WO1997013577A2 - Flow reactor with capillary flow channels - Google Patents

Flow reactor with capillary flow channels Download PDF

Info

Publication number
WO1997013577A2
WO1997013577A2 PCT/DE1996/001880 DE9601880W WO9713577A2 WO 1997013577 A2 WO1997013577 A2 WO 1997013577A2 DE 9601880 W DE9601880 W DE 9601880W WO 9713577 A2 WO9713577 A2 WO 9713577A2
Authority
WO
WIPO (PCT)
Prior art keywords
film
flow
elements
capillary
flow reactor
Prior art date
Application number
PCT/DE1996/001880
Other languages
German (de)
French (fr)
Other versions
WO1997013577A3 (en
Inventor
Hanno Wenske
Original Assignee
Elwatec Elektrolyse- Und Wassertechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elwatec Elektrolyse- Und Wassertechnik Gmbh filed Critical Elwatec Elektrolyse- Und Wassertechnik Gmbh
Publication of WO1997013577A2 publication Critical patent/WO1997013577A2/en
Publication of WO1997013577A3 publication Critical patent/WO1997013577A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32227Vertical orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the invention relates to a flow reactor according to the preamble of patent claim 1, which can be used for various chemical processes - such as the synthesis, cleavage or hydrogenation of substances.
  • the reactants can be in the liquid and / or gaseous phase.
  • Catalytically operating flow reactors with capillary or capillary-like flow cross sections are known from the prior art, the fillings of which offer the reactants a large surface area.
  • the palette ranges from metal wool processed into nonwovens, to fine-grained, metallic and non-metallic (eg ceramic) bulk materials coated with catalyst material, to porous, sponge-like solids with a pore structure that is continuous for the material flow. All of the aforementioned reactor structures have the disadvantage that the capillary distances encountered within a packing differ very greatly and therefore cause locally different flow conditions, which means that the efficiency of the reactor can also be very different locally.
  • the materials can be chosen almost arbitrarily, i.e. a suitable material is used according to the specific application. Among other things, metallic materials come into question. If a catalytic effect is to be achieved and the production of the film-like elements from the catalyst material is uneconomical, the catalyst can also be applied subsequently or be part of an alloy which is the basis for the production of the film-like elements. The latter is particularly advantageous if the additional presence of an activator is required to carry out the chemical process.
  • Metals or metal alloys with amorphous or fine-grained structures are considered to be particularly activating.
  • An inexpensive method for producing amorphous film-like tapes is to use the so-called melt-spinning process. This also allows alloys to be produced that would not be obtained in crystalline form. This applies both with regard to the possibilities of selecting the alloy partners and with regard to their proportionate composition.
  • the thickness of the strips produced in this way is generally between 10 ⁇ m and 100 ⁇ m.
  • the advantage of the variant of the invention described last is that reactors up to several meters in length can be built with only one capillary-structured reactor insert. This means that for a certain reactor length only a few reactor inserts arranged one behind the other are necessary. This results in less pressure loss-causing transitions between the individual reactor inserts, so that the overall hydraulic resistance of the flow reactor is reduced.
  • An advantageous area of application for the flow reactor is the removal of oxygen from the water of heating circuits and in particular from so-called boiler feed water, in order to counteract the corrosion of containers and pipelines.
  • the surface of the flow reactor is coated with a suitable catalyst material, preferably from the platinum group, and the water to be treated is loaded with hydrogen in a stoichiometric ratio. The catalyst enables the dissolved oxygen to be converted into water with the supplied hydrogen, so that no reaction product to be discharged from the plant is formed.
  • the flow velocity through the capillary gaps in the capillary structure should not fall below a value of approximately 0.05 m / s.
  • FIG. 5 reactor pack consisting of several spiral wound packing units
  • FIG. 6a shows a perspective view of a section of a packaging unit with a corrugated film edge and an adjacent capillary gap
  • FIG. 6b shows a perspective view of a section of a packaging unit with a bounded film edge and an adjacent capillary gap
  • FIG. 7 cross section through a packing unit with a central elastic range and film edges profiled on both sides;
  • FIG. 8 broken pack unit with profiled film-like elements, as indicated in FIG. 7;
  • a metallic capillary structure in many cases this can be produced particularly cheaply by means of ribbon-shaped film elements 1a, 1b which were produced by the so-called melt-spinning process.
  • the desired alloy optionally with the addition of catalyst and activator material, is transferred in the liquid state from a mold to a rotating, cooled drum, where the melt is quenched at a rate of approx. 1 million ° K per second and the amorphous Condition of the melt is frozen.
  • the material has a comparatively smooth surface. It can currently be manufactured with a thickness of approx. 10 ⁇ m to 120 ⁇ m and a width of up to approx. 0.5 m.
  • FIG. 3 schematically shows a reactor packing consisting of four packing units 14, the capillary structure of which was constructed from the above-described film-like elements la, lb or lc or similar elements.
  • Their profiles corrugations or spacers) guaranteeing the capillary distance 10 between adjacent elements 1 extend parallel to the direction of flow of the reactants and thus transversely to the longitudinal extent of the band-shaped elements 1.
  • the stacked units 14 are stacked the neighboring one rotated by 90 degrees, so that the individual elements 1 intersect.
  • FIG. 4 shows a further possibility for producing a capillary structure on the basis of film-like elements 1a, 1b.
  • FIG. 5 shows a reactor packing constructed from a plurality of wound packing units 14a.
  • the capillary flow channels 10a can be dimensioned by more or less tight winding and can thus be adapted to the prevailing conditions.
  • FIG. 8 shows a section of a capillary-structured packing unit 14b, the band-shaped elements of which extend along the flow direction 17.
  • the profiles 15, which are designed in the form of corrugations, also extend along the flow direction 17.
  • the elements corrugated in their edge region include intermediate capillary gaps 10b.
  • FIG. 7 shows a small part of the packing unit 14b in cross section.
  • FIGS. 6a and 6b show two variants of the packaging unit 10b described last and shown in FIG. 8 in a greatly enlarged perspective illustration.
  • the packing unit consists of individual elements 1d profiled on one side by corrugations 15, the corrugations 15 of the adjacent elements 1d being arranged alternately on the left or right.
  • the capillary columns 10b also extend along the flow direction 17 of the reactants.
  • the pack cut-out consists of alternately arranged profiled elements lee and non-profiled elements le, the profiled elements lee carrying material barriers 16 in both edge regions.
  • a device with profiling rollers is particularly suitable for generating the profiles 15, 16.

