97/12222 PC17DE96/01810 97/12222 PC17DE96 / 01810
Beschreibungdescription
Verfahren und System zur Bestimmung der geometrischen Ab¬ messungen von Teilchen eines pelletierten und/oder granu- lierten MaterialsMethod and system for determining the geometric dimensions of particles of a pelletized and / or granulated material
Die Erfindung betrifft ein Verfahren zur Bestimmung der geo¬ metrischen Abmessungen von Teilchen, z . B. Pellets, Granulat, Steinen oder Körnern, sowie ein Kόrnigkeitsmeßsystem zur Durchführung dieses Verfahrens.The invention relates to a method for determining the geometric dimensions of particles, for. B. pellets, granules, stones or grains, and a granularity measuring system for performing this method.
Aus der US-PS 4,523,146 sowie aus dem Artikel "Über das ma¬ gnetische Verfahren der Körnungsmessung der rohen Eisenerz¬ pellets", Jurin A.A., Safonow A.E., Sammelband Nr. 3 "Pelle- tierung der Eisenerze und Konzentrate", Swerdlowsk, Institut Uralmachanobr, 1976, Seite 133-135, ist es bekannt, die geo¬ metrischen Abmessungen aus dem Zusammenhang zwischen Per¬ meabilität des pelletierten bzw. granulierten Materials und seinem Volumen zu bestimmen. Dieses Verfahren ist jedoch sehr unzuverlässig, wenn das pelletierte bzw. granulierte Material eine bestimmte Feuchtigkeit überschreitet.From US Pat. No. 4,523,146 and from the article "About the magnetic method of measuring the grain size of raw iron ore pellets", Jurin AA, Safonow AE, anthology No. 3 "Pelleting of iron ores and concentrates", Sverdlovsk, Institute Uralmachanobr , 1976, pages 133-135, it is known to determine the geometric dimensions from the relationship between the permeability of the pelleted or granulated material and its volume. However, this method is very unreliable if the pelletized or granulated material exceeds a certain moisture.
Aus den Artikeln "The quality control system of sintering paint at Kashima Steel Works", Arai 0., Yamamoto A., Joko T., Inada K., Yumoto S., Autom. Mining, Miner and Metal Process, 1983, Proc. 4th IFAC Symp. , Helsinki, 22-25 Aug., 1983. Oxford e.a. 1984, Seite 347-355, und "Determining size distribution of moving pelets by Computer image processing" , Graness Steven C, Appl. Comput. and Oper. Res. Miner. Ind.: 19th Int. Symp., University Park, Pa, Apr. 14-16, 1986.From the articles "The quality control system of sintering paint at Kashima Steel Works", Arai 0., Yamamoto A., Joko T., Inada K., Yumoto S., Autom. Mining, Miner and Metal Process, 1983, Proc. 4th IFAC Symp., Helsinki, Aug. 22-25, 1983. Oxford e.a. 1984, pages 347-355, and "Determining size distribution of moving pelets by computer image processing", Graness Steven C, Appl. Computer. and opera. Res. Miner. Ind .: 19th Int. Symp., University Park, Pa. Apr. 14-16, 1986.
Littleton, Colo, 1986, Seite 545-552, ist bekannt, ein Video¬ bild des pelletierten bzw. granulierten Materials zu rastern und aus dem Rastermuster die geometrischen Abmessungen der Teilchen des pelletierten bzw. granulierten Materials zu ermitteln. Diese Methode hat sich jedoch als sehr ungenau erwiesen.
Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung der geometrischen Abmessungen von Teilchen eines pelletierten und/oder granulierten Materials sowie ein Körnigkeitsmeßsy- stem zur Durchführung dieses Verfahrens anzugeben, dessen Präzision höher ist als die der bekannten Verfahren und Me߬ einrichtungen. Dabei ist es wünschenswert, daß das neue Ver¬ fahren bzw. das Körnigkeitsmeßsystem zur Durchführung dieses Verfahrens eine Bestimmung der geometrischen Abmessungen der Teilchen des pelletierten und/oder granulierten Materials er- laubt.Littleton, Colo, 1986, pages 545-552, is known for rasterizing a video image of the pelleted or granulated material and determining the geometric dimensions of the particles of the pelleted or granulated material from the raster pattern. However, this method has proven to be very imprecise. The object of the invention is to provide a method for determining the geometric dimensions of particles of a pelletized and / or granulated material and a granularity measuring system for carrying out this method, the precision of which is higher than that of the known methods and measuring devices. It is desirable that the new method or the granularity measurement system for carrying out this method allows the geometric dimensions of the particles of the pelleted and / or granulated material to be determined.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Be¬ stimmung der geometrischen Abmessungen von Teilchen eines pelletierten und/oder granulierten Materials, das einer Strahlung, wie elektromagnetischer Strahlung, Schall o.a., ausgesetzt ist und diese reflektiert, gelöst, wobei die In¬ tensitätsverteilung der reflektierten Strahlung gemessen und aus dieser die geometrischen Abmessungen der Teilchen des pelletierten und/oder granulierten Materials bestimmt werden. Es hat sich herausgestellt, daß die Auswertung einer Intensi¬ tätsverteilung der reflektierten Strahlung eine gegenüber dem bekannten Stand der Technik besonders präzise Bestimmung der geometrischen Abmessung der Teilchen des pelletierten und/ oder granulierten Materials erlaubt.The object is achieved according to the invention by a method for determining the geometrical dimensions of particles of a pelletized and / or granulated material which is exposed to and reflects radiation such as electromagnetic radiation, sound or the like, the intensity distribution of the reflected ones Radiation measured and from this the geometric dimensions of the particles of the pelleted and / or granulated material are determined. It has been found that the evaluation of an intensity distribution of the reflected radiation allows a particularly precise determination of the geometric dimension of the particles of the pelletized and / or granulated material compared to the known prior art.
In einer vorteilhaften Ausgestaltung der Erfindung wird die zweidimensionale Intensitätsverteilung der reflektierten Strahlung gemessen und aus dieser werden die geometrischen Abmessungen der Teilchen eines pelletierten und/oder granu- lierten Materials bestimmt, wodurch sich die Präzision des erfindungsgemäßen Verfahrens weiter erhöhen läßt.In an advantageous embodiment of the invention, the two-dimensional intensity distribution of the reflected radiation is measured and from this the geometric dimensions of the particles of a pelletized and / or granulated material are determined, whereby the precision of the method according to the invention can be further increased.
In einer weiteren vorteilhaften Ausgestaltung des erfindungs¬ gemäßen Verfahrens ist die Strahlung Licht. Es hat sich ge- zeigt, daß Licht geeignet ist, entsprechend den geometrischen Eigenschaften von Teilchen eines pelletierten und/oder granu¬ lierten Materials Intensitätskontraste zu erzeugen.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das pelletierte und/oder granulierte Material gerichtet bestrahlt, wodurch die Intensität der reflektierten Strahlung erhöht wird. Eine erhöhte Intensität der reflektierten Strah¬ lung erhöht auch die Kontraste der Intensitätsverteilung.In a further advantageous embodiment of the method according to the invention, the radiation is light. It has been shown that light is suitable for generating intensity contrasts in accordance with the geometric properties of particles of a pelletized and / or granulated material. According to a further advantageous embodiment of the invention, the pelletized and / or granulated material is irradiated in a directed manner, as a result of which the intensity of the reflected radiation is increased. An increased intensity of the reflected radiation also increases the contrasts of the intensity distribution.