WO1997009110A1 - Procede et dispositif de traitement des gaz d'echappement - Google Patents

Procede et dispositif de traitement des gaz d'echappement Download PDF

Info

Publication number
WO1997009110A1
WO1997009110A1 PCT/JP1996/002529 JP9602529W WO9709110A1 WO 1997009110 A1 WO1997009110 A1 WO 1997009110A1 JP 9602529 W JP9602529 W JP 9602529W WO 9709110 A1 WO9709110 A1 WO 9709110A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
powder
gas
reaction
steam
Prior art date
Application number
PCT/JP1996/002529
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Maeda
Hirokazu Obata
Kanji Ota
Toshio Hama
Kenichi Nagai
Tadao Murakawa
Yasuhiro Kusano
Original Assignee
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation filed Critical Hitachi Zosen Corporation
Priority to JP51107897A priority Critical patent/JP3375341B2/ja
Publication of WO1997009110A1 publication Critical patent/WO1997009110A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds

Definitions

  • the present invention relates to an exhaust gas treatment method and apparatus for removing chlorides and sulfides from exhaust gas discharged from a waste incinerator, a combustion furnace, or the like.
  • the dry cleaning method is a solid-gas reaction between the alkali powder and the exhaust gas, so the reaction efficiency is slightly reduced and the removal efficiency is poor. Therefore, harmful gas In plants with strict emissions regulations, there is a problem in that the amount of Al liquor powder blown in increases, resulting in an increase in the amount of treated ash. Disclosure of the invention
  • the present invention solves the above problems, employs dry cleaning without the problem of nozzle clogging, and further improves the reaction efficiency.
  • An exhaust gas treatment method and an exhaust gas treatment apparatus for implementing the method are provided. The purpose is to provide.
  • the exhaust gas treatment method of the present invention is characterized in that an exhaust gas is blown into the exhaust gas upstream of the dust collector, which reacts with an acid gas in the exhaust gas to generate a solid compound, When the generated solid compounds are collected by a dust collector on the downstream side, steam is blown into the exhaust gas through the exhaust gas path between the secondary combustion chamber outlet of the incinerator and the dust collector to reduce the moisture concentration of the exhaust gas. By increasing the efficiency, the reaction efficiency between the Al-rich powder and the acid gas is improved.
  • high-pressure steam is blown into the exhaust gas in the vicinity of the upstream side or downstream side of the blowing position of the alkali powder, and the fine water droplets generated by the depressurizing operation react with the acidic gas. It is characterized by improving the reaction efficiency between alkali powder and acid gas by making solid-liquid reaction with the powder and dispersing the alkaline powder by steam to expand the reaction area with acid gas. .
  • high-pressure steam is blown into the exhaust gas, so that the water is flushed by a rapid depressurizing action to generate fine water droplets in an extremely short time (instantaneously).
  • hydrogen chloride or the like which easily reacts with water, reacts with the acidic gas, and comes into contact with the alkali powder.
  • the solid-liquid reaction is more efficient than the solid-gas reaction, and a solid compound is efficiently produced.
  • fine water droplets are also generated in the area where the steam and the pneumatic air of the alkaline powder come into contact, forming a state in which the fine water droplets coexist with the acidic gas and the alkaline powder instantaneously, and the reaction of the alkaline powder by the solid-liquid reaction.
  • the aluminum powder is effectively dispersed by the steam, and the contact area between the acid gas and the alkali powder is increased, thereby promoting the gas-solid reaction.
  • the reaction efficiency of the alkaline powder is improved, and the amount of the alkaline powder used can be reduced.
  • the amount of fly ash collected by the dust collector is also reduced, and the medium for preventing elution of heavy metals is reduced. It can reduce the amount of washi used and the landfill occupancy.
  • the temperature of the steam is set in a range of 5 ° C. of soil temperature of the exhaust gas.
  • the exhaust gas treatment apparatus of the present invention is provided with a powder supply nozzle for blowing an alkaline powder which reacts with an acidic gas in the exhaust gas to form a solid compound in the exhaust gas between the furnace and the dust collector.
  • a powder supply nozzle for blowing an alkaline powder which reacts with an acidic gas in the exhaust gas to form a solid compound in the exhaust gas between the furnace and the dust collector.
  • water vapor is blown into the exhaust gas near the upstream side or the downstream side of the powder supply nozzle to remove the acidic gas and the Al-rich powder. It features a powder supply nozzle that improves the reaction efficiency.
  • the solid-liquid reaction between the fine water droplets generated by the decompression of the water vapor and the contact with the pneumatic air and the aluminum powder, and the dispersing effect of the aluminum powder and an extremely simple configuration,
  • the reaction efficiency of the re-powder can be improved, and the amount of alkali powder used can be reduced to reduce the amount of fly ash that contains unreacted alkali powder.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an exhaust gas treatment apparatus according to the present invention.
  • FIG. 2 is a partial cross-sectional view showing an exhaust gas duct of the exhaust gas treatment device.
  • FIG. 3 is an explanatory diagram showing an apparatus in which Experiment 1 of the exhaust gas treatment apparatus was performed.
  • Fig. 4 is a graph showing the change in the differential pressure in the evening room and the concentration of hydrochloric acid over time in the experimental apparatus.
  • FIG. 5 is an explanatory view showing an apparatus in which experiment 2 of the exhaust gas treatment apparatus was performed. is there.
  • FIG. 6 is a graph showing the relationship between the Ca ratio and the desalination ratio showing the results of Experiment 2 of the exhaust gas treatment device. Description of the embodiment
  • the exhaust gas path discharged from the refuse incinerator 1 includes a boiler 2 for recovering heat from the exhaust gas, and a cooling tower 3 as an exhaust gas cooling device for injecting water into the exhaust gas to lower the temperature of the exhaust gas.
  • Aluminium powder that reacts with hydrogen chloride and sulfur dioxide gas contained in exhaust gas to produce solid compounds, such as slaked lime Ca (OH) 2 and magnesium hydroxide Mg (OH) 2, and a reaction aid.
  • an Al powder feeding device 5 that blows into the exhaust gas from the powder supply nozzle 5 a, and steam near the upstream or downstream of the powder supply nozzle 5 a
  • a steam supply device 6 that blows high-pressure (several atmospheric pressure) steam into the exhaust gas at a temperature of 50 ° C in the exhaust gas from the nozzle 6a to accelerate the reaction of the Al-Pyri powder, and the dust in the exhaust gas and the exhaust gas Of hydrogen chloride or sulfurous acid Chloride produced by reaction with Li powder, and Bagufiru evening 7 is a dust collector that divided a sulfide, an exhaust fan 8, and an exhaust chimney 9 are provided.
  • the temperature of the steam blown into the exhaust gas from the steam supply device 6 is within a range of ⁇ 50 ° C of the exhaust gas temperature, for example, if the exhaust gas is 150 ° C, the temperature of the steam is 1
  • the reason why the temperature was set to about 200 to 200 ° C is that when the temperature is lower than 100 ° C, the exhaust gas temperature is lowered and the moisture contained therein is reduced. This is because it adheres to the filter cloth of Bagfill 7 and impairs air permeability and decreases the separation capacity. If the temperature exceeds 200 ° C, the temperature of the exhaust gas rises and the filter cloth of Bagfill 7 is removed. This is because there is a risk of damage.
