WO1997007553A1 - Plaque d'electrode pour un accumulateur au plomb et procede de fabrication - Google Patents

Plaque d'electrode pour un accumulateur au plomb et procede de fabrication Download PDF

Info

Publication number
WO1997007553A1
WO1997007553A1 PCT/CN1996/000062 CN9600062W WO9707553A1 WO 1997007553 A1 WO1997007553 A1 WO 1997007553A1 CN 9600062 W CN9600062 W CN 9600062W WO 9707553 A1 WO9707553 A1 WO 9707553A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
fiber
cadmium
lead alloy
fibers
Prior art date
Application number
PCT/CN1996/000062
Other languages
English (en)
French (fr)
Inventor
Yunnuo Zhao
Original Assignee
Yunnuo Zhao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN95109703A external-priority patent/CN1143269A/zh
Priority claimed from CN95219415U external-priority patent/CN2235156Y/zh
Application filed by Yunnuo Zhao filed Critical Yunnuo Zhao
Priority to US09/011,564 priority Critical patent/US6232018B1/en
Priority to AU67307/96A priority patent/AU6730796A/en
Priority to EP96927499A priority patent/EP0874411A4/en
Publication of WO1997007553A1 publication Critical patent/WO1997007553A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • H01M6/485Side-by-side bipolar batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate used in a lead-acid battery and a method for manufacturing the same.
  • a Chinese patent application CN 1 0 5 1 2 7 3 A entitled “Acid Wrench Shaped Positive Plate” with a publication date of May 8, 1991 discloses a pole pull. Two conductive plates with the same structure are superimposed, main ribs are arranged around the overlapping surface of the two conductive plates, each conductive plate is provided with an equal number of liquid inlet holes, and the overlapping surfaces of the two conductive plates are coated with Lead powder.
  • the method is to thin the positive electrode grid to 4.0-7.5 MM, and at the same time thin the negative electrode grid accordingly, so that the lead-acid battery in the same tank electrode plate
  • the relative increase in number means that the surface area increases and the polarization current during charge and discharge decreases. In this way, the specific energy is increased without affecting the service life.
  • increasing the specific energy by reducing the thickness of the electrode plate to increase the surface area will generally affect the service life and strength of the electrode plate.
  • an object of the present invention is to provide a polar plate with high specific energy, high power, long life, over-discharge resistance, and rapid charging used in lead-acid batteries, and a method for manufacturing the same.
  • the present invention proposes such an electrode plate for a lead-acid battery, which is characterized in that it includes: an active matrix including lead fibers and cadmium-containing lead alloy fibers uniformly mixed and intertwined together, the lead fibers occupying 60-90% of the total weight of the substrate, and the surface of the lead fiber is plated with cadmium, and the plated cadmium accounts for 1-5 of the weight of the lead fiber
  • a pull grid which cooperates with the active matrix and is used for current collection and conduction;
  • a pole tab is used for electrical connection between pole plates, and the pole tab is electrically connected to the plate grid and fixed on the plate grid.
  • the present invention also proposes a method for manufacturing an electrode plate, comprising the following steps: using lead, cadmium-containing lead alloy to produce lead fibers and lead alloy fibers by cutting, melting, or melt blowing;
  • FIG. 1 is a front view of a lead-acid battery pole switch according to the present invention.
  • FIG. 2 is a side view of the lead-acid battery pole shown in FIG. 1;
  • FIG. 3 is a sectional view of another lead-acid battery electrode plate according to the present invention.
  • FIG. 4 is a front view of the lead-acid battery pole shown in FIG. 3;
  • FIG 5 is a front view of a type of tab used in the lead-acid battery electrode plate of Figure 1. This type of tab is attached to the grid after the active substrate is combined with the grid.
  • FIG. 6 is a side view of the tab shown in FIG. 5.
  • the electrode for a lead-acid battery provided by the present invention includes active substrates 3, 3 0 1, 3 0 2 and a trigger grid 2, 7 for current collection and conduction, and mechanical strength for enhancing the active substrate. Sheets 4, 5. Of course, the grids 2 and 7 also have the effect of strengthening the mechanical strength of the active matrix.
  • the active matrix in the present invention is a mixture of lead fibers and lead alloy fibers. It should be noted that the term "fiber" used in the present invention refers to very thin strips. For example, lead fibers refer to very thin strips.
  • Fine lead wire, and the "fiber” mentioned in the present invention is sometimes the same as the "fiber segment” in the following.
  • the advantage of using fiber is that the fiber can increase the surface area of the active material and make the utilization of the active material. Improved, increased specific energy.
  • AGM method non-woven papermaking
  • AGM method non-woven papermaking
  • the flow-forming reaction is performed, sufficient acid liquid can be ensured to facilitate the reaction.
  • the fiber bundle can be composed of the same type of fibers or mixed fibers with a certain mixing ratio, but in general, if a large number of fibers are required, It is best to first mix the fibers in a certain proportion and then bundle them, and then mix between the bundles to make an active matrix.
  • the active matrix produced by the above method has a felt-like or cloth-like structure.
  • the matrix block made in the above manner and a kind completely made of lead alloy fiber can also be made.
  • the lead alloy felts are placed at intervals, and they are combined together after light pressing to form an active matrix with better strength and current collection conductivity.
  • the mixed fibers used in the present invention are mainly composed of lead fibers and lead alloy fibers having a certain weight ratio. In order to increase the current collecting conductivity and strength of the substrate or the plate, some other kinds of fibers and impregnating agents can also be added. However, lead fibers and lead alloy fibers are used as the main body, and without any other fibers, the lead-acid battery electrode of the present invention can be completely made. In the electrode of the present invention, the lead fiber accounts for the lead fiber and the lead alloy. 60%-90% of the total weight of the fiber, and all lead fibers are plated with cadmium, which accounts for 1-5% of their weight.
  • the surface layer of the lead fiber When the active matrix is formed and the positive electrode is made, the surface layer of the lead fiber will generate ⁇ -P b 02 lattice; if it is used as the negative electrode, the surface of the lead fiber will still be blunt lead.
  • the lead fiber used in the lead-acid battery electrode can react on the current after being energized, and the catalytic effect of cadmium plating on the surface can be used on the positive electrode.
  • a crystal lattice with ⁇ "P b 0 2 is formed, and it develops from the surface to the deep layer, and finally the core is formed of pure lead, and the surface layer has a state of ⁇ " P b 0 2 .
  • the ⁇ -P b ⁇ 2 crystal lattice of the surface layer reacts with the acid to form an electric charge, and the pure lead part of the core serves as a charge for the charge.
  • the lead alloy fiber accounts for 1% of the total weight of the lead fiber and the lead alloy fiber. 0 -40%, and the surface may be plated with cadmium of 1 "5% of its total weight.
  • 0" P b 0 2 will be formed on the surface layer of the lead alloy fiber in the positive electrode of a lead-acid battery. Crystal lattice; and the surface layer of the lead alloy fiber in the negative electrode plate forms pure lead. However, no matter in the positive plate or the negative plate, the interior of the lead alloy fiber always maintains the original alloy state.
  • the core content of the present invention is to prepare an active matrix for a lead-acid battery pole electrode by mixing the two kinds of fibers in a certain ratio.
  • the lead alloy fiber itself has high strength, good corrosion resistance, and good electrical conductivity. Therefore, after the matrix is mixed with the lead fiber, a current-collecting conductive grid can be melted on the matrix to meet the requirements.
  • the poles require strength and current collector performance requirements in use, and can prevent damage to the plates and short circuits inside the battery.
  • lead fibers mainly play a role in generating electric charges
  • lead alloy fibers mainly play a role in collecting current and supporting the entire plate.
  • the surface of the positive electrode formed by the two fibers can always maintain the ⁇ "P b 0 2 lattice, so that the electrode plate can maintain a high power storage state.
  • the surface of these two fibers is plated with about 1-5% cadmium. Therefore, during the energization reaction, a group of lead acid connected to the DC positive electrode was connected. The surface of the battery electrode plate forms a ⁇ "P bo 2 lattice under the catalysis of cadmium.
  • the surface layer of lead fiber will always maintain the ⁇ "P b 0 2 lattice under the catalytic action of cadmium contained in the lead alloy fiber. Because ⁇ -P The micro surface area of b 0 2 is nearly 20 times larger than that of 0! -Pb 0 2 , so ⁇
  • ⁇ -P 0 2 is generated after the surface of the lead fiber and the surface of the lead alloy fiber are directly energized to generate a reaction, so the connection between ⁇ -P b 0 2 and the fiber is very tight, and it is not easy to fall off, and the Both fibers maintain the state of pure lead or lead alloy inside, so they can withstand the vibration generated during high-current pulse charging.
  • ⁇ -P b 0 2 is not isocrystalline with sulfuric acid, lead sulfate generated after discharge does not form nodules on the surfaces of these two fibers. Deep layers of lead fibers can also generate ⁇ "P b
  • cadmium electroplating Another function of cadmium electroplating is that after the active matrix is formed, the present invention uses electric spark discharge to micro-melt the bonding points of each fiber in the mixed fiber, so that the entire electrode is pulled inside during the flow reaction. Form a reliable current collecting conductive network, while further enhancing the The connection strength increases the service life of the plates.
  • EDM technology requires an oxide layer on the surface of the fibers and lead alloy fibers. After cadmium plating, cadmium can replace the oxide layer, so that EDM technology can be realized.