Abstract

A flow reactor is disclosed of the type described in the preamble to claim 1 and which may be used to carry out various chemical processes - such as, for example, the synthesis, the cleavage or the hydrogenation of substances. The reagents may be present in the liquid and/or gaseous phase.

Description

Strömungsreaktor mit kapillaren Strömungskanälen Flow reactor with capillary flow channels
Beschreibungdescription
Die Erfindung betrifft einen Strömungsreaktor gemäß dem Oberbegriff des Patenanspruchs 1, der für verschiedenartige chemische Prozesse - wie beispielsweise die Synthese, die Spaltung oder die Hydrierung von Stoffen - Anwendung finden kann. Die Reaktanten können dabei in der flüssigen und/oder gasförmigen Phase vorliegen.The invention relates to a flow reactor according to the preamble of patent claim 1, which can be used for various chemical processes - such as the synthesis, cleavage or hydrogenation of substances. The reactants can be in the liquid and / or gaseous phase.
Aus dem Stand der Technik sind katalytisch arbeitende Strömungsreaktoren mit kapillaren oder kapillarähnlichen Strömungsquerschnitten bekannt, deren Füllungen den Reaktan¬ ten eine große Oberfläche bieten. In Abhängigkeit von den spezifischen Einsatzbedingungen kommen unterschiedlichste Materialien und geometrische Konfigurationen zum Einsatz. Die Palette reicht von zu Vliesen verarbeiteter Metallwol¬ le, über feinkörnige, mit Katalysatormaterial beschichtete metallische und nichtmatallische (z.B. keramische) Schüttgü¬ ter bis zu porösen, schwammartigen Festkörpern mit einer für den Stoffström durchgängigen Porenstruktur. Allen vorangenannten Reaktorstrukturen haftet der Nachteil an, daß die anzutreffenden kapillaren Abstände innerhalb einer Packung sehr stark differieren und deshalb lokal unterschiedliche Strömungsverhältnisεe verursachen, wodurch auch die Effizienz des Reaktors lokal sehr unterschiedlich sein kann. Außerdem weisen die bekannten Füllungen oft einen sehr hohen hydraulischen Widerstand auf, da sich die unzähligen kapillaren Strömungsquerschnitte der Reaktorfül¬ lung nicht unidirektional mit Richtung des Hauptstromes in Übereinstimmung bringen lassen. Hohe Strömungsverluste bedingen neben erhöhten Betriebskosten auch höhere anlagen¬ technische Aufwendungen, z.B. für zusätzliche oder lei¬ stungsstärkere Pumpen.Catalytically operating flow reactors with capillary or capillary-like flow cross sections are known from the prior art, the fillings of which offer the reactants a large surface area. Depending on the specific application conditions, a wide variety of materials and geometrical configurations are used. The palette ranges from metal wool processed into nonwovens, to fine-grained, metallic and non-metallic (eg ceramic) bulk materials coated with catalyst material, to porous, sponge-like solids with a pore structure that is continuous for the material flow. All of the aforementioned reactor structures have the disadvantage that the capillary distances encountered within a packing differ very greatly and therefore cause locally different flow conditions, which means that the efficiency of the reactor can also be very different locally. In addition, the known fillings often have a very high hydraulic resistance, since the countless capillary flow cross sections of the reactor filling cannot be matched unidirectionally with the direction of the main flow. In addition to increased operating costs, high flow losses also result in higher plant-technical expenditures, for example for additional or more powerful pumps.
Der Erfindung liegt die Aufgabe zugrunde, einen Strömungsre¬ aktor mit kapillaren Strömungskanälen zu entwickeln, der sich durch eine hohe Wirksamkeit bei gleichzeitig geringem Strömungswiderstand auszeichnet. Die Kapillarstruktur soll einfach und kostengünstig herstellbar und an die Bedingun¬ gen unterschiedlichster chemischer bzw. verfahrenstechni¬ scher Prozesse anpaßbar sein.The invention is based on the object of developing a flow reactor with capillary flow channels which is distinguished by a high level of effectiveness and at the same time a low flow resistance. The capillary structure should be simple and inexpensive to manufacture and adaptable to the conditions of a wide variety of chemical or process engineering processes.
Erfindungsgemäß wird die Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Die abhängigen Ansprüche geben Vorzugsvarianten der Erfindung an.According to the invention the object is achieved by the characterizing features of patent claim 1. The dependent claims indicate preferred variants of the invention.