  • a water tube boiler is placed at the outlet of the furnace to recover heat
  • the moisture content of the exhaust gas is 20 to 25%, and the heat is not recovered by the boiler.
  • the water content of the exhaust gas is about 40%.
  • the amount of water in the exhaust gas is smaller than that of the boiler incinerator.
  • the solid compounds are also collected by a dust collector by blowing the powder into the exhaust gas.
  • the reaction efficiency of the alkali powder differs depending on the amount of water in the exhaust gas, and the results show that the higher the amount of water, the better the reaction efficiency.
  • the present invention solves this by blowing steam into the exhaust gas. And the position where this steam is blown is As long as the exhaust gas duct 4 is located between the secondary combustion chamber outlet of the incinerator 1 and the bag file 7, a reasonable effect can be obtained at any position. However, even in an arbitrary position of the exhaust gas duct 4, in order to further improve the reaction efficiency, in the embodiment of the present invention, it is located near the upstream side or the downstream side of the powder supply nozzle 5a.
  • Solid compounds are formed from hydrogen chloride and sulfurous acid gas.
  • high-pressure steam is blown into the exhaust gas at atmospheric pressure near the upstream or downstream side, and is flashed by a rapid decompression action to instantaneously generate fine water droplets.
  • the fine water droplets react with an acidic gas (especially, hydrogen chloride, etc., which reacts) to produce an acidic liquid (hydrochloric acid, etc.), which comes into contact with the alkali powder and is more efficient than the solid-gas reaction The reaction occurs, and a solid compound is produced efficiently.
  • the concentration of moisture in the exhaust gas is increased without adversely affecting peripheral devices.
  • the reaction efficiency of the alkaline powder with the alkali powder can be improved.
  • hydrogen chloride and sulfurous acid gas are promoted by promoting the solid-liquid reaction due to the coexistence of fine water droplets and acidic gas and alkali powder due to the decompression of water vapor and contact with pneumatic air, and the solid-gas reaction due to the diffusion effect of aluminum powder.
  • the solid compounds can be collected at the bag file 7 by promoting the solidification reaction of the harmful substances.
  • the bag filter 7 is used as the dust collector, but an electric dust collector may be used instead.
  • the inlet exhaust gas duct 11 is connected to the upstream side of the electric precipitator in the exhaust gas path of the refuse incinerator, and the exhaust gas is introduced into the bag filter 12.
  • This exhaust gas component is as shown in Table 1, and its content is the volume fraction.
  • the exhaust gas was discharged from the exit exhaust duct 15 At point B, the temperature is 170 ° C and the amount of exhaust gas is 78.8 m 3 / (wet gas base).
  • the inlet duct 11 is provided with a powder supply nozzle 13a that blows the powdered ash supplied from the powdered ash supply device 13 into the ash gas.
  • the alkaline powder used here is, for example, slaked lime powder (JIS special name), which is commercially available, and its supply amount is 800 ppm of hydrogen chloride and 50 ppm of sulfur dioxide in the exhaust gas. 215 g / h when water vapor is not added, 188 gZh when water vapor is added, and air volume is 15 liters in (in ° C, 1 atmosphere) It is.
  • steam supplied from an electric boiler 14 as a steam supply device is blown into the exhaust gas at an upstream point D and a downstream point E, respectively, on the upstream side and the downstream side of the powder supply nozzle 13a.
  • Steam nozzles 14a and 14b are provided.
  • the temperature of the steam used here is three types: 170 ° C, 150 ° C, and 130 ° C, and the steam supply rate is 6 kg / h, and steam must be supplied. Due to exhaust gas Water content is about 30%.
  • Point A is the upstream hydrochloric acid concentration measurement point provided at the inlet duct 11 between point D and the powder supply nozzle 13a, and the first measuring instrument 20A is provided. Have been.
  • Nogfil 12 has two filter bags 12 b with a diameter of 116 mm and a length of 125 mm in the filter chamber 12 a, near the gas inlet.
  • the temperature is adjusted by an external heater (not shown) so that the temperature of the exhaust gas is about 170 ° C at the measurement point C in the above.
  • the exhaust gas becomes difficult to pass.
  • the exhaust gas flow rate and hydrochloric acid are measured by the second measuring instrument 2OB at the point B of the exhaust gas duct 15 at the outlet. The concentration is measured, and the opening of the valve at the inlet of the blower 16 is adjusted.
  • differential pressure gauge 1 8 for a total of measuring the ventilation resistance bug tube 1 2 b are provided, the differential pressure between the inlet side space out with Phil evening chamber 1 2 a of the inlet-side space in 1 0 0 mm H 2 ⁇ At that point, backwash air is injected from the pulse jet blow pipe 19 to the bag cylinder 12b to expand the filter cloth, and to remove dust and lime attached to the filter cloth surface.
  • Desalination rate (1 average outlet H C 1 concentration during one pulse Z average inlet H C 1 concentration between pulses) X 1 ⁇ 0... 1
  • the concentration measurement at the outlet is point B (dry base), and the concentration measurement at the inlet is point A (dry base).
  • the interval between pulses is, as shown in Fig. 5, an evaluation interval corresponding to the interval between removals by the pulse jet. That is.
  • the desalination rate was improved by about 10% or more by blowing slaked lime into the exhaust gas from the powder supply nozzle 13a and simultaneously blowing steam from the point D or E. I was able to. Moreover, as a result, the desalination rate could be improved by several% when water vapor was blown from the point E downstream of the powder supply nozzle 13a as compared with when blown from the upstream side. Furthermore, as for the steam temperature, the lower the temperature, the higher the desalination rate was obtained. This is because low-temperature steam requires instantaneous fine water droplets due to the contact between the pneumatic air and the steam. It turned out to be suitable.
  • the alkaline powder as a desalting agent was used as in Experimental Example 1.
  • alkaline slaked lime powder JIS special name
  • an auxiliary agent 20% of the amount of slaked lime
  • the amount of supply is expressed by the formula (2), and in Fig. 6, it is expressed by the equivalent ratio of calcium hydroxide (Ca ratio).
  • W QXCX (A / 2 + B) X 10 4 X 74 / 22.4 X (100 / E)... 2 where, W: Slaked lime blowing rate (kg / h)
  • Nog Fil 12 used a Phil evening room 12a in which four bag cylinders 12b with a diameter of 116 mm and a length of 1295 mm were arranged.
  • the exhaust gas temperature at point G at the entrance of Bagfill 7 was 181 ° C, and it was 177 at the time of steam injection.
  • the exhaust gas temperature in the middle of the bag cylinder 12B was 172 ° C at point H
  • the exhaust gas temperature at the outlet was 160 ° C at point I.
  • Table 3 shows the exhaust gas conditions.
  • the desalination performance of the present invention which is indicated by writing with steam, is superior to the conventional desalination performance, which is indicated by ⁇ without steam, This is especially noticeable when the Ca ratio is low.
  • the target value is a desalination rate of around 93%
  • the power with a conventional Ca ratio of about 2.1 is about 1.3 in the present invention, and as a result, the consumption of slaked lime It can be seen that about 38% can be saved.

