WO1997015394A9 - Plaques a micropuits - Google Patents

Plaques a micropuits

Info

Publication number
WO1997015394A9
WO1997015394A9 PCT/US1996/017072 US9617072W WO9715394A9 WO 1997015394 A9 WO1997015394 A9 WO 1997015394A9 US 9617072 W US9617072 W US 9617072W WO 9715394 A9 WO9715394 A9 WO 9715394A9
Authority
WO
WIPO (PCT)
Prior art keywords
plate
wells
multiwell plate
liquid
well
Prior art date
Application number
PCT/US1996/017072
Other languages
English (en)
Other versions
WO1997015394A1 (fr
Filing date
Publication date
Priority claimed from GBGB9521775.8A external-priority patent/GB9521775D0/en
Application filed filed Critical
Priority to EP96936933A priority Critical patent/EP0862497A4/fr
Priority to JP9516786A priority patent/JP2000500567A/ja
Publication of WO1997015394A1 publication Critical patent/WO1997015394A1/fr
Publication of WO1997015394A9 publication Critical patent/WO1997015394A9/fr

Links

Definitions

  • This invention relates to microwell plates.
  • HTS High Throughput Screening
  • CC Combinatorial Chemistry
  • This patent application describes a system specifically designed for the parallel synthesis or assay of tens of thousands of compounds.
  • the heart of the concept is a special well structure, called a JetWell in which the wells are arranged as a matrix within the flat plate as is conventional for microwell plates.
  • the novel feature of this concept is that the wells are fabricated with large open areas at one end to accept liquid and integral nozzles at the other end from which liquid can be jet dispensed.
  • These arrays might be made compatible with conventional 96 or 384 microwell plates but advantageously could be higher density (eg 60 x 40 or 120 x 80).
  • the walls of the lower end of the cell may be coated with a binding surface on which the compounds to be synthesised can be attached.
  • JetWell The design of the JetWell enables it to receive and deliver accurate micro volumes of fluid.
  • Dispensing of fluids required for the synthesis into each JetWell would preferably be made without contact of the dispenser to the liquid in the well by using a multinozzle ink-jet head firing into the large end of the wells.
  • a multinozzle approach is necessary to ensure the dispense time for the complete array is short compared to the typical reaction time for each stage of the processing.
  • Liquid removal from the cells is achieved through the integral nozzle in the bottom of the well. During normal operation liquid is prevented from flowing out the cell through the nozzle by surface tension or even a physical plug. Liquid is ejected from the nozzle by applying pressure to the liquid in the wells causing it to jet cleanly out of the hole away from the lower surface.
  • the volume to be removed from the well can be controlled by the pressure applied and time for which it is applied. To achieve clean jetting of the fluid pressure typically in the range 0.1 to 10.0 bar gauge is used and the pressure is applied and removed rapidly to prevent any dribbling of liquid out of the nozzle. If a matching JetWell array is positioned beneath the first array transfer of an accurate volume of liquid from one array to the other occurs in a few milliseconds.
  • the approach provides an accurate system for the parallel dispensing into and from very small JetWell arrays. This enables the volume of the wells to be reduced and the number per plate increased thus greatly increasing the throughput of HTS or CC systems.
  • JetWell Arrav Structure The specific feature of a JetWell which is different from other forms of microwell plate is that each well has one or more nozzles in the base through which liquid in the well will jet when pressure is applied to the top surface.
  • the diameter of the nozzle controls the rate of liquid flow and is chosen to optimise for speed and accuracy. For example, if the pressure duration is controlled to 1 millisecond accuracy and the volumetric control requirement is 1 nanolitre the flow rate through the hole must be less than 1 microlitre/second. Assuming a jet velocity of 5 metres/second the nozzle would be around 50 microns in diameter which is comparable with that used in conventional ink jet printers.
  • each well depends upon the user requirements.
  • a system might be designed to be compatible with conventional 384 well plates which have a well volume around 20 microlitres arranged on a 4.5mm pitch.
  • well volumes around 20 microlitres arranged on a 4.5mm pitch.
  • a plate of similar size to a conventional microwell plate (either 96 or 384) with wells at 1mm pitch would contain a 96 x 64 array. Taking this size as an example the diameter at the top might be 0.8mm and the hole at the base 30 microns in diameter.
  • Figure 1 shows an example of the basic structure of the JetWell concept and Figure 1A is a detailed view, to an enlarged scale of part of that structure.
  • This application, as well as describing the concept and example JetWell designs also addresses suitable manufacturing techniques for the plate and for the associated system components.
  • each line of wells by bonding two strips together with etched structures in them to form the wells.
  • the complete array could be formed etched into the surface of a plate which is then cut into strips and laminated together to form the finished structure.
  • Such a structure could be manufactured for example in glass using a low temperature glass enamel bonding.
  • a single crystal silicon wafer substrate is appropriate with the wells formed by crystallographic etching which can be used to form the nozzle hole with a precision of a few microns.
  • the JetWell concept has many wells in an array on a plate each with a nozzle hole in the base. It is possible to transfer a measured dose from all wells on a JetWell plate to a second receiver JetWell plate in one operation. This is achieved by placing the receiver plate directly below the plate containing the liquid to be dispensed and applying a pressure pulse to all wells of the top plate. Liquid is then jetted from each well on the top plate to the corresponding well on the bottom plate. To jet the fluid cleanly from the nozzle hole the pressure in the fluid must rise quickly and fall sufficiently fast to prevent dribbling from the nozzle. The dynamics of this are well understood from ink-jet experience and it is known that it requires rates in excess of 10 8 Pa s ' 1 (ie 1 bar/ms) for typical dimensions.
  • the pressure rise of a few bar can then be achieved by moving the piston a few millimetres at speeds of a few metres per second.
  • electromagnetic actuators are the simplest.
  • the force required to reach 10 bar is 10 4 Newton's ( ⁇ 1 ton) which is more difficult to achieve using a simple solenoid drives.
  • an impact actuator can be used.
  • the piston is sealed to the dispense JetWell plate using a compliant seal which permits sufficient travel to reach the desired pressure and then prevents over pressure by limiting the motion using a physical stop.
  • the receiver JetWell plate is fitted directly below the dispense plate.
  • the piston and the two JetWell plates are mounted together on a spring support.
  • the back of the piston is then struck by a mass at a predetermined velocity.
  • the mass striking the piston back moves the piston towards the plate until it reaches the stop. This compresses the air volume above the wells to the desired pressure very quickly. Both the impact mass and the plates continue to move compressing the support spring.
  • the spring decelerates the assembly and then accelerates it back-up.
  • FIG 3 shows two JetWell plates, each of the type shown in Figure 1, mounted in the impact actuator.
  • JWL is the JetWell plate containing the liquid to be dispensed and
  • JW2 is the JetWell plate into which the aliquots are to be dispensed.
  • JW1 and JW2 are mounted rigidly together with JW1 above JW2.
  • the piston plate PP is mounted with a small gap above JW1 on a compressible gas tight edge gasket EG.
  • JW1, JW2 and PP are all supported on spring support SS.
  • mass M is accelerated towards PP so that it impacts at a specified velocity.
  • the piston plate PP and mass M move towards JWl compressing the edge gasket (EG) until the motion stop (MSI) stops it at a preset gap.
  • EG edge gasket
  • MSI motion stop
  • the dispense pressure is a function of air volume and the distance to the forward stop and the dispense time is a function of the spring constants, masses and initial impact velocity.
  • the technique therefore provides the ability to independently set time and pressure for dispensing over a wide range.
  • a small area piston pump can be located over the specific well.
  • lines, or rectangular sections of the plate can be addressed by specifically shaped actuators.