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das pelletierte und/oder granulierte Material aus zumin- dest drei Richtungen, vorzugsweise mit gleichmäßig auf einen Kreisumfang verteilten Strahlungsquellen, bestrahlt, was zu einer besonders kontrastreichen Intensitätsverteilung führt, die die geometrischen Strukturen der Teilchen des pelletier¬ ten und/oder granulierten Materials repräsentiert.In a further advantageous embodiment of the invention, the pelletized and / or granulated material is irradiated from at least three directions, preferably with radiation sources uniformly distributed over a circumference, which leads to a particularly high-contrast intensity distribution, which results in the geometric structures of the pelletizing particles th and / or granulated material represents.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung werden in der Intensitätsverteilung der reflektierten Strah¬ lung die Intensitätsmaxima und -minima sowie ihr Abstand von¬ einander, vorzugsweise in acht bis sechzehn Richtungen, be- stimmt. Der Abstand von Intensitätsmaxima und -minima ist da¬ bei eine Größe, die besonders geeignet ist, die geometrischen Abmessungen von Teilchen eines pelletierten und/oder granu¬ lierten Materials zu repräsentieren. Es hat sich dabei als besonders vorteilhaft erwiesen, den Abstand von Intensitäts- maxima und -minima in acht bis sechzehn Richtungen zu bestim¬ men, wobei die Richtungen vorteilhafterweise alle im gleichen Winkel zueinander stehen. Dabei hat sich die Anzahl von acht bis sechzehn Richtungen als besonders geeigneter Kompromiß zwischen der Forderung nach Messung in wenigen Richtungen, um den Rechenaufwand zu minimieren, und der Forderung in beson¬ ders vielen Richtungen zu messen, um ein möglichst präzises Abbild der Teilchen zu erhalten, erwiesen. Inbesondere bei annähernd kugelförmigen Teilchen führt eine Erhöhung der An¬ zahl der Richtungen, in denen der Abstand zwischen Intensi- tätsmaxiirta und -minima bestimmt wird, zu keiner merklichen Präzisionsverbesserung bei der Bestimmung der geometrischen Abmessungen der Teilchen.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird aus den Abständen von Intensitätsmaxima und -minima eine Häufigkeitsverteilung ermittelt. Eine Häufigkeitsverteilung ist dabei eine besonders geeignete Größe, die geometrischen Abmessungen eines pelletierten und/oder granulierten Mate¬ rials zu charakterisieren, da die Angabe über die geometri¬ schen Abmessungen einzelner Teile eine geringe Aussagekraft besitzt und deshalb als Regelgröße nicht besonders geeignet ist.In a further advantageous embodiment of the invention, the intensity maxima and minima and their distance from one another, preferably in eight to sixteen directions, are determined in the intensity distribution of the reflected radiation. The distance between intensity maxima and minima is a size which is particularly suitable for representing the geometrical dimensions of particles of a pelletized and / or granulated material. It has proven to be particularly advantageous to determine the distance between intensity maxima and minima in eight to sixteen directions, the directions advantageously all being at the same angle to one another. The number of eight to sixteen directions has proven to be a particularly suitable compromise between the requirement for measurement in a few directions in order to minimize the computation effort and the requirement in a particularly large number of directions in order to obtain the most precise possible image of the particles , proven. In the case of approximately spherical particles in particular, an increase in the number of directions in which the distance between intensity maximum and minimum is determined does not lead to a noticeable improvement in precision when determining the geometric dimensions of the particles. In a further advantageous embodiment of the invention, a frequency distribution is determined from the intervals between intensity maxima and minima. A frequency distribution is a particularly suitable parameter for characterizing the geometric dimensions of a pelletized and / or granulated material, since the information about the geometric dimensions of individual parts is of little significance and is therefore not particularly suitable as a controlled variable.
Das erfindungsgemäße Verfahren kann durch das Kömigkeitsmeß- system gemäß Anspruch 9 besonders vorteilhaft ausgeführt wer¬ den. Dieses Körnigkeitsmeßsystem weist zumindest eine Strah¬ lungsmeßeinrichtung, zumindest Strahlungsquelle und zumindest eine Auswerteeinheit auf.The method according to the invention can be carried out in a particularly advantageous manner by means of the Kömigkeitsmeßsystem according to claim 9. This granularity measuring system has at least one radiation measuring device, at least radiation source and at least one evaluation unit.