Description

明 細 書
排ガス処理方法および装置
発明の分野
本発明は、 ごみ焼却炉や燃焼炉などから排出される排ガス中から 塩化物や硫化物を除去する排ガス処理方法および装置に関する。 発明の背景
従来、 たとえば一般廃棄物および産業廃棄物の焼却設備において 、 廃棄物の焼却時に発生する酸性ガスを除去する方式と して、 水噴 射された洗浄塔内に排ガスを通過させて洗浄する (ガス吸収により 酸性になった噴射水は力性ソーダで中和) 湿式洗浄方式や、 集塵装 置 (電気集塵機、 バグフィル夕) の前段上流側で排ガス中にアル力 リ溶液を吹き込み、 酸性ガスと反応させて固形化合物を生成し、 こ れを集塵装置に捕集させる半乾式洗浄方式、 集塵装置の前段上流側 で排ガス中にアルカリ粉末を吹き込み、 酸性ガスと反応させて固形 化合物を生成し、 これを集塵装置に捕集させる乾式洗浄方式がある 。 ここで、 下流に集塵装置を配置した半乾式洗浄方式と乾式洗浄方 式とを検討する
上記半乾式洗浄方式は、 酸性ガスの除去性能に若干優れているも のの、 吹き込み部でアルカリ溶液、 たとえば消石灰 C a ( O H ) 2 の成分が堆積したり、 または吹き込みノズルの閉塞が発生しやすい という問題がある。 このため、 乾式洗浄方式を採用するプラン トが 多い。
一方、 乾式洗浄方式は、 アルカ リ粉末と排ガスとの固気反応であ るため、 反応効率が若干落ち、 除去効率が劣る。 このため、 有害ガ ス排出規制の厳しいプラン トでは、 アル力リ粉末の吹き込み量が多 く なり、 結果と して処理灰の量が多く なるという問題がある。 発明の開示
本発明は、 上記問題点を解決して、 ノズルに詰まりの問題のない 乾式洗浄を採用し、 さらに反応効率を向上させることができる排ガ ス処理方法およびこの方法を実施するための排ガス処理装置を提供 することを目的とする。
この目的を達成するために、 本発明の排ガス処理方法は、 集塵装 置の前段上流側で排ガス中に、 排ガス中の酸性ガスと反応して固形 化合物を生成するアル力リ粉末を吹き込み、 生成された固形化合物 を下流側で集塵装置により捕集するに際し、 焼却炉の二次燃焼室出 口と集塵装置の間の排ガス経路で、 排ガス中に水蒸気を吹き込んで 排ガスの水分濃度を上げることにより、 アル力リ粉末と酸性ガスと の反応効率を向上させることを特徴とする。
上記構成によれば、 排ガスの水分量が高いと、 アルカリ粉末と酸 性ガスとの反応効率が良く なることが、 各種ごみ焼却炉の運転結果 から判明している。 しかし、 通常排ガスダク トの上流側で排ガスの 冷却に使用される水噴射を多量に行うことで排ガス中の水分量を増 加させる場合、 排ガス中に均一に分散させて水分量を増加させるの は極めて困難であり、 しかも排ガスの温度を局部的に下げる恐れが ある。 そうすると、 排ガスダク ト内に水滴が付着して露点腐食を発 生させたり、 また集塵装置のろ布を目詰まりさせる恐れがある。 上 記方法では、 これを水蒸気を使用することにより、 排ガスの水分量 を均一に増大させて酸性ガスとアルカリ粉末との反応効率を向上さ せることができ、 露点腐食やろ布の目詰まりの恐れもない。
また上記方向において、 アルカリ粉末の吹き込み位置の上流側近 傍または下流側近傍で高圧の水蒸気を排ガス中に吹き込み、 減圧作 用により生成される微細水滴と酸性ガスとを反応させ、 これら微細 水滴とアルカリ粉末との固液反応させるとともに、 蒸気によりアル 力リ粉末を分散させて酸性ガスとの反応面積を拡大させることによ り、 アルカリ粉末と酸性ガスとの反応効率を向上させることを特徴 とする。
上記方法によれば、 高圧の蒸気を排ガス中に吹き込むことにより 、 急激な減圧作用でフラッシュ して極短時間 (瞬時) に微細な水滴 を生成する。 すると酸性ガスで水と反応しやすい塩化水素等が反応 してアルカリ粉末と接触し、 固気反応よりも効率のよい固液反応し 、 効率良く固形化合物が生成される。 また蒸気とアルカリ粉末の気 送空気とが接触する部分においても同様に微細水滴が発生して微細 水滴と酸性ガスとアルカリ粉末が瞬時共存する状態が形成され、 固 液反応によりアルカ リ粉末の反応効率が向上される。 さらに、 アル 力リ粉末が水蒸気により効果的に分散されることになり、 酸性ガス とアルカリ粉末との接触面積が増大されて固気反応が促進される。 これにより、 アルカ リ粉末の反応効率が向上されてその使用量を減 少させることができ、 その結果集塵装置で捕集される飛灰量も減少 され、 重金属の溶出を防止するための中和剤の使用量や埋立地の占 有量を減少させることができる。
さらに上記各方法において、 水蒸気の温度を、 排ガスの温度の土 5 〇°Cの範囲としたことを特徴とする。
上記方法によれば、 排ガスの大幅な温度低下を防止することがで き、 ろ布の目詰まりなどの恐れがなく、 集塵装置の分離性能を低下 させたり、 損傷させることもない。