  • the lead alloy fiber preferably contains 0.5 to 5% of cadmium, 1 to 7% of antimony, and 8 to 9 to 8.5% of lead in its total weight.
  • the lead alloy fiber made by the above formula is mainly used in ordinary storage batteries, and the cost is low.
  • the composition of another lead alloy of the lead alloy fiber may be, for example, silver containing 0.1-0.5 ⁇ 3 ⁇ 4 by weight ratio, calcium of 0 8-0.5 9 & 0, 5 -5% cadmium and 9 4 -9 9. 3 2% lead.
  • the lead alloy fiber made with this formula has better corrosion resistance and can also improve the service life of the battery.
  • the active matrix of the present invention may include other fine fibers. These fine fibers include carbon fibers and other organic chemical fibers.
  • the main purpose of adding carbon fiber is to make up for the insufficient conductivity of lead alloy fibers. Especially when the lead alloy fiber occupies a relatively small amount of weight and the current collecting effect is not good, adding a certain amount of carbon fiber does not significantly increase the weight and can also achieve a good current collecting effect.
  • the carbon fiber is added in an amount of 0.1 to 0.5% based on the weight of the lead fiber and the weight of the lead alloy fiber.
  • organic chemical fibers such as acrylic fibers, which are resistant to acid corrosion and have good tensile resistance, can also be added. These fibers are added mainly to enhance the strength of the entire pole.
  • the added organic chemical fiber can produce a binding effect similar to a rope or a net, so that various fibers are firmly integrated.
  • the amount of organic chemical fiber added should be 0.1-0.5% of the total weight of the lead fiber and the lead alloy fiber.
  • the impregnating agent is preferably polytetrafluoroethylene. After the entire active matrix is impregnated, movement between the fibers can be prevented to loosen the active matrix and cause a decrease in strength.
  • the impregnating agent is added in an amount of 0.1-0.5% by weight of the substrate, and in addition, 0.1-0.5% of carbon powder can be added to the active substrate, for example, acetylene carbon black, expandable graphite powder, wood Toner, activated toner, etc.
  • carbon powder can be added to the active substrate, for example, acetylene carbon black, expandable graphite powder, wood Toner, activated toner, etc.
  • the carbon fiber, organic chemical fiber and carbon powder described above are added when various fibers are mixed before the active matrix is formed, and the impregnating agent is added after the active matrix is formed.
  • the pull grid 2 serves as both a current collector and an active matrix
  • the N96 / 00062 mechanical device is integrally fixed to the active substrate 3. During fabrication, it is best to form the grid 2 on the base 3 by melting directly on the active base 3.
  • the molten grid 2 is formed of the base 3's own material, so it has a space between the grid 3 and the base 3. Very good electrical connection and therefore less internal resistance than ordinary poles. At the same time, reducing inactive materials is equivalent to increasing the weight ratio of active materials.
  • the grid 2 has grid bars 2 1. These grids 2 1 are preferably radial and converge to the connection between the grid and the tabs to be mentioned below, so as to facilitate current collection and conduction. It is also possible to use two pre-made grid-like trigger grids 2 (not shown), which are placed on both sides of the active base 3 and melt-pressed into the base 3 to form a whole.
  • the grid 2 can also adopt a porous network structure (not shown) with large holes made of lead alloy fibers, and then impregnate the lead paste that is commonly used now, so as to produce more comprehensive performance than ordinary paste-type electrode plates.
  • a good battery pole ⁇ is connected with a pole ear 1 on the pole grid 2 for the connection between the pole plates.
  • Tab 1 can be used as a base
  • the tab 1 is a separate component such as a lead block 1 0 1 ( 5 and 6), and has a groove 10 corresponding to the thickness of the active substrate 3 , which can be fixed on the edge of the formed grid 2 by melting.
  • the composition of the lead alloy fiber felt mentioned above may be the same as that of the lead alloy fiber in the active matrix 3. However, since the main role of the lead alloy fiber felt is to increase the strength of the pole and the current collector, the lead alloy The diameter of the fiber should be thicker.
  • a thicker lead alloy fiber composed of a plurality of lead alloy fibers can be used.
  • another embodiment of the device for ensuring the mechanical strength of the substrate according to the present invention is an implementation
  • the device is composed of lead and a bimetal sheet with excellent conductive metal.
  • the metal sheet is used to carry the active substrates 3 0 1, 3 2 2, and is also used to replace the series connected cells.
  • the internal resistance of the part, which constitutes a bipolar pole at the same time, is very low, and the housing material is used less.
  • the shapes of the active substrates 3 0 1 and 3 2 2 connected on both sides of the bimetal sheet structure are circular in this embodiment.
  • the grid 7 in this embodiment, is a plurality of radial indentations formed on the substrates 3 0 1, 3 2.
  • the inner end 9 1 of the notch 9 is semicircular and is concentric with the respective circular active matrix.
  • the width of the notch 9 is equal to the diameter of the semicircle.
  • the bimetal structure is composed of a thin metal plate 4 coated with a thin layer of lead on the surface and a lead 5 that is tightly fixed to the metal plate 4, and the central part of the bimetal structure There is a semi-circular through hole 8 corresponding to the shape of the semi-circular inner end 9 1 of the elongated notch 9 on the active substrate 3 0 1, 3 0 2.
  • the metal sheet should be made of a metal with a certain strength and excellent electrical conductivity. Generally, pure copper sheet is better. Moreover, the surface of the metal sheet and the surface of the lead sheet should be rough, that is, have small protrusions or pits, so that the copper sheet 4, the lead sheet 5, and the two active substrates 3 0 1 and 3 0 2 are in a good condition. Connection status.
  • the method adopted in the present invention is to perform double-sided punching of the copper sheet 4 and then fix the lead sheet 5 with a small thorn 6 cast on one side to form a bimetallic sheet structure. The copper sheet is used to connect the small thorn 6 on one side of the lead sheet. The height should be slightly greater than the thickness of the lead sheet.
  • the height of the small ridges used to connect one side of the active substrate 3 2 2 is also slightly larger than the thickness of the active substrate 3 2 2.
  • the small thorns 6 on the lead sheet 5 are required to be thicker than the active substrate 3 0 1 to ensure that the pinning and fixing effect can be achieved.
  • the side with the lead 5 on the bimetal sheet as the positive electrode because the anode has a dissolving effect, which can prevent the copper sheet 4 from entering the electrolyte due to the dissolving effect and affecting the performance of the battery.
  • the outer periphery of the bi-metal sheet structure should have raised edges 4 1, 5 1. These edges are used to fit the gasket, and to protect the gasket during use.
  • the semi-circular through-holes 8 on the bimetallic sheet structure after the circular active substrates 3 01 and 3 02 are installed on the two metal sheets, they should be filled with pure lead to form the electrode connection points, that is, the electrode Ear, and its thickness should be slightly larger than the thickness of the entire plate.
  • the electrode When using the above electrode plate to make a battery, the electrode should be placed on the positive electrode (that is, the side with the lead plate on the bimetal sheet) and placed horizontally upward. This can prevent the delamination phenomenon due to the difference in the density of the electrolyte during the electrochemical reaction.
  • the oxygen generated on the positive electrode can be run upwards, and the hydrogen can be synthesized with water on the negative electrode, so as to achieve a fully sealed oxygen cycle.
  • Example 1 and 2 show Example 1 of the present invention.
  • lead fibers and lead alloy fibers are prepared by methods such as melting or cutting, and melt blowing.
  • the diameter of the lead fibers produced may be, for example, 8 ⁇ m.
  • the diameter of the lead fibers produced may be, for example, 8 ⁇ m.
  • the surface of each fiber was plated with cadmium, which accounted for 2% by weight of lead fiber and lead alloy fiber, respectively.
  • the components of the lead alloy fibers used were 2% antimony by weight, 2% cadmium, and 9 6 «3 ⁇ 4 lead. These fibers were cut into small So lead fibers and each segment was cut to a length of 1 mm. Lead alloy fiber cut length of each segment is 2.5 mm.
  • the lead fiber section and the lead alloy fiber section are mixed in a weight ratio of 9: 1, and then poured into a container filled with glycerin. After being stirred evenly, it is poured into a container with many holes at the bottom.
  • the vacuum pump and the rubber piston located on the upper part of the container that match the diameter of the container can be used to extract glycerin by using the method of pressing up and down to produce a blank with uniform porosity. After the compact is filtered and pumped, the large Part of the glycerol was aspirated. After washing and drying.
  • the reason why the present invention uses glycerin is to use the viscosity of the solvent itself, so that the fiber segment located therein can move in three dimensions when stirred. To achieve the uniform mixing between various fiber segments and the entanglement effect between each other. A pressure is then applied to the billet to further shape it. Next, the billet is put into a mold, and the grid 2 with radial grids is pressed by electric spark discharge. Finally, as shown in FIG. 5 and FIG. 6, the melt has a groove 10 corresponding to the thickness of the plate.
  • the lead block 1 0 1 can be used to make poles for lead-acid batteries.
  • the grid 2 is a radial or other shape frame composed of lead fibers and lead alloy fibers.
  • the shape of the frame is square and the active matrix 3 It is a wool felt-like porous body composed of lead fibers and lead alloy fibers interwoven with each other. Its appearance is plate-shaped.
  • the active matrix 3 is embedded between the spaces in the grid frame.