In einer vorteilhaften Ausgestaltung des Kόrnigkeitsmeßsy- stems ist eine Strahlungsmeßeinrichtung als Kamera und eine Strahlungsquelle als eine Lichtquelle ausgebildet. Dabei hat sich die Kombination aus Lichtquelle und Kamera als besonders vorteilhaft erwiesen.In an advantageous embodiment of the granularity measuring system, a radiation measuring device is designed as a camera and a radiation source as a light source. The combination of light source and camera has proven to be particularly advantageous.
Weitere Vorteile und erfinderische Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbei- spiels, anhand der Zeichnungen und in Verbindung mit den Unteranspruchen. Im einzelnen zeigen:Further advantages and inventive details emerge from the following description of an exemplary embodiment, using the drawings and in conjunction with the subclaims. In detail show:
FIG 1 eine Pelletierungsanlage1 shows a pelleting plant
FIG 2 eine zweidimensionale Intensitätsverteilung FIG 3 die Intensitätsverteilung entlang der Schnittlinie A,B aus FIG 2 FIG 4 die Auswertung der Intensitätsverteilung FIG 5 eine Meß- und Bestrahlungsanordnung2 shows a two-dimensional intensity distribution. FIG. 3 shows the intensity distribution along the section line A, B from FIG. 2 FIG. 4 shows the evaluation of the intensity distribution. FIG. 5 shows a measurement and radiation arrangement
FIG 1 zeigt eine Pelletieranlage 1 für Eisenerz. Das zu pel¬ letierende Gemisch aus Eisenerz und Bentonit wird über ein Förderband 5 und einem Materialspeicher 6 auf einen Pelle-
tierteller 7 gegeben. Das pelletierte Material wird über ein weiteres Förderband 8 abtransportiert. Die Pelletiertellern 7 werden mit einer speicherprogrammierbaren Steuerung 4 (SPS) gesteuert und geregelt. Ziel dieser Steuerung und Regelung ist es, Pellets des Eisenerz-Bentonit-Gemisches einer be¬ stimmten Größe zu erhalten. Dazu wird die Pelletgröße mit ei¬ ner Meßeinheit 2 gemessen. Diese Messung kann entweder dann erfolgen, wenn die Pellets auf das Förderband 8 fallen oder, wenn sie auf dem Förderband 8 liegen. Die Meßeinheit 2 be- steht aus, vorzugsweise drei gleichmäßig auf einem Kreisum¬ fang verteilten, elektromagnetischen Strahlungquellen und ei¬ ner Kamera. Das von der Kamera gelieferte Bild wird aufberei¬ tet und über eine Datenleitung 3 an einen PC, insbesondere einen Industrie-PC 4, übertragen. Die Auswertung dieses über- tragenen Signals erfolgt im PC 4, so daß dort Informationen über die Größenverteilung der Pellets ermittelt werden kön¬ nen, die für die Regelung der Pelletiertellern 7 notwendig ist. Als Alternative für den PC können auch speicherprogram¬ mierbare Steuerungen oder VME-BusSysteme zur Anwendung kom- men.1 shows a pelletizing plant 1 for iron ore. The mixture of iron ore and bentonite to be pelletized is conveyed onto a pellet conveyor via a conveyor belt 5 and a material store 6 animal plate 7 given. The pelletized material is transported away via a further conveyor belt 8. The pelletizing plates 7 are controlled and regulated by a programmable logic controller 4 (PLC). The aim of this control and regulation is to obtain pellets of the iron ore-bentonite mixture of a certain size. For this purpose, the pellet size is measured with a measuring unit 2. This measurement can take place either when the pellets fall on the conveyor belt 8 or when they lie on the conveyor belt 8. The measuring unit 2 consists of, preferably three, electromagnetic radiation sources evenly distributed on a circle and a camera. The image supplied by the camera is processed and transmitted via a data line 3 to a PC, in particular an industrial PC 4. This transmitted signal is evaluated in the PC 4, so that information about the size distribution of the pellets can be determined there, which is necessary for the control of the pelletizing plates 7. As an alternative to the PC, programmable logic controllers or VME bus systems can also be used.