さらに本発明の排ガス処理装置は、 炉と集塵装置の間の排ガスダ ク トに、 排ガス中に排ガス中の酸性ガスと反応して固形化合物を生 成するアルカリ粉末を吹き込む粉末供給ノズルを設け、 生成された 固形化合物を集塵装置で捕集させる排ガス処理装置において、 前記 粉末供給ノズルの上流側近傍または下流側近傍に、 排ガス中に水蒸 気を吹き込んで酸性ガスとアル力リ粉末の反応効率を向上させる粉 末供給ノズルを配設したことを特徴とする。
上記構成によれば、 水蒸気の減圧および気送空気との接触により 生成される微細水滴とアル力リ粉末との固液反応と、 アル力リ粉末 の分散効果により、 極めて簡単な構成でアル力リ粉末の反応効率を 向上させることができ、 アルカリ粉末の使用量を低減させて未反応 のアルカリ粉末を含む飛灰の捕集量を低減することができる。 図面の簡単な説明
図 1 は、 本発明に係る排ガス処理装置の実施の形態を示す概略構 成図である。
図 2は、 同排ガス処理装置の排ガスダク トを示す部分断面図であ る。
図 3は、 同排ガス処理装置の実験 1 を行った装置を示す説明図で る。
図 4は、 同実験装置の時間経過に伴うフィ ル夕室の差圧と、 塩酸 濃度の変動を示すグラフである。
図 5は、 同排ガス処理装置の実験 2を行った装置を示す説明闵で ある。
図 6は、 同排ガス処理装置の実験 2の結果を示す C a比と脱塩率 との関係を示すグラフである。 実施例の説明
本発明に係る排ガス処理装置の実施例を図 1, 図 2に基づいて説 明する。
ごみ焼却炉 1から排出される排ガス経路には、 排ガスから熱回収 するためのボイラ 2と、 排ガスに水を噴射して排ガスの温度を下げ るための排ガス冷却装置である減温塔 3 と、 排ガス中に含まれる塩 化水素や亜硫酸ガスと反応して固形化合物を生成するアル力リ粉末 、 たとえば消石灰 C a ( O H ) 2 や水酸化マグネシウム M g ( O H ) 2 などの粉末と反応助剤を、 減温塔 3下流側の排ガスダク ト 4内 で粉末供給ノズル 5 aから排ガス中に吹き込むアル力 リ粉末供給装 置 5と、 粉末供給ノズル 5 aの上流側近傍または下流側近傍で蒸気 ノズル 6 aから排ガス中に排ガス温度の土 5 0 °Cの範囲で高圧 (数 気圧) の水蒸気を吹き込んでアル力リ粉末の反応を促進させる蒸気 供給装置 6と、 排ガス中の塵埃および排ガス中の塩化水素や亜硫酸 ガスとアルカリ粉末との反応により生成された塩化物、 硫化物を除 去する集塵装置であるバグフィル夕 7と、 排気ファ ン 8と、 排気用 煙突 9 とが具備されている。
上記蒸気供給装置 6において、 蒸気供給装置 6から排ガス中に吹 き込む水蒸気の温度を、 排ガス温度の ± 5 0 °Cの範囲、 たとえば排 ガスが 1 5 0 °Cとすると水蒸気の温度を 1 0 0〜2 0 0 °C程度と し たのは、 1 0 0 °C未満では、 排ガス温度が低下して含まれる水分が バグフィル夕 7のろ布に付着し、 通気性を損なうとともに分離能力 が低下されるためであり、 また 2 0 0 °Cを越えると、 排ガスの温度 が上昇してバグフィ ル夕 7のろ布を損傷させるおそれがあるからで ある。
通常、 炉の出口に水管ボイラを配置して熱回収し、 さらに減温塔
3で冷却水を噴射してバグフィル夕 Ίを通過可能な温度に冷却する ボイラ式焼却炉の場合、 排ガスの水分量は 2 0〜 2 5 %であり、 ま たボイラにより熱回収しないで、 炉の出口の排ガス冷却装置で排ガ ス中に冷却水を噴射して冷却する水噴射式焼却炉の場合、 排ガスの 水分量は約 4 0 %である。 また水管ボイラの熱媒を気体と したガス クーラーを設置する焼却炉の場合には、 ボイラ式焼却炉よりも排ガ スの水分量が少ないものと推測される。 このように排ガスの冷却方 式により排ガスの水分量が異なるが、 これらも排ガス中にアル力リ 粉末を吹き込んでその固形化合物を集塵装置で捕集することが行わ れており、 このような場合では、 排ガス中の水分量によりアルカリ 粉末の反応効率が異なり、 水分量が高いほうが反応効率が良いとい う結果が得られている。
このような見地から、 排ガスに吹き込む冷却水の量を増大して排 ガスの水分量を増加させることも考えられるが、 排ガス全体に均一 に水分量を増加させることは極めて困難であり、 局部的に水分量が 増加すると水滴が発生してダク トや機器類に付着し露点腐食の原因 となる恐れがあり、 また水滴がバグフィ ル夕のろ布に付着すると、 排ガスのろ過能力が低下する恐れがある。
しかしながら、 本発明ではこれを排ガス中に水蒸気を吹き込むこ とにより解決している。 そして、 この水蒸気を吹き込む位置は、 ご み焼却炉 1 の二次燃焼室出口とバグフィ ル夕 7の間の排ガスダク ト 4であれば、 どの位置でもそれなりの効果が得られる。 しかし、 排 ガスダク ト 4の任意位置でも、 より反応効率を向上させるために、 本発明の実施例では粉末供給ノズル 5 aの上流側または下流側の近 傍と している。
