura 7) . Esto genera torcas y esfuerzos en cualquier objeto que se sitúe en la región que contiene a los focos F2, F2 ' , F2' ' , ... ,de cada sector, mejorando la eficiencia en cuanto a la desintegración del objeto (figura 7,5) . Así por ejemplo, la figura 1 muestra dos sectores de elipsoides de revolución con semiejes diferentes. En este caso particular la distancia entre los focos de cada elipsoide es la misma, es decir, la distancia de Fl a F2 del primer sector es igual a la distancia de Fl' a F2 ' del segundo sector. Si estos dos sectores se unen de manera que los focos Fl y Fl ' coincidan, independientemente de las ecuaciones de las elipses que se utilicen, se obtiene un reflector multifocal compuesto sectorial (figura 2) . Debido a que uno de los sectores tiene semiejes más grandes que el otro, se forman dos bordes en la unión entre ambos sectores (figura 2,2) en la parte superior y un escalón en el fondo del reflector como se ilustra en las figuras 2,3 y 3,3. Las dimensiones de estos bordes así como la del escalón, pueden variar desde milímetros hasta decímetros y dependerán de los elipsoides de revolución seleccionados, derivados del diseño del reflector multifocal compuesto sectorial del que se trate. Por supuesto, también es posible la construcción de un reflector multifocal sectorial formado por más de dos sectores, con la misma distancia focal pero con diferentes longitudes de los semiejes.
En la figura 4, se muestra el mismo reflector multifocal compuesto sectorial que el de la figura 2, pero a manera de ilustración, se presentan en este caso particular, los sectores truncados a diferentes alturas, por lo que aparece en la parte superior un escalón (figura 4,2) que sobresale respecto del otro sector. En la figura 5 se muestran esquemáticamente dos sectores de otro de los posibles reflectores multifocales compuestos sectoriales que pueden formarse, variando el tamaño de los semiejes y la distancia focal de los elipsoides de revolución y el modo de unir a los sectores de los elipsoides de revolución que lo forman. Para este caso, los focos F2 y F2 ' de los dos sectores no coinciden, ya que las distancias focales de ambos sectores son diferentes. El reflector multifocal compuesto sectorial que resulta de la unión de las secciones mostradas en la figura 5, se puede ver en la figura 6. Tomando en cuenta que los focos Fl y Fl ' coinciden, independientemente de las ecuaciones de las elipses usadas en los sectores y debido a que las distancias entre los focos de cada uno de los sectores no son iguales, los focos F2 y F2 ' de ambos sectores quedan separados. En la unión entre ambos sectores (figura 6,1) nuevamente se crean dos bordes respecto al otro sector. La onda reflejada en este tipo de reflector sectorial está formada por una parte que converge hacia la vecindad del foco F2 de uno de los sectores y otra que converge hacia la vecindad del foco F2 ' del otro sector del reflector (figura 7,4) . Como se mencionó, este arreglo novedoso hace que las ondas reflejadas estén desfasadas tanto en el tiempo como en el espacio, generando torcas y esfuerzos en un objeto generalmente frágil situado en la región que contenga a los focos F2 y F2' (figura 7,5), causando un efecto diferente al que produciría un reflector convencional.
Es claro que pueden usarse más de dos sectores elipsoidales, con distancias focales diferentes, para formar un reflector multifocal compuesto sectorial, obteniéndose entonces más de dos focos F2. En la figura 8 se muestra esquemáticamente el caso de tres sectores, los cuales se unen de manera que los focos Fl, Fl' y Fl' ' coincidan, independientemente de las ecuaciones de las elipses que se utilizan para los sectores. La elección del número de sectores y de la geometría de los elipsoides de revolución, dependerá de la aplicación para la cual se diseñe el reflector multifocal compuesto sectorial. Para alguna aplicación particular también puede pensarse en un reflector multifocal compuesto sectorial formado por más de tres sectores de los cuales algunos poseen la misma distancia focal y otros no. Análogamente pueden diseñarse reflectores multifocales compuestos sectoriales formados por dos o más sectores elipsoidales con distancias focales iguales o diferentes entre sí y en el que los focos Fl, Fl ' , Fl' ' , ... de los sectores que lo forman, no coincidan. Los reflectores multifocales compuestos anulares están formados por anillos de elipsoides de revolución diferentes o iguales, unidos entre sí. Cada anillo es un segmento que se obtiene al cortar un elipsoide de revolución por planos perpendiculares al eje de simetría. En consecuencia estos reflectores anulares son simétricos respecto al eje de revolución de los diferentes elipsoides que los forman. Debe tomarse en cuenta que el segmento inferior de un reflector multifocal compuesto anular es, de hecho, un elipsoide de revolución truncado y no propiamente un anillo, aunque este término se use en general para todos los segmentos que forman un reflector de este tipo.