  • the tab 1 has a groove corresponding to the thickness of the grid 2. 10 lead blocks, through which the tabs can be fixed on the edge of the grid.
  • Example 2
  • a lead fiber segment with a diameter of 800 m and a length of 2.5 m m and a lead alloy fiber with a diameter of 250 m and a length of 25 m m were prepared by the method of Example 1.
  • the lead alloy fiber was 0.5% cadmium, 1%
  • lead fiber and lead alloy fiber is respectively plated with 5% of cadmium, and the above lead fiber and lead alloy fiber are mixed in a weight ratio of 6: 4.
  • Into a container containing water glass solvent add 0.1% «3 ⁇ 4 acrylic fiber, 0.1% carbon fiber, and 0.1% toner to the total weight of the two. The water glass was then pulled out in the same manner as in Example 1 to dry the compact.
  • the lead alloy fiber with a diameter of 250 m and a length of 25 mm was also made into a lead alloy fiber felt for matching with the billet according to the method described above.
  • the lead alloy consists of 7% antimony, 5% cadmium, and 88% lead.
  • the layers are combined into one body by heating and pressing, and the grid-shaped pull grid is melted out, and then the upper electrode 1 is melted. That is, the pole for the lead-acid battery of the present invention is made.
  • the pole in this example has the same structure as that described in Example 1, except that the grid 2 is interwoven with two layers of active matrix material sandwiched by a layer of lead alloy fibers.
  • the grid and the active matrix 3 contain 0.1% «3 ⁇ 4 of acrylic fiber, 0.1% carbon fiber, and 0.1% carbon powder.
  • two round substrates 3 0 1 and 3 2 are prepared by the method as in Example 1, and the long notch 9 extends from one side of the green block to the center of the green block.
  • the inner end 9 1 of the elongated notch 9 on the base is semicircular and is concentric with the circular base.
  • an indentation 7 can be melt-pressed, and the temperature during the melt-press is lower than the melting point of lead.
  • the circular substrates 3 0 1 and 3 2 are made of lead fiber with a diameter of 2 m, a length of 1 mm, a surface of 2% cadmium plating, and a diameter of 5 ⁇ , a length of 2.0 mm, and a surface of 2% cadmium plating. It is obtained, and the lead fiber and the lead alloy fiber are mixed in a weight ratio of 9: 1.
  • the flux used was glycerin.
  • One piece of the bimetal sheet structure is composed of a copper sheet 4 of 0.5 mm thickness. The two sides of the sheet 4 are punched with small thorns, and the surface is plated with lead of 0.2 mm, and then the thickness is 0.5.
  • the lead sheet 5 with small thorns 6 cast on the surface is fixed to one and the center of the bimetal sheet structure has a semi-circular inner end with a long gap 9 on the round billet 3 0 1, 3 0 2 9 1 shape corresponding through hole 8.
  • a small round bar was nailed on each side of the bimetal sheet with small spikes, and the long notches 9 on the two bases 3 0 1 and 3 0 2 were oriented in a direction of 3 ⁇ 4o.
  • the hole 8 and the semi-circular end 9 1 are filled with pure lead, and the height of the filled pure lead is slightly larger than the thickness of the entire electrode plate, and another form of lead-acid battery electrode can be manufactured ⁇ «Example 4
  • a lead fiber segment with a diameter of 60 / m, a length of 20 mm, and a lead alloy fiber with a diameter of 200 mm and a length of 25 mm was prepared by the method described in Example 1.
  • the lead alloy fiber was composed of 7% antimony, Composition of 5% cadmium and 88% lead. And the surface of lead fiber and lead alloy fiber are each plated with 4% of cadmium.
  • the lead fiber and the lead alloy fiber are mixed in a weight ratio of 7: 3, poured into a salad oil solvent and stirred evenly, and then poured into a porous container at the bottom. After natural penetration, a billet with uniform pores can also be prepared. After pressure filtration and suction, washing and drying were performed to obtain a desired shape.
  • a lead alloy fiber felt was prepared according to the method shown in Example 2 .
  • the felt is made of lead alloy fibers with a diameter of 220 m, containing 5% antimony, 3% cadmium, and 92% lead.
  • three lead alloy fiber felts and two billets are stacked and melted together.
  • a grid-shaped spanner composed of two lead alloys is sandwiched in the center and melted.
  • the pole grid 2 is a grid-like frame made of a lead alloy.
  • the active matrix 3 is formed by pressing three porous alloy fiber porous bodies and two mixed fiber porous bodies. Therefore, the active substrate 3 and the two layers of the grid 2 constitute a pole plate with a layered structure, and the tab 1 is still a lead block with a corresponding groove, and is fixed to the edge of the grid 2 by the groove.
  • a green compact was prepared according to a similar method as described in Example 2.
  • the green compact consisted of a lead fiber segment with a diameter of 50 mm and a length of 15 mm and a lead alloy fiber segment with a diameter of 130 mm and a length of 15 mm.
  • Lead alloy fibers and lead fibers are mixed at a weight ratio of 2: 8.
  • Lead alloy fibers are composed of 4.5% antimony, 5% cadmium, and 90.5% lead.
  • the lead alloy fibers in the lead alloy felt include 3% antimony, 4% cadmium, and 93% lead.
  • the lead fiber segment used to manufacture the electrode for lead-acid batteries has a diameter of 40 ⁇ m and a length of 20 mm.
  • the lead alloy fiber segment has a diameter of 70 ⁇ m and a length of 10 mm.
  • Lead alloy fibers consist of 7% antimony, 2.5% cadmium, and 90.5% lead. Both fibers are plated with 2% cadmium by weight.
  • the lead alloy fiber felt uses a lead alloy fiber with a diameter of 60 ⁇ m and is composed of 7% antimony, 5% cadmium, and 88% lead.
  • the electrode plates for lead-acid batteries were manufactured according to the method described in Example 1-5 above.
  • the diameter of the lead fiber segment used was 15 ⁇ , the length was 5 mm, the diameter of the lead alloy fiber was 8 m, and the length was 2 mm. It is composed of 0.1% silver, 0.88% calcium, 0.5% cadmium, and 99.2% lead.
  • the surface of lead fiber and lead alloy fiber is respectively plated with cadmium, which accounts for 5% of its own weight. The mixing weight ratio is 6.5: 3.5.
  • the lead alloy fibers used in the lead alloy fiber felt had a diameter of 7 rn, a length of 15 mm, and consisted of 0.2% silver, 0.3% calcium, 2% cadmium, and 97.5% Lead composition.
  • Example 8 If the method described in Example 2 is used, the added acrylic fiber is 0.05%, the carbon fiber is 0.05%, the carbon powder is 0.05%, and the lead prepared according to the method described in Example 1-5. Electrode plates for acid batteries, which can be impregnated with 0.1-0.5% polytetrafluoroethylene.
  • Example 8 Electrode plates for acid batteries, which can be impregnated with 0.1-0.5% polytetrafluoroethylene.
  • the acid battery electrode is manufactured according to the method described in Example 1-5.
  • the diameter of the lead fiber segment used is 5 Mm, the length is 3 mm, and the surface is plated with cadmium of 5% of its weight.
  • Lead alloy fibers have a diameter of 20 Mm and a length of 5 mm. The surface is not cadmium-plated.
  • Lead alloy fibers consist of 0.5% silver, 0.5% calcium, 5% cadmium, and 94% lead.
  • the lead alloy fiber made of lead alloy fiber felt has a diameter of 7 ⁇ m and is composed of 0.1 «3 ⁇ 4 of silver, 0.8% of calcium, 0.5% of cadmium, and 99.2% of lead. .
  • the lead powder may be impregnated by a chemical impregnation method.
  • the electrode plates for lead-acid batteries were manufactured according to the method described in Example 1-5.
  • the diameter of the lead fiber used was 2 m, the length was 0.7 mm, and the surface was plated with cadmium to account for 1 «3 ⁇ 4, lead alloy.
  • the fiber has a diameter of 2 ⁇ ⁇ and a length of 0.7 mm.
  • the surface is 1.5% of cadmium plated, and consists of 0.3% silver, 0.2 calcium, 2% cadmium and 9 7. 5% lead composition.
  • the lead alloy fiber felt in the lead alloy fiber felt has a diameter of 2 ⁇ and is composed of 0.5% silver, 0.5% calcium, 5% cadmium, and 94% lead.
  • one of the bimetallic pieces was a silver piece. After the lead-acid battery electrode was prepared according to the method described in Example 1 "5, the lead powder was directly immersed.
  • the pure lead fiber in the fiber felt is used as an active power storage material, and the surface area of the pure lead fiber is larger than those of particles, lead powder paste, and lead foil, the utilization rate of the active material is improved, and the specific energy is increased.
  • the surface layer of lead fiber keeps transforming into the ⁇ -type crystal lattice with high storage capacity and lead dioxide crystal state under the charging state, the surface area, utilization rate and specific energy of active material are further improved fundamentally.
  • the grid and lugs are directly melted and extruded on the lead metal fiber felt, thereby reducing the weight occupied by the grid, increasing the relative content of the active storage material, and improving the specific energy.
  • the active matrix is made of lead alloy fibers and lead fibers uniformly mixed, the fibers are overlapped together, and the lap points are fused together by melting and pressing.
  • the frame and the tabs so the entire fiber felt forms a complete network of conductive pathways, and at the same time forms a porous integral pole with high organic mechanical strength, so it is not easy to drop powder, slag, long plate life, low internal resistance, High current fast discharge, high specific power, fast charging and discharge resistance.
  • the bimetal sheet By combining two active substrates and a double metal sheet structure to form a lead-acid battery pole, the bimetal sheet not only replaces the insulating separator between battery cells, but also serves as a series of poles between single cells.
  • the role of the electrical connection parts, and the bimetal sheet is made of a highly conductive metal sheet, which has a large contact area with the substrate and is also very thin, so that the internal resistance of the battery can be further reduced, thereby further reducing the weight of the case and the weight of the lead connection. , Thereby further improving the specific power and specific energy of the battery.
  • the lead-acid battery using the electrode plate of the present invention can achieve the following main indexes (traction heavy load discharge) after actual testing.
  • A. Specific energy can be as low as 5 2 Wh / kg
  • Specific power can be as low as 150 W / kg
  • the life can be as low as 800 cycles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