上記構成における排ガス処理方法を説明する。 減温塔 3で冷却水 の噴射により 1 5 0 °Cぐらいに温度を下げられた排ガス中に、 アル 力リ粉末供給ノズル 5 aから排ガス中にアル力リ粉末、 たとえば消 石灰が吹き込まれると、 排ガス中の塩化水素や亜硫酸ガスとの固気 反応により、
2 H C 1 + C a ( O H ) 2 →C a C 1 2 + 2 H 2
S〇2 + C a ( O H ) 2 →C a S 0 3 + H 2
塩化水素および亜硫酸ガスから固形化合物が生成される。 その時、 その上流側または下流側近傍で高圧の水蒸気が大気圧の排ガス中に 吹き込まれることにより、 急激な減圧作用でフラッシュ して瞬間的 に微細な水滴を生成する。 するとこの微細水滴と酸性ガス (特に反 応しゃすい塩化水素等) が反応して酸性液体 (塩酸等) が生成され 、 これとアルカリ粉末とが接触して固気反応よりも効率のよい固液 反応が起こり、 効率良く固形化合物が生成される。 また同様にアル カリ粉末の気送空気と蒸気とが接触する部分においても、 微細水滴 が発生され微細水滴と酸性ガスとアルカ リ粉末が共存する状態が瞬 間的に形成され、 この固液反応によりアル力リ粉末の反応効率がさ らに向上される。 なお、 水蒸気を微細水滴化しやすく してこの状態 を効果的に作り出すためには、 水蒸気の温度が幾分低い方がより効 果的である。 さらに水蒸気によりアルカリ粉末が効果的に分散され ることから、 アル力 リ粉末と酸性ガスとの接触面積が増大されてよ り固気反応が促進される。
上記実施の形態によれば、 アルカリ粉末供給ノズル 5 aの近傍で 、 排ガス中に水蒸気を吹き込むことにより、 排ガス中の水分濃度を 上げて周辺装置に悪影響を及ぼすことなく、 排ガスに含まれる酸性 ガスとアルカリ粉末との反応効率を向上させることができる。 また 水蒸気の減圧および気送空気との接触による微細水滴と酸性ガスと アルカリ粉末の共存状態による固液反応、 ならびにアル力リ粉末の 拡散効果による固気反応の促進により、 塩化水素や亜硫酸ガスなど の有害物質を固形化反応を促進して、 固形化合物をバグフィ ル夕 7 で捕集することができる。 このように排ガスの脱塩、 脱硫効果を向 上させることができることから、 アルカ リ粉末の使用量を低減する ことができ、 ランニングコス トを減少することができる。 また、 そ の結果副次的にバグフィル夕 7による飛灰の捕集量を低減すること ができ、 飛灰用重金属固定薬剤の使用量や埋立地の必要量を少なく てすむ。 また、 この乾式洗浄 +バグフィ ル夕の方式を採用すること によりダイォキシンの捕集も行うことができる。
なお、 上記実施例では集塵装置にバグフィル夕 7を使用したが、 これに替えて電気式集塵装置を使用することもできる。
実験例 1
図 3に示す実験装置を使用して、 脱塩効果を実証した。
この実験装置は、 入口排ガスダク 卜 1 1がごみ焼却設備の排ガス 経路の電気集塵機上流側に接続され、 排ガスがバグフ ィ ル夕 1 2に 導入されている。 この排ガス成分は表 1 の通りで、 その含有率は体 積率である。 またこの時の排ガスは、 出口排ガスダク ト 1 5のボイ ン ト Bにおいて、 温度が 1 70°C、 排ガス量が 78. 8m3 / ( 湿ガスベース) である。
また、 入口ダク ト 1 1には、 アル力リ粉末供給装置 13から供給 されたアル力リ粉末を灰ガス中に吹き込む粉末供給ノズル 1 3 aが 配設されている。 ここで使用されるアルカリ粉末は、 一例と して市 販の消石灰粉末 (J I S特号) を使用し、 その供給量は、 排ガス中 の 800 p pmの塩化水素と 50 p p mの亜硫酸ガスを中和するの に必要な量、 すなわち水蒸気を加えない時は、 21 5 g/h、 水蒸 気を加える時は 1 88 gZhで、 気送空気量は 1 5リツトル i n ( 〇°C、 1気圧) である。
表 1
Figure imgf000011_0001
さらにこの粉末供給ノズル 1 3 aの上流側と下流側にはそれぞれ 蒸気供給装置である電気ボイラ 1 4から供給される水蒸気を、 上流 ボイ ン ト Dおよび下流ボイ ン ト Eでそれぞれ排ガス中に吹き込む蒸 気ノズル 14 a, 1 4 bが配設される。 ここで使用した水蒸気の温 度は、 1 70°C、 1 50°C、 1 30°Cの 3種類で、 さ らに水蒸気の 供給量は 6 k g/hであり、 水蒸気が供給されることにより、 排ガ スの水分量が約 3 0 %となる。 ポイ ン ト Aは、 ポイ ン ト Dと粉末供 給ノズル 1 3 aとの間の入口ダク ト 1 1 に設けられた上流側の塩酸 濃度の計測地点で、 第 1計測器 2 0 Aが設けられている。