Die kapillaren Strömungskanäle des erfindungsgemäßen Strö¬ mungsreaktors verlaufen im wesentlichen parallel zur Haupt¬ strömungsrichtung der Reaktanten und weisen vorzugsweise eine verhältnismäßig glatte Oberfläche auf. So wird sicher¬ gestellt, daß der Strömungsreaktor trotz seiner großen inneren Oberfläche einen vergleichsweise geringen hydrauli- sehen Widerstand verursacht. Dies ermöglicht höhere Strö¬ mungsgeschwindigkeiten, was sich positiv auf die Reaktions¬ kinetik auswirkt und so zu einer erhöhten Effektivität des Strömungsreaktors führt. Insbesondere bei chemischen Prozes¬ sen, die unter Anwesenheit einer flüssigen Phase durchge¬ führt werden, beeinflussen erhöhte Strömungsgeschwindigkei¬ ten die Dynamik im Grenzflächenbereich (Helmholtz-Schicht) von Flüssigphase und Wandung des Strömungskanals vorteil¬ haft. Die sogenannte Nernstsche Schichtdicke verringert sich erheblich, was insbesondere bei katalytischen Prozes¬ sen zu einer erhebliche Beschleunigung des Reaktionsablaufs führt.The capillary flow channels of the flow reactor according to the invention run essentially parallel to the main flow direction of the reactants and preferably have a relatively smooth surface. This ensures that the flow reactor, despite its large inner surface, has a comparatively low hydraulic see causing resistance. This enables higher flow velocities, which has a positive effect on the reaction kinetics and thus leads to an increased effectiveness of the flow reactor. In particular in the case of chemical processes which are carried out in the presence of a liquid phase, increased flow velocities advantageously influence the dynamics in the interface area (Helmholtz layer) of the liquid phase and wall of the flow channel. The so-called Nernst layer thickness is considerably reduced, which leads to a considerable acceleration of the course of the reaction, particularly in the case of catalytic processes.
Untersuchungen an Strömungsreaktoren, aufgebaut aus einer Vielzahl aneinander-gestapelter folienartiger Elemente auf der Basis eines sehr glatten glasmetallischen, amorphen Werkstoffs, haben ergeben, daß etwa ab einer Strömungsge¬ schwindigkeit von 0,05 m/s in den kapillaren Kanälen optima¬ le Reaktionsbedingungen erreicht werden. Die als Spalten ausgebildeten kapillaren Kanäle wiesen eine mittlere Weite von 0,08 mm bis 0,4 mm auf. Es versteht sich von selbst, daß die genannte Strömungsgeschwindigkeit nur einen Richt¬ wert darstellen kann. Die jeweils optimale Strömungsge¬ schwindigkeit sollte unter realen Prozeßbedingungen und unter Einsatz des vorgesehenen Reaktors ermittelt werden.Studies on flow reactors, built up from a large number of stacked film-like elements on the basis of a very smooth, glass-metallic, amorphous material, have shown that optimum reaction conditions are achieved in the capillary channels starting from a flow speed of 0.05 m / s become. The capillary channels designed as columns had an average width of 0.08 mm to 0.4 mm. It goes without saying that the flow velocity mentioned can only represent a guide value. The optimum flow rate in each case should be determined under real process conditions and using the reactor provided.
Der erfindungsgemäße Strömungsreaktor mit seinen im wesent¬ lichen unidirektionale gerichteten Strömungskanälen kann unter Anwendung verschiedenster Materialien auf unterschied¬ liche Weise gestaltet sein. Beispielsweise können die kapillaren Spalten von aufeinandergestapelten folienartigen Elementen gebildet sein, wobei die kapillaren Spalten von Profilierungen fixiert werden, die wenigstens jedes zweite der folienartigen Elemente aufweist. Solche Profilierungen können quer zur Längsachse der folienartigen Elemente verlaufende Wellungen oder Prägungen sein.The flow reactor according to the invention with its essentially unidirectional directed flow channels can be designed in a variety of ways using a wide variety of materials. For example, the capillary columns can be formed from stacked film-like elements, the capillary columns from Profilings are fixed, which has at least every second of the film-like elements. Such profiles can be corrugations or embossments running transversely to the longitudinal axis of the film-like elements.
Die Materialien können nahezu beliebig gewählt werden, d.h., entsprechend des konkreten Anwendungsfalls wird ein geeignetes Material eingesetzt. In Frage kommen unter anderem metallische Werkstoffe. Soweit eine katalytische Wirkung erzielt werden soll und die Herstellung der folien¬ artigen Elemente aus dem Katalysatorwerkstoff unwirtschaft¬ lich ist, kann der Katalysator auch nachträglich aufgetra¬ gen werden oder Bestandteil einer Legierung sein, die Basis für die Herstellung der folienartigen Elemente ist. Letzte¬ res ist besonders dann vorteilhaft, wenn für die Durchfüh¬ rung des chemischen Prozesses die zusätzliche Anwesenheit eines Aktivators erforderlich ist.The materials can be chosen almost arbitrarily, i.e. a suitable material is used according to the specific application. Among other things, metallic materials come into question. If a catalytic effect is to be achieved and the production of the film-like elements from the catalyst material is uneconomical, the catalyst can also be applied subsequently or be part of an alloy which is the basis for the production of the film-like elements. The latter is particularly advantageous if the additional presence of an activator is required to carry out the chemical process.