用于铅酸蓄电池中的极板及其制造方法 技术领域 本发明涉及用于铅酸蓄电池中的极板及其制造方法。 背景技术 在公开日为 1 9 9 1 年 5 月 8 日的名称为 "酸性扳形正极板" 的中国 专利申请 C N 1 0 5 1 2 7 3 A中公开了一种极扳, 该极扳由二块结构相 同的导电扳叠合而成, 二导电板的叠合面四周布置有主筋, 每一块导电板 上设有数量相等的进液孔, 而且二导电扳的叠合面上涂覆有铅粉。 通过使 进液孔在导电板叠合面一侧具有卷边或通过在导电扳叠合面上布置加强筋 的措施, 来加强铅粉涂层在极板上的结合牢度, 从而提高极板的使用寿命。 虽然该专利在一定程度上提高了极扳的使用寿命, 但从对蓄电池的综合性 能上来看, 极扳过厚导致了比能量相对下降。 在公开日为 1 9 9 1 年 3 月 1 3 日的另一份名称为 "高比能长寿命铅 酸蓄电池" 的中国专利 C N 2 0 7 3 1 7 1 U中, 提出对蓄电池的极板进 行减薄的技术方案, 其作法是将正极扳板栅减薄到 4 . 0 - 7 . 5 MM, 同时将负极板的扳栅也相应减薄, 从而使得铅酸蓄电池同一槽体内的极板 数量相对增加即表面积增加, 充放电的极化电流减小。 这样, 在不影响使 用寿命的前提下, 提高了比能量。 但是, 通过减薄极板增大表面积来增加 比能量, 一般来说必然对极板的使用寿命和强度造成影响。 而这种影响正 是多年来铅酸蓄电池行业中一直难以解决的难 以上两项专利所公开的技术方案, 都不能从根本上解决铅酸蓄电池的 寿命与比能量之间相互矛盾的问 而且, 镉的回收利用率低、 生产成本 高。 有鉴于此, 本发明的目的是提供一种用于铅酸蓄电池中的、 具有高比 能、 高功率、 长寿命、 耐过放电并可以快速充电的极板及其制造方法。 发明简述 本发明提出这样一种用于铅酸蓄电池的极板, 其特征在于, 包括: 活性基体, 所述活性基体包括均匀混合并交织在一起的铅纤维和含镉 铅合金纤维, 所述铅纤维占所述基体总重量的 6 0 - 9 0 %, 而且所述铅 纤维的表面上镀有镉, 所镀的镉占铅纤维重量的 1 - 5
扳栅, 与所述活性基体配合, 用于集流导电;
极耳, 用于极扳间的电连接, 所述极耳与所述扳栅电连接地固定在所 述板栅上。 本发明还提出一种用于制造极板的方法, 包括下列步骤: 利用切削、 熔压或熔喷的方法将铅和含镉的铅合金制成铅纤维和铅合 金纤维;
将这些纤维切成小段;
把剪切成小段的铅纤维和铅合金纤维倒入粘性的溶剂中搅拌, 使它们 形成在三维方向彼此均匀混合、 缠绕的混合物;
将所述溶剂从所述混合物中压出, 从而形成坯块;
对该坯块进行压縮;
通过熔压, 使该坯块上带有板栅; 和
将一个极耳连接在所述板栅上。 以下结合附图, 对本发明提出的用于铅酸蓄电池中的极板进行详细描 述。 附图简述 图 1 为本发明铅酸蓄电池极扳的主视图;
图 2 为图 1 所示的铅酸蓄电池极扳的侧视图;
图 3 为本发明另一种铅酸蓄电池极板的剖视图;
图 4 为图 3 所示的铅酸蓄电池极扳的主视图;
图 5 为图 1 中铅酸蓄电池极板所采用的一种极耳的主视图, 这种极耳 在活性基体与板栅结合在一起后, 再装到扳栅上。
图 6 为图 5 所示极耳的侧视图。 对本发明较佳实施例的详细描述 96/00062 本发明所提出的用于铅酸蓄电池的极扳包括活性基体 3、 3 0 1、 3 0 2 和用于集流导电的扳栅 2、 7 , 以及用于增强活性基体的机械强度的 片材 4、 5 。 当然板栅 2、 7 同时也具有加强活性基体的机械强度的作用。 本发明中的活性基体由铅纤维和铅合金纤维混合而成, 需要注意的是, 本发明中所提及的 "纤维" 一词, 是指很细的条状物, 例如铅纤维是指很 细的铅丝, 而且本发明所提及的 "纤维" , 在下文中有时与 "纤维段"一 词具有同一个含 采用纤维的优点在于, 纤维可增大活性物质的表面积, 使活性物质的 利用率得到提高, 比能量增加。 将两种纤维混合后采用类似无纺布抄纸 ( AGM方式) 的方式, 将其制成纤维毡或纤维布结构, 可使纤维之间形成许 多孔洞, 这些孔洞, 由于毛细现象, 在蓄电池内进行成流反应时, 能够保 证充足的酸液流入, 使反^ 利进行。 制成活性基体时, 要保证各种纤维能够保持均匀的混合比例, 即在相 同的单位面积内, 含有各种纤维的比例相同。 当采用成束的多根纤维制做 活性基体时, 该纤维束既可以由同种纤维构成, 也可以由具有一定混合比 例的混合纤维构成, 但一般情况下, 如果需要的纤维数量较多时, 最好是 先将纤维按一定比例混合后成束, 再在束之间进行混合, 以制做活性基体。 采用上述方法制出的活性基体具有类似毛毡或布的结构。 另外, 在制做活 性基体时, 为了使制成的铅酸蓄电池极板具有更好的强度和集流导电性能, 还可以将由上述方式制成的基体块与一种完全由铅合金纤维制成的铅合金 毡间隔放置, 经过轻压后使它们结合在一起, 形成具有更好强度和集流导 电性能的活性基体。 本发明使用的混合纤维主要由具有一定重量比的铅纤维和铅合金纤维 构成。 为增加基体或者说极板的集流导电性能和强度, 也可加入一些其它 种类的纤维和浸渍剂。 但是, 铅纤维和铅合金纤维作为主体, 在不加其它 任何纤维的情况下, 完全可以制成本发明所述的铅酸蓄电池极 在本发明的极扳中, 铅纤维占铅纤维和铅合金纤维总重量的 6 0 - 9 0 %, 而且所有铅纤维的表面上镀有占其本身重量 1 - 5 %的镉。 当活性 基体形成后, 并且做正极扳时, 其中铅纤维的表层会生成 β - Ρ b 0 2 晶 格; 若是做负极扳, 铅纤维表层则仍为钝铅。 用在铅酸蓄电池极扳中的铅 纤维, 在经通电发生反应后, 在表面镀的镉的催化作用, 即可在正极扳上 形成具有 β "P b 02 晶格, 而且由表面向深层发展, 最后形成芯部为纯 铅, ·而表层具有 β "P b 02 的状态。 当蓄电池放电时, 极扳表层的 β - P b Ο 2 晶格会与酸反应形成电荷, 而芯部纯铅部分作为输送电荷的通 ilo 铅合金纤维占铅纤维和铅合金纤维总重量的 1 0 -40 %, 而且表面 可镀有占其总重量 1 "5 %的镉。 在使用时, 在铅酸蓄电池中的正极扳中 的铅合金纤维的表层上, 会形成 0 "P b 02 晶格; 而在负极扳中的铅合 金纤维的表层即形成纯铅。 但是, 无论在正极板中还是在负极扳中, 铅合 金纤维的内部始终保持原有的合金状态。 本发明的核心内容即是以上述的两种纤维采用一定比例混合而制做用 于铅酸蓄电池极扳的活性基体。 由于铅合金纤维本身强度高, 且耐腐蚀性 好, 同时具有较好的导电性能, 因此, 在与铅纤维混合构成基体后, 通过 再在基体上熔压出集流导电板栅, 即可满足极扳使用中的强度要求和集流 导电的性能要求, 并可以防止极板的破损和电池内部的短路。 在所形成的 基体中, 铅纤维主要起产生电荷的作用, 而铅合金纤维主要起集流导电和 支持整个极板的作用。 还有, 由于铅合金纤维中含有少量的镉, 因此, 可 始终使两种纤维形成的正极扳表面保持 β "P b 02 晶格, 使极板始 持高储电状态。 简单地说, 在采用铅纤维和铅合金纤维制成用于铅酸蓄电池的极扳后, 由于这两种纤维表面镀有 1 -5 %左右的镉, 因此在通电反应时, 联通直 流电正极的一组铅酸蓄电池的极板的表面在镉的催化作用下形成 β "P b o2 晶格。 而在以后的使用中, 在不断的充放电过程中, 则是由铅合金纤 维中所含的镉的催化作用下, 使铅纤维表层始终保持 β "P b 02 晶格。 由于 β -P b 02 的微观表面积比 0! -Pb 02 的大近 2 0倍, 因此, β
-P b o2 晶格的储电量远远大于 a -P b o2 晶格。 同时在本发明中, β-P 02 是在铅纤维表层和铅合金纤维表层直接通电产生反应后生成 的, 因此 β -P b 02 与纤维之间的联接十分紧密, 不易脱落, 而且该两 种纤维内部保持纯铅或铅合金状态, 因此能够经受大电流脉冲式充电时所 产生的振动。 另外, 由于 β - P b 02 与硫酸不属同晶, 因此放电后生成 的硫酸铅不在这两种纤维表面结核成晶。 铅纤维深层也可以生成 β "P b
O 并参加反应, 因此在放电过程中, 可长时间保持大电流输出。 电镀镉 的另一个作用是, 本发明在活性基体成形后, 利用电火花放电, 使混合纤 维中的各根纤维的搭接点微熔在一起, 以在进行成流反应时, 整个极扳内 部形成可靠的集流导电网络, 同时进一步增强整个极板中各种纤维之间的 联接强度, 提高极板的使用寿命。 而采用电火花放电技术, 需要纤维和铅 合金纤维表面具有氧化层才能进行。 而在镀镉后, 镉即可代替氧化层, 使 电火花放电技术得到实现。 铅合金纤维中优选含有占其总重量 0 · 5 -5 %的镉, 1 -7 %的锑 和 8 8 -9 8 . 5 %的铅。 采用上述配方制成的铅合金纤维主要在普通蓄 电池中使用, 而且成本较低。 在本发明中铅合金纤维的另外一种铅合金的组份可以为例如按重量比 为含有 0 . 1 -0 . 5 <¾的银、 0 . 0 8 -0 . 5 9 &的钙、 0 . 5 -5 % 的镉和 9 4 -9 9 . 3 2 %的铅。 采用这个配方制成的铅合金纤维具有较 好的耐腐蚀性, 也可提高蓄电池的使用寿命。 但这种合金的制造成本比较 高, 而且由于加人银会降低氢和氧的过电位, 所以使用时导致电解液的损 耗比较大。 除上面所指的两种纤维外, 本发明的活性基体中还可以包括其他微细 纤维。 这些微细纤维包括碳纤维和其它有机化学纤维。 加入碳纤维的主要 目的是用来弥补铅合金纤维集流导电性能的不足。 尤其是在铅合金纤维占 重量比较少的情况下, 集流导电效果不好时, 加人一定量的碳纤维既不明 显增加重量, 又可以起到很好的集流导电效果。 碳纤维的加入量为铅纤维. 和铅合金纤维重量和的 0 . 1 -0 . 5 %。 另外还可以加人其它的有机化 学纤维, 主要是晴纶纤维等具有耐酸腐蚀且具有良好的抗拉性的有机化学 纤维。 这些纤维的加入主要是为了增强整个极扳的强度。 所加入的有机化 学纤维, 可以产生类似绳子或网的捆扎作用, 使各种纤维结实地形成整体。 所加入的有机化学纤维量应占铅纤维和铅合金纤维总重量的 0 . 1 -0 . 5 %。 另外, 本发明中所述的活性基体在成形后, 可放入浸渍剂中。 浸渍剂 优选为聚四氟乙烯, 整个活性基体在浸渍后, 可防止纤维之间产生移动而 使活性基体变松引起强度的降低。 浸渍剂的加入量为基体重量的 0 . 1 - 0 . 5 %, 另外还可在活性基体中加入 0 . 1 -0 . 5 %的碳粉, 例如, 乙炔碳黑、 可膨胀石墨粉、 木碳粉、 活性碳粉等。 以上所述的碳纤维、 有 机化学纤维和碳粉都是在活性基体成形前各种纤维混合时加人的, 而浸渍 剂则是在活性基体成形后才加入的。 如图 1 、 2 所示, 扳栅 2 作为同时起到集流导电作用和加强活性基体 N96/00062 的机械性能的装置, 一体地固接于活性基体 3 上。 制作时, 最好采用直接 在活性基体 3上熔压的方法在基体 3 上形成板栅 2, 因为熔压出来的扳栅 2 是由基体 3的本身材料形成的, 因此与基体 3 之间具有很好的电联接, 因 而具有比普通极扳更小的内阻。 同时, 减少了非活性物质, 也就等于增加 了活性物质所占的重量比例。 扳栅 2 中具有栅条 2 1 , 这些栅条 2 1 优选呈放射状并且会聚到所述 扳栅与下面将要提到的极耳的连接处, 以利于集流导电。 也可采用两片预先制好的例如网格状的扳栅 2 (未示) , 它们放在活 性基体 3 两侧并与基体 3 熔压成一体。 另外, 扳栅 2也可采用以铅合金纤 维制成的具有较大孔洞的多孔网状结构 (未示) , 再浸渍现在通用的铅膏, 以便制成比普通涂膏式极板综合性能更好的蓄电池极 ^ 扳栅 2上联接有极耳 1 , 用于极扳之间的联接。 极耳 1 可以当在基体
3 上熔压形成扳栅 2时, 一齐压出。 但为了节省两种纤维的用量, 最好采 取在活性基体 3 与扳栅 2结合后再加装另外的极耳 1 的方式, 即极耳 1 是 —个单独的部件例如铅块 1 0 1 (图 5 和 6 ) , 并具有一个与活性基体 3 的厚度相应的槽 1 0, 通过熔压的方式, 其可以固定在成形后的扳栅 2 的 —边缘上。 上面提到的铅合金纤维毡, 其组份可以与活性基体 3 中的铅合金纤维 的组份相同, 但因铅合金纤维毡的主要作用是增加极扳强度和集流导电, 因此其铅合金纤维的直径应粗一些, 例如可以采用多根铅合金纤维构成的 较粗的铅合金纤维 如图 3、 4 所示为本发明的用于保证基体的机械强度的装置的另一实 -施方式, 该装置由铅和具优良导电性金属构成的双金属片构成, 采用这样 的结构, 金属片既用于承载活性基体 3 0 1 , 3 0 2 , 又用于代替单格电 池之间串联的零件, 同时构成一个双极性极 这样构成的极板的内阻很 低, 而且壳体材料用得少。 在双金属片结构两面联接的活性基体 3 0 1 , 3 0 2 的形状在本实施 例中为圆形, 为了保证活性基体 3 0 1 , 3 0 2有较好的强度, 在它们侧 面形成有扳栅 7 , 在本实施例中, 格栅 7 为在基体 3 0 1 , 3 0 2 上形成 的多条径向压痕。 在圆形的活性基体 3 0 1、 3 0 2上, 沿半径方向开有 —长形缺口 9。 该缺口 9的内端 9 1 为半圆形, 且与各自的圆形活性基体 同心。 缺口 9 的宽度等于半圆的直径。 采用这样的结构, 是为给实现全密 封氧循环蓄电池留下气室。 另外也解决了铅酸蓄电池极板中洛伦兹力把电 解液推向周边, 使极板不能得到充足电解液供应的问 在采用这种带有 缺口的圆形结构后, 可使周边电解液很好地向中心回流, 及时供给中心部 分电解 ¾o 双金属片结构由表面镀有一层薄铅的金属片 4和与金属片 4 紧密固接 的铅片 5 构成, 且双金属片结构的中心部分有一与活性基体 3 0 1 , 3 0 2 上长形缺口 9 的半圆形内端 9 1 形状相应的半圆形通孔 8。 金属片要由 具有一定强度和优良导电性的金属制成, 一般采用纯铜片比较好。 而且金 属片表面与铅片表面都应是粗糙表面, 即具有小的凸起或凹坑, 这样可使 铜片 4、 铅片 5 及两活性基体 3 0 1 , 3 0 2 之间处于很好的联接状态。 本发明采用的方法是将铜片 4进行双面冲刺, 再与一侧面铸出小刺 6 的铅 片 5 固接后形成双金属片结构, 铜片上用于联接铅片一面的小刺 6 的高度 应略大于铅片的厚度。 而用于联接活性基体 3 0 2 的一面的小剌的高度也 要略大于活性基体 3 0 2 的厚度。 而铅片 5 上的小刺 6 —样要求大于活性 基体 3 0 1 的厚度, 以保证能够达到钉扎固定的效果。 当安装到蓄电池中 时, 要以双金属片上有铅片 5 的一面作正极, 因为阳极有溶解作用, 这样 可防止铜片 4 因溶解作用而进入到电解液中影响蓄电池的性能。 双金属片 结构的外周边应具有翻起的边缘 4 1 , 5 1 , 这些边缘用于装入密封垫圈, 同时在使用过程中用于对密封垫圈起保护作用。 双金属片结构上的半圆形通孔 8 , 当在两个金属片上安装好圆形活性 基体 3 0 1、 3 0 2后, 应注满纯铅, 以形成极板连接点, 也就是极耳, 而且其厚度应稍大于整个极板的厚度。 利用上述极板制成蓄电池时, 极扳 应正极 (即双金属片上有铅片的一面) 向上水平放置, 这样可以防止在电 化学反应中, 因电解液密度不同而发生的分层现象。 另外可使正极上产生 的氧气向上跑, 在负极上与氢化合成水, 从而实现全密封后的氧循环。 以下用几个具体例子再进一步说明极板的结构及制造方法。 例 1
图 1 和图 2示出本发明的例 1。 首先通过熔压或切削、 熔喷等方法制 取铅纤维和铅合金纤维, 为保证铅合金纤维具有较好的导电性, 制得的铅 纤维的直径可以例如为 8 ^ m , 铅合金纤维直径为 1 5 m。 然后在这两 种纤维表面分别镀上分别占铅纤维和铅合金纤维各自重量 2 %的镉。 采用的铅合金纤维的组份按重量百分比为 2 %的锑, 2 %的镉和 9 6 «¾的铅。 再将这些纤维切成小 So 铅纤维切后每段的长度为 1 m m。 铅合金纤 维切后的每段长度为 2 . 5 m m。 将铅纤维段和铅合金纤维段按重量比 9 : 1 混合后, 倒入装有甘油的 容器中, 搅拌均匀后, 再倒入一底部有很多孔的容器中, 然后用接在容器 下部的真空泵和与容器直径相配合的位于容器上部的橡胶活塞, 使用上压 下抽的方法抽出甘油, 即可制得具有均匀孔隙的坯 该坯块再经过压滤、 抽吸后, 即可将大部分甘油吸出。 再经清洗, 烘干。 本发明之所以采用甘油 (同时还包括在下面的例子中提到的水玻璃和 色拉油) , 就是利用溶剂本身的粘度, 使位于其中的纤维段在受到搅拌时, 能够在三维方向运动, 以达到各种纤维段之间的均匀混合以及彼此之间的 缠绕效果。 然后再对该坯块施加一个压力, 而使其进一步成形。 接着将坯块放入一模具中, 利用电火花放电, 压上具有辐射状栅条的 板栅 2 , 最后如图 5、 图 6 所示, 熔压上具有与该扳厚度相应的槽 1 0 的铅块 1 0 1 , 即可制成用于铅酸蓄电池的极^ 扳栅 2 为铅纤维和铅合金纤维构成的呈辐射状或其他形状的框架, 该 框架的外形为方形, 活性基体 3 是由铅纤维和铅合金纤维相互交织构成的 羊毛毡状多孔体, 其外形呈板状, 活性基体 3 嵌于板栅框架中的空隙之间, 极耳 1 为具有与扳栅 2 厚度相应槽 1 0 的铅块, 通过该槽, 极耳可以固接 在扳栅边缘上。 例 2
采用例 1 的方法制得直径 8 0 m、 长 2 5 m m铅纤维段和直径 2 5 0 m、 长 2 5 m m的铅合金纤维 铅合金纤维由 0 . 5 %的镉, 1 %
— Θ— 的锑和 9 8 . 5 %的铅组成, 在铅纤维和铅合金纤维表面分别镀上各占其 自身重量 5 %的镉, 将上述铅纤维和铅合金纤维按重量比 6 : 4混合, 倒 入装有水玻璃溶剂的容器中, 并同时加人占上述二者总重量 0 . 1 «¾的晴 纶纤维、 0 . 1 %的碳纤维和 0 . 1 %的碳粉搅摔均匀。 然后按实施例 1 的方式将水玻璃抽出使坯块烘干。 再将直径 2 5 0 m、 长度 2 5 m m的铅合金纤维按上述方法也制成 用于与坯块配合的铅合金纤维毡。 该铅合金由 7 %的锑, 5 %的镉和 8 8 %的铅组成。 将上述二块坯块夹上 1 块铅合金纤维毡叠放后, 经加热加压, 使该层状物结合在成一体, 并熔压出网格状扳栅, 然后熔压上极耳 1 , 即 制成本发明的用于铅酸蓄电池的极 本例中的极扳与例 1 中所述的结构基本相同, 只是扳栅 2是在由两层 活性基体材料夹一层铅合金纤维交织而成的多孔体压实后构成的层状体上 形成的网格状方形框架。 而且扳栅和活性基体 3 内含有 0 . 1 «¾的晴纶纤 维 0 . 1 %的碳纤维和 0 . 1 %的碳粉。 例 3
如图 3、 4所示, 采用如实施例 1 的方法制取两块圆形基体 3 0 1 和 3 0 2 , —长形缺口 9 从坯块的一个侧边一直延伸到坯块的中心。 基体上 的长形缺口 9 的内端 9 1 为半圆形, 且与圆形基体同心。 为增加该基体强 度, 可熔压出压痕 7 , 熔压时的温度要低于铅的熔点。 该圆形基体 3 0 1 , 3 0 2 由直径 2 m、 长度 1 m m , 表面镀镉 2 %的铅纤维和直径 5 μ τη , 长度 2 . 0 m m , 表面镀镉 2 %的铅合金纤维 制得, 且铅纤维和铅合金纤维按重量比 9 : 1 混合。 使用的熔剂为甘油。 双金属片结构中的一片由 0 . 5 m m厚的铜片 4构成, 该片 4 的双面 冲出小刺, 并在表面镀上 0 . 2 m m的铅后, 再与厚度为 0 . 5 m m , 且 表面铸有小刺 6 的铅片 5 固接在一 且该双金属片结构的中心具有一个 与圆形坯块 3 0 1 , 3 0 2 上长形缺口 9 的半圆形内端 9 1 形状相应的通 孔 8。 将该双金属片两侧面分别用小刺钉扎上一块圆形基体, 并且使两个基 体 3 0 1、 3 0 2 上的长形缺口 9 方向一 ¾o 然后将双金属片上的半圆通 孔 8 和半圆形端 9 1 内注满纯铅, 并使所注满的纯铅的高度略大于整个极 板的厚度, 即可制作出另一种形式的铅酸蓄电池极 ^« 例 4
采用如实施例 1 所述的方法制得直径 6 0 / m , 长 2 0 m m的铅纤维 段和直径 2 0 0 ^ m , 长度 2 5 m m的铅合金纤维 铅合金纤维由 7 % 的锑、 5 %的镉和 8 8 %的铅组成。 且铅纤维和铅合金纤维表面均镀有各 占其自身重量 4 %的镉。 将铅纤维和铅合金纤维按重量比 7 : 3 混合, 倒入色拉油溶剂中搅拌 均匀, 再倒入底部多孔的容器, 经自然渗透, 也可制得具有均匀孔隙的坯 ¾ 该坯块经压滤, 抽吸后, 再进行清洗和烘干, 制出所需形 ¾ 再按例 2 所示的方法制得铅合金纤维毡。 该毡由直径 2 2 0 m , 含 锑 5 %, 镉 3 %和9 2 %的铅构成的铅合金纤维制成。 再将三块铅合金纤维毡和两块坯块叠放后熔压在一 最后再将两块 铅合金构成的网格状的扳栅把这样制成的一块层状物夹在中央, 并熔压在 再熔压安装上极耳 1 后, 即制得本明的用于铅酸蓄电池的极 按上述方法制得的极扳具有以下结构, 扳栅 2 为铅合金构成的网格状 框架。 而活性基体 3 是由三层铅合金纤维多孔体和两层混合纤维多孔体压 制而成的。 由此活性基体 3 和两层扳栅 2构成具有层状结构的极扳, 极耳 1 仍为具有相应槽的铅块, 并以该槽固接在扳栅 2 的边缘上。 例 5
按例 2 所述类似方法制得坯块, 该坯块由直径 5 0 M m , 长度 1 5 m m的铅纤维段和直径 1 3 0 M m , 长度 1 5 m m的铅合金纤维段组成。 铅 合金纤维和铅纤维按重量比 2 : 8混合, 铅合金纤维由 4 . 5 %的锑, 5 %的镉和 9 0 . 5 %的铅组成。 铅合金毡中的铅合金纤维包括 3 %的锑, 4 %的镉和 9 3 %的铅。 将该坯块剪切成与安装极耳 1 后的极扳形状相同的形状, 然后把 2块 坯块和 1 块网格状的扳栅 2 间隔叠放后, 采用电火花放电技术进行熔压即 可制成本发明的用于铅酸蓄电池的极¾« 例 6
按上述例 1 -5 所述的方法, 制造用于铅酸蓄电池的极 所使用的 铅纤维段的直径为 4 0 βπι, 长度为 2 0 mm。 铅合金纤维段的直径为 7 0 μπι, 长度为 1 0 mm。 铅合金纤维由 7 %的锑, 2 . 5 %的镉, 9 0 . 5 %的铅组成。 两种纤维表面均镀上占其重量 2 %的镉。 铅合金纤维毡使用的铅合金纤维的直径为 6 0 ^m, 且由 7 %的锑, 5 %的镉和 8 8 %的铅组成。 例 7
按上述例 1 -5 所述方法制造用于铅酸蓄电池的极板, 所使用的铅纤 维段的直径为 1 5 μτη, 长度为 5 mm, 铅合金纤维的直径为 8 m, 长 度为 2 mm, 并由 0 . 1 %的银, 0 . 0 8 %的钙, 0 . 5 %的镉和 9 9 . 3 2 %的铅组成。 且铅纤维和铅合金纤维表面分别镀上各占其自身重量 5 %的镉。 混合重量比为 6 . 5 : 3 . 5 。 采用的铅合金纤维毡中的铅合金纤维的直径为 7 rn, 长度为 1 5 m m, 并由 0 . 2 %的银, 0 . 3 %的钙, 2 %的镉和 9 7 . 5 %的铅组成。 若按例 2 所述方法, 添加的晴纶纤维为 0 . 0 5 %, 碳纤维为 0 . 0 5 %, 碳粉为 0 . 0 5 %, 而且按例 1 -5 所述方法所制得的铅酸蓄电池极板, 可再浸渍 0 . 1 -0 . 5 %的聚四氟乙烯。 例 8
按例 1 -5 所述方法制造酸蓄电池极扳, 所采用的铅纤维段的直径为 5 Mm, 长度为 3 mm, 表面镀占其重量 5 %的镉。 铅合金纤维的直径为 2 0 Mm, 长度为 5 mm, 表面不镀镉。 铅合金纤维由 0 . 5 %的银, 0 · 5 %的钙, 5 «%的镉和 9 4 %的铅组成。 制作铅合金纤维毡的铅合金纤维的直径为 7 ^m, 并由 0 . 1 «¾的银, 0 . 0 8 %的钙, 0 · 5 %的镉和 9 9 . 3 2 %的铅组成。 在制作例 1 - 5 所述的铅酸蓄电池极板后, 可再采用化学浸渍的方法浸渍铅粉。 例 9
按例 1 -5 所述的方法制造用于铅酸蓄电池的极板, 所采用的铅纤维 的直径为 2 m, 长度为 0 . 7 mm, 表面镀镉占其重量的 1 «¾, 铅合金 纤维的直径为 2 μ τη , 长度为 0 · 7 m m, 表面镀镉占其重量的 1 . 5 % , 且由 0 . 3 %的银, 0 . 2 的钙, 2 %的镉和 9 7 . 5 %的铅组成。 铅合 金纤维毡中的铅合金纤维直径为 2 χη , 并由 0 , 5 %的银, 0 · 5 %的 钙, 5 %的镉和 9 4 %的铅组成。 按例 3 所述的方法制造时, 双金属片中 的一片为银片。 按例 1 " 5 所述的方法制得铅酸蓄电池极扳后, 再直接浸 渍铅粉。
工业实用性
1 、 由于利用纤维毡中的纯铅纤维作活性储电物质, 而纯铅纤维的表 面积比颗粒、 铅粉膏、 铅箔者大, 所以活性物质利用率提高, 比能量提高。
2、 由于铅纤维表层在充电状态下始终保持转变为 β型晶格的具有高 储电能力的二氧化铅晶体状态, 因此从根本上更进一步提高了活性物质的 表面积和利用率及比能量。
3 、 通过在铅金属纤维毡上直接熔压出板栅、 板耳, 从而降低了扳栅 所占的重量, 使活性储电物质相对含量增加, 也提高了比能量。
4、 由于采用铅合金纤维和铅纤维均匀混合制成活性基体, 纤维之间 是搭接在一起的, 并且各搭接点经熔压微熔在一起, 再加上直接熔压出扳 栅、 边框、 极耳, 所以整个纤维毡形成一个完整的导电通路网络, 同时形 成一个有机的机械强度高的多孔整体极扳, 因而不易掉粉、 掉渣、 极板寿 命长, 内阻低, 具有可大电流快速放电、 比功率高及可快速充电和耐放电 的性能。
5 、 通过用两片活性基体和一双金属片结构组合成一块铅酸蓄电池极 扳, 双金属片既代替了电池单格之间的绝缘隔板, 又起到了单格之间极扳 串联用的电联接零件的作用, 而且双金属片用高导电金属片制作, 其与基 体接触面积大, 还很薄, 所以可使电池的内阻进一步降低, 从而使壳体重 量、 铅联接件重量进一步降低, 从而更进一步提高了蓄电池的比功率和比 能量。 使用本发明的极板的铅酸蓄电池, 经实际测试能达到以下主要指标 ( 牵引重载荷放电) 。 A、 比能量最低可达 5 2 瓦时 /公斤
B、 比功率最低可达 1 5 0 瓦 /公斤
C、 寿命最低可达 8 0 0个循环次数

Claims

权利要求
1、 一种用于铅酸蓄电池中的极板, 其特征在于, 包括: 活性基体, 所述活性基体包括均匀混合并交织在一起的铅纤维和含镉 铅合金纤维, 所述铅纤维占所述基体总重量的 6 0 -9 0 %, 而且所述铅 纤维的表面上镀有镉, 所镀的镉占铅纤维重量的 1 -5 %;
扳栅, 与所述活性基体配合, 用于集流导电;
极耳, 用于极板间的电连接, 所述极耳与所述板栅电连接地固定在所 述扳栅上。
2、 如权利要求 1 所述的极扳, 其特征在于, 所述铅合金纤维中的 组份按重量百分比为: 铅 8 8 -9 8 · 5 %, 锑 1 -7 , 镉 0 . 5 -5 %。
3、 如权利要求 1 所述的极扳, 其特征在于, 所述铅合金纤维中的 组份按重量百分比为: 铅 9 4 -9 9 . 3 2 镉 0 · 5 —5 %, 钙 0 .
0 8 - 0 . 5 %, 银 0 . 1 -0 . 5 %。
4、 如权利要求 1 所述的极板, 其特征在于, 所述铅合金纤维表面 上也镀有镉, 所述镉占铅合金纤维总重量的 1 -5 %。
5 、 如权利要求 1 所述的极扳, 其特征在于, 所述基体中还包括碳 纤维、 有机化学纤维、 碳粉中的一种或几种。
6、 如权利要求 1 所述的极扳, 其特征在于, 所述基体含有聚四氟 乙烯, 聚四氟乙烯的量占所述基体总重量的 0 . 1 -0 . 5 %。
7、 如权利要求 1 - 6 所述的极扳, 其特征在于, 所述扳栅为框架状 并且内部具有栅条。
8、 如权利要求 7 所述的极板, 其特征在于, 所述栅条呈放射状并且 会聚到所述板栅与所述极耳的连接
9、 如权利要求 8 所述的极扳, 其特征在于, 所述板栅是通过熔压而 —体形成在所述基体上的。
1 0、 如权利要求 8 所述的极板, 其特征在于, 所述板栅为由铅合金 纤维构成的单独构件。
1 1 、 如权利要求 8 所述的极板, 其特征在于, 所述极耳的底部具有 —个槽, 该槽的宽度与所述板栅的厚度相同, 以使所述极耳能夹在并从而 固定在所述板栅上。
1 2、 如权利要求 8 中任何一个所述的极扳, 其特征在于, 所述极扳 还包括一个用于支持所述基体的双金属片结构, 在该结构中, 一片为铅片, 另一片为表面镀有一层铅的铜片或银片, 两片金属片面对面固定在一起, 双金属片结构的两侧用于分别固定一个所述基体。
1 3 、 如权利要求 1 2 所述的极板, 其特征在于, 所述双金属片结构 的中心具有—个孔, 位于双金属片结构两侧的所述基体分别具有一个从其 —个侧边通向其中心的长形缺口, 所述长形缺口靠近基体中心一端为半圆 形, 所述长形缺口彼此对齐并且其半圆形一端均与所述孔对齐, 从而构成 —个通孔, 在该通孔中充满金属铅, 构成极耳, 该极耳的厚度大于由双金 属片结构和基体所构成的极扳的厚度。
1 4、 如权利要求 8 所述的极板, 其特征在于, 所述基体为层状结构, 其中的一层为由均匀混合并交织在一起的铅纤维和含镉铅合金纤维构成的 坯块, 另一层为由另一种含镉的铅合金纤维相互交织构成的铅合金纤维毡, 该坯块与铅合金纤维毡交互叠置, 构成所述的层状结构。
1 5 、 如权利要求 8 所述的极板, 其特征在于,
所述铅纤维表面上和铅合金纤维表面上所镀的镉占它们各自重量的 2
%,
所述铅合金纤维中的组份按重量百分比为: 铅 9 6 , 锑 2 , 镉 2
% ;
所述铅纤维与铅合金纤维的重量比为 9 : 1 。
1 6 、 如权利要求 1 4 所述的极扳, 其特征在于,
所述基体为三层结构, 第一层和第三层为所述的坯块, 其中: 所述铅纤维表面上和铅合金纤维表面上所镀的镉占它们各自重量的 2 , 所述铅合金纤维中的组份按重量百分比为: 铅 9 8 . 5 %, 锑 1 %, 镉 0 . 5 % ,
所述铅纤维与铅合金纤维的重量比为 6 : 4 ,
并且还包括 0 . 1 %的晴纶纤维, 0 · 1 «¾的碳纤维和 0 . 1 %的碳 粉;
所述第二层为铅合金纤维毡, 该铅合金纤维中的组份按重量百分比为: 铅 8 8 %, 锑 7 <¾和镉 5 %。
1 7、 如权利要求 1 3 所述的极板, 其特征在于,
所述铅纤维表面上所镀的镉占铅纤维总重量的 2 %;
所述铅纤维与铅合金纤维的重量比为 9 : 1。
1 8、 如权利要求 1 4所述的极板, 其特征在于,
所述基体为五层结构, 第二层和第四层为所述的坯:^ 其中:
所述铅纤维表面上和铅合金纤维表面上所镀的镉分别占它们各自重量 的 4 % ;
所述铅合金纤维中的组份按重量百分比为: 铅 8 8 , 锑 7 %, 镉 5
% ;
所述铅纤维与铅合金纤维的重量比为 7 : 3 ;
所述第一、 三、 五层为所述铅合金纤维毡, 该铅合金纤维中的组份按 重量百分比为: 铅 9 2 %, 锑 5 %和镉 3 % ;
所述板栅为由铅合金纤维构成的单独部件, 并且在所述基体的两侧面 上与所述基体熔压在一
1 9、 如权利要求 1 4所述的极扳, 其特征在于,
所述基体为三层结构, 其中在第一层和第三层中:
所述铅纤维表面上和铅合金纤维表面上所镀的镉占它们各自重量的 2 % , 所述铅合金纤维中的组份按重量百分比为: 铅 9 0 · 5 %, 锑 4 · 5 % , 镉 5 ,
所述铅纤维与铅合金纤维的重量比为 8 : 2 ;
第二层为所述铅合金纤维毡, 该铅合金纤维中的组份按重量百分比为: 铅 9 3 %, 锑 3 %和镉 4 % ;
所述扳栅由铅合金纤维构成的单独部件, 并且二个所述扳栅与二块所 述基体间隔叠置并熔压在一
2 0、 如权利要求 1 4所述的极板, 其特征在于, 在所述坯块中:
所述铅纤维表面上和铅合金纤维表面上所镀的镉分别占它们各自重量 的 2 %,
所述铅合金纤维中的组份按重量百分比为: 铅 9 0 . 5 %, 锑 7 %, 镉 2 · 5 %;
在所述铅合金纤维毡中:
组份按重量百分比为: 铅 8 8 锑 7 %和镉 5 %。
2 1 、 如权利要求 1 4所述的极板, 其特征在于,
在所述坯块中:
所述铅纤维表面上和铅合金纤维表面上所镀的镉占它们总重量的 5 % , 所述铅合金纤维中的组份按重量百分比为: 铅 9 9 . 3 2 %, 镉 0 -
5 %, 钙 0 . 0 8 %和银 0 . 1 %,
所述铅纤维与铅合金纤维的重量比为 6 . 5 : 3 . 5 ,
并且还包括 0 . 0 5 %的晴纶纤维, 0 . 0 5 %的碳纤维和 0 · 0 5
%的碳粉;
在所述铅合金纤维毡中:
组份按重量百分比为: 铅 9 7 . 5 %, 镉 2 %, .钙 0 . 3 %和银 0 - 2 %Λ
2 2、 如权利要求 1 4 所述的极扳, 其特征在于,
在所述坯块中:
所述铅纤维表面上所镀的镉占铅纤维总重量的 5 %,
所述铅合金纤维中的组份按重量百分比为: 铅 9 4 %, 镉 5 %, 0 . 5 %钙和 0 . 5 %银,
所述铅纤维与铅合金纤维的重量比为 6 . 5 : 3 . 5 ;
在所述铅合金纤维毡中:
组份按重量百分比为: 铅 9 9 . 3 2 %, 镉 0 . 5 %, 钙 0 . 0 8 % 和银 0 . 1 <%。
2 3 、 如权利要求 1 3 所述的极板, 其特征在于,
在所述坯块中:
所述铅纤维表面上和铅合金纤维表面上所镀的镉占它们各自重量的 1 <¾和1 . 5 ,
所述铅合金纤维中的组份按重量百分比为: 铅 9 7 . 5 %, 镉 2 %, 0 . 2 %钙和 0 · 3 %银; 在所述铅合金纤维毡中:
组份按重量百分比为: 铅 9 4 %, 镉 5 %, 钙 0 . 5 %和银 0 . 5 %
2 4、 一种用于制造如权利要求 1 - 2 3 中的任意一种极板的方法, 其特征在于, 包括下列步骤:
利用切削、 熔压或熔喷的方法将铅和含镉的铅合金制成铅纤维和铅合 金纤维;
将这些纤维切成小段;
把剪切成小段的铅纤维和铅合金纤维倒入粘性的溶剂中搅拌, 使它们 形成在三维方向彼此均匀混合、 缠绕的混合物;
将所述溶剂从所述混合物中压出, 从而形成坯块;
对该坯块进行压缩;
通过熔压, 使该坯块上带有扳栅; 和
将一个极耳连接在所述扳栅上。
2 5、 如权利要求 2 4所述的方法, 其特征在于, 所采用的粘性溶剂 为甘油、 水玻璃或其它具有与甘油和水玻璃类似粘度的溶剂。
2 6、 如权利要求 2 4所述的方法, 其特征在于, 将剪切成小段的铅 纤维和铅合金纤维倒入粘性的溶剂中的步骤中还包括将碳粉、 有机化学纤 维和碳纤维中的一种或几种加人所述溶剂中的步骤。
2 7、 如权利要求 2 6 所述的方法, 其特征在于, 所述有机化学纤维 为晴纶。
2 8、 如权利要求 2 4所述的方法, 其特征在于, 将所述溶剂从所述 混合物中压出的步骤是通过将所述混合物放入一个底部具有很多孔的容器 中, 利用安装在该容器上部的活塞和容器下部的真空泵将所述溶剂抽出, 使所述纤维沉淀在该容器的底部实现的。
2 9、 如权利要求 2 4所述的方法, 其特征在于, 通过熔压, 对所述 坯块进行压缩。
3 0、 如权利要求 2 4所述的方法, 其特征在于, 在对所述坯块进行 压缩的同时, 通过电火花放电对所述坯块进行加热。
3 1 、 如权利要求 2 4所述的方法, 其特征在于, 在所述坯块上形成 板栅之前, 所述方法还包括将所述活性基体进行浸渍的步骤。
3 2、 如权利要求 3 1 所述的方法, 其特征在于, 所述浸渍剂为聚四 氟乙烯或铅膏。
3 3、 如权利要求 2 4所述的方法, 其特征在于, 所述极耳为单独部 件, 并通过熔压, 固结到扳栅上。
PCT/CN1996/000062 1995-08-14 1996-08-13 Plaque d'electrode pour un accumulateur au plomb et procede de fabrication WO1997007553A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/011,564 US6232018B1 (en) 1995-08-14 1996-08-13 Electrode plate for a lead acid accumulator and its producing method
AU67307/96A AU6730796A (en) 1995-08-14 1996-08-13 An electrode plate for lead-acid accumulator and producing method thereof
EP96927499A EP0874411A4 (en) 1995-08-14 1996-08-13 AN ELECTRODE PLATE FOR A LEAD ACID ACCUMULATOR AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN95219415.5 1995-08-14
CN95109703A CN1143269A (zh) 1995-08-14 1995-08-14 铅酸蓄电池极板及其制造方法
CN95219415U CN2235156Y (zh) 1995-08-14 1995-08-14 铅酸蓄电池极板
CN95109703.2 1995-08-14

Publications (1)

Publication Number Publication Date
WO1997007553A1 true WO1997007553A1 (fr) 1997-02-27

Family

ID=25743738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1996/000062 WO1997007553A1 (fr) 1995-08-14 1996-08-13 Plaque d'electrode pour un accumulateur au plomb et procede de fabrication

Country Status (5)

Country Link
US (1) US6232018B1 (zh)
EP (1) EP0874411A4 (zh)
AU (1) AU6730796A (zh)
RU (1) RU2152111C1 (zh)
WO (1) WO1997007553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502408B1 (ko) * 2002-06-21 2005-07-19 삼성전자주식회사 액티브 터미네이션을 내장한 메모리 장치의 파워-업시퀀스를 제어하는 메모리 시스템과 그 파워-업 및 초기화방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038933A2 (en) * 2001-10-27 2003-05-08 Sarosi Gyoergy Andras Grid for lead battery, method of manufacturing, and battery plate
US8551660B2 (en) 2009-11-30 2013-10-08 Tai-Her Yang Reserve power supply with electrode plates joined to auxiliary conductors
RU2571823C2 (ru) * 2011-10-04 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Электрод свинцово-кислотного аккумулятора (варианты)
HU230572B1 (hu) 2014-05-20 2016-12-28 Andrew Sárosi George Akkumulátorrács kialakítás, az akkumulátorrácsokkal kialakított akkumulátor cella és az akkumulátor cellákkal kialakított akkumulátor
CN104241708B (zh) * 2014-09-11 2016-04-20 浙江超越动力科技股份有限公司 一种高储能长寿命铅酸蓄电池
CN104347879B (zh) * 2014-09-11 2016-08-24 浙江超越动力科技股份有限公司 一种铅酸蓄电池预混复合负极添加剂
US11936032B2 (en) 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery
KR20200014317A (ko) 2017-06-09 2020-02-10 씨피에스 테크놀로지 홀딩스 엘엘씨 납산 배터리
CN110247059A (zh) * 2018-03-11 2019-09-17 任久东 一种铅酸蓄电池板栅
CN109411688A (zh) * 2018-08-30 2019-03-01 广州倬粤动力新能源有限公司 板栅与极耳的连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909292A (en) * 1971-10-27 1975-09-30 Matsushita Electric Ind Co Ltd Lead storage battery
EP0085109A1 (en) * 1981-07-31 1983-08-10 Sanyo Electric Co., Ltd Lead storage battery and method of producing the same
US5098799A (en) * 1990-11-27 1992-03-24 Globe-Union Inc. Battery electrode growth accommodation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702019A (en) * 1971-04-13 1972-11-07 Westinghouse Electric Corp Method of making diffusion bonded battery plaques
US3859084A (en) * 1971-09-30 1975-01-07 Gould Inc Cadmium-antimony-lead alloy
FR2331159A1 (fr) * 1975-11-06 1977-06-03 Dba Support d'electrodes pour batterie d'accumulateur et procedes de fabrication d'un tel support
US4456666A (en) * 1982-10-13 1984-06-26 Gnb Batteries Inc. Titanium wire reinforced lead composite electrode structure
DE3922424C2 (de) * 1989-07-07 1994-02-03 Hagen Batterie Ag Elektrode für elektrochemische Zellen und Verfahren zur Herstellung einer Gitterplatte für eine Elektrode
CN1040594C (zh) * 1990-09-07 1998-11-04 陈江西 一种铅蓄电池的酸性板形正极板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909292A (en) * 1971-10-27 1975-09-30 Matsushita Electric Ind Co Ltd Lead storage battery
EP0085109A1 (en) * 1981-07-31 1983-08-10 Sanyo Electric Co., Ltd Lead storage battery and method of producing the same
US5098799A (en) * 1990-11-27 1992-03-24 Globe-Union Inc. Battery electrode growth accommodation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0874411A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502408B1 (ko) * 2002-06-21 2005-07-19 삼성전자주식회사 액티브 터미네이션을 내장한 메모리 장치의 파워-업시퀀스를 제어하는 메모리 시스템과 그 파워-업 및 초기화방법

Also Published As

Publication number Publication date
US6232018B1 (en) 2001-05-15
AU6730796A (en) 1997-03-12
EP0874411A4 (en) 2001-02-21
RU2152111C1 (ru) 2000-06-27
EP0874411A1 (en) 1998-10-28

Similar Documents

Publication Publication Date Title
EP2313353B1 (en) Method for producing an electrode for lead-acid battery
EP0142288B1 (en) Battery plate containing filler with conductive coating
US3486940A (en) Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
CN109671987B (zh) 一种卷绕式锂浆料电池
US8173300B2 (en) Acid-lead battery electrode comprising a network of pores passing therethrough, and production method
Kirchev et al. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept
CA2509961A1 (en) Composite material and current collector for battery
WO1997007553A1 (fr) Plaque d&#39;electrode pour un accumulateur au plomb et procede de fabrication
WO1993001624A1 (en) Bipolar battery and method of making a partition wall for such a battery
US10361420B2 (en) Methods for making lead-carbon couplings, lead-carbon electrode sheets and lead-carbon batteries
JP3896664B2 (ja) 燃料電池用セパレータの製造方法および燃料電池用セパレータ
JP2847761B2 (ja) 密閉形鉛蓄電池及びその製造方法
CN111193074B (zh) 一种可拆卸式锂浆料电池的复合单元以及包含其的锂浆料电池
JP7328129B2 (ja) 鉛蓄電池用正極板、鉛蓄電池
US20030134202A1 (en) Lithium polymer battery
CN109244599A (zh) 一种具有快速加热功能的复合负极极片、及采用其的电芯和电池
CN114420886A (zh) 电池极片结构及钠离子电池和制备方法
CN114203957A (zh) 用于电池的极片、半固态电池及极片的制备方法
CN208781948U (zh) 一种由两种微孔集电极组合应用的二次电池
JP2003338310A (ja) 鉛蓄電池
CN203039006U (zh) 大容量高倍率的二次电池
CN112164830A (zh) 一种含固态电解质的扣式锂电池及其制造方法
CN2235156Y (zh) 铅酸蓄电池极板
JP3692735B2 (ja) 電気二重層キャパシタ用集電体及び電気二重層キャパシタ
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 1996927499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09011564

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1996927499

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1996927499

Country of ref document: EP