ノ グフィル夕 1 2は、 フィルタ室 1 2 aに直径 1 1 6 m m、 長さ 1 2 9 5 m mのフ ルト製のバグ筒 (ろ布) 1 2 bを 2本備え、 ガ スの入口近傍の測定地点 Cで排ガスの温度が約 1 7 0 °C前後になる ように外部ヒー夕 (図示せず) により温度調節される。 また、 バグ 筒 1 2 bの表面にダス トゃ消石灰が付着すると、 排ガスが通過しに く く なるため、 出口排ガスダク ト 1 5のポイン ト Bで第 2計測器 2 O Bにより排ガス流量と塩酸濃度が計測され、 ブロワ一 1 6入口の バルブの開度が調節される。 さらに、 バグ筒 1 2 bの通気抵抗を計 測する差圧計 1 8が設けられ、 フィル夕室 1 2 aの入口側空間と出 口側空間との差圧が 1 0 0 m m H 2 〇に達した時点で、 パルスジェ ッ トブロー管 1 9から逆洗用空気がバグ筒 1 2 bに噴射されてろ布 膨張を与え、 ろ布表面に付着したダス トや性石灰を落とす。
ここで、 差圧計 1 8で計測された時間経過に伴うフィル夕室 1 2 aの入口側空間と出口側空間との差圧と、 ポイン ト Aおよびポイン ト Bの塩酸濃度の変動を図 4に示す。 またここでの評価区間におけ る塩酸除去性能を表 2に示す。 ここで脱塩率は①式に基づいて計算 した。
脱塩率 = ( 1 一パルス間の平均出口 H C 1 濃度 Zパルス間の平 均入口 H C 1 濃度) X 1 ◦ 0…①
なお、 出口の濃度測定はポイ ン ト B (乾べ一ス) 、 入口の濃度測定 はポイ ン ト A (乾ベース) である。 ここでパルス間とは、 図 5に示 すように、 パルスジェ ッ トによる払い落とし間に相当する評価区間 のことである。
表 2
Figure imgf000013_0001
上記実験結果によれば、 粉末供給ノズル 1 3 aから消石灰を排ガ ス中に吹き込むと同時に、 ポイ ン ト Dまたは Eから水蒸気を吹き込 むことにより、 脱塩率を約 1 0 %以上向上させることができた。 ま た、 結果的には、 粉末供給ノズル 1 3 a下流側のボイ ン ト Eから水 蒸気を吹き込むほうが、 上流側から吹き込むのに比べて脱塩率を数 %改善できた。 さらに、 水蒸気温度は、 温度が低いほど脱塩率が高 いという結果が得られ、 これは気送空気と水蒸気との接触により、 瞬間的に微細水滴を生成するのには、 低温の水蒸気が適していると 判明した。
実験例 2
次に別の実験例を図 5に示す装置を使用し、 脱塩効果の確認と、 脱塩剤の供給量 (C a比) に対する脱塩率の変化を求めた。
この実験装置では、 脱塩剤であるアルカリ粉末は、 実験例 1 と同 じ消石灰粉末 (J I S特号) と助剤 (消石灰吹込量の 20%) とを 使用し、 アルカリ粉末供給装置 5から入口排ガスダク ト 1 1 内に供 給した。 その供給量は、 ②式で表される量で、 図 6では水酸化カル シゥムの当量比 (C a比) で表した。
W= Q X C X (A/2 + B) X 10 4 X 74/22.4 X (100/E)…② ここで、 W : 消石灰吹込量 ( k g / h )
Q : 乾き排ガス流量 (m3N / h)
A : H C 1 実濃度、 乾きガス ( p p m
B : S Ox 実濃度、 乾きガス ( P m)
C : 消石灰吹込当量比
E : 消石灰純度 (%) である,
その上流側近傍の蒸気ノズル 1 4 aから排ガス中の水分量が約 8 %程度上昇 (水分 22〜25 %→30〜 32 %) するように温度 1 7 5 °Cの蒸気を供給した。
ノ グフィ ル夕 1 2は、 フィル夕室 1 2 aに直径 1 1 6 m m、 長さ 1 29 5 mmのバグ筒 1 2 bが 4本配置されたものが使用された。 そして、 バグフィル夕 7の入口におけるポイ ン ト Gにおける排ガス 温度は 1 8 1 °Cで、 蒸気吹き込み時は 1 7 7。C、 バグ筒 1 2 Bの中 間部の排ガス温度はポイ ン ト Hで 1 7 2 °C、 出口の排ガス温度はポ イ ン ト Iで 1 60°Cであった。 また排ガスの条件は表 3の通りであ
Ό
(以下余白) 表 3
Figure imgf000015_0001
上記実験例 2の結果を示す図 6によれば、 蒸気を吹き込まない〇 で示す従来の脱塩性能に比べて、 蒸気を吹き込んだ書で示す本発明 の脱塩性能の方が優れており、 特に C a比の低い場合に顕著にあら われている。 たとえば脱塩率 9 3 %前後を目標値とすると、 従来で は C a比が約 2 . 1 である力 本発明では C a比が約 1 . 3程度と なり、 この結果、 消石灰の消費量が約 3 8 %程度節約できることが 分かる。

Claims

請 求 の 範 囲
1 . 集塵装置の前段上流側で排ガス中に、 排ガス中の酸性ガスと反 応して固形化合物を生成するアルカリ粉末を吹き込み、 生成された 固形化合物を下流側で集塵装置により捕集するに際し、
焼却炉の二次燃焼室出口と集塵装置の間の排ガス経路で、 排ガス 中に水蒸気を吹き込んで排ガスの水分濃度を上げることにより、 ァ ルカリ粉末と酸性ガスとの反応効率を向上させることを特徴とする 排ガス処理方法。
2 . アルカリ粉末の吹き込み位置の上流側近傍または下流側近傍で 高圧の水蒸気を排ガス中に吹き込み、 減圧作用により生成される微 細水滴と酸性ガスとを反応させ、 これら微細水滴とアル力リ粉末と の固液反応させると ともに、 蒸気によりアル力リ粉末を分散させて 酸性ガスとの反応面積を拡大させることにより、 アルカリ粉末と酸 性ガスとの反応効率を向上させることを特徴とする請求項 1 記載の 排ガス処理方法。
3 . 水蒸気の温度を、 排ガスの温度の ± 5 0 °Cの範囲と したことを 特徴とする請求項 1 または 2記載の排ガス処理方法。
4 . 炉と集塵装置の間の排ガスダク トに、 排ガス中に排ガス中の酸 性ガスと反応して固形化合物を生成するアル力リ粉末を吹き込む粉 末供給ノズルを設け、 生成された固形化合物を集塵装置で捕集させ る排ガス処理装置において、
前記粉末供給ノズルの上流側近傍または下流側近傍に、 排ガス中 に水蒸気を吹き込んで酸性ガスとアル力 リ粉末の反応効率を向上さ せる粉末供給ノズルを配設したことを特徴とする排ガス処理装置。
PCT/JP1996/002529 1995-09-08 1996-09-05 Procede et dispositif de traitement des gaz d'echappement WO1997009110A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51107897A JP3375341B2 (ja) 1995-09-08 1996-09-05 排ガス処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/230604 1995-09-08
JP23060495 1995-09-08

Publications (1)

Publication Number Publication Date
WO1997009110A1 true WO1997009110A1 (fr) 1997-03-13

Family

ID=16910361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002529 WO1997009110A1 (fr) 1995-09-08 1996-09-05 Procede et dispositif de traitement des gaz d'echappement

Country Status (3)

Country Link
JP (1) JP3375341B2 (ja)
TW (1) TW308637B (ja)
WO (1) WO1997009110A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098187A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 廃棄物処理システム及び排ガス処理方法
JP2014076444A (ja) * 2012-09-24 2014-05-01 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd 排ガス処理装置
WO2015114957A1 (ja) * 2014-01-31 2015-08-06 三菱日立パワーシステムズ株式会社 石灰供給装置及び排ガス処理システム
CN105983476A (zh) * 2015-02-02 2016-10-05 江苏宏泰橡胶助剂有限公司 改进的用于不溶性硫磺生产的粉碎机
JP2016530981A (ja) * 2013-06-25 2016-10-06 エス.ア.ロイスト ルシェルシュ エ デヴロップマン 粉末状化合物を噴射することによりガスを処理する方法及び装置
CN112495157A (zh) * 2020-09-30 2021-03-16 山东大学 一种协同脱除三氧化硫及氯化氢的装置及工艺
CN113015573A (zh) * 2018-11-06 2021-06-22 北京康肯环保设备有限公司 废气导入喷嘴、水处理装置以及废气处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150675A (ja) * 1974-05-25 1975-12-03
JPH04114718A (ja) * 1990-09-05 1992-04-15 Babcock Hitachi Kk 簡易脱硫装置
JPH0647251A (ja) * 1992-07-31 1994-02-22 Amano Corp 酸性排ガスの除去装置
JPH0663351A (ja) * 1992-08-18 1994-03-08 Amano Corp 酸性排気ガス中和反応機用給水制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150675A (ja) * 1974-05-25 1975-12-03
JPH04114718A (ja) * 1990-09-05 1992-04-15 Babcock Hitachi Kk 簡易脱硫装置
JPH0647251A (ja) * 1992-07-31 1994-02-22 Amano Corp 酸性排ガスの除去装置
JPH0663351A (ja) * 1992-08-18 1994-03-08 Amano Corp 酸性排気ガス中和反応機用給水制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098187A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 廃棄物処理システム及び排ガス処理方法
JP2014076444A (ja) * 2012-09-24 2014-05-01 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd 排ガス処理装置
JP2016530981A (ja) * 2013-06-25 2016-10-06 エス.ア.ロイスト ルシェルシュ エ デヴロップマン 粉末状化合物を噴射することによりガスを処理する方法及び装置
WO2015114957A1 (ja) * 2014-01-31 2015-08-06 三菱日立パワーシステムズ株式会社 石灰供給装置及び排ガス処理システム
JP2015144984A (ja) * 2014-01-31 2015-08-13 三菱日立パワーシステムズ株式会社 石灰供給装置及び排ガス処理システム
CN105934268A (zh) * 2014-01-31 2016-09-07 三菱日立电力系统株式会社 石灰供给装置以及废气处理系统
CN105934268B (zh) * 2014-01-31 2018-06-22 三菱日立电力系统株式会社 石灰供给装置以及废气处理系统
US10005026B2 (en) 2014-01-31 2018-06-26 Mitsubishi Hitachi Power Systems, Ltd. Limestone supply device and air pollution control system
CN105983476A (zh) * 2015-02-02 2016-10-05 江苏宏泰橡胶助剂有限公司 改进的用于不溶性硫磺生产的粉碎机
CN113015573A (zh) * 2018-11-06 2021-06-22 北京康肯环保设备有限公司 废气导入喷嘴、水处理装置以及废气处理装置
CN112495157A (zh) * 2020-09-30 2021-03-16 山东大学 一种协同脱除三氧化硫及氯化氢的装置及工艺

Also Published As

Publication number Publication date
TW308637B (ja) 1997-06-21
JP3375341B2 (ja) 2003-02-10

Similar Documents

Publication Publication Date Title
EP2026897B1 (en) Integrated dry and wet flue gas cleaning process and system
US3929968A (en) Dry collection of waste materials
KR100639261B1 (ko) 응축기를 구비한 하이브리드식 배출가스 정화장치
US5035188A (en) Liquid blowdown elimination system
US5405420A (en) Flue gas treatment apparatus and flue gas treatment system
JP2000312813A (ja) 煙道ガスから水銀を除くためのスルフィド含有ガス及び液の使用
JPWO2004023040A1 (ja) 排煙処理システム
JP2009507632A (ja) 排ガス気流から三酸化硫黄の除去
JPH10290919A (ja) 排煙処理設備及び排煙処理方法
CN105642104A (zh) 湿法脱硫后烟气深度净化方法及装置
JP3308286B2 (ja) 乾式排煙脱硫装置および方法
KR100613303B1 (ko) 하이브리드식 배출가스 처리 방법 및 장치
WO1997009110A1 (fr) Procede et dispositif de traitement des gaz d'echappement
JPH10305210A (ja) 排煙処理方法及び設備
CN109499238A (zh) 双筒回转窑无害化处置含铬污泥产生的烟气的净化系统
CN107441907A (zh) 一种物质锅炉烟气多污染物处理工艺以及设备
JP3861047B2 (ja) 排ガス清浄装置
US4212656A (en) Smoke scrubbing apparatus
US5935299A (en) Apparatus and method of spray dryer/bag filter using circulating shield air
WO1997045191A1 (fr) Procede et appareil de traitement du gaz par decontamination et depoussierage au mouille effectues simultanement
JPH11147024A (ja) 排煙処理方法
JP2733156B2 (ja) 排ガス中の水銀の除去方法
RU2792383C1 (ru) Способ очистки дымовых газов
JPH11319479A (ja) 排煙処理方法
WO2023112863A1 (ja) 廃棄物焼却設備

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase