WO1997005724A1 - Unite de commande de vitesse dynamique - Google Patents

Unite de commande de vitesse dynamique Download PDF

Info

Publication number
WO1997005724A1
WO1997005724A1 PCT/JP1996/002131 JP9602131W WO9705724A1 WO 1997005724 A1 WO1997005724 A1 WO 1997005724A1 JP 9602131 W JP9602131 W JP 9602131W WO 9705724 A1 WO9705724 A1 WO 9705724A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
connection
rate
control device
transmission
Prior art date
Application number
PCT/JP1996/002131
Other languages
English (en)
French (fr)
Inventor
Haruhisa Hasegawa
Naoaki Yamanaka
Kouhei Shiomoto
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19772895A external-priority patent/JP3287529B2/ja
Priority claimed from JP22674695A external-priority patent/JP3087941B2/ja
Priority claimed from JP23869195A external-priority patent/JP3087942B2/ja
Priority claimed from JP26442295A external-priority patent/JP3085516B2/ja
Priority claimed from JP28528995A external-priority patent/JP3039849B2/ja
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to EP96925120A priority Critical patent/EP0812083B1/en
Priority to DE69637027T priority patent/DE69637027T2/de
Publication of WO1997005724A1 publication Critical patent/WO1997005724A1/ja
Priority to US08/825,936 priority patent/US6046983A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L12/5602Bandwidth control in ATM Networks, e.g. leaky bucket
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5032Generating service level reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5619Network Node Interface, e.g. tandem connections, transit switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5629Admission control
    • H04L2012/5631Resource management and allocation
    • H04L2012/5632Bandwidth allocation
    • H04L2012/5635Backpressure, e.g. for ABR
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5629Admission control
    • H04L2012/5631Resource management and allocation
    • H04L2012/5636Monitoring or policing, e.g. compliance with allocated rate, corrective actions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5678Traffic aspects, e.g. arbitration, load balancing, smoothing, buffer management
    • H04L2012/5681Buffer or queue management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the present invention is used for asynchronous transfer mode (hereinafter referred to as ATM Asynchronous Transfer Mode) communication.
  • ATM Asynchronous Transfer Mode asynchronous transfer mode
  • the transmission rate between the communication terminals is controlled so as to approach a state satisfying fairness at a high speed. It relates to the configuration and control method of the communication network.
  • the present invention relates to rate control and traffic control in a bucket switching network or an ATM network.
  • the present invention is provided in an ATM communication network and is used as buffer means for temporarily storing cells or buckets.
  • the present invention relates to a technique for controlling a transmission interval of a predetermined cell or bucket for each connection.
  • the present invention relates to congestion control. In particular, it relates to the regulation of cell transmission speed and its release criteria.
  • the present invention relates to a technique for setting a virtual path and a virtual channel.
  • a cell for information collection (RM cell: RM cell :) between the originating and terminating communication terminals in order to collect information on congestion and the amount of acceptable bandwidth in the route.
  • the network writes information into the RM cell, and the originating communication terminal refers to it to control the cell transmission rate.
  • ABR Advanced Bit Rate
  • ATM Forum atmf95-0013R2
  • ABR Advanced Bit Rate
  • FIG. 52 is an overall configuration diagram of a conventional ATM communication network.
  • FIG. 53 is a diagram showing the configuration of the RM cell.
  • Fig. 5 4 Is a flowchart showing the operation of the communication terminal on the calling side.
  • FIG. 55 and FIG. 56 are flowcharts showing the operation of the destination local exchange and transit exchange.
  • FIG. 57 is a flowchart showing the operation of the destination communication terminal.
  • the ATM communication network shown in FIG. 52 is configured based on the ABR protocol. In FIG.
  • the RM cell is composed of an ATM header, protocol identifier (ID), direction identifier (DIR), backward congestion notification cell identifier (BN), congestion notification (CI), and transmission prohibition rate increase notification (NI ), Request Z Acceptance Notification (RA), Explicit Transmission Allowed Rate (ER), Current Allowed Transmission Rate (CCR), Minimum Cell Rate (MCR), Queue Length (QL), Sequence Number (SN).
  • ID protocol identifier
  • DIR direction identifier
  • BN backward congestion notification cell identifier
  • CI congestion notification
  • NI transmission prohibition rate increase notification
  • RA Request Z Acceptance Notification
  • ER Explicit Transmission Allowed Rate
  • CCR Current Allowed Transmission Rate
  • MCR Minimum Cell Rate
  • QL Queue Length
  • Sequence Number SN
  • an RM cell is periodically transmitted from the calling communication terminal 501 for each sending and receiving pair, and the exchange 30 performing the relaying writes the congestion information and the amount of receivable bandwidth in the corresponding route.
  • the communication terminal 60-1 on the receiving side loops it back and notifies the communication terminal 50-1 on the calling side of the presence or absence of congestion in the route.
  • the originating communication terminal 50-1 must transmit at a cell transmission rate lower than the allowable cell transmission rate called ACR (Allowed Cell Rate) according to the rules of the ABR protocol.
  • ACR Allowed Cell Rate
  • the originating communication terminal 50-1 When receiving the notification of the congestion by the RM cell, the originating communication terminal 50-1 reduces the ACR based on the ABR protocol. Conversely, when it is notified that there is no congestion, the ACR is raised based on the ABR protocol.
  • the originating communication terminal 50-1 if there is a minimum value of the acceptable bandwidth of the network notified by the RM cell, the smaller of the value and the newly calculated ACR value Change to the transmission rate of the following cell. If there is no minimum value of the acceptable bandwidth of the network, change to the transmission rate of cells below ACR.
  • the I CRGnitial Cell Rate When a new VC (Virtual Channel) starts transmitting data, it is called the I CRGnitial Cell Rate after transmitting the first RM cell. Transmission at a transmission rate of the specified cell at the start of transmission or lower is permitted.
  • the cell transmission rate is controlled by the procedure described above.
  • the operation of the originating communication terminal 50-1 based on the ABR protocol is shown in FIGS. 54 and 55
  • the operation of the exchanges 20, 30 and 40 is shown in FIG.
  • FIG. 57 shows the operation of the communication terminal 60-1.
  • the originating communication terminal 50-1 generates an RM cell (S1), initializes it (S2), and transmits it (S3).
  • the RM cell is looped back through the exchange 20—exchange 30 ⁇ exchange 40 ⁇ destination communication terminal 60-1 and received by the originating communication terminal 50-1 as shown in FIG. 55 (S11) ). If there is a congestion notification in the RM cell (S12), the ACR is reduced (S14); otherwise, the ACR is increased (S13). This changes the cell transmission rate (S15).
  • each notified communication terminal lowers the transmission rate and consequently reduces the available capacity.
  • Each communication terminal raises the transmission rate again when it is notified that it has left the congestion state. By repeating this, the mechanism gradually approaches a fair transmission rate.
  • FIG. 58 is a diagram illustrating control of a cell transmission rate in a conventional ATM communication network.
  • the communication terminals 50-1 to 50-3 are the originating terminals, and are the respective destination terminals.
  • Connections 70-1, 70-2, and 70-3 via exchanges 20 to 40 are set between communication terminals 60-1 to 60-3. These connections 70-1 and 70-2.7-0-3 share the transmission line 5 between the exchanges 20 and 40.
  • Transmission rate control is performed as follows. That is, the communication terminal 50-1-3-50-13, which is the originating terminal, generates and inserts a control cell at regular cell intervals, and the communication terminals 60-1, -6, which are the destination terminals.
  • the control cell is reciprocated between the exchanges, and the exchanges 20 to 40 write information to the cell, and the communication terminals 50-1 to 50-13, which are the originating terminals, refer to the information to control the transmission rate.
  • the originating terminal transmits a control cell at regular cell intervals, and each exchange through which it passes determines the allowable transmission rate of the communication terminal from the control cell. It reads the congestion information for the switch itself and calculates the acceptable transmission rate.
  • the maximum allowable transmission rate (PCR) for each connection is described as the initial value of the acceptable transmission rate when the calling terminal transmits.
  • Each exchange writes the calculated rate into the control cell only when the acceptable transmission rate calculated by the exchange is smaller than the acceptable transmission rate written in the returned control cell. Notify the calling terminal.
  • the calling terminal sets its own ACR to a value lower than the notified acceptable transmission rate, and transmits at a rate lower than the ACR.
  • FIGS. 59 to 61 are diagrams showing the flow of control in the exchange, FIG. 59 shows control when congestion is determined, and FIG. 60 shows a case where a control cell arrives from the calling terminal side.
  • Fig. 61 shows the control when the control cell is looped back from the called terminal.
  • Each exchange observes the queue length in the cell buffer waiting for transmission, and if the queue exceeds the threshold value, determines that its own switch is congested; otherwise, determines that it is not congested. . Then, when it is determined that the state is congested, as shown in FIG. Then, the current permissible transmission rate reduced by a certain percentage is calculated as the acceptable transmission rate in the exchange.
  • FIG. 62 shows the flow of control of the exchange when it is determined that there is no congestion.
  • the exchange increases the acceptable transmission rate in the exchange from the allowable transmission rate. That is,
  • the larger ERQi is set as a new ERQi (S61).
  • the control when the control cell arrives from the calling terminal side and the control when the control cell is looped back from the called terminal side are the same, thereby increasing the ACR of the calling terminal.
  • UPC / NPC User / Network Parameter Control
  • a traffic accommodation design is performed based on the cell interval.
  • the cell interval is specified for each connection. It is common to install usage monitoring devices, such as UPCZNPC, to monitor compliance.
  • UPCZNPC usage monitoring devices
  • CDV Cell Delay Variation
  • the ABR service which has been actively discussed in ATM forums in recent years, uses RM cells to notify end-to-end, end-to-end, and end-to-end flow control of bandwidth on a route, and performs flow control. It is.
  • the control loop of the RM cell since the control loop of the RM cell is closed at the end, two, and end, even if the RM cell is discarded due to congestion, the negative feedback mechanism works and the flow is suppressed.
  • the cell transfer delay is large, as in the case of a public network, the information on the availability of the bandwidth on the route obtained by the RM cell is no longer old. Is a problem.
  • VD / VS virtual destination / virtual source
  • a cell buffer is prepared for VDZVS, and cells are stored for each connection. Reading of cells from the cell buffer is performed by traffic shaving control.
  • the RM cell transmitted by itself returns to the network and returns, the transmission interval of the cell of the connection is determined based on the content, and the cell of the connection is read from the cell buffer at the interval.
  • the protocol of the upper layer of the cell transmission layer has a retransmission function
  • the retransmission function is activated and the degree of congestion is promoted. In order to prevent catastrophic congestion from occurring, it is necessary to regulate the amount of traffic added to the network when the network is congested.
  • the peak speed and average speed of each connection are distributed over a wide range. Therefore, different peak speeds and average speeds are referred to as call types, and call admission control (CAC) is performed to satisfy the required communication quality for each call type.
  • CAC call admission control
  • ri and a represent the peak speed and average speed of call type i, respectively, and a all and C represent the sum of the average speeds of all VCs and the VP band, respectively.
  • CLR AVE is the average cell loss rate for all call types. If f (x) is the cell rate probability density function of call type i and F i (x) is the cell rate probability density function of other call types except call type i, the cell loss CLR, of call type i is Strictly speaking,
  • Fig. 63 is a diagram showing the call type cell loss rate and the number of connected VCs in a multiple environment. The number of connections for call type 1 is plotted on the horizontal axis, the number of connections for call type 2 is plotted on the left vertical axis, and the cell loss ratio (CLR) is plotted on the right vertical axis. From Figure 63,
  • Call type 1 has a higher cell loss rate than call type 2, and the difference may be more than one digit.
  • the transmission rate for each connection is distributed over a wide range, and when the distance between communication terminals is large, information on the availability of the route to be notified is provided. It is difficult to obtain a good control effect because of the aging. For example, it takes time to transmit an RM cell, and a communication terminal that newly transmits takes time to control the ACR of a communication terminal that has already transmitted. Therefore, it takes time to converge to a fair amount of bandwidth distribution. It is also difficult to keep up with the ever-changing transmission rate and network conditions. To shorten the time required for raising the ACR, it can be avoided by setting the ICR of each communication terminal to a high value. However, when the distance between the communication terminals is large, it takes time to notify the congestion. It is necessary to take measures such as increasing the buffer length in the network and reducing the network usage rate.
  • the acceptable transmission rate is increased or decreased for the connections on the same exchange based on the same state of radiation. For this reason, control is performed to perform a uniform operation of increasing or decreasing as a whole, and does not necessarily fully satisfy fairness.
  • the number of connections increases, the number of cell buffer queues increases, and the hard disk size increases in addition to the increase in memory capacity.
  • traffic shaping only one cell can be transferred in one slot, but if multiple cells are scheduled in the same slot, one of them is not transferred.
  • the probability that multiple cells are scheduled in the same slot increases, and this problem becomes apparent.
  • the C A C determines whether or not to accept a connection when setting up a connection, so high performance and responsiveness are required to provide real-time switching services.
  • the present invention has been made in such a background, and the best F-auto service
  • An object of the present invention is to provide a dynamic rate control device capable of controlling the transmission rates among a plurality of communication terminals in a network fairly.
  • An object of the present invention is to provide a dynamic rate control device capable of quickly converging transmission rates between a plurality of communication terminals to a fair state.
  • the present invention provides a dynamic rate control device capable of fairly controlling the cell transmission rate of each communication terminal without making transmission delay a problem even when the distance between a plurality of communication terminals is large. The purpose is to do.
  • the present invention provides a dynamic rate control device that can change the direction in which the available bandwidth of each connection is maximized while satisfying the fairness of the acceptable transmission rate notified between the connections.
  • An object of the present invention is to provide a dynamic rate control device capable of realizing traffic shaping on a relatively reasonable hardware scale even if the number of connections increases.
  • An object of the present invention is to provide a dynamic rate control device that can transfer a plurality of cells scheduled in the same slot (time).
  • An object of the present invention is to provide a dynamic rate control device capable of improving the throughput of an ATM communication network.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a dynamic rate control device that can quickly reduce the congestion state.
  • An object of the present invention is to provide a dynamic rate control device capable of improving the responsiveness of CAC by calculating the cell loss rate of a call type by a simple calculation even when the number of call types increases. I do.
  • An object of the present invention is to provide a dynamic rate control device capable of performing smooth call admission control.
  • the present invention is directed to a switch for accommodating a plurality of communication terminals receiving a best-effort service, which is used for controlling the transmission rate of the communication terminals to quickly converge to a transmission rate satisfying fairness among the communication terminals. It has a control method.
  • the information collection cell is reciprocated between the originating and terminating communication terminals, and the ATM communication network writes the congestion information and the information on the amount of acceptable bandwidth into the ATM communication network.
  • transmission rate control was performed. It differs from the conventional technology in the configuration of the communication network, the setting of the transmission rate control timing, the logic of the transmission rate control, and the speed of convergence of the transmission rate.
  • the present invention is a dynamic rate control device, which includes a large number of communication terminals, and includes means for setting a virtual path to one of the communication terminals based on a request from one of the communication terminals.
  • Dynamic rate control device A feature of the present invention is that: means for collecting route information including virtual path vacant band information set once by designating a transmission rate for one communication terminal; and transmitting a request from the one communication terminal. Means for holding the rate, and dynamically increasing the transmission rate of the virtual path set once based on the route information to the required transmission rate of the communication terminal as much as possible and for a plurality of communication terminals having connection requests. It has a control means for fair control. It is preferable that the control means includes means for calculating and setting a cell transmission rate allowed for the communication terminal.
  • the exchange in which the communication terminal is accommodated collects VP information or route information regardless of whether or not this communication terminal performs transmission. For this reason, it is possible to quickly calculate the transmission rate of the cell together with the transmission start request from the communication terminal and return whether or not transmission can be started to the communication terminal.
  • the vacant band information is numerical information, and the means for calculating and setting includes means for multiplying the vacant band information by a constant C (0 ⁇ C ⁇ 1) to calculate the allowable cell transmission rate. it can.
  • the value of the constant C can be set appropriately in consideration of the characteristics of the ATM communication network, the type of information, and other factors.
  • the initial transmission rate of the cell of the communication terminal is changed to the allowable transmission rate of the cell. It is desirable to have means for setting In the present invention, transmission and reception of RM cells are not performed between exchanges accommodating communication terminals, and transmission / reception requests are sent from the communication terminals to determine whether or not the transmission start request is possible, and until the cell transmission rate is set. Is characterized by the fact that When the minimum transmission rate of the cell included in the communication start request is smaller than the allowable transmission rate of the cell, the transmission rate of the cell is promptly increased to correspond to the transmission of the communication terminal.
  • the permissible increase and decrease of the cell transmission rate can be performed stepwise for each unit increase.
  • the amount of increase in the transmission rate of the communication terminal that can be increased at one time is determined in advance, and this is defined as a unit increase. If the permissible cell transmission rate is less than this unit increase, the transmission rate is increased by the unit increase. After the increase, the same procedure is performed. If the allowable cell transmission rate is still higher than this unit increase, the transmission rate is increased again by the unit increase. By repeating this procedure, the transmission rate of the communication terminal can be increased at a high speed. Rather than gradually increasing the transmission rate while observing the status of the entire route, the unit increment is set in advance, and the unit increment is increased at once by the judgment of only the exchange accommodating the communication terminal. The transmission rate of the communication terminal can be increased step by step at a high speed.
  • the route information is a quantity indicating the amount of available bandwidth of the virtual path included in the route in a stepwise manner.
  • the calculation and setting means is a means for uniquely setting the allowed cell transmission rate according to this quantity.
  • the route information is a quantity indicating the queue length of a cell buffer provided at a node included in the route in a stepwise manner, and the means for calculating and setting the number of cells allowed according to this quantity.
  • Means for uniquely setting the transmission rate may be included. For example, a plurality of thresholds are set for the queue length of the cell buffer, and the transmission rate is calculated by comparing the thresholds with the thresholds. Furthermore, it is also possible to set a threshold value for the transmission rate of the communication terminal, and to select a communication terminal to be notified of congestion in consideration of the result derived from the queue length of the cell buffer.
  • the operation setting means may include means for discarding the received RM cell. desirable.
  • the local exchange calculates the cell transmission rate and writes the calculation result to the RM cell to notify the communication terminal, if there is another RM cell from another, the local exchange identifies it. Should be discarded. This can prevent the communication terminal from malfunctioning due to a plurality of different pieces of information.
  • the control means may include means for notifying the communication terminal on the originating side of the connection accommodated by itself of information on an acceptable transmission rate; and Means for collecting and retaining information on the allowable transmission rate and the actual transmission rate permitted for the connection, the total bandwidth and the total input bandwidth of the shared transmission path, and the number of connections sharing the transmission path; Means for calculating, for each connection, an acceptable transmission rate at which the notifying means notifies the originating communication terminal based on the information held in the collecting and holding means. You can also.
  • the acceptable transmission rate to be notified between the connections can be individually rewritten and notified in a direction to increase fairness, instead of being directed in the same direction, such as increasing or decreasing as a whole.
  • the transmission rate that can be accepted for each connection can be rewritten and notified in the direction of increasing the available bandwidth of each connection within a range that does not cause congestion.
  • the control unit notifies the communication terminal of information on an acceptable transmission rate, and the communication terminal accommodated by the communication terminal includes the calling terminal.
  • the allowed transmission rate and actual transmission rate allowed for each connection the bandwidth of the shared route and the total input bandwidth, and the sharing of the route Means for collecting and holding the information on the number of connections; and means for notifying based on the information held in the means for collecting and holding the notification.
  • Means for calculating an acceptable transmission rate for each connection can notify the originating terminal of the acceptable transmission rate.
  • the time required for the communication is short, the notification to the calling terminal can be performed at high speed, and the calculation can be performed only by the exchange that accommodates the communication terminal without calculating the transmission rate that all exchanges can accept. Even when a connection starts transmitting, the transmission rate can be controlled immediately.
  • the information notified by the notifying means to the communication terminal may be data of the transmission rate itself, or information instructing an increase or decrease of the allowable transmission rate. When the latter information is used, the communication terminal increases or decreases its allowable transmission rate according to a predetermined calculation formula.
  • the means for calculating is the dispersion of the ratio of the allowable transmission rate to the request rate of each connection.
  • ERQ j ccn-i ⁇ sign ⁇ n ⁇ cc / r; — w ⁇ ⁇ iCc / ⁇
  • n is the number of connections transmitting data.
  • “” and w are weight functions, and s i gn ⁇ is a function representing the sign of the value in ⁇ .
  • Hi j may be a positive constant
  • ⁇ n ⁇ ccri / rj -w ⁇ ⁇ iCcri / rs ⁇ May be a value equal to the absolute value of.
  • the larger the value of j the more instantaneously the ERC changes, but the greater the error.
  • the value of "hi" is small, it takes more time to change the ERQ, although it is accurate. Keep in mind that it can be set arbitrarily.
  • w is a decreasing function of the total input bandwidth of the transmission line or route shared by the connection. Specifically, the transmission path or route function of the total bandwidth B al l and the total input bandwidth B use connection is shared
  • p 2 is a constant for preventing the denominator from becoming zero
  • Pi is a correction constant for p 2
  • P 3 is a constant for setting the amplitude.
  • the transmission path shared by the connection is a function of the total input bandwidth Buse of the route.
  • p 4 is a positive constant for setting the amplitude
  • p 5 is a constant Me another correction.
  • the request rate of each connection is not clear, if the terminal is transmitting at a certain percentage or more of the current allowable transmission rate, the maximum possible allowable transmission rate for that connection is calculated as the request rate. In other cases, the minimum possible transmission rate should be considered as the requested rate.
  • connection table consisting of records such as tokens, cell intervals, pointers to cell buffers, etc. using the connection identifier as an address, and a pointer and a cell itself indicating the order relation between each entry are stored.
  • a cell buffer consisting of records such as fields to be held, a pointer indicating the order between each entry, a simultaneous arrival connection list consisting of records such as connection identifiers, and a pointer to the simultaneous arrival connection list and time.
  • Scheduling table and schedule to be kept as a pair It has a timer that indicates the processing target of the Euling table and a timer that indicates the current time.
  • a list is formed for each connection in the cell buffer, and the head and tail addresses of the list are registered in the connection table, and cell arrival Each time, the cell is added to the corresponding connection list.If there is a token, transfer scheduling is performed at that time.
  • the simultaneous arrival connection list contains a list of connection identifiers of cells to be read at the same time. The cells of the connection are read out sequentially from the address indicated by the message that indicates the processing target of the scheduling table, and the cells of the connection are read out in the order as scheduled, and after reading, the connection cells are read out.
  • Control for guaranteeing a predetermined cell interval for each application can also be performed.
  • the memory capacity can be used efficiently by using the common buffer as the cell buffer, an increase in the amount of hardware due to an increase in the number of connections can be suppressed.
  • the number of cells to be discarded can be reduced. Therefore, an ATM communication network with high throughput can be realized.
  • the control means includes an input terminal from which a cell stream arrives, a cell buffer for temporarily storing the arriving cells, and a traffic shaving unit for reading cells from the cell buffer in accordance with a designated cell transmission interval. And a connection table that holds connection information including the cell transmission interval information (Int) using a connection identifier (VPI ZVCI) as an address, and the cell buffer includes a plurality of cells each containing a cell.
  • the configuration may include a memory area and a pointer area indicating a pointer value (P tr) for associating the memory area with the connection table.
  • connection information may include a pointer value of the memory area in which a head and an end of a cell having the same connection identifier corresponding to a connection identifier are stored.
  • a plurality of cells stored in the cell buffer are chained by the pointer value. It is better to configure. Cells are read from the cell buffer in the order linked by this chain according to the designated cell transmission interval.
  • the connection information may include a token (T k) indicating whether or not to execute transmission scheduling after the arrival of the last cell of the connection.
  • T k a token
  • the apparatus further comprises means for holding a heading value and a tailing value of an empty memory area of the cell buffer.
  • a configuration may also be provided that includes a timer for measuring the current time and means for scheduling the cell transmission schedule according to the timer.
  • the scheduling means includes: when a plurality of cells arrive almost at the same time and the plurality of scheduled cell transmission times overlap, the scheduling is performed such that the overlapping scheduled cell transmission times are sequentially shifted and transmitted. Can also be provided. As a result, multiple cells arriving at almost the same time and having the same scheduled cell transmission time can be adjusted for all cells without discarding any of the cells. Since the cells can be transmitted, the cell discard rate can be reduced.
  • the scheduling means may include a virtual timer separately for the plurality of cells having the same scheduled cell transmission time, the timer being configured to stop timing until transmission of all cells is completed. You can also.
  • a memory area for accommodating the connection identifier information for a plurality of connections having the same scheduled cell transmission time, a boyne area provided for the memory area and indicating a pointer value assigned to the memory area; And a means for holding a leading pointer value and a trailing void value of an empty memory area of the simultaneous arrival connection list.
  • the means for scheduling may include a means for displaying a plurality of scheduled cell transmission times in advance.
  • the number of stored cells for each connection May be provided.
  • the connection information may include priority information on the cell transmission order.
  • control unit includes a unit that measures a cell flow rate, a unit that compares the measured cell flow rate with a threshold, and a restriction information including a cell flow restriction rate according to the comparison result.
  • a table for holding cell transmission speeds of a plurality of cell sources, and a multiplier for multiplying the regulation rate and the cell transmission speed, wherein the means for notifying the communication terminal serving as the originating terminal includes:
  • the configuration may be such that the value of the regulated cell transmission rate is notified.
  • the calling terminal can receive the cell transmission speed as the restriction information, so that the communication terminal does not need to calculate the cell transmission speed from the restriction rate.
  • a cell buffer for temporarily storing cells may be provided, and the measuring unit may be configured to measure the cell flow rate from the number of cells stored in the cell buffer.
  • the means for comparing may include a means for observing a change in the comparison result over a certain period of time.
  • a plurality of the regulation rates are set (R, R ', R ⁇ ), and the plurality of regulation rates are set in a stepwise manner according to the observation result of the means for observing the change. It can also be applied to
  • the plurality of regulation rates R, R ', R "at this time are respectively
  • R ' R / 1 (A 1> ⁇ 0> 1)
  • the average cell loss rate is calculated from the peak speed and the average speed of all the set connections, and the sum of the average speeds of all the connections divided by the link capacity is used as the first safety factor. Divided by the average speed as the second safety factor, the first safety factor and the second safety factor multiplied by the average cell loss as the cell loss rate for each connection, It may be controlled so that the connection request of the connection is accepted only when the largest cell loss of the cell satisfies a certain reference value.
  • the cell loss rate CLRi for call type i is strictly given by Equation 1.
  • the term x / y indicates the ratio of call type i to the overflow when the cell rate from all connections exceeds the VP bandwidth.
  • the denominator is C at the minimum
  • the numerator is ri because the numerator is at the maximum when the connection in question is at the maximum.
  • XZy ⁇ r! Therefore, (z—c) + dx dz
  • Equation 2 Equation 2
  • Equation 2 is derived as a safe approximation of the cell loss rate of call type i.
  • Equation 1 requires a convolution operation for each call type, and as the number of call types increases, enormous calculations are required when calculating the cell loss rate for each call type by CAC.
  • the convolution operation needs to be performed only once to find the average cell loss rate CL RAVE , but the cell loss rate for each call type is safe to the average cell loss rate. Since it is only necessary to multiply by a coefficient, the calculation can be greatly reduced compared to the conventional method. In particular, the greater the number of call types in a multimedia environment, the more significant the effect obtained by this control means.
  • control means includes means for judging whether or not to accept the connection according to the cell loss rate for the connection request from the communication terminal.
  • This judgment means is means for calculating the cell loss rate CLRi of the i-th group. And means for permitting connection acceptance of a group satisfying the cell loss rate CLRi.
  • the means for calculating the cell loss rate CLRi classifies the plurality of connection requests into i groups according to the peak speed and the average speed for the plurality of connection requests, and calculates an average for all of the plurality of connection requests.
  • the cell loss rate is CLR AVE
  • the sum of the average rates is a all
  • the VP bandwidth is c
  • the peak rate of group i is ri
  • the average rate is a
  • the cell loss rate CLRi of the i-th group is
  • Multiple cells scheduled in the same slot (time) can be transferred.
  • the throughput of the ATM communication network can be improved.
  • the congestion state can be quickly reduced.
  • the responsiveness of CAC can be improved by calculating the cell loss ratio for each call type with a simple calculation. There is an effect that smooth call admission control can be performed.
  • FIG. 1 is an overall configuration diagram of the first embodiment of the present invention.
  • FIG. 2 is a block diagram of a main part of an exchange accommodating a communication terminal on the calling side.
  • Fig. 3 is a block diagram of the exchange that relays and the exchange that accommodates the destination communication terminals.
  • FIG. 4 is a flowchart showing the operation of the exchange accommodating the communication terminal on the calling side.
  • FIG. 5 is a configuration diagram of a main part of an ATM communication network according to a second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a band use state before the control of the second embodiment of the present invention is performed in the ATM communication network configuration.
  • FIG. 7 is a diagram showing the operation of the second embodiment of the present invention and a change in the used bandwidth amount due to the operation.
  • FIG. 8 is a flowchart showing the operation of the exchange in the second embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a main part of an ATM communication network according to a third embodiment of the present invention.
  • FIG. 10 is a diagram showing the used bandwidth amount of each communication terminal at a certain time.
  • FIG. 11 is a diagram showing the relationship between the maximum cell transmission rate and the minimum cell transmission rate of the transmission rate from the originating communication terminal and the threshold value in the third embodiment of the present invention.
  • FIG. 12 is a diagram showing the relationship between the available bandwidth and the threshold in the third embodiment of the present invention.
  • FIG. 13 is a flowchart of an algorithm for notifying congestion to each communication terminal by the exchange.
  • FIG. 14 is a diagram showing the relationship between the amount of available bandwidth, the transmission rate of the communication terminal, and the content of notification of congestion at that time.
  • FIG. 15 is an overall configuration diagram of an ATM communication network according to a fourth embodiment of the present invention.
  • FIG. 16 is a diagram showing the relationship between the available bandwidth and the threshold in the fourth embodiment of the present invention.
  • FIG. 17 is a flowchart of an algorithm for controlling the transmission rate of each communication terminal on the calling side by the exchange.
  • FIG. 18 is a diagram showing the relationship between the maximum value of the buffer usage, the transmission rate of the communication terminal on the calling side, and the content of notification of congestion at that time.
  • FIG. 19 is an overall configuration diagram of the sixth embodiment of the present invention.
  • FIG. 20 is a diagram showing the flow of control by the exchange.
  • FIG. 21 is an overall configuration diagram of the seventh embodiment of the present invention.
  • FIG. 22 is an overall configuration diagram of an ATM communication network according to an eighth embodiment of the present invention.
  • FIG. 23 is a block diagram of a dynamic rate control device according to an eighth embodiment of the present invention.
  • FIG. 24 is a configuration diagram of a main part of the eighth embodiment of the present invention.
  • FIG. 25 is a diagram showing a cell write operation to a cell buffer.
  • FIG. 26 is a diagram showing the connection list rearrangement processing.
  • FIG. 27 is a diagram showing the connection list rearrangement processing.
  • FIG. 28 is a diagram illustrating an operation of extracting a cell from the cell buffer.
  • FIG. 29 is a configuration diagram of a main part of the ninth embodiment of the present invention.
  • FIG. 30 is a configuration diagram of a main part of a tenth embodiment of the present invention.
  • FIG. 31 is a configuration diagram of a main part of the eleventh embodiment of the present invention.
  • Figure 32 shows the operation of writing the connection identifier to the simultaneous arrival connection list.
  • FIG. 33 shows the operation of writing the connection identifier into the simultaneous arrival connection list.
  • FIG. 34 is a diagram showing an operation of extracting the connection identifier from the simultaneous arrival connection list.
  • FIG. 35 is a flowchart showing the operation of the eleventh embodiment of the present invention.
  • FIG. 36 is a configuration diagram of a main part of a twelfth embodiment of the present invention.
  • FIG. 37 is a block diagram of a thirteenth embodiment of the present invention.
  • FIG. 38 is a configuration diagram of a main part of the fourteenth embodiment of the present invention.
  • FIG. 39 is a block diagram of a dynamic rate control device according to a fifteenth embodiment of the present invention.
  • FIG. 40 is a flowchart showing the operation of the dynamic rate control device according to the fifteenth embodiment of the present invention.
  • FIG. 41 is a diagram showing the operation of the fifteenth embodiment of the present invention in relation to the cell flow rate; I and time.
  • FIG. 42 is a diagram showing the operation of the fifteenth embodiment of the present invention in relation to the cell flow rate ⁇ and time.
  • FIG. 43 is a block diagram of a dynamic rate control device according to a sixteenth embodiment of the present invention.
  • FIG. 44 is another block diagram of the dynamic rate control device of the sixteenth embodiment of the present invention.
  • ⁇ FIG. 45 is a block diagram of the dynamic rate control device of the seventeenth embodiment of the present invention.
  • FIG. 46 is a block diagram of a dynamic rate control device according to an eighteenth embodiment of the present invention.
  • FIG. 47 is a flowchart showing the operation of the dynamic rate control device according to the eighteenth embodiment of the present invention.
  • FIG. 48 is a diagram for explaining the dynamic rate control device according to the nineteenth embodiment of the present invention.
  • FIG. 49 is a flowchart showing the operation of the congestion detection unit and the congestion control unit in the eighteenth embodiment of the present invention.
  • FIG. 50 is a flowchart showing the operation of the dynamic rate control device according to the twentieth embodiment of the present invention.
  • FIG. 51 is a diagram showing a call type management table.
  • FIG. 52 is an overall configuration diagram of a conventional ATM communication network.
  • FIG. 53 is a configuration diagram of the RM cell.
  • FIG. 54 is a flowchart showing the operation of the communication terminal on the calling side.
  • Figure 55 is a flowchart showing the operation of the destination local exchange and transit exchange.
  • Figure 56 is a flowchart showing the operation of the destination local exchange and transit exchange.
  • FIG. 57 is a flowchart showing the operation of the destination communication terminal.
  • FIG. 58 is a diagram for explaining control of a cell transmission rate in a conventional ATM communication network.
  • FIG. 59 is a diagram showing a control flow in the exchange.
  • FIG. 60 is a diagram showing a control flow in the exchange.
  • FIG. 61 is a diagram showing a control flow in the exchange.
  • Fig. 62 is a diagram showing the flow of control of the exchange when it is determined that there is no congestion.
  • C Fig. 63 is a diagram showing the call type cell loss rate and the number of connected VCs in a multiple environment.
  • FIG. 1 is an overall configuration diagram of the first embodiment of the present invention.
  • Fig. 2 is a block diagram of the main part of the exchange accommodating the communication terminal on the calling side.
  • Fig. 3 is a block diagram of the exchange that carries out the relay and the exchange that accommodates the destination communication terminal.
  • 50-1 and 50-2 are originating communication terminals
  • 20 is an exchange accommodating originating communication terminals 50-1 and 50-2
  • 3 is an exchange for relaying
  • 4 0 is an exchange accommodating the destination communication terminal
  • 5 is a transmission line
  • 60-1 and 60-2 are destination communication terminals.
  • 10 is a route information collecting unit
  • 12 is a transmission rate calculation control unit.
  • FIG. 1 is an overall configuration diagram of the first embodiment of the present invention.
  • Fig. 2 is a block diagram of the main part of the exchange accommodating the communication terminal on the calling side.
  • Fig. 3 is a block diagram of the exchange that carries out the relay and the exchange that accommodates the destination communication terminal.
  • 50-1 and 50-2
  • reference numeral 14 denotes a route information transmitting unit.
  • the present invention relates to a dynamic rate control device, in which communication terminals 50-11 and 50-2 are stored, and based on a request from one-third of the communication terminals 50-11 or 50-12.
  • a dynamic rate control device provided with means for setting a VP for one of the communication terminals 50-1 or 50-2 in the exchanges 20, 30, 40.
  • the means for setting this VP are provided in each of the exchanges 20, 30, 40, and the communication terminals 50-1, 50-22, 60-1, and 60-2. However, it is not shown because it is not a main part of the present invention.
  • the feature of the present invention is that a route including the VP free band information that is set once by designating the transmission rate for one communication terminal 50-1 or 50-2.
  • a route information collecting unit 10 as a means for collecting information; a means for holding a requested transmission rate of one communication terminal 500-1 or 50-12; and a virtual path set once based on the route information.
  • a transmission rate calculation control unit 12 as a control means for dynamically controlling the transmission rate as dynamically as possible to the requested transmission rate of the terminal and fairly controlling a plurality of communication terminals having connection requests. There.
  • the transmission rate calculation control unit 12 includes means for calculating and setting the cell transmission rates allowed for the communication terminals 50-1 and 50-12.
  • the originating communication terminals 50-1 and 50-2 communicate based on the ABR protocol.
  • the exchange 20 is capable of connecting to the originating communication terminals 50-1 and 50-2 by emulating the ABR protocol.
  • the exchanges 30 and 40 and the destination communication terminal 60-60-2 do not necessarily need to operate based on the ABR protocol. However, exchanges 30 and 40 must notify exchange 20 of the use status of the route as route information when there is a periodic or state change. Calculate the current available bandwidth based on the usage status notified to the exchange 20 and / or the transmission status of each communication terminal 50-1, 50-2, or both.
  • the operation of the exchange 20 when there is a request from the communication terminal 50-1 or 50-2, which starts transmission via, will be described with reference to the flowchart of FIG. FIG.
  • FIG. 4 is a flowchart showing the operation of the exchange 20 accommodating the communication terminals 50-1 and 50-2 on the calling side.
  • New transmission from communication terminal 5 0-1 or 5 0-2 When a transmission start request is received (S70), a value obtained by multiplying the available bandwidth by a constant C (0 ⁇ C ⁇ 1) is set as the initial transmission rate ICR (S71).
  • the constant C is a parameter set to prevent the information at the time of acceptance from being out of the current state and setting an incorrect transmission rate.
  • the ICR is smaller than the minimum transmission rate MCR (Minimimi Cell Rate) required from the originating communication terminal 50-50 (S 72), it is dangerous to accept it as it is, so the originating terminal It is necessary to perform negotiation (negotiation) again with the communication terminals 501-1 and 50-2, and it is not accepted in this state (S73). If the ICR is equal to or larger than the MCR (S72), transmission by the ICR is permitted (S74). According to the first embodiment of the present invention, it is instantaneously determined whether or not a transmission start request from a new calling communication terminal 50-1 or 50-2 is permitted, and the accepted calling communication terminal 50-1 is accepted. , 50-2 powers, etc. can be allowed to send on ICR.
  • MCR Minimum Transmission Rate
  • FIG. 5 is a configuration diagram of a main part of the ATM communication network according to the second embodiment of the present invention, where 50-1, 50-2.50-3 are originating communication terminals that perform communication according to the ABR protocol, and 2 is each of the communication terminals.
  • FIG. 6 is a diagram showing a band use state before the control of the second embodiment of the present invention is applied in the ATM communication network configuration of FIG. In FIG.
  • Wt 0 ta 1 is the total bandwidth of the route
  • Wa is the free bandwidth of the route
  • W 1 is the used communication terminal 50-1-1
  • W 2 is the calling communication terminal 50.
  • -2 indicates the used bandwidth
  • W3 indicates the used bandwidth of the calling communication terminal 50-3.
  • the originating communication terminal 50-3 after transmitting the first RM cell at time t0, the originating communication terminal 50-3 immediately starts transmitting data overnight at the initial transmission rate ICR indicated by W3.
  • FIG. 7 is a diagram showing the operation of the second embodiment of the present invention and a change in the used bandwidth amount due to the operation.
  • the value obtained by multiplying the available bandwidth Wa by a constant C (0 ⁇ C ⁇ 1)
  • an RM cell notifying that no congestion has occurred in the exchange 20 is sent.
  • the originating communication terminal 50-3 receives the RM cell at time t1, and increases the transmission rate.
  • the exchange 20 further generates and transmits an RM cell.
  • FIG. 8 is a flowchart showing the operation of the exchange 20 in the second embodiment of the present invention.
  • the exchange 20 does not congest the communication terminal 50-1-53 of the caller. (S83), and the communication terminals 50-1 to 50-3 on the calling side increase the transmission rate by the unit increment.
  • the unit increment is set in advance, and the unit increment is determined only by the exchange 20.
  • the transmission rate of the originating communication terminal 50-1 to 50-3 can be increased step by step at a high speed in order to increase the number at once.
  • FIG. 9 is a configuration diagram of a main part of an ATM communication network according to a third embodiment of the present invention.
  • originating communication terminals 50-1 to 50-4 are originating communication terminals that communicate according to the ABR protocol
  • 2 is an exchange that emulates the ABR protocol for each communication terminal
  • 3 Is part of the route shared by each communication terminal.
  • Figure 10 is a diagram showing the bandwidth used by each communication terminal at a certain point in time, where Wa is the free bandwidth on the route and Wl, W2, W3, and W4 are the calling side Indicates the amount of bandwidth used by the communication terminals 50-1 to 50-4.
  • Wa is the free bandwidth on the route
  • Wl, W2, W3, and W4 are the calling side Indicates the amount of bandwidth used by the communication terminals 50-1 to 50-4.
  • FIG. 10 is a diagram showing the relationship between the amount of free space and the threshold value Wth k Wth 2. Wth 3 in the third embodiment of the present invention.
  • FIG. 13 is a flowchart of an algorithm for performing notification of radiation to each communication terminal by the exchange 20.
  • FIG. 14 is a diagram showing the relationship between the amount of available bandwidth, the transmission rate of the communication terminal, and the content of notification of congestion at that time.
  • the exchange 20 monitors the amount of available bandwidth and compares the value with the threshold values Wth1, Wth2, and Wth3. When the vacant band amount Wa is smaller than the threshold value Wth1 (S91), the congestion is notified to all the communication terminals 50-1-50-4 on the calling side (S92).
  • the communication terminal having the transmission rate equal to or greater than the threshold value Rth1 is notified of congestion (S94).
  • the available bandwidth Wa is equal to or larger than the threshold Wth2 and smaller than the threshold Wth3 (S95)
  • the communication terminal having the transmission rate equal to or lower than Rth2 is notified of no congestion (S96).
  • the available bandwidth W a is equal to or greater than the threshold value Wth 3 (S97)
  • all the communication terminals 50-1-50-4 on the calling side are notified of no congestion (S98). Then, as shown in FIG.
  • the congestion information is transmitted to the communication terminals 50-1 to 50-4 on each calling side by generating and transmitting RM cells.
  • Each of the communication terminals 50-1 to 50-4 on the calling side has an opportunity to increase the transmission rate when receiving notification of no congestion according to the ABR protocol. Conversely, if it is notified that there is congestion, it lowers the transmission rate.
  • the timing of notifying congestion to the communication terminals 50-1 to 50-4 on the calling side differs according to the transmission rate and the available bandwidth before the change.
  • the transmission rate is increased at a high speed.
  • the bandwidth starts to run short, the transmission rate is reduced, although the rate is high. This has the effect of lowering the overall transmission rate. In either case, this function can be realized without the RM cell going back and forth between the originating and terminating communication terminals.
  • FIG. 15 is an overall configuration diagram of an ATM communication network according to a fourth embodiment of the present invention.
  • 5 0—1 to 5 0—4 is the originating communication terminal
  • 2 is the exchange that accommodates the originating communication terminals 50-1 through 50-4
  • 30 is the exchange that relays
  • 40 is the destination exchange.
  • 5 is a transmission line
  • 60-1 to 60-4 are destination communication terminals.
  • the configuration of the fourth embodiment of the present invention will be described with reference to FIG.
  • the communication terminals 50-1 to 50-4 on the calling side perform communication based on the ABR protocol.
  • the exchange 20 enables connection by emulating the ABR protocol to the communication terminal 50-1-50-50-4 on the calling side.
  • the exchanges 30, 40 and the destination communication terminal 60-1-6-0-4 do not necessarily need to operate based on the ABR protocol.
  • the exchanges 30 and 40 notify the number of cells stored in the respective queue buffers when the originating exchange 20 changes periodically or when the situation changes.
  • the switch 20 determines the current use status based on the notified queue buffer length and the number of cells stored in the queue buffer of the switch 20.
  • FIG. 11 shows the maximum cell transmission rate (PCR) and the minimum cell transmission rate (MCR) in the fourth embodiment of the present invention, and the thresholds R thl and R ⁇ h 2 and each communication.
  • PCR maximum cell transmission rate
  • MCR minimum cell transmission rate
  • FIG. 11 shows the maximum cell transmission rate (PCR) and the minimum cell transmission rate (MCR) in the fourth embodiment of the present invention, and the thresholds R thl and R ⁇ h 2 and each communication.
  • PCR maximum cell transmission rate
  • MCR minimum cell transmission rate
  • FIG. 17 is a flowchart of an algorithm for controlling the transmission rate of each communication terminal 50-1-50-4 on each calling side by the exchange 20.
  • Ou This is the largest value among the buffer usages notified to the exchange 20.
  • the exchange 20 compares Q u with threshold values Q thl, Q th2, and Q th3. When the maximum value Qu of the buffer usage is equal to or larger than the threshold value Qth3 (S101), congestion is notified to all the communication terminals 50-1 to 50-4 on the calling side (S102).
  • the congestion information is transmitted to each calling communication terminal 50-1-50-4 by generating and transmitting an RM cell.
  • Each of the communication terminals 50-1 to 50-4 on the calling side has an opportunity to increase the transmission rate when notified of no congestion according to the ABR protocol. Conversely, when receiving notification that there is congestion, lower the transmission rate.
  • the timing at which congestion is notified to the communication terminals 50-1 to 50-4 on the calling side differs according to the transmission rate before the change and the buffer length used in common.
  • the effect is to shift the overall transmission rate to a higher transmission rate, and the variation in the transmission rate is reduced, resulting in fairness among the originating communication terminals 50-1-50-4.
  • This has the effect of increasing the transmission rate at a high speed, especially for low transmission rates.
  • the bandwidth or buffer length starts to run short, the transmission rate is reduced while the transmission rate is high, and if the bandwidth or buffer length runs short, the overall transmission rate is lowered. In any case, this function can be realized without the RM cell going back and forth between the communication terminals that send and receive.
  • the exchanges 30 and 40 and the destination communication terminal 60-1-6-0-4 voluntarily use the RM cell. May be sent.
  • the RM cell describes that there is no congestion
  • the exchange 20 performs the operation of lowering the transmission rate of the communication terminal 50-1-50-4 on the calling side, it returns.
  • the opposite operation is required by the incoming RM cell. Therefore, in the fifth embodiment of the present invention, even if RM cells for the communication terminals 50-1 to 50-4 on the originating side arrive from other sources, they are discarded in the exchange 20. By doing so, it is possible to prevent erroneous transmission rate control by an RM cell having erroneous congestion information.
  • FIG. 19 is an overall configuration diagram of the sixth embodiment of the present invention.
  • the description focuses on the connection 70-0-1 to 70-3 between the communication terminals 50-1 to 50-13 sharing the transmission path 5 and the communication terminals 60-1 to 60-3.
  • the communication terminals 50-1 and 60-1; 50-2 and 60-2; 50-3 and 40 are exchanges 20 to 40 connected to each other via the transmission line 5.
  • the exchanges 20 to 40 controls a switching unit 301 that performs circuit switching, controls this switching unit 301, and controls the switching units 310 to 1 to 70 to 3 on the originating side.
  • the control unit 302 that collects information on the entire bandwidth and the entire input bandwidth of the line 5 and the number of connections that share the transmission line 5, and a memory that holds the information collected by the control unit 302 Based on the information held in the storage unit 303 and the storage unit 303, an acceptable transmission rate to be notified to the originating communication terminal 50-1-500-13 is calculated for each connection. And an operation unit 304.
  • the originating communication terminals 50-1 to 50-3 generate control cells at intervals of a fixed number of cells, and transmit the cells to the destination communication terminals 60-1-60-3.
  • the control cell is provided with a CCR field for notifying the allowable transmission rate of each connection 70-1-70-3 and an ER field for notifying the acceptable transmission rate.
  • FIG. 20 is a diagram showing the flow of control by the exchange, showing the calculation of an acceptable transmission rate.
  • the exchange 30 will be described as an example.
  • the maximum and minimum allowable transmission rates are determined by negotiation with the communication network at the time of call connection.
  • the maximum value is represented by PCRj (Peak Cell Rate), and the minimum value is represented by MCR ”(Minimum Cell Rate).
  • switch 30 actual transmission rate and the allowable transmission rate to each connection 70 _ 1 70 - 3, i.e. ccr, a rate,, the ccr 2 and rate 2, ccr 3 and rate 3
  • the actual transmission rate ratej is more than a certain percentage of the allowable transmission rate, that is, rat ej ⁇ cc rj 'G (G is a constant of 0 or more and 1 or less) (S 1 1 1)
  • the allowable transmission rate is less than a certain ratio
  • the requested cell rate of the connection is regarded as MCRj (S112).
  • the formula for updating ERQj is the variance of the ratio of the allowed transmission rate to the requested rate of each connection 70-1 to 70-3.
  • ccrj and r are the allowable transmission rate and request rate of connection j, respectively
  • n is the data transmission connection 70 1 1 to 70
  • the number 3 hi and j are weight functions
  • sign ⁇ is a function representing the sign of the value in ⁇ .
  • a positive constant value that differs for each connection 70-1 to 70-3. w is reduced less a function of the total input bandwidth of the transmission path connection 70- 1 ⁇ 70- 3 to share, for example, the connection 70 to 1 to 70 - 3 full and total bandwidth B al l of the transmission line 5 to be shared Function with input bandwidth B use
  • p 2 is a constant for preventing the denominator from becoming zero
  • p is a correction constant for p 2
  • p 3 is a constant for setting the swing width
  • w is a function of the total input bandwidth B use of the transmission line 5 shared by the connection.
  • the exchange 30 further receives the newly calculated acceptable transmission rate from the acceptable transmission rate written in the ER field of the control cell returned by the destination communication terminal 60-1 to 60-3.
  • the transmission rate is low, the ER field is rewritten to the newly calculated value; otherwise, the control cell is relayed next without rewriting, and the caller's communication terminal 50-1-50-3 is notified. I do.
  • the communication terminal on the originating side of the connection j generates a control cell, it is assumed that "CR of connection j" is written in the ER field.
  • FIG. 21 is an overall configuration diagram of the seventh embodiment of the present invention. Only the exchange 20 calculates the acceptable transmission rate.
  • the exchanges 20 to 30 connected to each other via the transmission line 5 and the connections 70-1 to 70-3 via these exchanges 20 to 30 are connected to each other and are variable. Equipped with communication terminals 50-1 to 50-3 and 60-1 to 60-3 for transmitting and receiving information at the transmission rate, and directly accommodates communication terminals 50-1 to 50-3 When the communication terminal 50 0-1 to 50-3 accommodated on the exchange 20 becomes the originating side, the exchange rate regarding the transmission rate acceptable for the communication terminal 50-1 to 50-3 is determined.
  • a control unit 302 for notifying information is provided.
  • the exchange 20 has a plurality of connections that share a route with the communication terminals 70-1 through 70-3 that have the communication terminals 50-1 through 50-3 accommodated therein.
  • a storage unit that collects and retains information on the allowable transmission rate and actual transmission rate allowed for the network, the allowable route bandwidth and total input bandwidth, and the number of connections sharing the route.
  • 3 and an arithmetic unit 304 that calculates an acceptable transmission rate to be notified to the terminal for each connection based on the information held in the storage unit 303.
  • the exchange 20 rewrites the control cell arriving from the communication terminal 50-1-50-13 with an acceptable transmission rate newly calculated by the exchange 20 and returns the original Return to communication terminal 5 0—1 to 5 0—3. As a result, an acceptable transmission rate is notified to the communication terminal 50-1-50-3 on the calling side.
  • an acceptable transmission rate is notified to the communication terminals 50-1 to 50-3, but the communication terminals 50-1 to 50-13 raise or lower the allowable transmission rate.
  • the communication terminal 50-1-50-13 can also increase or decrease its own allowable transmission rate according to a predetermined calculation formula. For example, if the acceptable transmission rate newly calculated by the exchange becomes smaller than the current allowable transmission rate used in the calculation, congestion may occur in the control cell returned by the destination communication terminal. It writes the fact and notifies the calling communication terminal of it. The originating communication terminal may reduce the allowable transmission rate automatically when congestion is notified.
  • FIG. 22 is an overall configuration diagram of the ATM communication network according to the eighth embodiment of the present invention.
  • FIG. 23 is a block diagram of a dynamic rate control device according to an eighth embodiment of the present invention.
  • FIG. 24 is a configuration diagram of a main part of the eighth embodiment of the present invention.
  • the eighth embodiment of the present invention is provided in an ATM communication network as shown in FIG. 22, and as shown in FIG. 23, as shown in FIG. 23, an input terminal IN from which a cell stream arrives, and a cell for temporarily storing the arrived cell.
  • This is a dynamic rate control device including a buffer CB and a traffic shaving unit TS that reads cells from the cell buffer CB in accordance with a designated cell transmission interval.