Als besonders aktivierend gelten Metalle beziehungsweise Metallegierungen mit amorphen oder feinkörnigen Strukturen. Eine kostengünstige Methode zur Erzeugung amorpher folienar¬ tiger Bänder besteht in der Anwendung des sogenannten Schmelz-Spinn-Verfahrens. Hierdurch können auch Legierungen erzeugt werden, die man in kristalliner Form nicht erhalten würde. Dies gilt sowohl hinsichtlich der Möglichkeiten der Auswahl der Legierungspartner als auch hinsichtlich ihrer anteilmäßigen Zusammensetzung. Die Dicke derart erzeugter Bänder liegt im allgemeinen zwischen 10 μm und 100μm. Durch das Wickeln der beschriebenen, mit Profilierungen zur kapillaren Beabstandung versehenen folienartigen Elemente zu einer Spirale entsteht eine Vielzahl quer zur Spiralebe¬ ne verlaufender kapillaren Spalten. Die erforderliche Reaktorlänge erreicht man durch die Aneinanderreihung einer entsprechenden Anzahl von Spiralkörpern.Metals or metal alloys with amorphous or fine-grained structures are considered to be particularly activating. An inexpensive method for producing amorphous film-like tapes is to use the so-called melt-spinning process. This also allows alloys to be produced that would not be obtained in crystalline form. This applies both with regard to the possibilities of selecting the alloy partners and with regard to their proportionate composition. The thickness of the strips produced in this way is generally between 10 μm and 100 μm. By winding the film-like elements described, which are provided with profiles for capillary spacing, to form a spiral, a large number of capillary gaps running transversely to the spiral plane are created. The required length of the reactor is achieved by lining up a corresponding number of spiral bodies.
Eine weitere Erfindungsvariante geht von bandartigen Elemen¬ ten aus, deren Längsachse im wesentlichen parallel zur Hauptströmungsrichtung der Reaktanten verläuft. Sie tragen zur Aufrechterhaltung des kapillaren Abstandes zwischen benachbarten Elementen nur auf einem kleinen Teil ihrer Breite Profilierungen, die sich ebenfalls entlang der Längsachse der folienartigen Elemente erstrecken. Bei der Verwendung von metallischen Elementen sollten die Profilie¬ rungen vorzugsweise als Wellungen oder Schränkungen des Materials gestaltet sein und sich auf wenigstens einen Randbereich des Elements beschränken.A further variant of the invention is based on band-like elements, the longitudinal axis of which runs essentially parallel to the main flow direction of the reactants. To maintain the capillary distance between adjacent elements, they only carry profiles over a small part of their width, which also extend along the longitudinal axis of the film-like elements. When using metallic elements, the profiles should preferably be designed as corrugations or bevels of the material and should be limited to at least one edge area of the element.
Der Vorteil der zuletzt beschriebenen Erfindungsvariante besteht darin, daß Reaktoren bis zur mehreren Metern Länge mit nur einem kapillarstrukturierten Reaktoreinsatz gebaut werden können. Das heißt also, für eine bestimmte Reak¬ torlänge sind nur wenige hintereinander angeordnete Reak¬ toreinsätze notwendig. Dadurch treten weniger druckver- lustverursachende Übergänge zwischen den einzelnen Reakto- einsätzen auf, so daß sich der hydraulische Gesamtwider¬ stand des Strömungsreaktors verringert. Ein vorteilhaftes Anwendungsgebiet für den Strömungsreaktor ist die Entfernung von Sauerstoff aus dem Wasser von Heiz¬ kreisläufen und insbesondere aus sogenanntem Kesselspeise¬ wasser, um der Korrosion von Behältern und Rohrleitungen entgegenzuwirken. Zu diesem Zweck wird die Oberfläche des Strömungsreaktors mit einem geeigneten Katalysatormaterial, vorzugsweise aus der Platingruppe beschichtet und das zu behandelnde Wasser im stöchiometrischen Verhältnis mit Wasserstoff beladen. Der Katalysator ermöglicht die Umset¬ zung des gelösten Sauerstoffs mit dem zugeführten Wasser¬ stoff zu Wasser, so daß kein aus der Anlage auszuschleusen¬ des Reaktionsprodukt entsteht.The advantage of the variant of the invention described last is that reactors up to several meters in length can be built with only one capillary-structured reactor insert. This means that for a certain reactor length only a few reactor inserts arranged one behind the other are necessary. This results in less pressure loss-causing transitions between the individual reactor inserts, so that the overall hydraulic resistance of the flow reactor is reduced. An advantageous area of application for the flow reactor is the removal of oxygen from the water of heating circuits and in particular from so-called boiler feed water, in order to counteract the corrosion of containers and pipelines. For this purpose, the surface of the flow reactor is coated with a suitable catalyst material, preferably from the platinum group, and the water to be treated is loaded with hydrogen in a stoichiometric ratio. The catalyst enables the dissolved oxygen to be converted into water with the supplied hydrogen, so that no reaction product to be discharged from the plant is formed.
Die Fließgeschwindigkeit durch die kapillaren Spalten der Kapillarstruktur sollte einen Wert von etwa 0,05 m/s nicht unterschreiten.The flow velocity through the capillary gaps in the capillary structure should not fall below a value of approximately 0.05 m / s.
Nachfolgend wird die Erfindung anhand von Ausführungsbei¬ spielen sowie der dargestellten Figuren näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of exemplary embodiments and the figures shown. Show it:
Figur 1 schematische Darstellung eines Querschnitts durch einen Teil eines aus folienartigen Elementen aufgebauten Strömungsreaktors;FIG. 1 shows a schematic representation of a cross section through part of a flow reactor constructed from film-like elements;
Figur 3 perspektivische Darstellung eines Ausschnitts einer aus mehreren Packungsein¬ heiten bestehenden Reaktorpackung;FIG. 3 shows a perspective view of a section of a reactor packing consisting of several packing units;
Figur 4 aus zwei folienartigen Bändern zu einer Spirale gewickelte Packungseinheit; Figur 5 aus mehreren spiralförmig gewickelten Pak- kungseinheiten bestehende Reaktorpackung;Figure 4 from two film-like strips wound into a spiral packing unit; FIG. 5 reactor pack consisting of several spiral wound packing units;
Figur 6a perspektivische Darstellung eines Ausschnitts einer Packungseinheit mit gewell¬ tem Folienrand und daran angrenzendem Kapil¬ larspalt;FIG. 6a shows a perspective view of a section of a packaging unit with a corrugated film edge and an adjacent capillary gap;
Figur 6b perspektivische Darstellung eines Ausschnitts einer Packungseinheit mit ge¬ schränktem Folienrand und daran angrenzendem Kapillarspalt;FIG. 6b shows a perspective view of a section of a packaging unit with a bounded film edge and an adjacent capillary gap;
Figur 7 Querschnitt durch eine Packungseinheit mit mittigem Elastizitätsbereich und beidseitig profilierten Folienrändern;FIG. 7 cross section through a packing unit with a central elastic range and film edges profiled on both sides;
Figur 8 aufgebrochene Packungseinheit mit profi¬ lierten folienartigen Elementen, wie sie in Figur 7 angedeutet sind;FIG. 8 broken pack unit with profiled film-like elements, as indicated in FIG. 7;
Eine erste Variante zur Gestaltung des erfindungsgemäßen Strömungsreaktors besteht in der parallelen Anordnung einer Vielzahl von folienartigen Elementen la, lb, wobei sich gerade Elemente la und durch Wellung profilierte Elemente lb abwechseln. Figur 1 zeigt einen stark vergrößerten Ausschnitt der beschriebenen Anordnung. Hierbei bilden sich zwischen den Elementen la, lb kapillare Strömungskanäle 10a, deren Querschnitt von der Höhe der Wellungen abhängig ist. Durch Zusammendrücken der aneinandergelagerten folien¬ artigen Elemente kann der Querschnitt der kapillaren Strömungskanäle 10a praktisch beliebig reduziert und so optimal an die jeweils herrschenden Bedingungen angepaßt werden.A first variant for the design of the flow reactor according to the invention consists in the parallel arrangement of a plurality of film-like elements la, lb, with straight elements la and elements lb profiled by corrugation alternating. Figure 1 shows a greatly enlarged section of the arrangement described. Capillary flow channels 10a are formed between the elements 1a, 1b, the cross-section of which depends on the height of the corrugations. The cross-section of the capillaries can be compressed by compressing the film-like elements which are stacked together Flow channels 10a practically reduced as desired and thus optimally adapted to the prevailing conditions.
Soweit eine metallische Kapillarstruktur vorgesehen ist, läßt sich diese in vielen Fallen besonders günstig durch bandförmige Folien-Elemente la, lb herstellen, die nach dem sogenannten Schmelz-Spinn-Verfahren erzeugt wurden. Dabei wird die gewünschte Legierung, gegebenenfalls unter Zusatz von Katalysator- und Aktivatormaterial, im flüssigen Zu¬ stand aus einer Kokille auf eine rotierende, gekühlte Trommel gegeben, wo die Schmelze mit einer Geschwindigkeit von ca. 1 Mio °K pro Sekunde abgeschreckt und der amorphe Zustand der Schmelze eingefroren wird. Das Material weist eine vergleichsweise glatte Oberfläche auf. Derzeit kann es mit einer Dicke von ca. 10 μm bis 120 μm und einer Breite bis zu ca. 0,5 m hergestellt werden.Insofar as a metallic capillary structure is provided, in many cases this can be produced particularly cheaply by means of ribbon-shaped film elements 1a, 1b which were produced by the so-called melt-spinning process. The desired alloy, optionally with the addition of catalyst and activator material, is transferred in the liquid state from a mold to a rotating, cooled drum, where the melt is quenched at a rate of approx. 1 million ° K per second and the amorphous Condition of the melt is frozen. The material has a comparatively smooth surface. It can currently be manufactured with a thickness of approx. 10 μm to 120 μm and a width of up to approx. 0.5 m.
Figur 3 zeigt schematisch eine aus vier Packungseinheiten 14 bestehende Reaktorpackung, deren kapillare Struktur aus den voranbeschriebenen folienartigen Elementen la, lb oder lc oder ähnlichen Elementen aufgebaut wurde. Ihre, den ka¬ pillaren Abstand 10 zwischen benachbarten Elementen 1 gewährleistenden Profilierungen (Wellungen oder Distanzste¬ ge) , erstrecken sich parallel zur Strömungsrichtung der Reaktanten und damit quer zur Längserstreckung der bandför¬ migen Elemente 1. Die übereinander gestapelten Packungsein¬ heiten 14 sind zu den benachbarten jeweils um 90 Grad verdreht, so daß sich die einzelnen Elemente 1 kreuzen. Eine weitere Möglichkeit zur Erzeugung einer kapiHärenen Struktur auf der Basis folienartiger Elemente la, lb zeigt Figur 4. Dementsprechend werden das gerade, unprofilierte bandförmige Element la und das gewellte Element lb gemein¬ sam zu einer spiralförmigen Packungseinheit 14a gewickelt, die aufgrund ihrer kreisrunden äußeren Kontur besonders für den Einsatz in einem zylindrischen Reaktor geeignet ist. Figur 5 stellt eine aus mehreren gewickelten Packungseinhei¬ ten 14a aufgebaute Reaktorpackung dar. Auch hier können die kapillaren Strömungskanäle 10a durch mehr oder weniger straffes Wickeln dimensioniert und so an die herrschenden Bedingungen angepaßt werden.FIG. 3 schematically shows a reactor packing consisting of four packing units 14, the capillary structure of which was constructed from the above-described film-like elements la, lb or lc or similar elements. Their profiles (corrugations or spacers) guaranteeing the capillary distance 10 between adjacent elements 1 extend parallel to the direction of flow of the reactants and thus transversely to the longitudinal extent of the band-shaped elements 1. The stacked units 14 are stacked the neighboring one rotated by 90 degrees, so that the individual elements 1 intersect. FIG. 4 shows a further possibility for producing a capillary structure on the basis of film-like elements 1a, 1b. Accordingly, the straight, non-profiled band-shaped element 1a and the corrugated element 1b are wound together to form a spiral packing unit 14a, which due to its circular outer contour is particularly suitable for use in a cylindrical reactor. FIG. 5 shows a reactor packing constructed from a plurality of wound packing units 14a. Here, too, the capillary flow channels 10a can be dimensioned by more or less tight winding and can thus be adapted to the prevailing conditions.
In Figur 8 ist ein Ausschnitt einer kapillarstrukturierten Packungseinheit 14b dargestellt, deren bandförmige Elemente lf sich entlang der Strömungsrichtung 17 erstrecken. Des¬ halb erstrecken sich auch die in Form von Wellungen aus¬ geführten Profilierungen 15 entlang der Strömungsrichtung 17. So schließen die in ihrem Randbereich gewellten Elemen¬ te lf zwischenliegende Kapillarspalten 10b ein. Figur 7 zeigt einen kleinen Teil der Packungseinheit 14b im Quer¬ schnitt.FIG. 8 shows a section of a capillary-structured packing unit 14b, the band-shaped elements of which extend along the flow direction 17. For this reason, the profiles 15, which are designed in the form of corrugations, also extend along the flow direction 17. The elements corrugated in their edge region include intermediate capillary gaps 10b. FIG. 7 shows a small part of the packing unit 14b in cross section.
Zwei Varianten der zuletzt beschriebenen und in Figur 8 dargestellten Packungseinheit 10b zeigen die Figuren 6a und 6b in stark vergrößerter perspektivischer Darstellung. Gemäß Figur 6a besteht die Packungseinheit aus einseitig durch Wellungen 15 profilierte Einzelelemente ld, wobei die Wellungen 15 der benachbarten Elemente ld alternierend links beziehungsweise rechts angeordnet sind. Die kapilla¬ ren Spalten 10b erstrecken sich ebenfalls entlang der Strömungsrichtung 17 der Reaktanten. Der darunter darge- stellte Packungsausschnitt besteht aus abwechselnd angeord¬ neten profilierten Elementen lee und unprofilierten Elemen¬ ten le, wobei die profilierten Elemente lee in beiden Randbereichen Materialschrankungen 16 tragen. Zur Erzeugung der Profilierungen 15, 16 ist insbesondere eine Vorrichtung mit Profilierungsrollen geeignet.FIGS. 6a and 6b show two variants of the packaging unit 10b described last and shown in FIG. 8 in a greatly enlarged perspective illustration. According to FIG. 6a, the packing unit consists of individual elements 1d profiled on one side by corrugations 15, the corrugations 15 of the adjacent elements 1d being arranged alternately on the left or right. The capillary columns 10b also extend along the flow direction 17 of the reactants. The one shown below The pack cut-out consists of alternately arranged profiled elements lee and non-profiled elements le, the profiled elements lee carrying material barriers 16 in both edge regions. A device with profiling rollers is particularly suitable for generating the profiles 15, 16.
* * * * * * * * * *
BezuσszeichenlisteReference list
I folienartiges Element la folienartiges Element (gerade) lb folienartiges Element (gewellt) lc folienartiges Element mit Distanzstegen ld folienartiges Element (Randbereich einseitig profiliert, gewellt) le folienartiges Element (nicht profiliert) lee folienartiges Element (Randbereich beidseitig profiliert, geschränkt) lf folienartiges Element (Randbereich beidseitig profiliert, gewellt)I film-like element la film-like element (straight) lb film-like element (corrugated) lc film-like element with spacers ld film-like element (edge area profiled on one side, corrugated) le film-like element (not profiled) lee film-like element (edge area profiled on both sides, set) lf film-like element (Edge area profiled on both sides, corrugated)
10 Kapillarspalt, Strömungskanal10 capillary gap, flow channel
10a Kapillarspalt, Strömungskanal10a capillary gap, flow channel
10b Kapillarspalt, Strömungskanal10b capillary gap, flow channel
II DistanzstegII spacer
12 Breite des folienartigen Elements12 Width of the film-like element
13 Dicke des folienartigen Elements13 thickness of the film-like element
14 Packungseinheit 14a Packungseinheit14 packing unit 14a packing unit
15 Wellung des Randbereichs15 Corrugation of the edge area
16 Schränkung des Randbereichs16 Edge margin
17 Strömungsrichtung17 flow direction
* * * * * * * * * *

Claims

Patentansprücheclaims
1. Strömungsreaktor mit kapillaren, im wesentlichen parallel und in Richtung der Hauptströmung verlaufen¬ den Strömungskanälen zur Durchführung chemischer Prozesse in flüssiger und/oder gasförmiger Phase, unter Verwendung von aufeinandergestapelten dünnen, folienartigen Elementen, die die Wandungen der Strö¬ mungskanäle begrenzen,1. flow reactor with capillary flow channels running essentially parallel and in the direction of the main flow for carrying out chemical processes in the liquid and / or gaseous phase, using stacked thin, film-like elements which delimit the walls of the flow channels,
dadurch gekennzeichnet,characterized,
daß die folienartigen Elemente als Endlosmaterial pro¬ duzierbare Bänder mit einer maximalen Dicke von 120 μm und einer Breite von 2 mm bis 30 mm sind, daß die Strömungskanäle als kapillare Spalten zwischen den benachbarten Bändern ausgebildet sind und daß der kapillare Abstand zwischen den benachbarten Bändern durch Profilierungen (11, 15, 16) wenigstens jedes zweiten folienartigen Bandes (1, lb, lc, ld, lee, lf) gesichert ist, wobei die Profilierungen (11, 15, 16) durch plastisches Verformen wenigstens eines Bereichs des betreffenden Bandes (1, lb, lc, ld, lee, lf) erzeugt sind.that the film-like elements are continuous strips that can be produced with a maximum thickness of 120 μm and a width of 2 mm to 30 mm, that the flow channels are formed as capillary gaps between the adjacent strips and that the capillary distance between the adjacent strips is determined by Profiling (11, 15, 16) of at least every second film-like band (1, lb, lc, ld, lee, lf) is secured, the profiling (11, 15, 16) by plastic deformation of at least a portion of the band (1 , lb, lc, ld, lee, lf) are generated.
2. Strömungsreaktor nach Anspruch 1, dadurch gekennzeich¬ net, daß die Profilierungen als Materialwellungen aus¬ gebildet sind, wenn die Richtung der Hauptströmung quer zur Längsachse des folienartigen Bandes verläuft. 13577 PC17DE96/018802. Flow reactor according to claim 1, characterized in that the profiles are formed as material corrugations if the direction of the main flow is transverse to the longitudinal axis of the film-like band. 13577 PC17DE96 / 01880
1313
Strömungsreaktor nach Anspruch 1 oder 2, dadurch ge¬ kennzeichnet, daß ein folienartiges Band oder mehrere aufeinandergestapelte folienartige Bänder (la, lb) gleichzeitig zu einer Spirale (14a) gewickelt sind, so daß die Spirale (14a) eine Vielzahl quer zur Spiralebe¬ ne verlaufende kapillare Spalten (10a) bildet.Flow reactor according to claim 1 or 2, characterized in that a film-like band or a plurality of stacked film-like bands (la, lb) are wound simultaneously into a spiral (14a), so that the spiral (14a) has a plurality transverse to the spiral plane running capillary gaps (10a) forms.
Strömungsreaktor nach Anspruch 1, dadurch gekennzeich¬ net, daß sich die Profilierungen (15, 16) der folienar¬ tigen Bänder (ld, lee, lf) auf nur einem kleinen Teil der Breite und entlang der Längsachse der Bänder (ld, lee, lf) erstrecken, wenn die Richtung der Hauptströ¬ mung entlang der Längsachse des folienartigen Bandes verläuft, so daß kapillare Spalten (10b) gebildet sind, die sich durchgehend über die gesamte Länge der Bänder (ld, lee, lf) erstrecken.Flow reactor according to claim 1, characterized in that the profiles (15, 16) of the foil-like strips (ld, lee, lf) are only a small part of the width and along the longitudinal axis of the strips (ld, lee, lf ) extend when the direction of the main flow runs along the longitudinal axis of the film-like band, so that capillary gaps (10b) are formed, which extend continuously over the entire length of the bands (ld, lee, lf).
Strömungsreaktor nach Anspruch 4, dadurch gekennzeich¬ net, daß sich die Profilierungen auf wenigstens einen Randbereich der folienartigen Elemente (ld, lee, lf) beschränken und daß die Profilierungen vorzugsweise als Wellungen (15) oder Schränkungen (16) des Materi¬ als ausgebildet sind.Flow reactor according to claim 4, characterized in that the profiles are limited to at least one edge region of the film-like elements (ID, LEE, IF) and that the profiles are preferably designed as corrugations (15) or inclinations (16) of the material .
Strömungsreaktor nach wenigstens einem der voranstehen¬ den Ansprüche, dadurch gekennzeichnet, daß die folien¬ artigen Elemente (1, la, lb) aus einem nach dem Schmelz-Spinn-Verfahren hergestellten amorphen (soge¬ nannten glasmetallischen) Werkstoff bestehen. 7. Strömungsreaktor nach Anspruch 6, dadurch gekennzeich¬ net, daß die amorphen folienartigen Elemente (1, la, lb) mit einem Katalysator und/oder Aktivator dotiert sind.Flow reactor according to at least one of the preceding claims, characterized in that the film-like elements (1, la, lb) consist of an amorphous (so-called glass-metallic) material produced by the melt-spinning process. 7. Flow reactor according to claim 6, characterized gekennzeich¬ net that the amorphous film-like elements (1, la, lb) are doped with a catalyst and / or activator.
8. Strömungsreaktor nach wenigstens einem der voranstehen¬ den Ansprüche, dadurch gekennzeichnet, daß dieser von mehreren entlang des Weges der Hauptströmung (17) angeordneten Packungseinheiten (14, 14a) mit im wesent¬ lichen unidirektional ausgerichteten kapillaren Spal¬ ten (10,10a) gebildet ist.8. Flow reactor according to at least one of the preceding claims, characterized in that it comprises a plurality of packing units (14, 14a) arranged along the path of the main flow (17) with essentially unidirectionally oriented capillary gaps (10, 10a). is formed.
* * * * * * * * * *
PCT/DE1996/001880 1995-10-04 1996-09-27 Flow reactor with capillary flow channels WO1997013577A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19536971.8 1995-10-04
DE19536971A DE19536971A1 (en) 1995-10-04 1995-10-04 Flow reactor with capillary flow channels and system for the catalytic reduction of nitrate and / or nitrite in water loaded with hydrogen and method for operating the system

Publications (2)

Publication Number Publication Date
WO1997013577A2 true WO1997013577A2 (en) 1997-04-17
WO1997013577A3 WO1997013577A3 (en) 1997-06-05

Family

ID=7774016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001880 WO1997013577A2 (en) 1995-10-04 1996-09-27 Flow reactor with capillary flow channels

Country Status (2)

Country Link
DE (1) DE19536971A1 (en)
WO (1) WO1997013577A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549429A1 (en) * 1995-10-27 1997-04-30 Elwatec Elektrolyse Und Wasser Apparatus for catalytic reduction of nitrate and nitrite in water
IL141170A (en) 1998-09-12 2004-07-25 Degussa Method for carrying out gas-liquid reactions and corresponding flow reactor
DE19841843A1 (en) * 1998-09-12 2000-03-30 Degussa Fluid/gas reactor for hydrogen peroxide production with reaction passages formed by a plate stack of closely defined dimensions.
GB0512120D0 (en) * 2005-06-15 2005-07-20 Johnson Matthey Plc Multi-phase reactions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1058077B (en) * 1955-08-18 1959-05-27 Hans Reichenbaecher Dr Ing Cooling tower with large-area trickle installations
US3664095A (en) * 1968-10-21 1972-05-23 Gunnar C F Asker Exchange packing element
US4769053A (en) * 1987-03-26 1988-09-06 Semco Mfg., Inc. High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
EP0342598A1 (en) * 1988-05-18 1989-11-23 Nichias Corporation Process for fabricating activated carbon supporting honeycomb structure
DE4403498A1 (en) * 1993-02-23 1994-08-25 Usui Kokusai Sangyo Kk Honeycomb-like body
US5435958A (en) * 1993-08-02 1995-07-25 Munters Corporation Method for making a humidity exchanger medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655787A5 (en) * 1983-12-30 1986-05-15 Engetra Sa DEVICE FOR TRIMMING A LIQUID AND GAS CONTACT PLANT AND MANUFACTURING METHOD THEREOF.
DD246257A1 (en) * 1986-01-21 1987-06-03 Akad Wissenschaften Ddr PROCESS TECHNICAL MICROPEPARATURES AND METHOD FOR THE PRODUCTION THEREOF
DE3709278A1 (en) * 1987-03-20 1988-09-29 Kernforschungsz Karlsruhe METHOD FOR PRODUCING FINE-STRUCTURED BODIES
EP0338261A1 (en) * 1988-04-18 1989-10-25 Lonza Ag Device with slit orifice
DE3926466C2 (en) * 1989-08-10 1996-12-19 Christoph Dipl Ing Caesar Microreactor for carrying out chemical reactions of two chemical substances with strong heat
WO1991016970A1 (en) * 1990-05-08 1991-11-14 Gebrüder Sulzer Aktiengesellschaft Mixer assembly, catalyst assembly and use of said catalyst assembly
DE4233404C2 (en) * 1992-10-05 1994-08-18 Degussa Monolithic supported metal catalyst with a catalytically coated honeycomb body
JP3392895B2 (en) * 1993-01-08 2003-03-31 臼井国際産業株式会社 X-wrap type metal honeycomb body
DE4416343C2 (en) * 1994-05-09 1996-10-17 Karlsruhe Forschzent Static micro mixer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1058077B (en) * 1955-08-18 1959-05-27 Hans Reichenbaecher Dr Ing Cooling tower with large-area trickle installations
US3664095A (en) * 1968-10-21 1972-05-23 Gunnar C F Asker Exchange packing element
US4769053A (en) * 1987-03-26 1988-09-06 Semco Mfg., Inc. High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
EP0342598A1 (en) * 1988-05-18 1989-11-23 Nichias Corporation Process for fabricating activated carbon supporting honeycomb structure
DE4403498A1 (en) * 1993-02-23 1994-08-25 Usui Kokusai Sangyo Kk Honeycomb-like body
US5435958A (en) * 1993-08-02 1995-07-25 Munters Corporation Method for making a humidity exchanger medium

Also Published As

Publication number Publication date
DE19536971A1 (en) 1997-04-10
WO1997013577A3 (en) 1997-06-05

Similar Documents

Publication Publication Date Title
EP2230011B1 (en) Structured packing
DE69534984T2 (en) Catalytic unit and emission control device
EP0433222B1 (en) Reactor including a catalyst body for performing a heterogeneous reaction
EP0484364B1 (en) Honeycomb body with internal inflow edges, in particular catalyst body for motor vehicles
EP0542775B1 (en) Monolithic metal honeycomb body with varying number of channels
DE19741199C2 (en) Static mixer
EP0542805B1 (en) Honeycomb body with channels having different cross-sectional dimensions, in particular catalyzer bearing body
DE2722556B2 (en) Column filling made of film-like material with finely grooved trickle surfaces for the exchange of substances and heat between two fluid media
EP0784507A1 (en) Microstructures in an intersecting arrangement
EP3436189B1 (en) Contactor
EP1261404B1 (en) Method for operating a liquid distributor
EP2408553A1 (en) Mass transfer apparatus having a structured packing
EP2408552B1 (en) Method and devices for purifying fluids
EP3572760B1 (en) Package for heat and/or material transfer
DE2738257C2 (en) Device for separating droplets from flowing gases
DE19823469A1 (en) Monolithic metallic honeycomb body with varying number of channels
DE112004002124T5 (en) Rieselfil degasser with gratings
DE10249724B4 (en) High-tempering
EP0671207B1 (en) Flat structural element and packing formed thereof
DE69835696T2 (en) CATALYST FOR EXHAUST EMISSION CONTROL, CATALYST STRUCTURE, METHOD FOR THE MANUFACTURE THEREOF, METHOD AND DEVICE FOR EXHAUST EMISSION CONTROL
WO1997013577A2 (en) Flow reactor with capillary flow channels
EP0097345A2 (en) Device for the exchange of material and/or heat and/or chemical reactions between gaseous and/or liquid materials and for mixing these materials
DE3841642A1 (en) Nozzle grating for gas scrubbers, absorbers and the like and column internal composed thereof
DE10159816A1 (en) Device and method for carrying out heterogeneously catalyzed reactions
EP1733790B1 (en) Structured metal sheet for a honeycomb body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP NO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP NO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA