WO1997014226A2 - Schaltungsanordnung zur dispersionskompensation in optischen übertragungssystemen mit hilfe von gechirpten bragg-gittern - Google Patents

Schaltungsanordnung zur dispersionskompensation in optischen übertragungssystemen mit hilfe von gechirpten bragg-gittern Download PDF

Info

Publication number
WO1997014226A2
WO1997014226A2 PCT/DE1996/001920 DE9601920W WO9714226A2 WO 1997014226 A2 WO1997014226 A2 WO 1997014226A2 DE 9601920 W DE9601920 W DE 9601920W WO 9714226 A2 WO9714226 A2 WO 9714226A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
michelson interferometer
stage
stages
bragg gratings
Prior art date
Application number
PCT/DE1996/001920
Other languages
English (en)
French (fr)
Other versions
WO1997014226A3 (de
Inventor
Gerhard Heise
Klaus Kotten
Reinhard MÄRZ
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU15893/97A priority Critical patent/AU1589397A/en
Publication of WO1997014226A2 publication Critical patent/WO1997014226A2/de
Publication of WO1997014226A3 publication Critical patent/WO1997014226A3/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • G02B6/29319With a cascade of diffractive elements or of diffraction operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29349Michelson or Michelson/Gires-Tournois configuration, i.e. based on splitting and interferometrically combining relatively delayed signals at a single beamsplitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29356Interference cavity within a single light guide, e.g. between two fibre gratings

Definitions

  • the fiber dispersion becomes decisive for the distance that can be bridged. This also applies in particular in the wavelength window around 1.55 ⁇ m, since here the attenuation can be eliminated by means of optical amplifiers, while the dispersion of the standard fiber has quite large positive values with about 17 ps / nm / km. There is therefore an interest in components which have a negative dispersion and can thus form a dispersion-free transmission medium together with the standard fiber.
  • the decisive parameters of a dispersion-compensating component are the dispersion D (in ps / nm or ps / GHz), which defines the length of the compensatable path, the optical bandwidth B within which the compensation is possible, and that by means of the dispersion compensation conditional additional damping. It makes sense to have the compensation bandwidth B at least equal to the bandwidth of the signal to be transmitted. However, as large a compensation bandwidth as possible is desirable in order to reduce the requirements for the spectral stability of the transmission laser.
  • chirped gratings that is Bragg gratings with a location-dependent grating period
  • chirped gratings that is Bragg gratings with a location-dependent grating period
  • Such a chirped Bragg grating consists of an optical waveguide, the refractive index of which does not match changes periodically in the direction of propagation, the length of the period being dependent on the location z, in each case where the Bragg condition for a spectral component ⁇ of the incident light
  • the grating acts as a mirror for these spectral components and reflects the light of this wavelength, like this 1 for two wavelengths ⁇ ] _ and ⁇ 2 is indicated.
  • the period length ⁇ (z), which depends on the location z in the chirped grating, is linearly changed over the filter length L G , for example: ⁇ (.-) ⁇ (0) -.-- ⁇ , (2) where ⁇ G is the difference between the grating period ⁇ (0) at the beginning and the grating period at the end of the filter.
  • the local change in the grating period means that light of different wavelengths is reflected at different locations and thus has different transit times. This makes it possible to realize specific dispersions in a targeted manner.
  • ⁇ 0 is the center wavelength of the filter.
  • the dimensions of the wafer * in the case of fiber-optic implementation, the lattice production sets limits.
  • the dimensions of the mask have a limiting effect and, in a holographic structure, the stability of the recording arrangement.
  • a circuit arrangement for dispersion compensation in optical transmission systems using chirped Bragg gratings with a plurality of circuit stages is known, each with a polarization splitter, a plurality of polarization actuators and two chirped Bragg gratings are formed as reflectors, which reflect the light entering via the input optical waveguide to the output optical waveguide, are connected together in a cascade, in each of which the output optical waveguide of a circuit stage in the input optical waveguide the subsequent circuit stage.
  • the invention shows a different way - avoiding polarization splitters and polarization controllers - to dispersion compensation in optical transmission systems.
  • the invention relates to a circuit arrangement for dispersion compensation in optical transmission systems with the aid of chirped Bragg gratings with a plurality of circuit stages, each of which is formed with an optical beam splitter and two chirped Bragg gratings as reflectors, which do this over the Input optical waveguides reflect light entering the output optical waveguide, are connected together in a cascade in which the output optical waveguide of one circuit stage merges into the input optical waveguide of the subsequent circuit stage;
  • this circuit arrangement is characterized in that the circuit stages are each designed as a Michelson interferometer stage with an optical (at least approximate) 3 dB directional coupler as a beam splitter.
  • a Michelson interferometer which is formed with an optical 3 dB coupler and two chirped Bragg gratings as reflectors, with a phase adjustment in the optical waveguide section between the beam splitter and the a Bragg grating enables complete reflection of the light entering via the input optical waveguide to the output optical waveguide, per se (from DC Johnson et al.: “New design concept for a narrowband wavelength selective optical tap and combiner", Electronics Letters , 23 (1987), 668 ... 669) is known, but there are no more points of contact with the invention.
  • the invention advantageously makes it possible to be able to provide relatively short and thus only low dispersion compensation but broadband reflecting Bragg gratings and at the same time to provide a proportional nal to reach the number of interferometer stages connected in series increased dispersion compensation.
  • FIG. 1 clarifies the mode of operation of a Bragg grating
  • FIG. 2 shows a basic circuit diagram of a Michelson interferometer as used in the invention
  • FIG. 3 shows a basic circuit diagram of a dispersion compensator according to the invention.
  • FIG. 2 schematically shows an arrangement forming an integrated optical Mi ⁇ chelson interferometer, which is formed with an optical (at least approximate) 3 dB directional coupler (beam splitter) RK and two chirped Bragg gratings G as reflectors is which completely (almost) reflect the light entering via the input optical waveguide E towards the output optical waveguide A.
  • an optical (at least approximate) 3 dB directional coupler (beam splitter) RK and two chirped Bragg gratings G as reflectors is which completely (almost) reflect the light entering via the input optical waveguide E towards the output optical waveguide A.
  • Such a complete reflection of the light that has entered toward the exit occurs with a corresponding phase position of the light waves reflected by the two reflectors;
  • Such a phase position is brought about in the arrangement sketched in FIG. 2 in the region Ph indicated schematically there for the phase adjustment.
  • a Michelson interferometer which is formed with an optical 3 dB coupler and two chirped Bragg gratings as reflectors, a phase adjustment in the optical waveguide section between the beam splitter and the one Bragg grating being complete
  • reflection of the light entering via the input optical waveguide to the output optical waveguide is already possible (from DC Johnson et al.: “New design concept for a narrowband wavelength selective optical tap and combiner ", Electronics Letters, 23 (1987), 668 ... 669), so that no further explanations are required here.
  • FIG. 3 an embodiment of a circuit arrangement for dispersion compensation according to the invention is shown schematically to the extent necessary for understanding the invention.
  • this circuit arrangement which can be designed as a 10 (integrated optics) circuit, a plurality of Michelson interferometer stages II, 12, 13,..., IN are provided, each with an optical directional coupler RK and two chirped Bragg gratings G are formed, from which the light entering via the respective input optical waveguide E, E2, E3, ..., EN completely reflects the respective output optical waveguide AI, A2, A3, ..., A becomes.
  • Such a complete reflection of the light that has entered toward the exit occurs, as already explained in the explanation of FIG.
  • the interferometer stages II, 12, 13,..., IN are interconnected to form a cascade, in each of which the output optical waveguide of the interferometer of one stage, for example the output optical waveguide AI of the interferometer II, in the input optical fiber of the interferometer of the respective subsequent stage, in the example in the input
  • Optical fiber E2 of the interferometer 12 passes over.
  • Such a waveguide arrangement prevents back reflections in the preceding stage, so that multiple reflections do not occur.
  • Another advantage is that this arrangement has no special requirements for the relative positioning of the individual Bragg gratings must suffice to each other.
  • the individual, relatively short Bragg gratings (G) are expediently dimensioned such that they have a large chirp ⁇ p Q , that is to say that they each reflect broadband. They therefore have only a low (negative) dispersion and therefore only contribute to a small extent to dispersion compensation.
  • the sketched connection of a plurality of such interferometer stages in series in an optical network nevertheless enables an increase in dispersion compensation proportional to the number of interferometer stages connected in series.
  • the spectral representation of the reflection factor and dispersion can have undesirable corrugations which are accompanied by an undesired impairment of the suitability of the chirped gratings for dispersion compensation.
  • the size of the ripple depends on two design sizes of the chirped grating, namely on the course of the grating period ⁇ (z) and on the course of the coupling factor ⁇ (z.
  • ⁇ n (z) the refractive index difference
  • n (z) n ejr + —- ⁇ • cos (-— ⁇ :) (7)
  • the coupling factor ⁇ (z) is essentially proportional to the refractive index difference ⁇ n (z).
  • Such ripples which can be relatively large with a period length ⁇ (z) that is linearly dependent on the location z (so-called linear chirp) and a location-independent coupling factor ⁇ (z), can be reduced in practice by the fact that the chirped Bragg Grid location-dependent period length ⁇ (z) receives a corresponding non-linear profile over the filter length L G and that the coupling factor ⁇ (z) also receives a suitable location-dependent profile.
  • a gentle, often Gaussian-shaped drop in the coupling factor toward the two ends of the grating is provided in the literature.
  • Michelson interferometer stages are expediently provided which are mutually related with respect to the course of the period length ⁇ (e.g. ) and the coupling factor ⁇ (z) are different, so that they compensate for residual ripples from (another) Michel ⁇ on interferometer stage (s).
  • two different types of Michelson interferometer stages can be provided, which (each in addition to their actual function) largely compensate for the residual ripple of the other type.
  • the aim of the optimization program is not to specify completely flat spectral profiles of the reflection factor and dispersion, but rather to superimpose them Curves and those with which the residual ripple of the respective other type is being compensated for.
  • interferometer stages of different types then follow one another.
  • Michelson interferometer stage II can be of the first type
  • Michelson interferometer stage 12 can be of the second type
  • the Michelson interferometer stage 13 can be of the third type, after which this sequence expediently follows repeated to the last Michelson interferometer stage IN if necessary.
  • the number of different types of interferometer stages that are provided in the dispersion compensator depends on the residual ripple that is permitted for the dispersion compensator as a whole, the number of cascaded interferometer stages and the remaining (possibly due to technical manufacturing constraints) Ripple of the individual Michelson interferometer levels.
  • the number of effective compensator stages can also be easily passed to a given smaller dispersion to be compensated, possibly to a shorter transmission path length , can be adjusted without this requiring further explanation.