Al igual que en el caso de los reflectores sectoriales mencionados anteriormente, estos reflectores multifocales compuestos anulares hacen que las ondas de choque generadas por una fuente, se reflejen debido a las características del arreglo geométrico desfasándose tanto en el tiempo como en el espacio, generando con ésto torcas y esfuerzos en algún objeto situado en la región que contiene a los focos F2, F2', F2' ' , ..., causando una desintegración más rápida del objeto, por ejemplo, de un cálculo renal. Así por ejemplo, la figura 9 muestra dos anillos de elipsoides de revolución con semiejes diferentes. En este caso particular la distancia entre los focos de cada elipsoide es la misma, es decir, la distancia focal de Fl a F2 del elipsoide del que forma parte el primer anillo es igual a la distancia focal de Fl ' a F2 ' correspondiente al segundo anillo. Si estos dos anillos se unen de manera que Fl y Fl ' coincidan, independientemente de las ecuaciones de las elipses que se utilicen, se obtiene el reflector multifocal compuesto mostrado en la figura 10. Debido a que uno de los dos anillos tiene semiejes más grandes que el otro, es posible que se formen bordes en la unión de ambos anillos (figura 10,6) . Las dimensiones de estos bordes pueden variar desde milímetros hasta decímetros y dependerán de los elipsoides de revolución seleccionados para los diferentes anillos. Por supuesto, también es posible la construcción de un reflector multifocal compuesto anular formado por más de dos anillos, con la misma distancia focal pero con diferentes longitudes de los semiejes.
En la figura 11, se muestran esquemáticamente dos anillos de otro de los posibles reflectores multifocales anulares que pueden formarse, variando el tamaño de los semiejes y la distancia focal de los elipsoides de revolución y el modo de unir los anillos de los elipsoides de revolución que lo forman. Para este caso, los focos F2 y F2 ' de los anillos no coinciden, ya que las distancias focales de los elipsoides correspondientes a cada uno de los anillos son diferentes.
El reflector multifocal compuesto anular que resulta de la unión de los anillos mostrados en la figura 11, se puede ver en la figura 12. Tomando en cuenta que los focos Fl y Fl ' coinciden, independientemente de las ecuaciones de las elipses usadas en los anillos y debido a que las distancias entre los focos de cada uno de los anillos no son iguales, los focos F2 y F2 ' de los anillos quedan separados cierta distancia. En la unión entre ambos anillos, nuevamente se crean bordes (figura 12,6) . La onda reflejada en este tipo de reflector multifocal compuesto anular está formada por una parte que converge hacia la vecindad del foco F2 de uno de los anillos y otra que converge hacia la vecindad del foco F2 ' del otro anillo del reflector. Como ya se mencionó, este arreglo novedoso hace que las ondas reflejadas estén desfasadas tanto en el tiempo como en el espacio, generando torcas y esfuerzos en cualquier objeto situado en la región que contenga a los focos F2 y F2 ' , causando un efecto diferente al que produciría un reflector convencional.
Es claro que pueden usarse más de dos anillos elipsoidales para formar un reflector de este tipo, pudiendo obtenerse más de dos focos F2. En la figura 13 se muestra esquemáticamente un corte a través de un reflector multifocal compuesto anular formado por tres anillos, los cuales se unen de manera que los focos Fl, Fl ' y Fl ' ' coincidan, independientemente de las ecuaciones de las elipses que se utilizan para los anillos. La elección del número de anillos y de la geometría específica de los elipsoides de revolución a partir de los cuales se forman estos anillos, dependerá de la aplicación para la cual se diseñe el reflector multifocal compuesto. Para alguna aplicación particular también puede pensarse en un reflector multifocal compuesto anular formado por más de dos anillos de los cuales algunos poseen la misma distancia focal y otros no. Análogamente pueden diseñarse reflectores multifocales compuestos anulares formados por dos o más anillos elipsoidales con distancias focales iguales o diferentes entre sí y en el que los focos Fl, Fl ' , Fl' ' , ..., de los anillos que lo forman, no coincidan.
En las figuras 14 a la 16, se ilustra la manera de cómo pueden colocarse los electrodos en el interior de los reflectores multifocales compuestos para la generación de las ondas de choque. Como ejemplo se seleccionó el caso de un reflector multifocal compuesto sectorial; sin embargo, bien podría haberse tomado un reflector multifocal compuesto anular. Así, en la figura 14 se pueden ver los electrodos colocados de manera que su centro coincide con los focos Fl y Fl ' del reflector multifocal compuesto sectorial, en la figura 15 se puede observar la colocación del centro de los electrodos fuera de los focos Fl y Fl ' pero sobre la línea que une a los focos Fl con los focos F2 y en la figura 16 se muestra la posición del centro de los electrodos en cualquier región en el interior del reflector sin la coincidencia con los focos Fl y Fl' y fuera de la línea que une los focos Fl con los focos F2. Finalmente, puede diseñarse también un reflector multifocal compuesto, en el cual algunos segmentos son sectores y otros son anillos de elipsoides de revolución con distancias focales diferentes o iguales y semiejes diferentes o iguales . Nuevamente la geometría de cada segmento así como el tipo y el número de segmentos dependerá de la aplicación específica.
En el caso de la litotripsia extracorporal por ondas de choque, los reflectores multifocales compuestos, ya sean sectoriales o anulares, objeto de esta patente, pueden ser montados dentro de los litotriptores extracorporales en vez de y de manera similar a la de los reflectores convencionales con forma de elipsoide de revolución. La ventaja de estos nuevos reflectores multifocales compuestos consiste en que es posible pulverizar los objetos, ya sea con un número menor de ondas de choque o con una energía inicial menor que en el caso convencional, obteniéndose el mismo resultado.

Claims

REIVINDICACIONES
1. Reflectores multifocales compuestos para concentrar ondas de choque, caracterizados porque dichos reflectores comprenden varios segmentos unidos o fabricados, que pueden ser sectores y/o anillos, siendo cada uno parte de un elipsoide de revolución; dichos segmentos, cuando son juntados, permitiendo la formación de bordes en la o las uniones y escalones en la parte inferior del reflector multifocal compuesto, pudiéndose perder la simetría de revolución; y caracterizados además porque, debido a esta nueva geometría, las ondas de choque que se concentran en el o en los focos F2 pueden desfasarse tanto en el tiempo como en el espacio, generando torcas y esfuerzos en un objeto frágil situado en una región que contiene a los focos F2.
2. Reflectores multifocales compuestos sectoriales para concentrar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 sectores de elipsoides de revolución truncados a la misma o a diferentes alturas, con semiejes diferentes, que están unidos o fabricados de tal manera que los todos focos de los sectores coincidan.
3. Reflectores multifocales compuestos sectoriales para concentrar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 sectores de elipsoides de revolución truncados a la misma o a diferentes alturas, con semiejes diferentes o iguales y distancias focales diferentes, unidos o fabricados de tal forma que únicamente los focos más cercanos al fondo de los reflectores, generalmente denominados Fl, coincidan.
4. Reflectores multifocales compuestos sectoriales para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 y 2, caracterizados porque los sectores de elipsoides de revolución truncados pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes sectores que los forman no coincidan.
5. Reflectores multifocales compuestos sectoriales para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 y 3 , caracterizados porque los sectores de elipsoides de revolución truncados pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes segmentos que los forman no coincidan.
6. Reflectores multifocales compuestos anulares para concentrar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 anillos de elipsoides de revolución, con semiejes diferentes y distancias focales iguales, que están unidos o fabricados de tal manera que todos los focos de los anillos coincidan.
7. Reflectores multifocales compuestos anulares para concentrar ondas de choque, de acuerdo con la reivindicación 1 , caracterizados porque los reflectores están formados de 2 a 36 anillos de elipsoides de revolución, con semiejes diferentes o iguales y distancias focales diferentes, unidos σ fabricados de tal forma que únicamente los focos más cercanos al fondo de los reflectores, generalmente denominados Fl, coincidan.
8. Reflectores multifocales compuestos anulares para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 y 6, caracterizados porque los anillos de elipsoides de revolución pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes anillos que los forman no coincidan.
9. Reflectores multifocales compuestos anulares para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 y 7, caracterizados porque los anillos de elipsoides de revolución pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes segmentos que los forman no coincidan.
10. Reflectores multifocales compuestos para concentrar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque dichos reflectores están formados por la unión o fabricación de sectores y anillos con distancias focales iguales o diferentes, semiejes iguales o diferentes y truncados a la misma o a diferente altura.
11. Reflectores multifocales compuestos para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 a la 10, caracterizados porque la unión o fabricación de los segmentos es llevada a cabo por medio de soldadura.
12. Reflectores multifocales compuestos para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 a la 10, caracterizados porque la unión o fabricación de los segmentos es llevada a cabo por medio de troquelado.
13. Reflectores multifocales compuestos para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 a la 10, caracterizados porque la unión o fabricación de los segmentos es llevada a cabo por medio de maquinado.
14. Reflectores multifocales compuestos para concentrar ondas de choque, de acuerdo con las reivindicaciones 1 a la 10, caracterizados porque la unión o fabricación de los segmentos es llevada a cabo por medio de moldeado.
REIVINDICACIONES MODIFICADAS
[recibidas por la Oficina Internacional el 13 de Dunio de 1996 (13.06.96); reivindicaciones 11-14 se suprimen; reivindicaciones
1-10 modificadas (4 páginas)]
1. Reflectores multifocales compuestos para desfasar en el tiempo y/o en el espacio, ondas de choque generadas en un punto dentro del reflector, con el propósito de mejorar la 5 eficiencia de tratamientos no invasivos para pulverizar cálculos humanos mediante ondas de choque. Dichos reflectores de ondas de choque están formados por varios segmentos, ya sean unidos o fabricados, que son sectores y/o anillos cada uno de los cuales es parte de un elipsoide de revolución.
10 Todos estos segmentos son masivos y están hechos del mismo material, caracterizado este último por ser un buen reflector de ondas de choque. Dichos segmentos, cuando se juntan, permiten la formación de bordes, que no deben ser menores que una décima de milímetro en la o las uniones y de escalones,
15 también no menores que una décima de milímetro, en la parte inferior del reflector, pudiéndose perder la simetría de revolución. Debido a esta nueva geometría, las ondas de choque, que se generan en uno de los focos de los elipsoides de los cuales se tomaron los segmentos que forman el
20 reflector, al concentrarse en el segundo foco sufren desfasamientos en el tiempo y/o en el espacio, generando torcas y esfuerzos en un objeto frágil colocado en una región que contiene a los otros focos de los elipsoides de revolución. El proposito fundamental de estos reflectores es
25 mejorar la eficiencia en el sentido de que se requiere un menor numero de ondas de choque para pulverizar un objeto que si se usan los reflectores convencionales que sólo concentran la onda de choque en el segundo foco, sin desfasarlas en el tiempo y/o en el espacio.
2. Reflectores muítificoles compuestos sectoriales para desfasar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 sectores de elipsoides de revolución truncados a la misma
0 a diferentes alturas, con semiejes diferentes, que están unidos o fabricados de tal manera que todos los focos de los sectores coincidan.
3. Reflectores multifocales compuestos sectoriales para desfasar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 sectores de elipsoides de revolución truncados a la misma o a diferentes alturas, con semiejes diferentes o iguales y distancias focales diferentes, unidos o fabricados de tal forma que únicamente los focos mas cercanos a los reflectores, generalmente denominados Fl, coincidan.
4. Reflectores multifocales compuestos sectoriales para desfasar ondas de choque, de acuerdo con las reivindicaciones
1 y 2, caracterizados porque los sectores de elipsoides de revolución truncados pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes sectores que los forman no coincidan. 5. Reflectores multifocales compuestos sectoriales para desfasar ondas de choque, de acuerdo con las reivindicaciones 1 y 3, caracterizados porque los sectores de elipsoides de revolución truncados pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes segmentos que los forman no coincidan. 6. Reflectores multifocales compuestos anulares para desfasar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 anillos de elipsoides de revolución, con semiejes diferentes y distancias focales iguales, que están unidos o fabricados de tal manera que todos los focos de los anillos coincidan.
7. Reflectores multifocales compuestos anulares para desfasar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque los reflectores están formados de 2 a 36 anillos de elipsoides de revolución, con semiejes diferentes o iguales y distancias focales diferentes, unidos
0 fabricados de tal forma que únicamente los focos mas cercanos al fondo de los reflectores, generalmente denominados Fl, coincidan. 8. Reflectores multifocales compuestos anulares para desfasar ondas de choque, de acuerdo con las reivindicaciones
1 y 6, caracterizados porque los anillos de elipsoides de revolución pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes segmentos que los forman no coincidan. 9. Reflectores multifocales compuestos anulares para desfasar ondas de choque, de acuerdo con las reivindicaciones 1 y 7, caracterizados porque los anillos de elipsoides de revolución pueden estar unidos o fabricados de tal forma que los focos Fl de los diferentes segmentos que los forman no coincidan.
10. Reflectores multifocales compuestos para desfasar ondas de choque, de acuerdo con la reivindicación 1, caracterizados porque dichos reflectores están formados por la unión o fabricación de sectores y anillos con distancias focales iguales o diferentes, semiejes iguales o diferentes y truncados a la misma o a diferente altura.
DECLARACIÓN SEGÚN EL ARTICULO 19
Después de examinar las patentes citadas en el informe de búsqueda relacionadas con reflectores para aplicaciones
diversas, cambiamos el texto de nuestras reivindicaciones. Esta invención se refiere exclusivamente a reflectores para ondas de choque y no para otro tipo de ondas, como en
la patente EP 0330816A. El propósito es desfasar las ondas de choque generadas en un punto, mismas que al incidir sobre una superficie con la geometría que se desea patentar, se concentran en otro u otros puntos, desfasándose en el tiempo y/o en el espacio. Esto marca una diferencia con respecto a los reflectores de la patente US 4050444 A, los cuales se usan con fuentes extendidas, para otro tipo de ondas y que además tienen una configuración lineal.
El desfasamiento mejora la eficiencia en la aplicación de ondas de choque para pulverizar cálculos humanos, a diferencia del propósito de la patente EP 0330816 A, que es el tratamiento acústico de tejidos. Si bien en las patentes citadas en el informe de búsqueda se usan combinaciones de secciones cónicas, el propósito es diferente y en algunas de ellas, se trata de secciones de paraboloides (patente US 4664111 A) . En la patente EP 0330816 A se usan segmentos elipsoidales y figuras parecidas a algunas de ϊas nuestras. Sin embargo, en dicha patente la característica fundamental de los segmentos descritos es la de estar hechos por materiales diferentes, uno duro y uno suave, condición
indispensable para lograr los objetivos de esa patente, muy diferentes a los de nuestra solicitud.
La única patente cuyo objetivo coincide parcialmente con el nuestro es la patente US 4664111 A, cuyo propósito es desfasar sólo temporalmente ondas de choque, sin embargo, el método y dispositivo usados son totalmente diferentes .
En el caso de la patente US 5408363 A se usan
secciones cónicas unidas de un modo continuo en contraste con nuestra invención, en la cual, debido a la longitud de onda manejada, se requieren escalones y bordes.
La geometría propuesta en la figura 12 de la patente
US 5408363 A no podría aplicarse para los objetivos que proponemos en nuestra invención debido a que se presenta una doble reflexión que puede tener aplicación para difusión de luz, pero no para ondas de choque con el propósito mencionado anteriormente .
Con referencia a la patente DE 4039408 A, puede mencionarse que se usan anillos de paraboloides y no elipsoides, se usa una fuente electromagnética cilindrica, no puntual electrohidráulica, y lo que es más importante, el objetivo que se persigue es diferente. Lo que se obtiene
es un generador de ondas de choque con tres diferentes distancias de tratamiento, pero no hay desfasamiento temporal y/o espacial como en nuestro caso.
En las reivindicaciones 2 a la 10, se cambió la
palabra "concentrar" por "desfasar" .
Puesto que el propósito de la presente invención no es el procedimiento de fabricación, se suprimen las
reivindicaciones 11 a 14.
Las figuras y su descripción no se modifican.
PCT/MX1995/000008 1995-11-15 1995-11-15 Reflectores multifocales compuestos para concentrar ondas de choque WO1997018551A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU39373/95A AU3937395A (en) 1995-11-15 1995-11-15 Compound multifocal reflectors for concentrating shock waves
DE19581913T DE19581913T1 (de) 1995-11-15 1995-11-15 Zusammengesetzte Multifokalreflektoren zur Konzentration von Stoßwellen
PCT/MX1995/000008 WO1997018551A1 (es) 1995-11-15 1995-11-15 Reflectores multifocales compuestos para concentrar ondas de choque
MXPA/A/1997/005197A MXPA97005197A (es) 1997-07-10 Reflectores multifocales compuestos para concentrar ondas de choque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX1995/000008 WO1997018551A1 (es) 1995-11-15 1995-11-15 Reflectores multifocales compuestos para concentrar ondas de choque

Publications (1)

Publication Number Publication Date
WO1997018551A1 true WO1997018551A1 (es) 1997-05-22

Family

ID=19744865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX1995/000008 WO1997018551A1 (es) 1995-11-15 1995-11-15 Reflectores multifocales compuestos para concentrar ondas de choque

Country Status (3)

Country Link
AU (1) AU3937395A (es)
DE (1) DE19581913T1 (es)
WO (1) WO1997018551A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919499A (zh) * 2018-07-05 2018-11-30 鲁东大学 一种产生位置和强度独立可控多个聚焦光斑的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050444A (en) * 1974-05-22 1977-09-27 Peter William Dolamore Reflective device
US4664111A (en) * 1985-01-21 1987-05-12 Siemens Aktiengesellschaft Apparatus for producing time-staggered shock waves
EP0330816A2 (de) * 1988-03-01 1989-09-06 Richard Wolf GmbH Vorrichtung zur Erzeugung von das Wachstum pathologischen Gewebes oder dergleichen einschränkenden bzw. unterbindenden bzw. rückbildenden Ultraschallsignalformen für eine Ultraschallsendeanordnung
DE4039408A1 (de) * 1989-12-22 1991-06-27 Siemens Ag Stosswellengenerator mit einem reflektor
US5408363A (en) * 1991-06-21 1995-04-18 Kano; Tetsuhiro Reflector and a method of generating a reflector shape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050444A (en) * 1974-05-22 1977-09-27 Peter William Dolamore Reflective device
US4664111A (en) * 1985-01-21 1987-05-12 Siemens Aktiengesellschaft Apparatus for producing time-staggered shock waves
EP0330816A2 (de) * 1988-03-01 1989-09-06 Richard Wolf GmbH Vorrichtung zur Erzeugung von das Wachstum pathologischen Gewebes oder dergleichen einschränkenden bzw. unterbindenden bzw. rückbildenden Ultraschallsignalformen für eine Ultraschallsendeanordnung
DE4039408A1 (de) * 1989-12-22 1991-06-27 Siemens Ag Stosswellengenerator mit einem reflektor
US5408363A (en) * 1991-06-21 1995-04-18 Kano; Tetsuhiro Reflector and a method of generating a reflector shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919499A (zh) * 2018-07-05 2018-11-30 鲁东大学 一种产生位置和强度独立可控多个聚焦光斑的方法
CN108919499B (zh) * 2018-07-05 2020-07-10 鲁东大学 一种产生位置和强度独立可控多个聚焦光斑的方法

Also Published As

Publication number Publication date
AU3937395A (en) 1997-06-05
DE19581913T1 (de) 1998-02-05

Similar Documents

Publication Publication Date Title
JPH0446731Y2 (es)
US5174280A (en) Shockwave source
CN103619411B (zh) 使用聚焦交叉超声波进行组织处理的治疗探头
US5193527A (en) Ultrasonic shock-wave transducer
US4664111A (en) Apparatus for producing time-staggered shock waves
US8099154B1 (en) Apparatus for generating focused acoustical pressure waves
EP1651120B1 (en) Shockwave generating system
US6755796B2 (en) Pressure-pulse therapy apparatus
JPH06506373A (ja) 電気液圧式砕石術における改良
JPH01223950A (ja) 医療用圧電式衝撃波発生装置
JPH0377549A (ja) 集束衝撃波発生用衝撃波源
US4655220A (en) Apparatus for contactless fragmentation of concrements in vivo
CN100354925C (zh) 非柱面声波装置
US20040010211A1 (en) Pressure-pulse therapy apparatus
WO1997018551A1 (es) Reflectores multifocales compuestos para concentrar ondas de choque
ES2053361B1 (es) "generador de ondas sonoras"
US7410464B2 (en) Wave generating device
EP2630918A1 (en) Optical fiber and underwater shockwave generating device employing same
MXPA97005197A (es) Reflectores multifocales compuestos para concentrar ondas de choque
US7267654B2 (en) Focused shock-wave devices with direct wave cavitation suppressor
US9456835B2 (en) Methods and apparatuses for generating a steerable pressure field in a shock wave lithotripter
JPS62236538A (ja) 衝撃波源
JPWO2019189672A1 (ja) 衝撃波発生装置および衝撃波アブレーションシステム
US11839394B2 (en) Reflector for acoustic pressure wave head
US7033328B2 (en) Direct wave cavitation suppressor for focused shock-wave devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/005197

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 19581913

Country of ref document: DE

Date of ref document: 19980205

WWE Wipo information: entry into national phase

Ref document number: 19581913

Country of ref document: DE

122 Ep: pct application non-entry in european phase