FIG 2 zeigt eine zweidimensionale Intensitätsverteilung. Da¬ bei heben sich die Pellets als Bereiche höherer Lichtintensi¬ tät 9 ab. Durch die gewölbte Oberfläche der Pellets ergibt sich bei mehrdimensionaler Bestrahlung, z. B. durch eine Be¬ strahlung mit drei gleichmäßig auf einem Kreisumfang angeord¬ neten Lichtquellen, eine unterschiedliche Reflexion der ein¬ zelnen Bereiche eines Pellets. So wird Licht vom Zentrum des Pellets stärker reflektiert als von den Rändern.2 shows a two-dimensional intensity distribution. The pellets stand out as areas of higher light intensity 9. Due to the curved surface of the pellets, multi-dimensional radiation, e.g. B. by irradiation with three light sources arranged uniformly on a circumference, a different reflection of the individual areas of a pellet. This means that light is reflected more from the center of the pellet than from the edges.
FIG 3 zeigt die Intensitätsverteilung entlang der Schnittli¬ nie A,B aus FIG 2. Diese Intensitätsverteilung weist Minima 12 und Maxima 11 auf. Der Abstand zwischen einem Maximum 11 und seinen beiden benachbarten Minima 12 ist proportional der physikalische Ausdehnung des zugeordneten Pellets entlang der Schnittlinie A, B.
FIG 4 zeigt die Auswertung der Intensitätsverteilung. Das von einer Kamera gelieferte Bild 14 wird zunächst in einem Digi¬ talwandler 15 digitalisiert. Das Ausgangssignal des Digital¬ wandlers 15 wird einem Niederfrequenzfilter 16 und einem In- tensitätsmaximumdetektor 17 zugeführt. Die vom Niederfre¬ quenzfilter 16 und dem Intensitätsmaximumdetektor 17 gelie¬ ferten Signale werden in einem Abstufungsverstärker 18 zum Hervorheben der die geometrischen Abstufungen repräsentieren¬ den Intensitätsverteilung weiterverarbeitet. Dessen Ausgangs- signal wiederum wird in einem Funktionsmodul 19 zur Pelletab¬ messungsberechnung zugeführt. Die so erhaltenen Informationen werden schließlich in einem Statistikmodul 20 zur statisti¬ schen Aufbereitung der vom Funktionsmodul 19 zur Pelletabmes¬ sungsberechnung gelieferten Informationen ausgewertet. Das Ausgangssignal 21 des Statistikmoduls 20 schließlich ist eine Verteilung der Häufigkeit von Pellets verschiedener Größen.3 shows the intensity distribution along the section line A, B from FIG. 2. This intensity distribution has minima 12 and maxima 11. The distance between a maximum 11 and its two adjacent minima 12 is proportional to the physical expansion of the assigned pellet along the section line A, B. 4 shows the evaluation of the intensity distribution. The image 14 supplied by a camera is first digitized in a digital converter 15. The output signal of the digital converter 15 is fed to a low-frequency filter 16 and an intensity maximum detector 17. The signals supplied by the low-frequency filter 16 and the intensity maximum detector 17 are further processed in a gradation amplifier 18 to emphasize the intensity distribution representing the geometrical gradations. Its output signal is in turn fed into a function module 19 for pellet dimension calculation. The information obtained in this way is finally evaluated in a statistics module 20 for statistical processing of the information supplied by the function module 19 for calculating the pellet dimensions. Finally, the output signal 21 of the statistics module 20 is a distribution of the frequency of pellets of different sizes.
FIG 5 zeigt ein Ausführungsbeispiel für eine besonders gün¬ stige Meß- und Bestrahlungsanordnung. Dabei sind drei Licht- quellen 15 gleichmäßig auf einem Kreisumfang 16 verteilt. Zur Messung der vom bestrahlten Material reflektierten Strahlung wird eine Kamera 14 verwendet, die im Kreismittelpunkt ange¬ ordnet ist.
5 shows an embodiment for a particularly inexpensive measuring and radiation arrangement. Three light sources 15 are evenly distributed on a circumference 16. A camera 14, which is arranged in the center of the circle, is used to measure the radiation reflected by the irradiated material.