Abstract

Eine Mehrzahl von Michelson-Interferometer-Stufen, die jeweils mit einem optischen Richtungskoppler und zwei gechirpten Bragg-Gittern als das über den Eingangs-Lichtwellenleiter eintretende Licht vollständig zum Ausgangs-Lichtwellenleiter reflektierenden Reflektoren gebildet sind, ist zu einer Kaskade zusammengeschaltet, in der jeweils der Ausgangs-Lichtwellenleiter des Interferometers einer Stufe in den Eingangs-Lichtwellenleiter des Interferometers der jeweils nachfolgenden Stufe übergeht. In dieser Schaltungsanordnung, die als IO-(Integrierte-Optik-)Schaltung ausgebildet sein kann, ist eine Mehrzahl von Michelson-Interferometer-Stufern (I1, I2, I3, ..., IN) vorgesehen, die jeweils mit einem optischen Richtungskoppler (RK) und zwei geschirpten Bragg-Gittern (G) gebildet sind, von denen her das über den jeweiligen Eingangs-Lichtwellenleiter (E, E2, E3, ..., EN) eintretende Licht vollständig zum jeweiligen Ausgang-Lichtwellenleiter (A1, A2, A3, ..., A) reflektiert wird. Zu einer solchen vollständigen Reflexion des eingetretenen Lichts zum Ausgang hin kommt es, bei entsprechender Phasenlage der Beiden von den beiden Bragg-Gitter (G) reflektierten Lichtstrahlen, wobei eine solche Phasenlage durch einen Phasenabgleich in dem Phasenabgleichbereich (Ph) zwischen dem Strahlteiler (RK) und dem einen Bragg-Gitter herbeigeführt wird.

Description

Beschreibung
Schaltungsanordnung zur Dispersionskompensation in opti¬ schen ÜbertragungsSystemen mit Hilfe von gechirpten Bragg- Gittern
Bei optischer Nachrichtenübertragung mit im Gbit/s-Bereich liegenden Datenraten über einen Lichtwellenleiter wird die Faserdispersion bestimmend für die überbrückbare Strecken- länge. Dies gilt insbesondere auch im Wellenlängenfenster um 1.55 μm, da hier die Dämpfung mittels optischer Verstär¬ ker eliminiert werden kann, während die Dispersion der Standardfaser mit etwa 17 ps/nm/km recht große positive Werte aufweist. Es besteht daher ein Interesse an Komponen- ten, die eine negative Dispersion aufweisen und so zusammen mit der Standardfaser ein dispersionsfreies Übertragungsme¬ dium bilden können.
Die entscheidenden Parameter einer dispersionskompensieren- den Komponente sind die Dispersion D (in ps/nm oder ps/GHz) , welche die Länge der kompensierbaren Strecke festlegt, die optische Bandbreite B, innerhalb derer die Kompensation mög¬ lich ist, und die durch die Dispersionskompensation bedingte zusätzliche Dämpfung. Sinnvollerweise muß die Kompensations- Bandbreite B mindestens gleich der Bandbreite des zu über- tragenden Signales sein. Wünschenswert ist jedoch eine mög¬ lichst große Kompensations-Bandbreite, um die Anforderungen an die spektrale Stabilität des Sendelasers zu verringern.
Im Zusammenhang mit einer Dispersionskompensation sind ne- ben (heute auch kommerziell erhältlichen) dispersionskom- pensierenden Fasern bereits verschiedene Komponenten vor¬ gestellt worden: Fabry-Perot-Interferometer, Ringresonato¬ ren, kaskadierte Mach-Zehnder-Interferometer, kaskadierte doppelbrechende Kristalle, Freistrahloptiken mit Gittern; ein neuerer Vorschlag [DE-195 15 158.5] zielt auf ein opti¬ sches Transversalfilter. Eine weitere Möglichkeit der Realisierung negativer Disper¬ sionen bieten sog. Chirped Gratings (gechirpte Gitter) , das sind Bragg-Gitter mit ortsabhängiger Gitterperiode [Francois Quellette: "Dispersion cancellation using lineary chirped Bragg grating filters in optical waveguides", Optics Let¬ ters, 12(1987), 847 ... 849; K.O. Hill et al. : "Chirped In¬ Fiber Bragg Gratings for Compensation of Optical Fiber Dis¬ persion, Optics Letters, 19(1994), 1314 ... 1316] . Ein sol¬ ches gechirptes Bragg-Gitter besteht aus einem optischen Wellenleiter, dessen Brechzahl n sich in Ausbreitungsrich¬ tung periodisch ändert, wobei die Periodenlänge vom Ort z abhängig ist. Jeweils dort, wo für eine spektrale Komponente λ des eingestrahlten Lichtes die Bragg-Bedingung
λ = 2 -nejr Mz) (1)
(worin neff die mittlere effektive Brechzahl des Wellenlei¬ ters und Λ(z) die vom Ort z abhängige Periodenlänge ist) erfüllt ist, wirkt das Gitter für diese spektrale Komponen¬ te als Spiegel und reflektiert das Licht dieser Wellenlän¬ ge, wie dies in FIG 1 für zwei Wellenlängen λ]_ und λ2 ange- deutet ist.
Die beim gechirpten Gitter vom Ort z abhängige Periodenlän¬ ge Λ(z) wird über die Filterlänge LG hinweg z.B. linear verändert: Λ(.-)=Λ(0)-.--^, (2) worin ΔΛG der Unterschied zwischen der Gitterperiode Λ(0) am Anfang und der Gitterperiode am Ende des Filters ist. Die örtliche Veränderung der Gitterperiode führt dazu, daß Licht verschiedener Wellenlänge an verschiedenen Orten re- flektiert wird und somit verschiedene Laufzeiten erhält. Dies macht es möglich, gezielt bestimmte Dispersionen zu realisieren. Die optische Bandbreite, d.h. der Frequenzbereich B (in GHz) bzw. der Wellenlängenbereich Δλ (in nm) , in dem die gewünschte Dispersion gegeben ist, ergibt sich zu
Figure imgf000005_0001
darin ist λ0 die Mittenwellenlänge des Filters.
Die Gruppenlaufzeit ergibt sich aus dem wellenlängenabhän¬ gigen Umweg 2-Zß(λ) und der Lichtgeschwindigkeit c/neff im Medium zu r,μ)=^ * , (4) cl neff worin zB(λ) den Ort im gechirpten Bragg-Gitter bezeichnet, an dem die Bragg-Bedingung (1) für λ erfüllt ist. Mit Gl . (1), (2) und (3) gilt dann für die Dispersion D(λ) dTg
(5) dλ c-ΔΛG B - XQ und damit
B.D = -LG .—f- (β: κo
Große Bandbreite B und große Dispersion D lassen sich somit nicht unabhängig voneinander erreichen; sie sind gleichzei¬ tig nur bei großer Länge LG des Wellenleiters erreichbar.
Folgende Zahlenbeispiele verdeutlichen diesen Zusammenhang. Um eine Dispersion von D = - 1000 ps/nm über eine Bandbreite B = 10 GHz zu erreichen, ist mit neff « 1,5 und λ0 = 1,55 μm eine Filterlänge LG von 8 mm erforderlich. Für größere Band- breiten, die eine Stabilisierung des Filters auf die Sender¬ wellenlänge erübrigen würden, ergeben sich deutlich größere Längen. So wird für D = - 1000 ps/nm und Δλ = 10 nm eine Filterlänge LG von 1 m benötigt.
Der Länge der Komponenten sind aber technologische Grenzen gesetzt, und zwar bei einer integriert-optischen Realisie- rung durch die Dimensionen des Wafers,* bei einer faseropti¬ schen Realisierung setzt die Gittererzeugung Grenzen. Bei Verwendung einer (Phasen-)Maske wirken die Dimensionen der Maske begrenzend und in einem holographischen Aufbau die Stabilität der Aufnahmeanordnung.
Zur Erzielung großer Dispersion bei großer Bandbreite meh¬ rere Gitter hintereinander vorzusehen, führt wegen der un¬ bestimmten Phasenlage zwischen den einzelnen Teilgittern zu unüberschaubaren Effekten, so daß diese an sich einfache Möglichkeit praktisch ausscheidet. Es ist in diesem Zusam¬ menhang (aus Optics Letters, (19)1994, 1314 ... 1316) be¬ kannt, zur Dispersionskompensation für jeden Kanal eines WDM-Systems ein eigenes Gitter vorzusehen, wobei die Gitter hintereinander angeordnet und jeweils für alle anderen Ka¬ näle transparent sind; dadurch wird die Bandbreite der ein¬ zelnen Kanäle des Dispersionskompensators jedoch nicht er¬ höht.
Weiterhin ist in diesem Zusammenhang (auε S.V. Chernikov et al. : "100 Gbit/s Dispersion Compensation Using Cascaded Chirped Fibre Gräting Transmission Filters", IEE Colloquium on Optical Fibre Gratings and Their Applications, Digest No. 1995/017, London 30.01.95, 10/1 ... 10/4) eine Schaltungs- anordnung zur Dispersionskompensation in optischen Übertra¬ gungssystemen mit Hilfe von gechirpten Bragg-Gittern mit einer Mehrzahl von Schaltungsstufen bekannt, die, jeweils mit einem Polarisationsteiler, einer Mehrzahl von Polarisa- tionsstellern sowie zwei gechirpten Bragg-Gittern als Re- flektoren gebildet, welche das über den Eingangs-Lichtwel¬ lenleiter eintretende Licht zum Ausgangs-Lichtwellenleiter reflektieren, zu einer Kaskade zusammengeschaltet sind, in der jeweils der Ausgangs-Lichtwellenleiter einer Schaltungs¬ stufe in den Eingangs-Lichtwellenleiter der jeweils nachfol- genden Schaltungsstufe übergeht. Die Erfindung zeigt demgegenüber einen - Polarisationsteiler und Polarisationssteller vermeidenden - anderen Weg zu einer Dispersionskompensation in optischen Übertragungssystemen.
Die Erfindung betrifft eine Schaltungsanordnung zur Disper¬ sionskompensation in optischen ÜbertragungsSystemen mit Hilfe von gechirpten Bragg-Gittern mit einer Mehrzahl von Schaltungsstufen, die jeweils mit einem optischen Strahltei¬ ler und zwei gechirpten Bragg-Gittern als Reflektoren gebil- det sind, welche das über den Eingangs-Lichtwellenleiter eintretende Licht zum Ausgangs-Lichtwellenleiter reflektie¬ ren, zu einer Kaskade zusammengeschaltet sind, in der je¬ weils der Ausgangs-Lichtwellenleiter einer Schaltungsstufe in den Eingangs-Lichtwellenleiter der jeweils nachfolgenden Schaltungsstufe übergeht; diese Schaltungsanordnung ist er¬ findungsgemäß dadurch gekennzeichnet, daß die Schaltungsstu¬ fen jeweils als eine Michelson-Interferometer-Stufe mit ei¬ nem optischen (zumindest-angenähert-) 3-dB-Richtungskoppler als Strahlteiler ausgebildet sind.
Es sei an dieser Stelle bemerkt, daß ein Michelson-Interfe¬ rometer, das mit einem optischen 3-dB-Koppler und zwei ge¬ chirpten Bragg-Gittern als Reflektoren gebildet ist, wobei ein Phasenabgleich in dem Lichtwellenleiterabschnitt zwi- sehen dem Strahlteiler und dem einen Bragg-Gitter eine vollständige Reflexion des über den Eingangs-Lichtwellen¬ leiter eintretenden Lichts zum Ausgangs-Lichtwellenleiter ermöglicht, für sich (aus D.C. Johnson et al . : "New design coneept for a narrowband wavelength selective optical tap and combiner", Electronics Letters, 23(1987), 668 ... 669) bekannt ist, ohne daß aber nähere Berührungspunkte mit der Erfindung gegeben sind.
Die Erfindung ermöglicht es vorteilhafterweise, jeweils re- lativ kurze und damit nur eine geringe Dispersionskompen- sation bewirkende, aber breitbandig reflektierende Bragg- Gitter vorsehen zu können und zugleich zu einer proportio- nal zur Anzahl hintereinandergeschalteter Interferometer- Stufen erhöhten Dispersionskompensation zu gelangen.
Weitere Besonderheiten der Erfindung werden aus der nach- folgenden näheren Erläuterung eines Ausführungsbeispiels anhand der Zeichnungen ersichtlich. Dabei verdeutlicht FIG 1 die Wirkungsweise eines Bragg-Gitters,* FIG 2 zeigt ein Prinzipschaltbild eines Michelson-Interfe- rometers, wie es bei der Erfindung Anwendung findet, und
FIG 3 zeigt ein Prinzipschaltbild eines Dispersionskompen- sators gemäß der Erfindung.
Die durch FIG 1 verdeutlichte Wirkungsweise eines gechirp- ten Bragg-Filters wurde oben bereits erläutert, so daß sich weitere Erläuterungen an dieser Stelle erübrigen.
In FIG 2 ist schematisch eine ein integriert-optisches Mi¬ chelson-Interferometer bildende Anordnung dargestellt, die mit einem optischen (zumindest-angenähert-) 3-dB-Richtungs- koppler (Strahlteiler) RK und zwei gechirpten Bragg-Gittern G als Reflektoren gebildet ist, welche daε über den Ein¬ gangs-Lichtwellenleiter E eintretende Licht (nahezu) voll¬ ständig zum Ausgangs-Lichtwellenleiter A hin reflektieren. Zu einer solchen vollständigen Reflexion des eingetretenen Lichts zum Ausgang hin kommt es bei entsprechender Phaεen- lage der von den beiden Reflektoren reflektierten Lichtwel¬ len; eine solche Phasenlage wird in der in FIG 2 skizzierten Anordnung in dem dort schematisch angedeuteten Bereich Ph für den Phasenabgleich herbeigeführt. Ein Michelson-Interfe- rometer, das mit einem optischen 3-dB-Koppler und zwei ge¬ chirpten Bragg-Gittern als Reflektoren gebildet ist, wobei ein Phasenabgleich in dem Lichtwellenleiterabschnitt zwi¬ schen dem Strahlteiler und dem einen Bragg-Gitter eine voll- ständige Reflexion des über den Eingangs-Lichtwellenleiter eintretenden Lichts zum Ausgangs-Lichtwellenleiter ermög¬ licht, ist an sich bereits (aus D.C. Johnson et al. : "New design concept for a narrowband wavelength selective optical tap and combiner", Electronics Letters, 23(1987), 668 ... 669) bekannt, so daß es hier insoweit keiner weiteren Er¬ läuterungen mehr bedarf.
In FIG 3 ist nun schematisch in einem zum Verständnis der Erfindung erforderlichen Umfang ein Ausführungsbeispiel ei¬ ner Schaltungsanordnung zur Dispersionskompensation gemäß der Erfindung dargestellt. In dieser Schaltungsanordnung, die als 10- (Integrierte-Optik-) Schaltung ausgebildet sein kann, ist eine Mehrzahl von Michelson-Interferometer-Stufen II, 12, 13, .., IN vorgesehen, die jeweils mit einem opti¬ schen Richtungskoppler RK und zwei gechirpten Bragg-Gittern G gebildet sind, von denen her das über den jeweiligen Eingangs-Lichtwellenleiter E, E2, E3, ..., EN eintretende Licht vollständig zum jeweiligen Ausgang-Lichtwellenleiter AI, A2, A3, ..., A reflektiert wird. Zu einer solchen voll¬ ständigen Reflexion des eingetretenen Lichts zum Ausgang hin kommt es, wie schon bei der Erläuterung der FIG 2 dar- gelegt, bei entsprechender Phasenlage der beiden von den beiden Bragg-Gitter G reflektierten Lichtstrahlen, wobei eine solche Phasenlage durch einen Phasenabgleich in dem Phasenabgleichbereich Ph zwischen dem Strahlteiler RK und dem einen Bragg-Gitter herbeigeführt wird. Die Interfero- meter-Stufen II, 12, 13, ..., IN sind zu einer Kaskade zu¬ sammengeschaltet, in der jeweils der Ausgang-Lichtwellen¬ leiter des Interferometers einer Stufe, beispielsweise der Ausgangs-Lichtwellenleiter AI des Interferometers II, in den Eingangs-Lichtwellenleiter des Interferometers der je- weils nachfolgenden Stufe, im Beispiel in den Eingangs-
Lichtwellenleiter E2 des Interferometers 12, übergeht.
Durch eine solche Wellenleiteranordnung werden Rückreflexi¬ onen in die jeweils vorhergehende Stufe vermieden, so daß es nicht zu Mehrfachreflexionen kommt. Von Vorteil ist auch, daß diese Anordnung keinen besonderen Anforderungen an die relative Positionierung der einzelnen Bragg-Gitter zueinander genügen muß. Die einzelnen, relativ kurzen Bragg-Gitter (G) sind zweckmässigerweiεe so dimensioniert, daß sie einen großen Chirp ΔΛQ haben, d.h. daß sie jeweils breitbandig reflektieren. Sie haben daher nur eine geringe (negative) Dispersion und tragen somit jeweils auch nur in geringem Ausmaß zu einer Dispersionskompensation bei. Die skizzierte Hintereinanderschaltung einer Mehrzahl solcher Interferometer-Stufen in einem optischen Netzwerk ermög¬ licht dennoch eine proportional zur Anzahl hintereinander- geschalteter Interferometer-Stufen erhöhte Dispersionskom¬ pensation.
Bei praktisch realisierten (oder auch numerisch simulier¬ ten) gechirpten Bragg-Gittern kann die spektrale Darstel- lung von Reflexionsfaktor und Dispersion unerwünschte Wel¬ ligkeiten aufweisen, die mit einer unerwünschten Beein¬ trächtigung der Tauglichkeit der Chirped Gratings zur Dis¬ persionskompensation einhergehen. Die Größe der Welligkeit ist abhängig von zwei Designgrößen der gechirpten Gitter, nämlich vom Verlauf der Gitterperiode Λ(z) und vom Verlauf des - in den Differentialgleichungen der Coupied Wave The¬ orie die Verknüpfung zwischen hin- und rücklaufender Welle darstellenden - Koppelfaktors κ(z), der von der Brechzahl¬ differenz Δn(z) des mit Λ(z) periodischen Brechzahlver- laufs abhängig ist. Geht man, wie dies bei Herstellung von gechirpten Gittern im Wege einer UV-Licht-Bestrahlung von photosensitiven Wellenleitern durch eine Phasenmaske üblich ist, von einem cosinus- (bzw. sinus-) förmigen Brechzahl¬ verlauf n(z)
n(z) = nejr +—-^•cos(-— :) (7)
2 Λ(z) aus, so ergibt sich der Koppelfaktor κ(z) zu
Figure imgf000010_0001
Da die Gitterperiode Λ(z) sich gegenüber ihrem Mittelwert nur geringfügig ändert, ist der Koppelfaktor κ(z) im we¬ sentlichen proportional zur Brechzahldifferenz Δn(z).
Solche Welligkeiten, die bei linear vom Ort z abhängiger Periodenlänge Λ(z) (sog. linearer Chirp) und ortsunabhän¬ gigem Koppelfaktor κ(z) relativ groß sein können, lassen sich in der Praxis dadurch reduzieren, daß die beim ge¬ chirpten Bragg-Gitter ortsabhängige Periodenlänge Λ(z) über die Filterlänge LG hinweg einen entsprechenden nicht- linearen Verlauf erhält und daß auch der Koppelfaktor κ(z) einen geeigneten ortsabhängigen Verlauf erhält. In der Li¬ teratur wird zur Reduzierung der Welligkeit ein sanfter, oft gaußkurvenförmiger Abfall des Koppelfaktors zu den beiden Enden des Gitters hin vorgesehen. Durch rechnerge- εtützte gleichzeitige Optimierung von Periodenlänge Λ(z) und Koppelfaktor κ(z) läßt sich, ausgehend von relativ ein¬ fachen Anfangsverläufen, die Welligkeit merklich weiter re¬ duzieren.
Um zu vermeiden, daß eine (etwa auf Grund fertigungstech¬ nischer Randbedingungen) verbleibende Restwelligkeit sich bei einer Kaskadierung von untereinander gleichen Michelson- Interferometer-Stufen verstärkt, werden zweckmäßigerweise Michelson-Interferometer-Stufen vorgesehen, die zueinander bezüglich des Verlaufs der Periodenlänge Λ(z) und des Kopp¬ lungsfaktors κ(z) unterschiedlich εind, εo daß sie Restwel- ligkeiten von (einer) anderen Michelεon-Interferometer- Stufe(n) kompensieren.
So können beispielεweise zwei zueinander unterschiedliche Typen von Michelson-Interferometer-Stufen vorgesehen εein, die (jeweilε zusätzlich zu ihrer eigentlichen Funktion) die Restwelligkeit des jeweilε anderen Typs weitgehend kompen- sieren. Hierzu sind im Optimierungsprogramm als Ziel nicht völlig ebene spektrale Verläufe von Reflexionsfaktor und Dispersion vorzugeben, sondern eine Überlagerung aus dieεen Verläufen und solchen, mit denen die Restwelligkeit des je¬ weils anderen Typs gerade kompensiert wird. Im Ausführungs- beispiel gemäß FIG 3 folgen dann jeweils Interferometer- Stufen unterschiedlichen Typs aufeinander.
Es ist auch möglich, z.B. einen dritten Typ von Michelson- Interferometer-Stufe vorzusehen, der (zusätzlich zu seiner eigentlichen Funktion) der Restwelligkeit von Michelson- Interferometer-Stufen des ersten und zweiten Typs entgegen- wirkt. So kann im Ausführungsbeispiel gemäß FIG 3 beispiels¬ weise die Michelson-Interferometer-Stufe II vom ersten Typ sein, die Michelson-Interferometer-Stufe 12 vom zweiten Typ und die Michelson-Interferometer-Stufe 13 vom dritten Typ, wonach sich zweckmäßigerweise diese Reihenfolge bis hin zur letzten Michelson-Interferometer-Stufe IN ggf. wiederholt. Die Anzahl unterschiedlicher Typen von Interferometer-Stu¬ fen, die im Dispersionskompensator vorgesehen werden, hängt dabei ab von der für den Disperεionεkompensator als Ganzes zugelassenen Restwelligkeit, der Anzahl der kaskadierten Interferometer-Stufen und der (ggf. auf Grund fertigungs¬ technischer Randbedingungen) verbleibenden Restwelligkeit der einzelnen Michelson-Interferometer-Stufen.
Abschlieεεend sei noch bemerkt, daß mit Hilfe von optiεchen Schaltern zwischen den einzelnen Stufen oder durch Unter¬ teilen des Bauteiles die Anzahl der wirksamen Kompensator- stufen in einfacher Weise auch an eine gegebene kleinere zu kompensierende Dispersion, ggf. also an eine kürzere Über- tragungεεtreckenlänge, angepasst werden kann, ohne daß dies hier noch weiterer Erläuterungen bedarf.

Claims

Patentansprüche
1. Schaltungsanordnung zur Dispersionskompensation in opti¬ schen ÜbertragungsSystemen mit Hilfe von gechirpten Bragg- Gittern, mit einer Mehrzahl von Schaltungsstufen (II, 12, 13, ..., IN), die jeweils mit einem optischen Strahlteiler (RK) und zwei gechirpten Bragg-Gittern (G) als Reflektoren gebildet sind, welche das über den Eingangs-Lichtwellenlei¬ ter (E, E2, E3, ..., EN) eintretende Licht zum Ausgangs- Lichtwellenleiter (AI, A2, A3, ..., A) reflektieren, zu einer Kaskade zusammengeschaltet sind, in der jeweils der Ausgangs-Lichtwellenleiter (AI) einer Schaltungsstufe (II) in den Eingangs-Lichtwellenleiter (E2) der jeweils nachfol¬ genden Schaltungsstufe (12) übergeht, dadurch gekennzeichnet, daß die Schaltungsstufen (II, 12, 13, ..., IN) jeweils als eine Michelson-Interferometer-Stufe mit einem optischen (zumindest-angenähert-) 3-dB-Richtungskoppler (RK) als Strahlteiler ausgebildet sind.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet , daß in jeder Interferometer-Stufe (II, 12, 13, ..., IN) im Lichtwellenleiterabschnitt zwischen dem Strahlteiler (RK) und dem einen Bragg-Gitter (G) ein Phasenabgleichbereich (Ph) zum Phasenabgleich zur möglichst vollständigen Refle¬ xion des über den jeweiligen Eingangs-Lichtwellenleiter (E, E2, E3, .., EN) eintretenden Lichts zum jeweiligen Ausgangs- Lichtwellenleiter (AI, A2, A3, ..., A ) hin vorgesehen ist.
3. Schaltungsanordnung nach Anspruch l oder 2, dadurch gekennzeichnet , daß zueinander unterschiedliche, Restwelligkeiten sprektra- ler Eigenschaften von (einer) anderen Michelson-Interfero- meter-Stufe(n) (II, ...) kompensierende Michelson-Interfe- rometer-Stufen ( ... , IN) vorgesehen sind.
4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet , daß eine Folge von zueinander unterschiedlichen, Restwel- ligkeiten von (einer) anderen Michelson-Interferometer- Stufe (n) (II, ...) kompensierenden Michelson-Interfero¬ meter-Stufen (..., IN) sich ein- oder mehrmals wiederholt.
5. Schaltungsanordnung nach einem der Ansprüche 3 biε 4, gekennzeichnet durch die gemeinsame Optimierung von Periodenlänge (Λ(z)) und Koppelfaktor (κ(z)) der Bragg-Gitter (G) einer Michelson- Interferometer-Stufe (13) zur Kompensation der Restwellig- keiten von (einer) anderen Michelson-Interferometer- Stufe(n) (II, 12) .
6. Schaltungsanordnung nach einem der Ansprüche l bis 5, dadurch gekennzeichnet , daß zur Kompensation einer kleineren Dispersion nur ein Teil der Interferometer-Stufen (II, 12, 13, ..., IN) wirk- sam ist.
7. Schaltungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , daß sie als 10- (Integrierte-Optik-) Schaltung ausgebildet ist.
PCT/DE1996/001920 1995-10-12 1996-10-08 Schaltungsanordnung zur dispersionskompensation in optischen übertragungssystemen mit hilfe von gechirpten bragg-gittern WO1997014226A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU15893/97A AU1589397A (en) 1995-10-12 1996-10-08 Dispersion compensating circuitry for optical transmission systems by means of chirped bragg gratings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995138017 DE19538017A1 (de) 1995-10-12 1995-10-12 Schaltungsanordnung zur Dispersionskompensation in optischen Übertragungssystemen mit Hilfe von gechirpten Bragg-Gittern
DE19538017.7 1995-10-12

Publications (2)

Publication Number Publication Date
WO1997014226A2 true WO1997014226A2 (de) 1997-04-17
WO1997014226A3 WO1997014226A3 (de) 1997-10-23

Family

ID=7774668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001920 WO1997014226A2 (de) 1995-10-12 1996-10-08 Schaltungsanordnung zur dispersionskompensation in optischen übertragungssystemen mit hilfe von gechirpten bragg-gittern

Country Status (3)

Country Link
AU (1) AU1589397A (de)
DE (1) DE19538017A1 (de)
WO (1) WO1997014226A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071398A1 (en) * 2000-03-23 2001-09-27 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
AU2001242099B2 (en) * 2000-03-23 2005-01-27 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
US7523115B2 (en) 2000-03-22 2009-04-21 Definiens Ag Method for finding objects

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19602433C2 (de) * 1996-01-24 1997-11-27 Siemens Ag Schaltungsanordnung zur Dispersionskompensation in optischen Multiplex-Übertragungssystemen mit Hilfe von dispersionskompensierenden Fasern
EP1065813A3 (de) * 1999-06-30 2005-12-07 Marconi UK Intellectual Property Ltd Optisches System
DE19950132A1 (de) * 1999-10-18 2001-04-19 Siemens Ag Einrichtung zur Kompensation der chromatischen Dispersion in einem Lichtwellenleiter
DE10225177B4 (de) * 2002-05-31 2004-06-03 Infineon Technologies Ag Vorrichtung zur Kompensation der chromatischen Dispersion in optischen Systemen mit gechirpten Bragg-Gittern
DE10248851A1 (de) * 2002-10-19 2004-04-29 Technische Universität Braunschweig Anordnung zur Übertragung optisher oder elektromagnetischer Wellen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323140A (ja) * 1992-05-18 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> 光等化器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515158C1 (de) * 1995-04-25 1996-03-07 Siemens Ag Schaltungsanordnung zur Dispersionskompensation in optischen Übertragungssystemen mittels eines optischen Filters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323140A (ja) * 1992-05-18 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> 光等化器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS, Bd. 31, Nr. 15, 20.Juli 1995, Seite 1240/1241 XP000525765 TAKIGUCHI K ET AL: "VARIABLE GROUP-DELAY DISPERSION EQUALISER BASED ON A LATTICE-FORM PROGRAMMABLE OPTICAL FILTER" *
IEEE PHOTONICS TECHNOLOGY LETTERS, Bd. 6, Nr. 4, 1.April 1994, Seiten 561-564, XP000446620 KOICHI TAKIGUCHI ET AL: "DISPERSION COMPENSATION USING A PLANAR LIGHTWAVE CIRCUIT OPTICAL EQUALIZER" *
JOURNAL OF LIGHTWAVE TECHNOLOGY, Bd. 11, Nr. 8, 1.August 1993, Seiten 1325-1330, XP000415395 OKAMOTO K ET AL: "GUIDED-WAVE OPTICAL EQUALIZER WITH -POWER CHIRPED GRATING" *
OPTICS LETTERS, Bd. 20, Nr. 14, 15.Juli 1995, Seiten 1586-1588, XP000515009 CHERNIKOV S V ET AL: "ALL-FIBER DISPERSIVE TRANSMISSION FILTERS BASED ON FIBER GRATING REFLECTORS" *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 142 (P-1706), 9.März 1994 & JP 05 323140 A (NIPPON TELEGR & TELEPH CORP), 7.Dezember 1993, *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7523115B2 (en) 2000-03-22 2009-04-21 Definiens Ag Method for finding objects
WO2001071398A1 (en) * 2000-03-23 2001-09-27 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
AU2001242099B2 (en) * 2000-03-23 2005-01-27 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
US6940601B2 (en) 2000-03-23 2005-09-06 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings

Also Published As

Publication number Publication date
WO1997014226A3 (de) 1997-10-23
AU1589397A (en) 1997-04-30
DE19538017A1 (de) 1997-04-24

Similar Documents

Publication Publication Date Title
DE3524527C2 (de) Einrichtung zum Ausgleichen der chromatischen Dispersion von optischen Signalen
DE60133603T2 (de) Planares Wellenleiterbauelement mit flachem Durchlassbereich und steilen Flanken
DE602004004848T2 (de) Abstimmbarer Dispersionskompensator
DE60314210T2 (de) Durchstimmbarer Dispersionskompensator mit Wenigmodenfasern und mit schaltbaren Modenkonvertern
EP0740173B1 (de) Schaltungsanordnung zur Dispersionskompensation in optischen Übertragungssystemen mittels eines optischen Filters
DE60122247T2 (de) Optischer Multiplexer/Demultiplexer
DE60212003T2 (de) Gitter mit grosser Gitterperiode aufweisender optischer Bandpassfilter
JPH07104124A (ja) 光フィルタ装置
DE69731784T2 (de) Ein durch Einschreiben eines Bragg-Gitters in eine optische Faser hergestelltes Filter
EP3046191A1 (de) Ultrakurzpulsfaserlaser
EP2478400B1 (de) Transversalmodenfilter für wellenleiter
WO1997014226A2 (de) Schaltungsanordnung zur dispersionskompensation in optischen übertragungssystemen mit hilfe von gechirpten bragg-gittern
EP1161699B1 (de) Faser-transmissionsbauelement zur erzeugung chromatischer dispersion
DE60038034T2 (de) Verfahren und vorrichtung für optisches multiplexen/demultiplexen
Singh et al. Apodized fiber Bragg gratings for DWDM applications using uniform phase mask
EP1166474B1 (de) Verfahren zur dispersionskompensation gemeinsam übertragener optischer signale mit unterschiedlichen wellenlängen mittels photonischer kristalle
DE10239509A1 (de) Optische Fabry-Perot-Filtervorrichtung
EP0459119B1 (de) Optische Einrichtung
DE60311984T2 (de) Optische filtrierungseinrichtung
DE60308889T2 (de) Optischer 2 x n leistungsteiler in integrierter optik
DE60115027T2 (de) Benutzung einer otischen Faser mit geneigten Bragg-Gittern zur Verbesserung der Flachheit der Verstärkungskurve eines optischen Verstärkers
DE60316670T2 (de) Vorrichtung zur dispersionskompensation eines signals, das sich auf einem signalweg ausbreitet
DE10055189B4 (de) Multiplexer in All-Faser-Anordnung
DE60213024T2 (de) Variabler Dispersionskompensator und optisches Übertragungssystem
DE10225177B4 (de) Vorrichtung zur Kompensation der chromatischen Dispersion in optischen Systemen mit gechirpten Bragg-Gittern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

NENP Non-entry into the national phase in:

Ref country code: JP

Ref document number: 97514626

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: CA