  • the use of a minimal volume positive displacement air pressure generator has important advantages as has the impact technique described to implement it.
  • the technique for dispensing from a JetWell plate can also be used for dispensing to a JetWell plate providing the same volume is required in each well. This is applicable in some, but not all instances. Where different amounts are required in each well, alternative approaches can be used.
  • Nozzle plates could be selected from a library and cleaned for re-use
  • programmable nozzle arrays including but not restricted to solenoid, piezo, mechanically and thermal drives for ball, plate, disc or poppet mechanisms.
  • nozzles in the sub 0.1mm diameter range with minimal dead volume and implementable in arrays of many thousand is a challenge.
  • One approach is to use cone shaped nozzles which are produced as an array in a ferro magnetic material.
  • the nozzle plate is removable from the pressure generating head.
  • To programme the array to the required pattern magnetic beads are placed in those nozzles to be closed. The magnetic attraction to the plate holds them in place whilst the plate is replaced in the dispense head.
  • the nozzles are then filled with the liquid to be dispensed and a pressure pulse applied for the required time.
  • the ball in cone arrangement ensures a good seal against the dispense pressure.
  • the magnetic beads may be disposable or reusable depending upon application. By using several plates which can be programmed whilst other operations are being performed the system will be rapid and flexible.
  • JetWells of the dispense plate are prefilled with the volume and type of liquids required using an accurate but not necessarily fast technique.
  • the liquid is held in the wells by surface tension.
  • the plate is ready for use. It is positioned over the reaction JetWell plate, and all the content of each well is jet dispensed by a pressure pulse as described previously.
  • JetWell dispensing approaches In some cases neither of these JetWell dispensing approaches will be appropriate. For these instances it may be necessary to use a precision dispensing head.
  • the technique most suitable for this is based upon drop-on-demand ink-jet systems where the dose in each well can be set by dispensing a measured number of drops.
  • All material in contact with the fluid must be inert to a wide range of acids, alkalis and solvents. Preferably it should be restricted to silicon dioxide, stainless steel, and inert polymers
  • the system must be easy to fill and to flush as it must be used many times with a wide range of fluids *
  • the nozzle diameter is chosen to match the well size.
  • the drop size is selected to be in the range 10° to 10 "4 of the well volume
  • Typical delivery rates are in the range 10 3 to 10 4 drops per second
  • Actuation will preferably be by a thin piezo layer bonded to a silicon or silicon dioxide membrane.
  • the piezo drivers may be integrated on to the head.
  • the head would have gold contacts deposited enabling it to make electrical contact to off head drivers.
  • the application lends itself to implementation of the head using silicon crystallographic etching techniques to form the structure and either silicon to glass or silicon to silicon bonding for assembly.
  • top shooter or side shooter forms could be implemented at typical pitches required r 0.5mm).
  • the best approach for achieving precision is therefore to include a technique for the calibration of each device prior to use.
  • a technique for the calibration of each device prior to use For example, for JetWell plates there may be a distribution of nozzle diameters coupled with a pressure variation which leads to different volumes being dispensed for each well. If a quantative assay is being performed on part-samples from each well, volume variation would influence the result.
  • the system could be calibrated before use by dispensing a reagent which can be used in a simple standard assay test for volume.
  • a reagent which can be used in a simple standard assay test for volume.
  • This for example could be a colour change reaction which is convenient for automated measurement.
  • the calibration would be used to correct the results of the real assay rather than to control the volumes dispensed.

Abstract

Plaque à micropuits dans laquelle les puits présentent une grande ouverture au niveau supérieur et un petit trou d'ajutage dans la base, lequel est choisi pour qu'un jet de liquide soit émis lorsqu'une impulsion de pression est appliquée sur ladite surface, de sorte que la sélection d'un temps donné d'impulsion de pression permette la distribution d'une quantité précise de volume du puits.
PCT/US1996/017072 1995-10-24 1996-10-24 Plaques a micropuits WO1997015394A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96936933A EP0862497A4 (fr) 1995-10-24 1996-10-24 Plaques a micropuits
JP9516786A JP2000500567A (ja) 1995-10-24 1996-10-24 マイクロウエルプレート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9521775.8A GB9521775D0 (en) 1995-10-24 1995-10-24 Microwell plates
GB9521775.8 1995-10-24

Publications (2)

Publication Number Publication Date
WO1997015394A1 WO1997015394A1 (fr) 1997-05-01
WO1997015394A9 true WO1997015394A9 (fr) 1997-09-25

Family

ID=10782830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/017072 WO1997015394A1 (fr) 1995-10-24 1996-10-24 Plaques a micropuits

Country Status (4)

Country Link
EP (1) EP0862497A4 (fr)
JP (1) JP2000500567A (fr)
GB (1) GB9521775D0 (fr)
WO (1) WO1997015394A1 (fr)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227010B2 (en) 1993-09-21 2007-06-05 United States Of America As Represented By The Secretary Of The Army Recombinant light chains of botulinum neurotoxins and light chain fusion proteins for use in research and clinical therapy
US7037680B2 (en) 1993-09-21 2006-05-02 The United States Of America As Represented By The Secretary Of The Army Recombinant light chains of botulinum neurotoxins and light chain fusion proteins for use in research and clinical therapy
US7214787B1 (en) 1993-09-21 2007-05-08 United States Of America As Represented By The Secretary Of The Army Recombinant vaccine against botulinum neurotoxin
DE19828995B4 (de) * 1997-06-30 2006-01-12 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Anordnung von Mikroreaktionsgefäßen und Verfahren zur Abgabe einer Flüssigkeit aus einer Anordnung von Mikroreaktionsgefäßen
WO1999015876A1 (fr) * 1997-09-19 1999-04-01 Aclara Biosciences, Inc. Systeme et procede de transfert de liquides
AU9786798A (en) 1997-10-10 1999-05-03 Biosepra Inc. Aligned multiwell multiplate stack and method for processing biological/chemicalsamples using the same
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
CA2316912C (fr) * 1998-01-12 2009-09-15 Massachusetts Institute Of Technology Procede pour effectuer des dosages microscopiques
GB9800933D0 (en) 1998-01-17 1998-03-11 Central Research Lab Ltd A dispenser
DE69903800T2 (de) * 1998-03-18 2003-10-02 Massachusetts Inst Technology Vaskularisierte perfundierte anordnungen für mikrogewebe und mikroorgane
GB2336908A (en) * 1998-04-17 1999-11-03 Merck & Co Inc Multiwell plate
US6350618B1 (en) 1998-04-27 2002-02-26 Corning Incorporated Redrawn capillary imaging reservoir
EP0955084B1 (fr) * 1998-04-27 2006-07-26 Corning Incorporated Procédé pour le dépôt d'échantillons biologiques avec un réservoir capillaire refilé
DE19823660C1 (de) * 1998-05-20 1999-10-07 Nanomont Ges Fuer Nanotechnolo Verfahren und Vorrichtung zur Fixierung fester Mikro- und/oder Nanoobjekte
US6762061B1 (en) 1998-07-03 2004-07-13 Corning Incorporated Redrawn capillary imaging reservoir
US6436351B1 (en) 1998-07-15 2002-08-20 Deltagen Research Laboratories, L.L.C. Microtitre chemical reaction system
EP1250955A1 (fr) * 1998-09-08 2002-10-23 Tibotec N.V. Procédé de criblage rapide pour des analytes
US6103199A (en) * 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
EP1876442A3 (fr) * 1998-09-17 2008-03-05 Advion BioSciences, Inc. Système chromatographique liquidemicrofabriquée en monolithique intégré et procédé
GB9821573D0 (en) * 1998-10-02 1998-11-25 Central Research Lab Ltd Method and apparatus for removing a substance from a container
US6165417A (en) * 1998-10-26 2000-12-26 The Regents Of The University Of California Integrated titer plate-injector head for microdrop array preparation, storage and transfer
US6689323B2 (en) * 1998-10-30 2004-02-10 Agilent Technologies Method and apparatus for liquid transfer
US6309828B1 (en) 1998-11-18 2001-10-30 Agilent Technologies, Inc. Method and apparatus for fabricating replicate arrays of nucleic acid molecules
AU756982B2 (en) 1999-03-19 2003-01-30 Life Technologies Corporation Multi-through hole testing plate for high throughput screening
GB9906477D0 (en) 1999-03-19 1999-05-12 Pyrosequencing Ab Liquid dispensing apparatus
GB9920924D0 (en) * 1999-09-06 1999-11-10 Amersham Pharm Biotech Uk Ltd Mixing chamber
US6383748B1 (en) 1999-09-14 2002-05-07 Pamgene B.V. Analytical test device with substrate having oriented through going channels and improved methods and apparatus for using same
WO2001019502A2 (fr) * 1999-09-17 2001-03-22 Millipore Corporation Carte tamis de grande capacite
ATE315959T1 (de) * 1999-10-26 2006-02-15 Tibotec Bvba Vorrichtung und verfahren zur abgabe von kleinen flüssigkeitsmengen
US6544480B1 (en) 1999-10-26 2003-04-08 Tibotec Bvba Device and related method for dispensing small volumes of liquid
SE9903919D0 (sv) * 1999-10-29 1999-10-29 Amersham Pharm Biotech Ab Device for dispensing droplets
EP1103305A1 (fr) * 1999-11-26 2001-05-30 F.Hoffmann-La Roche Ag Système de couplage à un macroactionneur faisant partie d'un module de pipettage
ATE538490T1 (de) * 1999-12-30 2012-01-15 Advion Biosystems Inc Mehrfach-elektrospray-einrichtung, systeme und verfahren
JP2003520962A (ja) * 2000-01-18 2003-07-08 アドビオン バイオサイエンシーズ インコーポレーティッド 分離媒体、複式電気噴霧ノズルシステム、および方法
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
CH694009A5 (fr) * 2000-04-04 2004-06-15 Suisse Electronique Microtech Dispositif et procédé pour la préparation d'échantillons de substances biologiques.
GB0012353D0 (en) * 2000-05-22 2000-07-12 Biorobotics Ltd Liquid transfer device
US7731904B2 (en) 2000-09-19 2010-06-08 Canon Kabushiki Kaisha Method for making probe support and apparatus used for the method
JP4361271B2 (ja) * 2000-10-10 2009-11-11 バイオトローブ・インコーポレイテツド アッセイ、合成、および保存用の器具、ならびに、その作製、使用、および操作の方法
FR2816711B1 (fr) * 2000-11-15 2003-03-07 Biomerieux Sa Procede de depot d'une solution d'analyte
CH695544A5 (de) * 2000-11-17 2006-06-30 Tecan Trading Ag Vorrichtung zur Abgabe bzw. Aufnahme/Abgabe von Flüssigkeitsproben.
US6824024B2 (en) 2000-11-17 2004-11-30 Tecan Trading Ag Device for the take-up and/or release of liquid samples
US7105134B2 (en) 2001-03-13 2006-09-12 Pamgene B.V. Device for holding a substrate
US6886409B2 (en) 2001-03-13 2005-05-03 Pamgene International B.V. System for controlling the flow of a fluid through a substrate
US20030124549A1 (en) * 2001-10-11 2003-07-03 Xerox Corporation Devices and methods for detecting genetic sequences
CA2470847A1 (fr) * 2001-12-19 2003-07-03 Sau Lan Tang Staats Elements d'interface et supports pour dispositifs de reseau microfluidique
US20030161761A1 (en) * 2002-02-28 2003-08-28 Williams Roger O. Apparatus and method for composing high density materials onto target substrates by a rapid sequence
DE10212557A1 (de) * 2002-03-14 2003-09-25 Univ Schiller Jena Verfahren zur Charakterisierung hochparallelisierter Liquidhandlingtechnik mittels Mikroplatten sowie Testkit zur Durchführung des Verfahrens
US7211224B2 (en) 2002-05-23 2007-05-01 Millipore Corporation One piece filtration plate
WO2004074818A2 (fr) 2002-12-20 2004-09-02 Biotrove, Inc. Appareil et procede de dosage utilisant des reseaux microfluidiques
EP1481804A1 (fr) * 2003-05-28 2004-12-01 F.Hoffmann-La Roche Ag Dispositif de distribution de gouttes de liquide
WO2005001443A1 (fr) * 2003-06-25 2005-01-06 Waters Investments Limited Appareil utilise pour empecher une contamination croisee le long d'une plate-forme et methodes de fabrication de celui-ci
US7063216B2 (en) 2003-09-04 2006-06-20 Millipore Corporation Underdrain useful in the construction of a filtration device
US8753588B2 (en) 2003-10-15 2014-06-17 Emd Millipore Corporation Support and stand-off ribs for underdrain for multi-well device
US8105554B2 (en) 2004-03-12 2012-01-31 Life Technologies Corporation Nanoliter array loading
WO2005113147A2 (fr) 2004-04-08 2005-12-01 Biomatrica, Inc. Integration du stockage et de la gestion d'echantillons pour les sciences de la vie
WO2005123950A2 (fr) 2004-05-19 2005-12-29 Massachusetts Institute Of Technology Modeles de maladie comprenant des tissus/cellules perfuses a trois dimensions
US20060105453A1 (en) 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
KR100657895B1 (ko) * 2004-08-17 2006-12-14 삼성전자주식회사 잉크젯 방식의 마이크로어레이 제작용 스폿팅 장치 및이를 이용한 스폿팅 방법
DE102007041071B4 (de) * 2007-08-30 2010-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Aufnahme einer Flüssigkeit sowie Vorrichtung zur Aufbringung von Flüssigkeiten auf Probenträger und Verfahren hierzu
WO2010118427A1 (fr) 2009-04-10 2010-10-14 Canon U.S. Life Sciences, Inc. Cartouche d'interface de fluide pour puce microfluidique
EP2490007A4 (fr) * 2009-10-15 2016-03-09 Postech Acad Ind Found Cuvette
JP5691178B2 (ja) * 2010-01-22 2015-04-01 凸版印刷株式会社 分注方法及び分注装置
TWI417532B (zh) * 2010-03-01 2013-12-01 Univ Nat Chiao Tung 用於多階衝擊器之多微孔噴嘴板之製造方法
CA2806734A1 (fr) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions de stabilisation d'adn, d'arn, de proteines salivaires et d'autres echantillons biologiques lors du transport et du stockage a temperatures ambiantes
WO2012018638A2 (fr) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions de stabilisation d'adn, d'arn, de protéines dans le sang et d'autres échantillons biologiques lors du transport et du stockage à températures ambiantes
EP3249054A1 (fr) 2012-12-20 2017-11-29 Biomatrica, INC. Formulations et procédés pour stabiliser des réactifs pcr
ES2786373T3 (es) 2014-06-10 2020-10-09 Biomatrica Inc Estabilización de trombocitos a temperaturas ambiente
WO2016020988A1 (fr) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 Dispositif de maintien d'objet
BR112018011639A2 (pt) 2015-12-08 2018-11-27 Biomatrica Inc redução de taxa de sedimentação de eritrócitos
LU501475B1 (en) * 2022-02-15 2023-08-16 Dispendix Gmbh Method for determining a function for determining a volume of liquid to be dispensed
LU501476B1 (en) * 2022-02-15 2023-08-16 Dispendix Gmbh Method for determining a function for determining a volume of liquid to be dispensed
LU501473B1 (en) * 2022-02-15 2023-08-16 Dispendix Gmbh Method for setting a volume of liquid to be dispensed
LU501474B1 (en) * 2022-02-15 2023-08-17 Dispendix Gmbh Method for determining a volume of liquid arranged in a receptacle
LU501663B1 (en) * 2022-03-15 2023-09-20 Dispendix Gmbh Method for determining a function for determining a volume of liquid to be dispensed
LU501824B1 (en) * 2022-04-10 2023-10-10 Dispendix Gmbh Method for setting a volume of liquid to be dispensed from a receptacle
LU501823B1 (en) * 2022-04-10 2023-10-10 Dispendix Gmbh Method for determining a function for determining a volume of liquid to be dispensed
LU501825B1 (en) * 2022-04-10 2023-10-10 Dispendix Gmbh Method for setting a volume of liquid to be dispensed by using a function
LU502213B1 (en) * 2022-06-02 2023-12-04 Dispendix Gmbh Method for Determining a Volume of Liquid dispensed from a Receptacle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111754A (en) * 1976-11-29 1978-09-05 Hydow Park Immunological testing devices and methods
DE2962562D1 (en) * 1978-08-31 1982-06-03 Nat Res Dev Apparatus and method for harvesting material from micro-culture plates
US4483925A (en) * 1982-12-30 1984-11-20 Becton, Dickinson And Company Liquid removal device
US4493815A (en) * 1983-07-28 1985-01-15 Bio-Rad Laboratories, Inc. Supporting and filtering biochemical test plate assembly
US4787988A (en) * 1987-02-20 1988-11-29 Biomedical Research And Development Laboratories, Inc. Cell harvester
JPS6433070U (fr) * 1987-08-22 1989-03-01
US5159197A (en) * 1988-02-16 1992-10-27 Difco Laboratories Luminescence test and exposure apparatus
US5039493A (en) * 1990-05-04 1991-08-13 The United States Of America As Represented By The Secretary Of The Navy Positive pressure blotting apparatus with hydropholic filter means
SE9002579D0 (sv) * 1990-08-07 1990-08-07 Pharmacia Ab Method and apparatus for carrying out biochemical reactions
JPH0720546B2 (ja) * 1991-08-26 1995-03-08 株式会社島津製作所 多種品目同時化学反応装置
US5472672A (en) * 1993-10-22 1995-12-05 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for polymer synthesis using arrays

Similar Documents

Publication Publication Date Title
WO1997015394A9 (fr) Plaques a micropuits
WO1997015394A1 (fr) Plaques a micropuits
US6416294B1 (en) Microdosing device
JP3598066B2 (ja) フォーマット変換機能を有する流体制御装置
EP1208913B1 (fr) Système d'éjection d'une multiplicité de gouttes des fluides biologiques
US8770691B2 (en) Acoustically ejecting a droplet of fluid from a reservoir by an acoustic fluid ejection apparatus
US5658802A (en) Method and apparatus for making miniaturized diagnostic arrays
CN101663097B (zh) 微机械加工的流体喷射器以及用于喷射微流体的方法
EP1274508B1 (fr) Dispositif de distribution de petites doses de liquide tres precises
US20020168297A1 (en) Method and device for dispensing of droplets
JP3713017B2 (ja) 基板上に微小液滴を非接触で供給する装置および方法
AU746828B2 (en) Apparatus for dispensing a predetermined volume of a liquid
US20090033690A1 (en) Ink jet device and method for releasing a plurality of substances onto a substrate
WO2007060634A1 (fr) Dispositif de projection d'encre qui libere de maniere controlee plusieurs substances sur un substrat, procede permettant de distinguer differentes substances et utilisation du dispositif de projection d'encre
JP3701594B2 (ja) 液滴吐出方法
US10800170B1 (en) Droplet ejection using focused acoustic radiation having a plurality of frequency ranges
JP2004513376A (ja) 液体サンプルを分配または吸引/分配するための装置およびシステム
WO2002092228A2 (fr) Procede et dispositif de distribution de gouttelettes
JP2002204945A (ja) マイクロピペット、分注装置及びバイオチップの製造方法
Perçin et al. Micromachined piezoelectrically actuated flextensional transducers for high resolution printing and imaging
WO2003101369A2 (fr) Dispositif de transfert de liquides
US20040035948A1 (en) Liquid transfer device
Perçin et al. Micromachined fluid ejector arrays for biotechnological and biomedical applications
Perçin et al. Micromachined Piezoelectrically Actuated Flextensional Transducers For High Resolution Printing
Yaralioglu et al. Micromachined Fluid Ejector Arrays for Biotechnological and Biomedical Applications