  • a feature of the present invention is that, as shown in FIG. 24, a connection table CT holding connection information including a connection identifier (VPI / VCI) as an address and the cell transmission interval Int is used.
  • the cell buffer CB includes a plurality of memory areas C e11 in which cells are accommodated one by one, a pointer area P tr indicating a pointer value corresponding to the memory area C e11 and the connection table CT, and Is included.
  • the eighth embodiment of the present invention provides a common cell buffer CB and a cell buffer CB for storing cells of all connections, a cell transmission interval Int for each connection stored in the cell buffer CB, and a cell buffer CB of a chain in the order of arrival of cells. It consists of a connection table CT having the first and last addresses in the table, and reads the cells of each connection from the cell buffer CB according to a predetermined scheduling rule.
  • the connection table CT is a table holding information for each connection, and has a token Tk for each c connection, a cell transmission interval Int, a pointer head head, and a pointer tile tai1.
  • the token Tk indicates that the cell arriving after the connection has the right to be transferred at the time of arrival.
  • the cell transmission interval Int is the c pointer indicating the minimum cell transmission interval Int that must be held by the connection.
  • the head and the pointer tilt tai 1 are the link relation to the cell buffer CB (Fig. 24 (1) ), (2) arrow, and holds the address where the cell at the head (arrow (1)) and the end (arrow (2)) of the connection is held.
  • FIG. 25 is a diagram showing a cell write operation to the cell buffer CB.
  • Fig. 25 shows the chain of empty cells in the cell buffer. The start address of the empty cell chain is assigned to the arrival cell by replacing the CB free pointer.
  • FIGS. 26 and 27 show the process of rearranging the connection list at this time.
  • FIG. 26 and FIG. 27 show the connection list rearrangement processing.
  • the address of the cell arriving at the end of the cell chain of the connection in the cell buffer CB is added. As shown in Fig. 27, if there is no chain in cell buffer CB, a new chain is created.
  • FIG. 2 8 shows a case of taking a cell a certain connection from the cell buffer CB 2 8 is a diagram showing an operation of taking out the cell from the cell buffer CB.
  • Figure 28 Extracts the first cell in the cell chain of the corresponding connection in the cell buffer CB and replaces the pointer head.
  • the cell buffer CB is a common buffer for cells of all connections, and logically configures a FIFO queue for each connection.
  • the CB free pointer holds the addresses of the head (arrow (3)) and the end (arrow (4)) of the empty area of the cell buffer CB.
  • Cell buffer CB and CB free pointer are used in combination.
  • the cell buffer CB is composed of a memory area Ce11 holding the contents of the cell and a pointer area Ptr for instructing the order of reading the cells for each connection as one entry.
  • a list of cells for each connection is logically configured according to the reading order indicated by the pointer.
  • the cell buffer CB is addressed at the address (arrow (1)) indicated by the head head of the connection in the connection table CT, and the address of the cell buffer CB at that address is determined.
  • the connection table CT holds the last address of the list of the connection in the cell buffer CB as link information in the pointer tile t ai1 (arrow (2)).
  • the free area is also logically configured as a list, as in the case of each connection.
  • the start and end addresses of the free area of the cell buffer CB are stored in the pointer head head (arrow (3)) of the CB free pointer and the pointer tile tai1 (arrow (4)). That is, the pointer head head indicates the address to be used next as an empty area (arrow (3)), and the pointer of the address in the cell buffer CB indicates the address to be used as the next empty area.
  • the CB free pointer holds the address at the end of the list of free areas held in the cell buffer CB as link information in the pointer tile t ai1 (arrow (4)).
  • FIG. 29 shows a ninth embodiment of the present invention.
  • FIG. The ninth embodiment of the present invention includes, in addition to the configuration of the eighth embodiment of the present invention, a scheduling table ST having a correspondence between time and connection and a timer Tim.
  • the timer Tim is a timer indicating the current time.
  • the cell of the connection described in the scheduling table ST is read.
  • the read time of the cell next to the connection is scheduled. That is, the connection is described in the entry of the scheduling table ST after the current time indicated by the timer Tim by the cell interval of the connection (described in the cell transmission interval Int field of the connection table CT).
  • FIG. 30 is a configuration diagram of a main part of a tenth embodiment of the present invention.
  • the tenth embodiment of the present invention has a plurality of fields for allocating a plurality of connections at the same time to the scheduling table ST of the ninth embodiment of the present invention.
  • a virtual timer HT Im indicating a virtual time is provided.
  • the value of the virtual timer HT im is used to indicate a predetermined address of the scheduling table ST. Evening time T im always indicates the current time accurately, while virtual reading time HT im is read while reading a plurality of scheduled cells from cell buffer CB so that scheduling uling table ST reads out at the same time. Keeps showing the same time.
  • FIG. 31 is a configuration diagram of a main part of the eleventh embodiment of the present invention.
  • the head and the end of the list of free addresses of the connection table CT, the cell buffer CB, and the cell buffer CB are used.
  • CB free pointer that holds the address, the scheduling table ST, the timer Tim that indicates the current time, the virtual timer HT im that indicates the virtual time, the simultaneous arrival connection list SL, and the beginning and end of the list of free addresses in the simultaneous arrival connection list SL It consists of an SL free pointer that holds the address of the SL.
  • the scheduling table ST is a table for scheduling cell reading.
  • the scheduling table ST stores a pointer to the simultaneous arrival connection list SL, which is a list that holds connection identifiers scheduled to be read from the cell buffer CB at the same time, and a head, a boyne till tai 1 and a time. It is managed as a pair.
  • the pointer head head and pointer 1 show the link relationship to the simultaneous arrival connection list SL (arrows (20) and (21) in Fig. 31), and read from the cell buffer CB at that time. Hold the identifiers of the leading and trailing cells.
  • a virtual timer HT Im indicating a virtual time is provided in addition to a timer Tim indicating the current time.
  • the value of the virtual timer HT im is used to indicate a predetermined address of the scheduling table ST.
  • the virtual timer HT im is the same while reading from the cell buffer CB a plurality of cells scheduled so that the simultaneous arrival connection list SL reads at the same time.
  • the simultaneous arrival list SL forms a chain of scheduled connections that will be read from the cell buffer CB at the same time. This makes it possible to flexibly increase the number of connections scheduled at the same time.
  • the configuration of the chain is the same as that of configuring the FIF queue for each connection with a common cell buffer CB. That is, the SL free pointer holds the start and end addresses of the free area of the simultaneous arrival connection list SL.
  • C simultaneous arrival connectionist Chillon list SL used in combination simultaneous arrival connectionist Chillon list SL and SL free pointer is a list which holds the connection identifier of the cell, the connector to be read from the cell buffer CB the connection identifier and the same time
  • a participant (indicated by (22) and (23) in Fig. 31) for indicating the order relation of the application identifiers is configured as one entry.
  • the simultaneous arrival connection list SL a list of connection identifiers of cells scheduled so as to be logically read out at the same time in the read order specified by the pointer is configured.
  • the simultaneous arrival connection list SL is addressed at the address indicated by the pointer head “head” of the virtual evening image HT im (arrow (20) in FIG. 31), and the simultaneous arrival connection is obtained.
  • the list SL is sequentially read at the address indicated by the busty evening at that address (arrows (22) and (23) in Fig. 31), and the cells scheduled to be read at that time are read. Connection identifiers can be accessed in the order in which they are read.
  • the virtual evening image HT im stores the last address ((21) in FIG. 31) of the corresponding time list on the simultaneous arrival connection list SL as pointer information in the pointer tile tai1.
  • the free area is also logically composed of a list, as in the case of each time.
  • the start and end addresses of the free area of the simultaneous arrival connection list SL are stored in the SL free pointer pointer head ((20) in Fig. 31) and the pointer tail ((21) in Fig. 31). You. That is, the pointer head indicates the address to be used next as an empty area, and the pointer of the address in the simultaneous arrival connection list SL indicates the address to be used as the next empty area.
  • the SL free pointer holds the address at the end of the free area list held in the simultaneous arrival connection list SL in pointer pointer tai 1 ((21) in FIG. 31) as link information.
  • Figures 32 and 33 show the case where the connection identifier of the cell scheduled at a certain time is written in the simultaneous arrival connection list SL.
  • FIGS. 32 and 33 show the operation of writing the connection identifier into the simultaneous arrival connection list SL.
  • Figure 32 shows the case where a newly scheduled connection is added to the beginning and the end of the chain.
  • Figure 34 shows a case where connection identifiers scheduled at a certain time are retrieved from the simultaneous arrival connection list SL.
  • FIG. 34 is a diagram showing an operation of extracting the connection identifier from the simultaneous arrival connection list SL.
  • Fig. 34 shows how the connection identifier is extracted from the beginning of the chain.
  • connection identifiers scheduled at the same time are read out on a first-come, first-served basis.
  • connection identifiers scheduled at the same time are included in the list later as the cell interval is shorter, so that the shorter the cell interval, or conversely, the faster the cell rate, the later the scheduling.
  • connection identifier scheduled at the same time is read out in the LIFO order. In this way, faster connections will be read faster. If the position where the connection identifier is to be incorporated for each connection is determined at the same time, either pointer pointer tai 1 or pointer head in the list of connection identifiers scheduled at the same time, the connection can be classified into two classes. Can be classified as In other words, two classes of connections scheduled at the same time can be created: those scheduled first and those scheduled later.
  • FIG. 35 is a flowchart showing the operation of the eleventh embodiment of the present invention. Determination of the connection from which to read the cell (S122), reading of the cell of the connection (S122), scheduling of reading the cell next to the connection (S122), Processing is performed in the order of writing of the arriving cell to the FIFO queue in the cell buffer CB (S124).
  • Necessary processing upon arrival of a cell is writing of the cell into the cell buffer CB and determining whether or not there is transfer scheduling of the cell.
  • the process of writing a cell into the cell buffer CB differs depending on whether or not the connection list of the cell is already in the cell buffer CB. If the connection list does not exist, a new connection list is first created in the cell buffer CB. Further, the cell is written into the empty area of the cell buffer CB. This procedure has been described in detail with reference to FIG. Next, a new logical relationship of the connection list is created on the cell buffer CB. This procedure is also described in detail with reference to FIGS. 26 and 27.
  • the presence / absence of cell transfer scheduling is determined by whether or not the connection of the cell has the token T k.
  • the connection table CT is searched based on the connection identifier included in the header.
  • the transfer scheduling of the cell is not performed at that time, and the scheduling is performed at the time when the last cell of the connection at that time is transferred. This will be described in detail in the section on cell read processing.
  • addressing is performed using the timer Tim indicating the current time, and the scheduling table is searched. Subsequent processing differs depending on whether or not there are already scheduled connections at that time. If there is no scheduled connection, the following processing is executed, and a list of cells that are to be transferred at the current time indicated by the timer Tim is newly created on the simultaneous arrival connection list SL. . First, the connection identifier is written to an empty area of the simultaneous arrival connection list SL. Next, a new logical relationship is created between the simultaneous arrival connection list SL and the list of cells to be transferred at the current time indicated by the timer Tim. This procedure is as described in detail with reference to FIGS. 32 and 33.
  • the following processing is executed, and the list of cells that are to be transferred at the current time indicated by the timer Im on the simultaneous arrival connection list SL is changed. .
  • the connection identifier is written in an empty area of the simultaneous arrival connection list SL.
  • the logical relationship of the list of cells to be transferred at the current time indicated by the timer Tim on the simultaneous arrival connection list SL is changed. This procedure is also described in detail with reference to FIGS. 32 and 33.
  • the corresponding cell is scheduled to be scheduled at the current time indicated by the timer Tim, and the virtual timer processing the scheduling ring table ST. If the virtual time indicated by HT im is late, the user may want to transfer the cell. In this case, the scheduling table ST is addressed at the time indicated by the virtual timer HTim, and the connection identifier of the cell is added to the head of the list indicated by the pointer head head of the address.
  • the necessary processing for reading a cell is determining the connection to read the cell, reading the cell, and scheduling the next cell.
  • the determination of the connection differs depending on whether or not there is a cell to be transferred at the virtual time indicated by the virtual timer HT im. If there is no cell to be transferred, the virtual timer HT im is advanced by one unit time, and each time, it is checked whether there is a cell to be transferred at that time. The virtual timer HT im advances faster than normal until a cell to be transferred is found. Only for a predetermined time If it cannot be found further, give up reading the cell. To execute this process more efficiently, the concept of a list may be introduced into the scheduling table ST. This will be described in the section on processing performed within one unit time.
  • the subsequent processing is the same as when there is a cell to be transferred. If there is a cell to be transferred, determine the connection to be read at this time. In other words, the connection identifier scheduled at this time is extracted from the simultaneous arrival connection list SL. This procedure has been described in detail with reference to FIG.
  • the cell of the connection is read from the cell buffer CB.
  • the process of reading a cell from the cell buffer CB differs depending on whether or not the cell of the connection is in the cell buffer CB. Access the connection table CT based on the previously determined connection identifier.
  • the cell of the connection becomes the sink buffer CB.
  • only the token Tk of the connection table CT is set, and the cell reading from the cell buffer CB is not executed.
  • the cell of the connection is in the cell buffer CB, the cell is taken out. This processing is as described in detail in the section of the cell buffer CB earlier.
  • the scheduling process of the next cell differs depending on whether or not the token Tk of the connection is set. Access the connection table CT based on the previously determined connection identifier.
  • the scheduling of the connection is performed the next time the cell of the connection arrives. This is as described in detail in the section on the cell arrival processing.
  • the minimum cell interval Int of the connection in the connection table CT is added to the current time counted by the timer Im to transfer the next cell.
  • Schedule the connection as time. In other words, schedule so that Int + T im Addressing the scheduling table ST and adding the connection identifier to the list of connection identifiers of the cells scheduled at the time Int + Tim on the simultaneous arrival connection list SL indicated by the pointer head. This additional processing has been described in detail in the description of the simultaneous arrival connection list SL, and will not be described.
  • the cell transfer scheduling uses a timer Tim indicating the current time instead of the virtual timer HT im, so that the cell transmission interval Int of the connection concerned is more strictly than the predetermined cell transmission interval Int. Note that it does not get smaller. If the fluctuation between cells scheduled at the same time is allowed, the connection can be transferred earlier if scheduling is performed at the time of Int + HT im. Registration in the scheduling table ST is almost the same as when the token Tk is not set in the section on cell arrival processing.
  • FIG. 36 is a configuration diagram of a main part of a twelfth embodiment of the present invention.
  • One unit time is the time required to transfer a cell on the output line. Cell arrival processing and cell read processing are performed in this order within one unit time.
  • the twelfth embodiment of the present invention is to make the virtual timer HT Im indicating the address to be processed in the scheduling table ST efficiently catch up with the timer Tim indicating the current time. As described above, while the timer Im always indicates the current time accurately, while the simultaneous arrival connection list SL reads from the cell buffer CB a plurality of cells scheduled so as to be read at the same time, it is virtual. Evening time HT im keeps showing the same time.
  • the time difference between the virtual timer HT Im and the timer Tim increases. It takes time to catch up with the virtual HT im after the readout process of the cell scheduled at the time indicated by the virtual HT im is completed.
  • a pointer field is introduced into each time entry of the scheduling table ST, and a list of times at which cells should be transmitted is formed to efficiently catch up with the virtual image HT im. I have to.
  • a list of times at which cells should be transmitted is configured on the scheduling table ST, the head of the list is the address indicated by the virtual timer HT im, and the end is indicated by the tracking timer TT im Address.
  • a list of times at which cells are to be transmitted is logically constructed in a relation indicated by a pointer.
  • the scheduling table ST is addressed at the address indicated by the virtual timer HT im, and the time at which the cell is to be read out is sequentially determined by sequentially manipulating the address list indicated by the pointer at the address of the virtual timer HT im. You can access it.
  • the virtual timer HT im, the tracking timer TT im, and the timer Tim both indicate the same time, but if there are a plurality of cells scheduled at the same time at a certain time, the virtual timer HT im The timer Tim precedes the delay. Even if the virtual timer HT im and the timer Tim deviate from each other, if there is no new cell arrival and the timer T im does not indicate the time when the cell was scheduled, the following timer TT im is virtual Indicates the same time as timer HT im.
  • the address indicated by the evening timer Tim is written into the pointer of the address of the scheduling table ST indicated by the following timer TTim, and the address is also indicated by the following timer TTim.
  • the same processing is performed when the timer Tim indicates the time at which the cell is scheduled, and the current time is added to the list of times at which the cell is to be read.
  • FIG. 37 is a configuration diagram of a main part of the thirteenth embodiment of the present invention.
  • the thirteenth embodiment of the present invention is to limit the number of cells in the cell buffer CB for each connection and reduce the influence of quality between connections.
  • the cell buffer CB is a common buffer, if cells of a specific connection arrive excessively, the cell buffer CB is occupied, and there is a risk that the quality of other connections may be adversely affected.
  • the thirteenth embodiment of the present invention provides a connection so that a specific connection does not occupy the cell buffer CB in such a case. This limits the number of cells that can enter the cell buffer CB for each application.
  • the Q 1 en field of the connection table CT Before writing the cell to the cell buffer CB, compare the Q 1 en field of the connection table CT with the B len field. If the Q len field is small, write the cell buffer CB and set Q 1 en to “10”. If the Q1en field is not small, prohibit writing the cell to the cell buffer CB, and read the cell from the cell buffer CB, set the value of the Q1en field to "-1".
  • the Qlen field indicates the number of cells in the cell buffer CB of the connection
  • the B1 en field indicates the number of cells in the cell buffer CB of the connection.
  • FIG. 38 is a configuration diagram of a main part of the fourteenth embodiment of the present invention.
  • the concept of priority is introduced into the scheduling of a connection.
  • connection identifiers scheduled at the same time are read out on a first-come, first-served basis.
  • connection identifiers scheduled at the same time are included in the list later as the cell transmission interval Int is shorter, so that the shorter the cell transmission interval Int, or conversely, the faster the cell speed, the later the connection identifier. Scheduled.
  • connection identifiers scheduled at the same time are read out in the order of LIF . In this way, faster connections will be read faster.
  • the connection can be made two times. They can be classified into classes. In other words, two classes of connections scheduled at the same time can be created: those scheduled first and those scheduled later.
  • the connection table CT is provided with a field Pri indicating the priority of each connection.
  • Simultaneous arrival connection list When an element is added to the list of connection identifiers scheduled at the same time on SL, if the field Pri of the connection table CT corresponding to the connection identifier of the element has high priority, the scheduling table A new element is added to the position pointed to by the pointer pointer ST of the ST, and if the priority is low, a new element is added to the position indicated by the pointer T1 of the scheduling table ST.
  • connection identifier is described in the simultaneous arrival connection list S in all the embodiments.
  • address of the connection table C T can be described instead.
  • FIG. 39 is a block diagram of the dynamic rate control device of the fifteenth embodiment of the present invention.
  • FIG. 40 is a flowchart showing the operation of the dynamic rate control device according to the fifteenth embodiment of the present invention.
  • the dynamic rate control device includes a cell flow rate measuring unit 1 as a means for measuring a cell flow rate, and a congestion detecting unit as a means for comparing the measured cell flow rate with a threshold value. 2 and a congestion notification unit 4 as means for notifying the cell generation source of the regulation information including the regulation rate of the cell flow rate according to the comparison result.
  • the feature of the dynamic rate control device of the fifteenth embodiment of the present invention is that when a cell source is in a regulated state, the measured value of the cell flow rate from that cell source is the threshold value.
  • the congestion control unit 3 is provided as means for continuing the regulation state until the flow rate falls below the set value.
  • the dynamic rate control device of the fifteenth embodiment of the present invention comprises a cell buffer 5, a cell flow measurement unit 1, a congestion notification unit 4 including a congestion detection unit 2 and a congestion control unit 3,
  • the congestion detection unit 2 detects congestion according to the cell flow rate obtained by the flow rate measurement unit 1, the congestion control unit 3 determines the start and release of regulation, and the congestion notification unit 4 determines the direction of congestion.
  • the congestion notification unit 4 determines the direction of congestion.
  • Using the RM cell that flows in the opposite direction it notifies the restriction rate R to the communication terminal of the cell source.
  • FIG. 40 shows a flowchart of the operation of the congestion detection unit 2 and the congestion control unit 3.
  • the cell flow rate measured by the cell flow rate measuring unit 1 is compared with I and the congestion detection threshold ((S 13 2). To normalize the transmission path capacity to 1.
  • the regulation rate R of the cell transmission speed from the cell source is set to 1 / s (S133). That is, by limiting the current cell transmission rate of the cell source to 1 / s or less, the bucket flow rate from the cell source is suppressed to "1" or less, and congestion is reduced.
  • FIGS. 41 and 42 are diagrams showing the operation of the fifteenth embodiment of the present invention in relation to the cell flow rate; I and time.
  • the horizontal axis represents time
  • the vertical axis represents cell flow rate ⁇ .
  • the cell transmission rate of the cell source is restricted to 1, and if the restriction is removed immediately, R times more traffic will be added and congestion will occur. Regulation is released only when the cell transmission speed from the cell source falls below 1 / R, as shown in the diagram on the left side of Fig. 42. As a result, as shown in the right side of FIG. 42, even if the traffic becomes R times after the release, the traffic does not enter the congestion state.
  • FIGS. 43 and 44 are block diagrams of a dynamic rate control device according to a sixteenth embodiment of the present invention.
  • the dynamic rate control device shown in FIG. 43 includes a cell buffer 5, a cell flow measurement unit 1, a congestion notification unit 4 including a congestion detection unit 2 and a congestion control unit 3, a speed table 6, and a multiplier 7. It is composed of
  • the speed table 6 describes the cell transmission speed transmitted by the cell source for each power connection.
  • the operations of the cell flow rate measurement unit 1, the congestion detection unit 2, and the congestion control unit 3 are the same as those in the fifteenth embodiment of the present invention, but in the sixteenth embodiment of the present invention,
  • the flowing RM cell carries the product of the regulation rate R multiplied by the multiplier 7 and the speed instead of the regulation rate R, and notifies the communication terminal of the cell source.
  • the communication terminal regulates the transmission speed based on the transmission speed mounted on the RM cell.
  • Fig. 44 shows an example in which the speed table 6 and the multiplier 7 are provided in the exchange 20.c
  • the speed table 6 does not need to be provided in the congestion control exchange 30, which is a congestion detection point, and accommodates communication terminals. What is necessary is just to install it in the exchange 20 which has been done.
  • the regulation rate R is installed while the RM cell for congestion notification is transferred in the communication network, and is converted to the bucket sending rate when transferred from the exchange 20 to the subscriber. .
  • the sixteenth embodiment of the present invention there is an advantage that it is not necessary to provide a procedure for converting the regulation rate R into a regulated cell transmission rate in the communication terminal of the cell generation source.
  • FIG. 5 is a block diagram of a dynamic rate control device according to a seventeenth embodiment of the present invention.
  • the dynamic rate control device shown in FIG. 45 includes a cell buffer 5, a cell flow measurement unit 1, a congestion detection unit 2, and a congestion notification unit 4 including a congestion control unit 3.
  • the congestion detection unit 2 detects congestion based on the state of accumulation of cells in the cell buffer 5, that is, the queue length. If the queue length exceeds the convergence detection queue length threshold, it is determined to be congested and regulation is started. The determination of the restriction release is the same as in the fifteenth and sixteenth embodiments of the present invention.
  • FIG. 46 is a block diagram of a dynamic rate control device according to an eighteenth embodiment of the present invention.
  • FIG. 47 is a flowchart showing the operation of the dynamic rate control device according to the eighteenth embodiment of the present invention.
  • the dynamic rate control device shown in FIG. 46 includes a cell buffer 5, a cell flow rate measurement unit 1, a congestion notification unit 4 including a congestion detection unit 2 and a congestion control unit 3, and a timer 8.
  • the congestion detection threshold value is continuously exceeded for a certain period of time or more, it is determined that congestion has occurred.
  • regulations will be strengthened if congestion does not stop for a certain period of time after the judgment of congestion.
  • FIG. 47 is a flowchart showing the operation of the congestion detection unit 2 and the congestion control unit 3 in the eighteenth embodiment of the present invention. If there is no congestion (S144), the bucket flow rate ⁇ measured by the cell flow rate measuring unit 1 is compared with the congestion detection threshold value ((S144). If the cell flow rate I exceeds the reference value ⁇ , it is determined that the cell is congested, and the regulation rate R of the cell sending speed from the cell source is set to ⁇ ⁇ (S143).
  • the cell transmission rate regulation rate R is defined as min (l / ⁇ ) Yes (S145).
  • the range of min is the period of RTT. That is, the maximum cell flow rate during the RTT period; the reciprocal of ax (that is, the minimum value min) is defined as the regulation rate R.
  • the bucket flow rate ⁇ is compared with the reciprocal 1 / R of the current regulation rate R (S146), and if the bucket flow rate; I is smaller, it is determined that the congestion has subsided and the regulation is released. (S147). Otherwise, the congestion state continues for more than RTT for a certain period of time Then (S148), it is determined that the congestion is large, and the regulation rate R of the cell transmission rate is strengthened to min (R / ⁇ ) (S148).
  • the range of min is the period of RTT.
  • FIG. 48 is a diagram for explaining the dynamic rate control device according to the nineteenth embodiment of the present invention.
  • FIG. 49 is a flowchart showing the operation of the dynamic rate control device according to the nineteenth embodiment of the present invention.
  • the restriction rate R is large, the efficiency of use of the network from the time when the congestion stops to the time when the network is released is reduced, so the restriction is released in stages. As shown in FIGS.
  • the number of cells is measured for each RTT (S 15 1), and if congestion occurs at the time (a) of the observation of ⁇ 0 (S 1 52), the cell generation
  • the cell delivery speed of the source is regulated (S153).
  • cell 1 is the cell flow from the cell source, and its value is 1 or more.
  • the regulation rate is gradually relaxed.
  • ⁇ 2 is the cell flow rate from the cell source, and its value is 1 or less. If the cell flow rate is smaller than the reciprocal of the regulation rate R (1ZR) at the observation point (d) of ⁇ 3 (S158), the regulation is released (S159). In this way, the efficiency of network use can be improved even during regulation.
  • FIG. 50 is a flowchart showing the operation of the dynamic rate control device according to the twentieth embodiment of the present invention.
  • FIG. 51 is a diagram showing a call type management table.
  • the dynamic rate control device of the twentieth embodiment of the present invention is provided in the exchange 20 as shown in FIG. 2 of the first embodiment of the present invention, and includes a transmission rate calculation control unit 12.
  • the transmission rate calculation control unit 12 of the twentieth embodiment of the present invention the plurality of connection requests are classified into i groups according to the peak speed and the average speed for the plurality of connection requests, and as shown in FIG.
  • the average cell loss rate is CLR AVE for all of the plurality of connection requests
  • the sum of the average rates is ael l
  • the VP bandwidth is c
  • the peak rate of group i is ri
  • the average rate is ai
  • the call type management table has fields for recording the number of connections, the peak speed, and the average speed in the call type as shown in Fig. 51. If there is an entry of the call type having the corresponding value in the type management table, the corresponding connection number is set to "+1". If there is no entry, register the values in the peak speed and average speed fields, set the number of connections field to 1, and add a new call type entry to the table.
  • the average cell loss rate is calculated.
  • the cell rate probability density function i i (X) of the call type i is calculated using the call type management table.
  • Equation 3 Ni represents the number of VCs of call type i, and Pi represents the ratio of the average cell speed to the peak speed of call type i.
  • F (x) fi *... ⁇ f n (x)-(Equation 4) where n is the number of call types and * represents a convolution operator.
  • F (X) the average cell loss rate CLR AVE is
  • the cell loss of the call type is calculated. As shown in Equation 2, the cell loss rate CLRi for call type i is
  • the cell loss rate CLRi of the call type i is smaller than the reference value of the cell loss rate. If the cell loss rate CLRi is larger, it is determined that the connection request is rejected, and the determination flow is terminated (S1). 64).
  • a fifth step it is determined whether the cell loss rate has been compared with the reference value for all call types, and it is determined that all the call types satisfy the reference value. If it turns out that it is, proceed to the next step. If the determination has not been completed for all the call types, the processes after the third step are repeated for the next call type (S165, S167). Finally, as the sixth step, if it is found in the fifth step that all the call types satisfy the reference value of the cell loss rate, the connection temporarily registered in the call type management table in the first step The connection request is formally registered, and the determination flow ends (S166).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

明細書 動的レート制御装置
〔技術分野〕
本発明は非同期転送モード (以下、 ATM Asynchronous Transfer Modeという) 通信に利用する。 本発明はべストエフオート(Best Effort) 型サービスを受ける 複数の通信端末が同一ルートを使用する場合に、 各通信端末間の送信レートを公 平性を満たす状態に高速に近づけるように制御する通信網の構成と制御方式に関 する。 本発明はバケツト交換網あるいは A TM網におけるレート制御およびトラ ヒック制御に関する。 本発明は A TM通信網の中に設けられ、 セルまたはバケツ トを一時的に蓄積するバッファ手段として利用する。 本発明はコネクション毎に 所定のセルまたはバケツトの送出間隔を制御する技術に関する。 本発明は輻輳制 御に関する。 特に、 セル送出速度の規制とその解除基準に関する。 本発明は、 バ 一チヤルパスおよびバーチヤルチャネルの設定技術に関する。
〔背景技術〕
従来の A TM通信網におけるべストェフォート型サービスでは、 当該ル一トに おける輻輳や受け入れ可能な帯域量に関する情報を収集する目的で、 発着通信端 末間で情報収集用のセル (RMセル: Resource Management Cel l) を往復させ、 網はその RMセルに情報を書込み、 発側の通信端末はそれを参照してセルの送信 レート制御を行っている。
例えば、 A TM通信網における代表的なべストェフォート型サービスである A B R (Avai lable Bi t Rate)プロトコル (ATM Forum(atmf95-0013R2) 参照) による サービスでは、 まず、 通信端末を含む発着通信端末間の全てのノードにおいて、 A B Rプロトコルに基づき動作するように構成する。
この従来例を図 5 2ないし図 5 7を参照して説明する。 図 5 2は従来例の A T M通信網の全体構成図である。 図 5 3は RMセルの構成を示す図である。 図 5 4 は発側の通信端末の動作を示すフローチャートである。 図 55および図 56は着 側の加入者交換機および中継交換機の動作を示すフローチャートである。 図 57 は着側の通信端末の動作を示すフローチャートである。 図 52に示す ATM通信 網は ABRプロトコルに基づいて構成されている。 図 52において、 20、 40 は通信端末を収容する交換機、 30は中継を行う交換機、 5は伝送路、 50— 1 は発側の通信端末、 60— 1は着側の通信端末を表している。 図 53に示すよう に、 RMセルは、 ATMヘッダ、 プロトコル識別子 ( I D)、 方向識別子 (D I R)、 後方輻輳通知セル識別子 (BN)、 輻輳通知 (C I)、 送信許容レートの 増加禁止通知 (NI)、 要求 Z受諾通知 (RA)、 明示的送信許容レート(ER)、 現在の送信許容レート (CCR)、 最小セルレート (MCR)、 キュー長(QL)、 シーケンス番号 (SN) により構成される。
発着通信端末間では、 各発着ペア毎に周期的に RMセルを発側の通信端末 50 一 1から送信し、 中継を行う交換機 30は当該ルー卜における輻輳情報や受け入 れ可能帯域量を書込み、 着側の通信端末 60 - 1はそれを折り返して、 そのルー トにおける輻輳の有無を発側の通信端末 50 - 1に通知する。
発側の通信端末 50— 1は、 ABRプロトコルの規則により ACR(Allowed Cell Rate)と呼ばれる許容されるセルの送信レート以下のセルの送信レートによ り送信しなくてはならない。
発側の通信端末 50— 1は、 RMセルにより輻輳の通知を受けたとき、 ABR のプロトコルに基づいて AC Rを低減する。 逆に、 輻輳がないことが通知された とき、 ABRのプロトコルに基づいて ACRを引き上げる。
発側の通信端末 50— 1は、 RMセルにより通知された網の受け入れ可能帯域 量の最小値がある場合には、 その値と新たに算出された ACRの値のうち、 小さ い方の値以下のセルの送信レー卜に変更する。 網の受け入れ可能帯域量の最小値 がない場合には A C R以下のセルの送信レートに変更する。
新たな VC (Virtual Channel: 仮想チャネル) がデータの送信を開始する場合 には、 最初の RMセルを送信した後に、 I CRGnitial Cell Rate) と呼ばれる 送信開始時の規定セルの送信レート以下で送信することが許される。
最初の RMセルが折り返してきた後は、 上述のとおりの手順によりセルの送信 レートが制御される。 図 52の ATM通信網において、 ABRプロトコルに基づ く発側の通信端末 50— 1の動作を図 54および図 55に示し、 交換機 20、 3 0、 40の動作を図 56に示し、 着側の通信端末 60— 1の動作を図 57に示す。 図 54に示すように、 発側の通信端末 50— 1は RMセルを生成し (S 1) 、 そ の初期化を行い (S 2) 、 送出する (S 3)。 RMセルは交換機 20—交換機 3 0→交換機 40→着側の通信端末 60— 1を介して折り返され、 図 55に示すよ うに、 発側の通信端末 50 - 1に受信される (S 1 1 )。 RMセル内に輻輳通知 があれば (S 1 2)、 ACRを低減し (S 1 4) 、 なければ ACRを増加させる (S 1 3) 。 これによりセルの送信レートの変更を行う (S 1 5)。
図 56に示すように、 交換機 20、 30、 40では、 発側の通信端末 50 - 1 から送出された RMセルを受信すると (S 2 1 )、 ERフィールドに許容可能な セルの送信レートを書込み (S 22) 、 輻輳状態と判断したとき (S 23)、 C Iフィールドに輻輳通知を書込み (S 24)、 RMセルを送出する (S 25)。 図 57に示すように、 着側の通信端末 60— 1では、 発側の通信端末 50 - 1 から送出された RMセルを受信すると (S 2 1 )、 ERフィールドに許容可能な セルの送信レートを書込み (S 22) 、 輻輳状態と判断したとき (S 23)、 C Iフィールドに輻輳通知を書込み (S 24)、 RMセルを折返す (S 26)。 従来の ABRでは、 新たな通信端末の送信開始あるいはセルの送信レートの引 き上げなどにより輻輳が生じて通知されると、 通知された各通信端末は送信レ一 トを下げ、 結果として空き容量ができ、 輻輳状態から脱したことが通知されると、 再び各通信端末は送信レートを上げる。 これを繰り返すことにより、 公平性のあ る送信レートに徐々に近づいていく機構となっている。
さらに、 セルの送信レートの制御について図 58を参照して説明する。 図 58 は従来の ATM通信網におけるセルの送信レートの制御を説明する図である。 こ こでは、 通信端末 50— 1〜50— 3が発端末であり、 それぞれの着端末である 通信端末 6 0— 1〜6 0— 3との間に、 交換機 2 0〜4 0を経由するコネクショ ン 7 0— 1、 7 0— 2、 7 0— 3が設定されるものとする。 これらのコネクショ ン 7 0— 1、 7 0 - 2 . 7 0— 3は、 交換機 2 0〜 4 0間の伝送路 5を共用して 使用している。 送信レート制御は次のように行われる。 すなわち、 発端末である 通信端末 5 0 - 1 - 5 0一 3が一定のセル間隔毎に制御用セルを生成して挿入し、 着端末である通信端末 6 0— 1〜6 0— 3との間で制御用セルを往復させ、 交換 機 2 0〜4 0ではそのセルに情報を書き込み、 発端末である通信端末 5 0— 1〜 5 0一 3がそれを参照して送信レート制御を行う。
例えば A TMフォーラムの仕様 (95- 0013R2, 94-0983, 95-0195等) による A B Rプロトコルで用いられる送信レート制御では、 各コネクション毎の送信レー トを共用するルートの空き帯域量と要求帯域量とに応じて公平にかつ輻輳が生じ ないように制御するため、 発端末が一定セル間隔毎に制御用セルを送信し、 それ が通過する各交換機は制御用セルから通信端末の許容送信レートを読み取り、 そ の交換機自身に対する輻輳情報と受け入れ可能な送信レートを算出する。 制御用 セルには、 発端末が送信する際に、 受け入れ可能な送信レートの初期値として、 各コネクションで許容送信レー卜のとりうる最大値 (P C R ) が記される。 各交 換機は折り返してきた制御用セルに書かれた受け入れ可能な送信レートよりもそ の交換機で算出した受け入れ可能な送信レー卜が小さい場合のみ、 その算出され たレートを制御用セルに書き込んで発端末に通知する。 発端末は、 通知された受 け入れ可能な送信レート以下に自己の A C Rを設定し、 その A C R以下のレート で送信を行う。
図 5 9ないし図 6 1は交換機における制御の流れを示す図であり、 図 5 9は輻 輳と判断したときの制御を示し、 図 6 0は発端末側から制御用セルが到着したと きの制御を示し、 図 6 1は着端末側から制御用セルが折り返されたきたときの制 御を示す。 各交換機は、 送信待ちセルバッファ内の待ち行列長を観測し、 待ち行 列が閾値を越えた場合には自交換機が輻輳していると判断し、 そうでない場合は 輻輳状態にないと判断する。 そして、 輻輳状態と判断すると、 図 5 9に示すよう に、 現在の許容送信レートを一定の割合で減じたものをその交換機における受け 入れ可能な送信レートとして算出する。
j番目のコネクション (j = l、 2、 ···、 n) について説明すると、 そのコネ クシヨンに関する MACRj に 1より小さい定数 ERDを乗算して求めた ERQj (S31) を受け入れ可能な送信レートとする (S 32)。 そして、 発端末から の制御用セルが到着すると、 図 60に示すように、 その制御用セルに書かれた現 在の許容送信レート c c r』 に対し (S 41 )、
c c r j xmi n (1, R0 / r a t e j )
を求めてこれを新たな許容送信レート c c r』 とし、 この新たな許容送信レート c c r j 力ヽら、
MACRj + (c c r』 一 MACR^ ) xAVF
を求めて新たな MACRj とする (S42)。 ただし、 R。 、 AVFは定数、 r a t e j は j番目のコネクションの現在の観測から求めた実際の送信レートであ る。 図 61に示すように、 制御用セルが折り返されてくると交換機では、 制御用 セル上の受け入れ可能な送信セルレートを通知するためのフィールド値 ERC を 参照し、 ERQj <ERC であれば (S51)、 その制御用セルの ERe を ER Qi に書き換え (S52)、 ERQ』 ≥ERC であればそのまま、 その制御用セ ルを発端末に中継する (S 53)。 発端末では、 通知された受け入れ可能な送信 レート以下に ACRを設定するので、 結果として許容送信レート (ACR) は低 下する。
図 62は輻輳していないと判断した場合の交換機の制御の流れを示す。 輻輳し ていないと判断された場合に交換機は、 その交換機における受け入れ可能な送信 レートを許容送信レートよりも増加させる。 すなわち、
Figure imgf000007_0001
に定数 Ga i nを乗算して 1を加えたものを ERXj とし、 これを ERQj に乗 算したものを新たな ERQi とし、 この ERC と
MACRj xERU と R。 の最も小さいものを新たな ERQj とし、 この ERQj と
MACRj xERD
の大きいものを新たな ERQi とする (S 6 1) 。 発端末側から制御用セルが到 着したとき、 および着端末側から制御用セルが折り返されたきたときの制御は同 じであり、 これにより、 発端末の ACRは増加する。
次に、 従来の UP C/N PC (Usage/Network Parameter Control) について説 明する。 情報を固定長のバケツトであるセルに分割して網内を転送する ATMに おいては、 セル間隔を元にトラヒック収容設計を行う。 このようなトラヒック収 容設計を行うため、 コネクション毎にセル間隔を規定する。 それが守られている か否かを監視するために U P CZN P Cなどの使用量監視装置を設置するのがー 般的である。 U P CZN P Cは規定のセル間隔よりも短し、間隔で到着したセルに っレ、ては即座に廃棄もしくは夕ギングなどを行う。
一方、 ATM通信網においてはセルは非同期転送されるので、 網内を転送され るうちにセル毎に異なる遅延を被る。 これによつて、 加入者が規定どおりに間隔 を守つてセルを送出したとしても UPCZNPCを実施する点では規定が満足で きなくなる場合がある。 CDV(Cell Delay Variation)はセルの転送遅延の揺ら ぎを規定する概念であり、 CDVによる UPCZNPCやトラヒック収容設計へ の影響が問題となっている。 網内で生じる CDVを縮小するため、 いったん、 セ ルをセルバッファに蓄積して、 セルバッファからのセルの読み出しを制御するト ラヒックシエイピング制御が考案されている。
近年 ATMフォーラムの場で盛んに議論されている A BRサービスはル一ト上 の帯域の空き状況を RMセルを用いてエンド、 ツー、 エンド (End to End)で通知 しあい、 フロー制御を行うものである。 ABRサービスでは RMセルの制御ルー プがエンド、 ツー、 エンドで閉じているため、 輻輳で RMセルが廃棄されても、 負のフィードバックメカニズムが効き、 フローの抑制が動作する。 しかしながら、 公衆網のようにセルの転送遅延が大きくなる場合には、 RMセルにより得られる ルート上の帯域の空き状況に関する情報がもはや古くなるため、 良好な制御効果 が得られないことが問題となる。
このような問題点を解決するため、 公衆網の適切なところに R Mセルにより制 御ループを閉じるため VD/V S (Virtual Destination/Virtual Source)を配置 することが検討されている。 VDZV Sにはセルバッファを用意し、 コネクショ ン毎にセルを蓄積する。 セルバッファからのセルの読み出しはトラヒックシエイ ビング制御により行われる。 自分が送出した RMセルが網を転送されて折り返つ てくると、 その内容に基づいて当該コネクションのセルの送出間隔を決定し、 そ の間隔で当該コネクションのセルをセルバッファから読み出す。
また、 セル伝達レイヤの上位レイヤのプロトコルが再送機能を具備する場合は、 網内でセルが廃棄されると再送機能が働き輻輳度合いが助長されること力ある。 このようにカタストロフィックに重度の輻輳状態に陥るのを防ぐため、 網が輻輳 状態に陥った場合には網内に加わるトラヒック量を規制する必要がある。
従来、 このような目的のため、 茶木、 「セルレベル輻輳解除方式の一検討」 ( 電子情報通信学会交換システム研究会予稿集 S S E 9 4 - 9 7 ) にあるように、 輻輳が発生した場合にトラヒック量を一定の率で規制する方法が提案されていた。 この方法では輻輳が発生すると所定の率でトラヒック量を規制し、 所定の時間内 に輻輳が収まらない場合には、 さらに規制率を厳しくしていくことにより、 輻輳 を回避していく。 また、 輻輳が収まると規制率を順次緩和していき、 定常状態に 移行する。
また、 ATM通信網が対象とするマルチメディア通信では、 コネクション毎の ピーク速度と平均速度は広い範囲に渡って分布している。 そこで、 異なるピーク 速度および平均速度を分けて呼種と呼び、 呼種毎に要求通信品質を満足させるよ うに C A C (Cal l Admission Control)を行っている。
ここで、 本明細書で使う記号の定義を行う。 r i 、 a ; はそれぞれ呼種 iのピ ーク速度、 平均速度を表し、 a a l l 、 Cはそれぞれ全 V Cの平均速度の和、 V P 帯域を表すこととする。 また、 C L RAVE は全呼種についての平均のセル損失率 である。 f (x) を呼種 iのセル速度確率密度関数とし、 F i (x) を呼種 iを除い た他の呼種のセル速度確率密度関数とすると、 呼種 iのセル損失 CLR, は厳密 には、
^T R 一 Jo (2-c) + j a z"f j (x) Fj (z-x) dx dz '…(式 υ
1 α i として求められる (参考文献、 T.Murase.H. Suzuki. S. Sato, and T. Takeuchi. "A call admission control scheme for ATM networks using a simple quality es timate". IEEE J. Select. Areas Commun. , Vol.9(No.9) :pp.1461-1470, Dec.1991.)。 C A Cでは式 1で求められる呼種別のセル損失率のうち最大のものがある規準値 を満足する場合に、 コネクションの接続を許可する。
例えば、 セル損失率の規定値を 1 0— 6として CACを行う場合に、 呼種 1とし て r , = 1 0Mb/S、 a, =0. 05 MbZS、 呼種 2として r 2 = 1. 5 bZS、 a2 =0. 1 5 MbZSとした場合の数値例を図 63に示す。 図 63は 多元環境での呼種別セル損失率と接続 VC数を示す図である。 横軸に呼種 1の接 続数をとり、 左側の縦軸に呼種 2の接続数、 右側の縦軸にセル損失率 (CLR) をとる。 図 63より、
1)呼種 1の方が呼種 2よりもセル損失率が高く、 一桁以上差が開く場合もある。
2)平均のセル損失率が規定値より一桁以上低くても、 呼種 1のセル損失率がぎり ぎり規定値を満足していることがある。
このように、 マルチメディア通信を対象とする ATM通信網では、 コネクショ ン毎の送信レートが広い範囲にわたって分布しており、 また通信端末間の距離が 大きいとき、 通知されるルートの空き状況に関する情報が古くなるため、 良好な 制御効果を得ることが困難である。 例えば、 RMセルの伝送に時間がかかり、 新 たに送信する通信端末はすでに送信していた通信端末の AC Rを制御するまでに 時間がかかる。 したがって、 公平な帯域の分配量に収束するのに時間がかかる。 また、 刻々と変化していく送信レートおよび網の状況に十分追従していくことが 困難である。 A C Rの引き上げに要する時間を短くするためには、 各通信端末の I C Rを高 めに設定することにより回避できるが、 これも通信端末間の距離が大きいとき、 輻輳の通知までに時間がかかる。 網内のバッファ長を大きくとったり、 網の使用 率を下げるなどの対策が必要である。
通信端末間の距離が短いときでも、 公平性を満たす送信レートに収束するため には、 ある程度の時間を要するため、 これを削減したいという潜在的な要求があ る。
従来の技術では、 同一の交換機上のコネクションについて、 同一の輻辏状態に 基づいて、 受け入れ可能な送信レートの増減が行われる。 このため、 全体として 増加させるか減少させるかという画一的な動作を行う制御となり、 必ずしも公平 性を充分に満足させるものではない。
前述の V DZV Sなどにぉレ、てトラヒックシエイピングを行う場合には、 コネ クシヨン数が増えるとセルバッファのキューが多くなるため、 メモリ量の増大そ の他でハードゥエァ規模が大きくなる。 また、 トラヒックシエイピングでは 1ス ロットに 1セルしか転送できないが、 同一スロットに複数のセルがスケジュ一リ ングされると、 どちらかは転送されない。 コネクション数が増えると同一スロッ トに複数のセルがスケジユーリングされる確率は高くなり、 この問題が顕在化す る。
輻輳状態が重度の場合には輻輳が収まるのに時間を要し、 規制を緩和するとき には解除直後のトラヒック増加分を考慮していないので、 緩和後にすぐに規制を 強化するような振動を繰り返し、 定常状態への移行に時間を要する。
多呼種の場合には呼種別のセル損失を意識して C A Cを行う必要がある力、 厳 密に式 1にしたがってセル損失を計算すると、 呼種別に畳み込み演算する必要が あり、 マルチメディア環境で呼種数が増えれば、 莫大な計算量が必要となる。
C A Cはコネクション設定時に受付可否判断を行うので、 リアルタイ厶で交換 サービスを行うためには高レ、応答性が要求される。
本発明は、 このような背景に行われたものであり、 ベストエフオート型サービ スにおける複数の通信端末間の送信レートを公平に制御可能とすることができる 動的レート制御装置を提供することを目的とする。 本発明は、 複数通信端末間の 送信レートを公平な状態に高速に収束させることができる動的レート制御装置を 提供することを目的とする。 本発明は、 複数の通信端末間の距離が大きい場合に も、 伝送遅延を問題にすることなく各通信端末のセルの送信レートを公平に制御 可能とすることができる動的レート制御装置を提供することを目的とする。 本発 明は、 各コネクション間に通知する受け入れ可能な送信レートの公平性を満たし つつ、 各コネクションの利用できる帯域幅をできるだけ大きくする方向に変更す ることのできる動的レート制御装置を提供することを目的とする。 本発明は、 コ ネクシヨン数が増大しても比較的妥当なハードウエア規模でトラヒックシヱイピ ングを実現することができる動的レート制御装置を提供することを目的とする。 本発明は、 同一スロット (時刻) にスケジューリングされた複数のセルを転送す ることができる動的レート制御装置を提供することを目的とする。 本発明は、 A TM通信網のスループットを向上させることができる動的レート制御装置を提供 することを目的とする。 本発明は、 早急に輻輳状態を収めることができる動的レ ート制御装置を提供することを目的とする。 本発明は、 呼種数が増えたときでも 簡単な計算で呼種別のセル損失率を計算することにより、 C A Cの応答性を向上 することができる動的レート制御装置を提供することを目的とする。 本発明は、 円滑な呼受付制御を行うことができる動的レート制御装置を提供することを目的 とする。
〔発明の開示〕
本発明は、 べストェフォート型サービスを受ける複数の通信端末を収容する交 換機が、 通信端末の送信レートの制御において、 通信端末間で公平性を満たす送 信レートに高速に収束させるための制御方式を有していることを特徴とする。 従来の技術では、 発着通信端末間毎に情報収集用セルを往復させ、 ATM通信 網はそれに輻輳情報と受け入れ可能な帯域量の情報を書込み、 着側の通信端末が そのセルを折り返し、 発側の通信端末はそのセル上の情報を参照することのみに よって送信レート制御を行っていた。 従来の技術とは、 通信網の構成、 送信レー ト制御のタイミングの設定、 送信レート制御の論理、 送信レートの収束の速さが 異なる。
すなわち、 本発明は動的レート制御装置であって、 多数の通信端末が収容され そのうちの ^の通信端末からの要求に基づぃてそのーっの通信端末にバーチヤ ルパスを設定する手段を備えた動的レート制御装置である。 本発明の特徴とする ところは、 一つの通信端末に対して送信レートを指定していつたん設定したバー チャルパスの空き帯域情報を含むルート情報を収集する手段と、 前記一つの通信 端末の要求送信レートを保持する手段と、 前記ルート情報に基づきいつたん設定 したバーチャルパスの送信レートを動的にその通信端末の要求送信レートまで可 及的に大きくかつ接続要求のある複数の通信端末に対して公平に制御する制御手 段とを備えたところにある。 前記制御手段は、 前記通信端末に許容されるセルの 送信レートを演算設定する手段を備えることが望ましい。
通信端末が収容される交換機は、 この通信端末が送信を行うか否かにかかわら ず、 V P情報あるいはルート情報を収集している。 このため、 通信端末からの送 信開始要求とともに速やかにセルの送信レ一トを演算して通信端末に送信開始の 可否を返送することができる。
前記空き帯域情報は数値情報であり、 前記演算設定する手段は、 空き帯域情報 に定数 C ( 0 < C≤ 1 ) を乗じて前記許容されるセルの送信レートを演算する手 段を含むことができる。 定数 Cの値は、 ATM通信網の特性、 情報種類、 その他 の要因を考慮して適当に設定することができる。
前記通信端末からの送信開始要求に含まれるセルの最小送信レートが前記許容 されるセルの送信レートよりも小さいとき、 当該通信端末のセルの初期送信レ一 トを前記許容されるセルの送信レートに設定する手段を備えることが望ましい。 本発明では R Mセルの送受信を通信端末が収容される交換機間では行つておら ず、 通信端末から送信開始要求が送出されてからその可否が判定されて、 さらに セルの送信レートが設定されるまでの時間が短レ、ことを特徴としているので、 送 信開始要求に含まれるセルの最小送信レートが前記許容されるセルの送信レート よりも小さいときには、 セルの送信レートを速やかに増加させて通信端末の送信 に対応する。
許容されるセルの送信レートの増減は単位増加量毎に段階的に実行されるよう にすることができる。 一回に増加させることができる通信端末の送信レートの増 加量をあらかじめ定めておきこれを単位増加量とする。 許容されるセルの送信レ 一トがこの単位増加量以下のときには、 送信レートを単位増加量分増加させる。 増加後に、 さらに同様の手順を実行し、 未だに許容されるセルの送信レートがこ の単位増加量以上のときには、 再び送信レートを単位増加量分増加させる。 この 手順を繰り返すことにより、 通信端末の送信レ一トを高速に増加させることがで きる。 ルート全体の状況を観察しながら徐々に送信レートを増加させるよりも、 単位増加量をあらかじめ設定しておいて、 通信端末を収容する交換機のみの判断 でその単位増加量分を一気に増加させるため、 通信端末の送信レートを段階的に 高速に増加させることができる。
前記ルート情報は、 そのルートに含まれるバーチャルパスの空き帯域量を段階 的に示す数量であり、 前記演算設定する手段はこの数量にしたがって許容される セルの送信レートを一義的に設定する手段を含むこともできる。 例えば、 空き帯 域量に複数の閾値を設けておき、 この閾値との比較により送信レートを演算する c さらに、 通信端末の送信レートにも閾値を設けておき、 空き帯域量から導き出さ れた結果と併せて考慮し、 輻輳を通知すベき通信端末を選択することもできる。 あるいは、 前記ルート情報は、 そのルートに含まれるノードに設けられたセル バッファのキュ一長を段階的に示す数量であり、前記演算設定する手段はこの数 量にしたがつて許容されるセルの送信レートを一義的に設定する手段を含むこと もできる。 例えば、 セルバッファのキュー長に複数の閾値を設けておき、 この閾 値との比較により送信レートを演算する。 さらに、 通信端末の送信レートにも閾 値を設けておき、 セルバッファのキュー長から導き出された結果と併せて考慮し、 輻輳を通知すべき通信端末を選択することもできる。 前記ルート情報を他の交換機に伝達するための RMセルを送信する交換機が、 本発明の ATM通信網に混在するときには、 前記演算設定する手段は受信される RMセルを廃棄する手段を含むことが望ましい。
例えば、 加入者交換機がセルの送信レートを演算し、 RMセルに演算結果を書 込んで通信端末に通知するとき、 他から到来した別の RMセルがあれば、 加入者 交換機はこれを識別して廃棄することがよい。 これにより、 複数の異なる情報に より通信端末が誤動作することを回避することができる。
また、 前記制御手段は、 自己の収容するコネクションの発側の通信端末に対し て、 受け入れ可能な送信レートに関する情報を通知する手段と、 自己に収容され 伝送路を共用する複数のコネクションについて、 各コネクションに許容されてい る許容送信レートおよび実際の送信レート、 共用する伝送路の全帯域幅および全 入力帯域幅、 ならびにその伝送路を共用するコネクション数の各情報を収集して 保持する手段と、 この収集して保持する手段に保持された情報に基づいて前記通 知する手段が発側の通信端末に通知する受け入れ可能な送信レートを各コネクシ ョン毎に算出する手段とを含む構成とすることもできる。
これにより、 各コネクション間に通知する受け入れ可能な送信レートを、 全体 として増加あるいは減少というように同一の方向に向かせるのではなく、 公平性 を高める方向に個別に書き換えて通知することができる。 また、 各コネクション 毎に受け入れ可能な送信レートを、 輻輳にならない範囲で、 各コネクションの利 用できる帯域幅を大きくする方向に書き換えて通知することができる。
あるいは、 前記制御手段は、 自己の収容する通信端末が発端末となるとき、 そ の通信端末に対して受け入れ可能な送信レートに関する情報を通知する手段と、 自己の収容する通信端末が発端末となるコネクションとルートを共用する複数の コネクションについて、 それぞれのコネクションに許容されている許容送信レー トおよび実際の送信レート、 共用されるルートの帯域幅および全入力帯域幅、 な らびにそのルートを共用するコネクション数の各情報を収集して保持する手段と、 この収集して保持する手段に保持された情報に基づいて前記通知する手段が通知 する受け入れ可能な送信レートを各コネクション毎に算出する手段とを含む構成 とすることもできる。 このように、 発端末となる通信端末を収容する交換機だけ でその発端末に受け入れ可能な送信レートを通知することもできる。
これにより、 通信網内の交換機における制御情報の生成および通知に要する負 担が軽減され、 各コネクションの送信レー卜に変化があった場合にその変化に応 じた受け入れ可能な送信レートの計算までに要する時間が短く、 発端末への通知 を高速に行うことができ、 すべての交換機が受け入れ可能な送信レートを算出し なくても通信端末が収容された交換機のみで算出が可能であり、 新たなコネクシ ョンが送信を開始した場合にも即座に送信レー卜の制御が可能となる。
前記通知する手段が通信端末に通知する情報としては、 送信レートそのものの データでもよく、 許容送信レートの上げ下げを指示する情報でもよい。 後者の情 報を用いる場合には、 通信端末において、 あらかじめ定められた算出式にしたが つて自己の許容送信レートを増減する。
以上の構成において、 算出する手段は、 各コネクションの要求レートに対する 許容送信レートの比の分散
V( {ccri, ccr2, -" ,ccrj , {Ι ,Γ2'··· , r„} )
= ( 1 /η)∑ j (ccr , /r j - (1 /η)∑ i ccr s /r i ) 2
を評価関数として、
ERQ j =ccn - i · sign {n · cc /r;— w · ∑ iCc / }
により、 コネクション j ( j = K 2、 ···、 n) についてその交換機での受け入 れ可能な送信レート ERC を求める演算手段を含むことがよい。 ただし、 ∑ ∑』 はそれぞれ i、 j = l〜!!の総和、 c c r』 、 r』 はそれぞれコネクション jの許容送信レートと要求レート、 nはデータを送信しているコネクションの数 である。 また、 ひ』 、 wは重み関数、 s i gn {} は {} 内の値の符号を表す関 数である。
ひ j は、 正の定数でもよく、
{n · ccri/r j -w · ∑ iCcri/rs} の絶対値と等しい値としてもよい。 特にひ として定数を用いる場合には、 ひ j が大きいほど ERC が瞬時に変化するが誤差が大きくなり、 反対にひ』 が小さ ければ正確ではあるが E R Q』 の変更に時間がかかるようになることを留意し、 任意に設定することができる。
wはコネクションが共用する伝送路あるいはルートの全入力帯域幅の減少関数 とする。 具体的には、 コネクションが共用する伝送路あるいはルートの全帯域幅 Bal l と全入力帯域幅 Buse との関数
W= (Ban +P 1 ) / (Buse +P2 ) X P3
とすることがよい。 ただし、 p2 は分母が零となることを防止するための定数、 Pi は p2 に対する補正定数、 P 3 は振れ幅を設定するための定数である。 また、 コネクションが共有する伝送路あるレ、はルートの全入力帯域幅 B u s e の関数
Figure imgf000017_0001
とすることもできる。 p4 は振れ幅を設定するための正の定数、 p5 は補正のた めの定数である。
各コネクションの要求レートが明確でないときには、 端末が現在の許容送信レ 一トの一定の割合以上で送信を行っている場合にはそのコネクションにおける許 容送信レ一トのとりうる最大値を要求レートとみなし、 それ以外の場合には許容 送信レートのとりうる最小値を要求レートとみなすことがよい。
また、 通信端末が指示した ERQ』 なる送信レートにしたがわず、 それを超過 する送信レートで送信するとき、 所定の送信レート ERQ』 で、 すなわち、 所定 のセル間隔を保証して次段の交換機に転送を行うことを保証するため、 コネクシ ヨン識別子をアドレスとしトークン、 セル間隔、 セルバッファへのポインタなど のレコードからなるコネクションテーブルと、 各ェントリ間の順序関係を指示す るポィン夕とセルそのものを保持するフィールドなどのレコードからなるセルバ ッファと、 各エントリ間の順序を指示するポインタと、 コネクション識別子など のレコードからなる同時到着コネクシヨンリストと、 同時到着コネクシヨンリス トへのポインタと時間とを対にして保持するスケジューリングテーブルとスケジ ユーリングテーブルの処理対象を示すタイマと、 現時刻を示すタイマとを備え、 セルバッファにはコネクション毎にリストを構成し、 そのリストの先頭と末尾の ァドレスをコネクションテーブルに登録し、 セルの到着毎に該当するコネクショ ンのリストに当該セルを追加し、 トークンがある場合にはその時点で転送スケジ ユーリングを行い、 また、 同時到着コネクションリストには同一時刻に読み出す セルのコネクション識別子のリストが形成されており、 スケジユーリングテ一ブ ルの処理対象を示す夕イマが示すァドレスから順次読み出すことにより、 スケジ ユーリングされたとおりの順番でコネクションのセルを読み出し、 読み出した後 には、 コネクションテーブルが示すセル間隔でスケジユーリングすることにより コネクション毎に所定のセル間隔を保証するという制御を行うこともできる。 このように、 共通バッファをセルバッファとして、 メモリ容量を効率よく使用 できるため、 コネクション数の増大に伴うハードウエア量の増大を抑えることが できる。 また、 同時到着したセルを順次読み出すように制御することができるた め、 廃棄されるセル数を低減することができる。 したがって、 スループッ トの高 レ、ATM通信網を実現することができる。
また、 前記制御手段は、 セル流が到来する入力端子と、 到着したセルを一時蓄 積するセルバッファと、 指示されるセル送出間隔にしたがつてこのセルノくッファ からセルを読み出すトラヒックシエイビング部と、 コネクション識別子 (V P I ZV C I ) をアドレスとし前記セル送出間隔の情報 ( I n t ) を含むコネクショ ン情報を保持するコネクションテーブルを備え、 前記セルバッファは、 セルが一 つずつ収容される複数のメモリ領域と、 このメモリ領域と前記コネクションテー ブルとを対応させるポインタ値 (P t r ) を示すポインタ領域とを含む構成とす ることもできる。
前記コネクション情報には、 コネクション識別子対応に同一のコネクション識 別子を有するセルの先頭および末尾が収容される前記メモリ領域のポインタ値を 含むことがよい。
前記ポインタ値により前記セルバッファに蓄積された複数のセルがチヱインを 構成するようにすることがよい。 このチヱインにより連結された順序で、 指示さ れるセル送出間隔にしたがってセルバッファからセルが読み出される。
前記コネクション情報は、 当該コネクションの末尾セルの到着後に送出スケジ ユーリングの実行の可否を表すトークン (T k) を含むことがよい。
前記セルバッファの空きメモリ領域の先頭ボイン夕値および末尾ボインタ値を 保持する手段を備えることが望ましい。
現在時刻を計時するタイマと、 このタイマにしたがってセル送出予定をスケジ ユーリングする手段とを備える構成とすることもできる。
前記スケジユーリングする手段は、 複数のセルがほとんど同時に到着しその複 数のセル送出予定時刻が重複するときには、 その重複するセル送出予定時刻を順 次ずらして送出させるようにスケジユーリングする手段を備えることもできる。 これにより、 重複してほとんど同じ時刻に到着し、 さらに、 セル送出予定時刻が 重複する複数のセルについて、 いずれかのセルを廃棄することなく、 すべてのセ ルをセル送出予定時刻を調整して送出させることができるため、 セル廃棄率を低 減させることができる。
前記スケジユーリングする手段は、 前記セル送出予定時刻が重複する複数のセ ルにつレ、て全部の送出が完了するまで計時を中止する仮想タイマを前記夕イマと は別に備えた構成とすることもできる。
前記セル送出予定時刻が重複する複数のコネクションについてそのコネクショ ン識別子情報が収容されるメモリ領域と、 このメモリ領域に対応して設けられこ のメモリ領域に付与されたポインタ値を示すボイン夕領域とを含む同時到着コネ クシヨンリストと、 この同時到着コネクシヨンリストの空きメモリ領域の先頭ポ インタ値および末尾ボイン夕値を保持する手段とを備える構成とすることもでき る。
前記スケジュ一リングする手段には、 あらかじめ複数のセル送出予定時刻を表 示する手段を含む構成とすることもできる。
前記セルバッファのメモリ領域には、 コネクション毎の蓄積セル数につ 、てそ の上限値が設けられるようにすることもよい。
前記コネクション情報には、 セル送出順位についての優先権情報を含むように することもよレ、
あるいは、 輻輳状態に応じて規制率を適応的に定め、 また、 規制解除の際にト ラヒック増加分を考慮することにより、 輻輳の発生時に早急に輻輳状態を収める ように制御することもできる。
また、 前記制御手段は、 セル流量を測定する手段と、 この測定されたセル流量 と閾値とを比較する手段と、 この比較結果にしたがってセル流量の規制率を含む 規制情報をセルの発端末となる通信端末に通知する手段と、 一つの発端末に対し て規制状態にあるときにその発端末からのセル流量測定値が前記閾値を下回り設 定された流量になるまでその規制状態を継続する手段を含む構成とすることもで さる
規準化されたセル流量をス、 規準化された閾値を Λ = 1とするとき、 前記規制 率 Rを
R = \ / λ
とし、
λ < 1 /R
となるとき規制率 Rを
R = 1
とすることが望ましい。
複数のセル発生源のセル送出速度を保持するテーブルと、 前記規制率とこのセ ル送出速度とを乗算する乗算器とを備え、 前記発端末となる通信端末に通知する 手段は、 規制情報として規制されたセル送出速度の値を通知する構成としてもよ い。 これにより、 発端末は、 セル送出速度を規制情報として受けることができる ため、 通信端末側で規制率からセル送出速度を算出する必要がない。
セルを一時蓄積するセルバッファを備え、 前記測定する手段は、 このセルバッ ファに蓄積されたセル数からセル流量を測定する構成とすることもできる。 前記比較する手段は、 一定時間にわたり比較結果の変化を観測する手段を備え る構成とすることもできる。
このように構成された場合には、 前記規制率を複数個 (R、 R' 、 R〃 ) 設定 し、 前記変化を観測する手段の観測結果にしたがつてこの複数個の規制率を段階 的に適用することもできる。
例えば、 このときの前記複数個の規制率 R、 R' 、 R" は、 それぞれ
R= 1/λ 0 U 0〉 1)
R' =R/ 1 (A 1 > λ 0 > 1 )
R" =R/ 2 (R< A 2 < 1 )
とすればよい。 ただし、 ス 0、 ス 1、 λ 2はそれぞれ測定時刻の異なるセル流量 であり、 閾値 Λ= 1とする。
このように段階的に制御を行うことにより、 さらに、 きめの細かいセル流量制 御を行うことができる。
また、 設定されている全てのコネクションのピーク速度と平均速度から平均セ ル損失率を求め、 全てのコネクションの平均速度の和をリンク容量で割ったもの を第一の安全係数とし、 各コネクション毎のピーク速度を平均速度で割ったもの を第二の安全係数とし、 第一の安全係数と第二の安全係数に平均セル損失を乗じ たものを各コネクション毎のセル損失率とし、 各コネクション毎のセル損失の最 大のものがある規準値を満足する場合のみにコネクションの接続要求を受付ける ように制御してもよい。
例えば、 呼種 iのセル損失率 CLRi は厳密には式 1となる。 式 1において、 x/yの項は全コネクションからのセル速度が V P帯域を越えたときに溢れる分 のうち呼種 iの占める割合を示す。 ここで分母は最小のとき Cであり、 分子は最 大のときは着目しているコネクションを最大に出しているときであるから r i と なることに着目すると、 xZy^r ! ZCとなる。 したがって、 (z— c) + dx dz
CLR; J"— f i (x) F; (z— x) ~~ c~ S o (z-c) + ,Γ™ f j (x) F; (z - x) dx dz
Figure imgf000022_0001
c a; a all a all
c a; AVE (式 2) となり、 セル損失率の安全側の評価式は式 2のようになる。
この制御手段の特徴は、 呼種 iのセル損失率の安全側近似式として式 2を導出 したところにある。 式 1の厳密解は呼種毎に畳み込み演算が必要となり、 呼種数 が多くなると C A Cで呼種別のセル損失率を求める際に莫大な計算が必要となる。 式 2の方式によれば、 平均のセル損失率 CL RAVE を求めるのに 1度だけ畳み込 み演算をする必要があるが、 呼種毎のセル損失率については平均のセル損失率に 安全係数を乗ずるだけで済むため、 従来の方式と比べて大幅に計算が削減できる。 特に、 マルチメディア環境で呼種数が大きくなればなるほど、 この制御手段で得 られる効果は顕著となる。
すなわち、 前記制御手段は、 通信端末からの接続要求についてセル損失率にし たがって接続受付の可否を判定する手段を含み、 この判定する手段は、 i番目の グループのセル損失率 CLRi を演算する手段と、 このセル損失率 CLRi を満 たすグループの接続受付を許可する手段とを備えた構成とすることもできる。 このとき、 前記セル損失率 CLRi を演算する手段は、 複数の接続要求につい てピーク速度および平均速度にしたがってその複数の接続要求を i個のグループ に分類し、 その複数の接続要求の全てについて平均セル損失率を CLR AVE 、 平 均速度の和を aall 、 VP帯域を cとし、 グループ iのピーク速度を ri 、 平均 速度を a; とするとき、 i番目のグループのセル損失率 CLRi を
CLRi ≤ (aal! /c) - (r s /as ) - CLRAVE … (式 2) として演算することが望ましい。 以上説明したように、 本発明によれば、 ベストエフオート型サービスにおける 複数の通信端末間の送信レートを公平に制御可能とすることができる。 複数通信 端末間の送信レートを公平な状態に高速に収束させることができる。 複数の通信 端末間の距離が大きい場合にも、 伝送遅延を問題にすることなく各通信端末のセ ルの送信レートを公平に制御可能とすることができる。 各コネクション間に通知 する受け入れ可能な送信レー卜の公平性を満たしつつ、 各コネクションの利用で きる帯域幅をできるだけ大きくする方向に変更することができる。 コネクション 数が増大しても比較的妥当なハードウ Xァ規模でトラヒックシ イピングを実現 することができる。 同一スロット (時刻) にスケジューリングされた複数のセル を転送することができる。 A TM通信網のスループットを向上させることができ る。 早急に輻輳状態を収めることができる。 呼種数が増えたときでも簡単な計算 で呼種別のセル損失率を計算することにより、 C A Cの応答性を向上することが できる。 円滑な呼受付制御を行うことができるなどの効果がある。
〔図面の簡単な説明〕
図 1は本発明第一実施例の全体構成図である。
図 2は発側の通信端末を収容する交換機の要部プロック構成図である。
図 3は中継を行う交換機および着側の通信端末を収容する交換機のプロック構 成図である。
図 4は発側の通信端末を収容する交換機の動作を示すフローチヤートである。 図 5は本発明第二実施例の A TM通信網の要部構成図である。
図 6は ATM通信網構成において本発明第二実施例の制御がかかる前の帯域使 用状態を表す図である。
図 7は本発明第二実施例の動作とそれによる使用帯域量の変化を表した図であ る。
図 8は本発明第二実施例における交換機の動作を表すフローチャートである。 図 9は本発明第三実施例の A TM通信網の要部構成図である。
図 1 0はある時点における各通信端末の使用帯域量を表した図である。 図 1 1は発側の通信端末からの送信レートの最大セル送信レートと最小セル送 信レートおよび本発明第三実施例における閾値の関係を表す図である。
図 1 2は本発明第三実施例における空き帯域量と閾値の関係を表す図である。 図 1 3は交換機による各通信端末への輻輳の通知を行うためのアルゴリズムの フローチヤ一トである。
図 1 4は空き帯域量と通信端末の送信レートおよびそのときの輻輳の通知内容 の関係を表す図である。
図 1 5は本発明第四実施例の A TM通信網の全体構成図である。
図 1 6は本発明第四実施例における空き帯域量と閾値の関係を表す図である。 図 1 7は交換機による各発側の通信端末の送信レート制御を行うためのアルゴ リズムのフローチャートである。
図 1 8はバッファ使用量の最大値と発側の通信端末の送信レートおよびそのと きの輻輳の通知内容の関係を表す図である。
図 1 9は本発明第六実施例の全体構成図である。
図 2 0は交換機による制御の流れを示す図である。
図 2 1は本発明第七実施例の全体構成図である。
図 2 2は本発明第八実施例の A TM通信網の全体構成図である。
図 2 3は本発明第八実施例の動的レート制御装置のプロック構成図である。 図 2 4は本発明第八実施例の要部構成図である。
図 2 5はセルバッファへのセル書込み動作を示す図である。
図 2 6はコネクションリストの組み換え処理を示す図である。
図 2 7はコネクションリストの組み換え処理を示す図である。
図 2 8はセルバッファからセルを取り出す動作を示す図である。
図 2 9は本発明第九実施例の要部構成図である。
図 3 0は本発明第十実施例の要部構成図である。
図 3 1は本発明第十一実施例の要部構成図である。
図 3 2はコネクション識別子を同時到着コネクシヨンリストに書込む動作を示 す図である。
図 3 3はコネクション識別子を同時到着コネクシヨンリストに書込む動作を示 す図である。
図 3 4はコネクション識別子を同時到着コネクションリストから取り出す動作 を示す図である。
図 3 5は本発明第十一実施例の動作を示すフローチヤ一トである。
図 3 6は本発明第十二実施例の要部構成図である。
図 3 7は本発明第十三実施例の要部構成図である。
図 3 8は本発明第十四実施例の要部構成図である。
図 3 9は本発明第十五実施例の動的レート制御装置のプロック構成図である。 図 4 0は本発明第十五実施例の動的レート制御装置の動作を示すフローチヤ一 トである。
図 4 1は本発明第十五実施例の動作をセル流量; Iおよび時間の関係により示し た図である。
図 4 2は本発明第十五実施例の動作をセル流量 λおよび時間の関係により示し た図である。
図 4 3は本発明第十六実施例の動的レート制御装置のプロック構成図である。 図 4 4は本発明第十六実施例の動的レート制御装置の他のプロック構成図である < 図 4 5は本発明第十七実施例の動的レート制御装置のプロック構成図である。 図 4 6は本発明第十八実施例の動的レート制御装置のプロック構成図である。 図 4 7は本発明第十八実施例の動的レート制御装置の動作を示すフローチヤ一 トである。
図 4 8は本発明第十九実施例の動的レート制御装置を説明するための図である。 図 4 9は本発明第十八実施例における輻輳検出部および輻輳制御部の動作を示 すフローチヤ一トである。
図 5 0は本発明第二十実施例の動的レート制御装置の動作を示すフローチヤ一 トである。 図 5 1は呼種管理テーブルを示す図である。
図 5 2は従来例の A TM通信網の全体構成図である。
図 5 3は RMセルの構成図である。
図 5 4は発側の通信端末の動作を示すフローチヤ一トである。
図 5 5は着側の加入者交換機および中継交換機の動作を示すフローチャートで め o
図 5 6は着側の加入者交換機および中継交換機の動作を示すフローチヤ一トで める。
図 5 7は着側の通信端末の動作を示すフローチヤ一トである。
図 5 8は従来の A TM通信網におけるセルの送信レー卜の制御を説明する図で のる。
図 5 9は交換機における制御の流れを示す図である。
図 6 0は交換機における制御の流れを示す図である。
図 6 1は交換機における制御の流れを示す図である。
図 6 2は輻輳していないと判断した場合の交換機の制御の流れを示す図である c 図 6 3は多元環境での呼種別セル損失率と接続 V C数を示す図である。
〔発明を実施するための最良の形態〕
(第一実施例)
本発明第一実施例の構成を図 1ないし図 3を参照して説明する。 図 1は本発明 第一実施例の全体構成図である。 図 2は発側の通信端末を収容する交換機の要部 プロック構成図である。 図 3は中継を行う交換機および着側の通信端末を収容す る交換機のプロック構成図である。 図 1において、 5 0— 1、 5 0 - 2は発側の 通信端末、 2 0は発側の通信端末 5 0 - 1および 5 0— 2を収容する交換機、 3 は中継を行う交換機、 4 0は着側の通信端末を収容する交換機、 5は伝送路、 6 0— 1、 6 0 - 2は着側の通信端末である。 図 2において、 1 0はルート情報収 集部、 1 2は送信レート演算制御部である。 図 3において、 1 4はルート情報送 出部である。 本発明は動的レート制御装置であって、 通信端末 5 0一 1および 5 0 - 2が収 容されそのうちの一^ 3の通信端末 5 0一 1または 5 0一 2からの要求に基づいて その一つの通信端末 5 0— 1または 5 0— 2に V Pを設定する手段を交換機 2 0、 3 0、 4 0に備えた動的レート制御装置である。 この V Pを設定する手段は、 交 換機 2 0、 3 0、 4 0、 通信端末 5 0 - 1、 5 0二 2、 6 0 - 1、 6 0 - 2にそ れぞれ備えられているが、 本発明の要部ではないので図示しない。
ここで、 本発明の特徴とするところは、 一つの通信端末 5 0— 1または 5 0— 2に対して送信レ一トを指定していつたん設定した V Pの空き帯域情報を含むル ート情報を収集する手段としてのルート情報収集部 1 0と、 一つの通信端末 5 0 一 1または 5 0一 2の要求送信レートを保持する手段および前記ルート情報に基 づきいつたん設定したバーチャルパスの送信レートを動的にその端末の要求送信 レートまで可及的に大きくかつ接続要求のある複数の通信端末に対して公平に制 御する制御手段としての送信レート演算制御部 1 2とを備えたところにある。 送 信レート演算制御部 1 2は、 通信端末 5 0 - 1および 5 0一 2に許容されるセル の送信レートを演算設定する手段を備えている。
発側の通信端末 5 0— 1、 5 0— 2は A B Rプロトコルに基づいて通信を行う。 交換機 2 0は発側の通信端末 5 0— 1、 5 0— 2に対して A B Rのプロトコルを エミユレーシヨンして接続可能としている。 交換機 3 0、 4 0および着側の通信 端末 6 0—し 6 0— 2は必ずしも A B Rプロトコルに基づいて動作する必要は ない。 ただし、 交換機 3 0および 4 0は周期的あるいは状態の変化があつたとき、 交換機 2 0にルート情報として当該ルートの使用状況の通知をしなくてはならな い。 交換機 2 0に通知された使用状況あるいは各通信端末 5 0— 1、 5 0— 2力、 らの送出状況あるいはその両方の情報を元に、 現在の使用可能帯域量を算出する 新たに当該ルートを介して送信を開始する通信端末 5 0— 1または 5 0— 2か らの要求があつたときの交換機 2 0の動作を図 4のフローチヤ一トにより説明す る。 図 4は発側の通信端末 5 0 - 1および 5 0 - 2を収容する交換機 2 0の動作 を示すフローチャートである。 新たに通信端末 5 0— 1または 5 0— 2からの送 信開始要求が来たとき (S 70) 、 空き帯域量に定数 C (0 <C≤ 1) を乗じた 値を送信の初期送信レート I CRとする (S 71 ) 。 定数 Cは受け入れ時の情報 が現在の状態とずれていて、 誤つた送信レートを設定してしまうことを防ぐため に決められるパラメ一夕である。 もし、 I CRが発側の通信端末 50—し 50 一 2から要求される最小送信レート MCR(Minimimi Cell Rate) よりも小さいと き (S 72) 、 このままでは受け入れることは危険なため、 発側の通信端末 50 一 1、 50— 2と間で再び交渉(ネゴシエーション) を行う必要があり、 この状 態のままでは受け入れ不可とする (S 73) 。 もし、 I CRが MCR以上のとき には (S 72)、 I CRでの送信を許可する (S 74) 。 本発明第一実施例によ れば、 瞬時に新たな発側の通信端末 50 - 1、 50— 2からの送信開始要求の可 否を判断し、 受け入れられた発側の通信端末 50— 1、 50— 2力、らの I CRで の送信を許可することができる。
(第二実施例)
本発明第二実施例を図 5ないし図 8を参照して説明する。 図 5は本発明第二実 施例の ATM通信網の要部構成図であり、 50— 1、 50 - 2. 50— 3は A B Rプロトコルにしたがって通信を行う発側の通信端末、 2は各通信端末に対して A BRプロトコルをエミュレーシヨンする発側の通信端末を収容する交換機、 3 は発側の通信端末 50 - 1 -50一 3が共用するルー卜の一部である。 図 6は、 図 5の ATM通信網構成において本発明第二実施例の制御がかかる前の帯域使用 状態を表す図である。 図 6中で、 Wt 0 t a 1は当該ルートの全帯域量、 Waは 当該ルートの空き帯域量、 W 1は発側の通信端末 50一 1の使用帯域量、 W2は 発側の通信端末 50 - 2の使用帯域量、 W 3は発側の通信端末 50 - 3の使用帯 域量を表す。 図 6中で、 発側の通信端末 50— 3は時刻 t 0において最初の RM セルを送信した後に、 W3で示す初期送信レート I CRによりすぐにデ一夕の送 信を開始する。
図 7は本発明第二実施例の動作とそれによる使用帯域量の変化を表した図であ る。 空き帯域量 Waに定数 C (0 <C≤ 1) を乗じた値が、 t 0において送信レ 一ト I C Rで送信を開始した発側の通信端末 5 0一 3の送信レートの単位時間内 の単位増加分よりも多いとき、 交換機 2 0において輻輳が発生していないことを 通知する RMセルを生成し、 発側の通信端末 5 0— 3に送信し、 送信レートの増 加を許す。 図 7中で、 発側の通信端末 5 0— 3は時刻 t 1に RMセルを受信し、 送信レートを増加させている。 その後、 まだ、 空き帯域量 W aに定数 Cを乗じた 値の方が大きい場合には、 交換機 2 0はさらに R Mセルを生成して送信する。 図
8は本発明第二実施例における交換機 2 0の動作を表すフローチャートである。 空き帯域が発生したとき (S 8 0 ) 、 空き帯域量に定数 Cを乗じた値を演算する
( S 8 1 ) 。 空き帯域量に定数 Cを乗じた値が送信レートの単位増加量よりも大 きいとき (S 8 2 ) 、 交換機 2 0は発側の通信端末 5 0 - 1 - 5 0一 3に輻輳な しの通知を行い (S 8 3 ) 、 発側の通信端末 5 0 - 1〜 5 0 - 3は単位増加量分 の送信レートを増加する。 本発明第二実施例によれば、 ルート全体の状況を観察 しながら徐々に送信レートを増加させるよりも、 単位増加量をあらかじめ設定し ておいて、 交換機 2 0のみの判断でその単位増加量分を一気に増加させるため、 発側の通信端末 5 0 - 1〜5 0— 3の送信レートを段階的に高速に増加させるこ とができる。
(第三実施例)
本発明第三実施例を図 9ないし図 1 4を参照して説明する。 図 9〜図 1 4は本 発明第三実施例を説明するための図である。 図 9は本発明第三実施例の A TM通 信網の要部構成図である。 図 9中、 発側の通信端末 5 0— 1から 5 0— 4は A B Rプロトコルにしたがって通信を行う発側の通信端末、 2は各通信端末に対して A B Rのプロトコルをエミュレーシヨンする交換機、 3は各通信端末が共用する ルートの一部である。 図 1 0は、 ある時点における各通信端末の使用帯域量を表 した図で、 W aは当該ルートにおける空き帯域量、 W l、 W 2、 W 3、 W 4はそ れぞれ発側の通信端末 5 0— 1〜5 0— 4の使用帯域量を表す。 図 1 0において、 使用している帯域量は大きくばらつレ、てレ、て、 通信端末間で送信レートの不公平 性が生じている可能性がある。 図 1 1は、 図 1 0と同じ状況における発側の通信 端末 50— 1〜50— 4からの送信レートの最大セル送信レート (PCR) と最 小セル送信レート (MCR) および本発明第三実施例における閾値 R t h 1およ び R t h 2の関係を表す図である。 図 1 2は、 本発明第三実施例における空き帯 域量と閾値 Wt h K Wt h 2. Wt h 3の関係を表す図である。
図 1 3および図 1 4を用いて本発明第三実施例の制御アルゴリズムを説明する。 図 1 3は、 交換機 20による各通信端末への輻辏の通知を行うためのアルゴリズ 厶のフローチャートである。 図 1 4は、 空き帯域量と通信端末の送信レートおよ びそのときの輻輳の通知内容の関係を表す図である。 交換機 20は空き帯域量を モニターし、 その値と閾値 Wt h 1、 Wt h 2、 Wt h 3の比較を行う。 空き帯 域量 Waが閾値 Wt h 1よりも小さいとき (S 9 1) 、 全ての発側の通信端末 5 0- 1-50— 4に輻輳を通知する (S 92) 。 空き帯域量 Waが閾値 Wt h 1 以上であり、 閾値 Wt h 2より小さいとき (S 93) 、 送信レートが閾値 R t h 1以上の通信端末に輻輳を通知する (S 94) 。 空き帯域量 Waが閾値 Wt h 2 以上であり、 閾値 Wt h 3より小さいとき (S 95) 、 送信レートが R t h 2以 下の通信端末に輻輳なしを通知する (S 96) 。 空き帯域量 W aが閾値 Wt h 3 以上のときは (S 97) 、 全ての発側の通信端末 50- 1-50— 4に輻輳なし を通知する (S 98) 。 そして、 図 1 4のとおり、 比較結果に基づいて各発側の 通信端末 50— 1〜50— 4に輻輳情報を RMセルを生成して送信することによ り伝える。 各発側の通信端末 50— 1〜50— 4は、 A BRのプロトコルにした 力い輻輳なしの通知を受けた場合に、 送信レートを増加させる機会を得る。 反対 に輻輳があるという通知を受けた場合に、 送信レートを下げる。
本発明第三実施例では、 変更前の送信レートと空き帯域量に応じて発側の通信 端末 50— 1〜50— 4に輻輳を通知するタイミングが異なっている。 これによ り、 帯域に余裕がある場合には、 全体を高い送信レートに推移させる効果、 送信 レートのばらつきを小さくして通信端末間で公平性を持たせる効果、 特に、 送信 レートの低レ、ものの送信レートを高速に高くする効果がある。 逆に帯域が不足し はじめると、 レートの高いものの送信レートを下げ、 さらに不足した場合には、 全体の送信レートを低く推移させる効果がある。 いずれの場合も、 RMセルが発 着の通信端末間を往復することなしにこの機能を実現できる。
(第四実施例)
本発明第四実施例を図 1 5ないし図 1 8を参照して説明する。 図 1 5は本発明 第四実施例の ATM通信網の全体構成図である。 5 0— 1〜5 0— 4は発側の通 信端末、 2は発側の通信端末 5 0 - 1〜 50 - 4を収容する交換機、 30は中継 を行う交換機、 4 0は着側の通信端末を収容する交換機、 5は伝送路、 6 0 - 1 〜 60— 4は着側の通信端末である。 図 1 5を用いて本発明第四実施例の構成を 説明する。
発側の通信端末 50— 1〜50 - 4は ABRプロトコルに基づいて通信を行う。 交換機 20は発側の通信端末 50 - 1 -5 0— 4に対して ABRのプロトコルを エミユレーシヨンして接続を可能としている。 交換機 30、 4 0および着側の通 信端末 6 0 - 1 - 6 0— 4は必ずしも ABRプロトコルに基づいて動作する必要 はない。 交換機 30、 4 0は発側の交換機 20に周期的あるいは状況の変化があ つたとき、 それぞれのキューバッファに蓄積されているセルの数を通知する。 交 換機 20は通知されたキューバッファ長と、 交換機 20の持つキューバッファに 蓄積されているセルの数を元に、 現在の使用状況の判断を行う。
本発明第三実施例で図 1 1に示した図は、 本発明第四実施例における最大セル 送信レート (PCR) と最小セル送信レート (MCR) および閾値 R t h lと R ΐ h 2と各通信端末の送信レートの関係を表す図と共通である。 図 1 1中で R a t e 1から R a t e 4はそれぞれ発側の通信端末 5 0 - 1 -5 0 - 4の送信レ一 トである。 図 1 1中では、 送信レートは大きくばらついていて、 発側の通信端末 50— 1〜5 0— 4間の送信レ一トの不公平性が生じている可能性がある。 図 1 6は、 本発明第四実施例における空き帯域量と閾値 Q t h K Q t h 2、 Q t h 3の関係を表す図である。
図 1 7は交換機 20による各発側の通信端末 5 0 - 1 - 5 0— 4の送信レート 制御を行うためのアルゴリズムのフローチャートである。 図 1 7中で、 Ouは交 換機 20に通知されたバッファ使用量のうち最大の値である。 交換機 20は、 Q uと閾値 Q t h l、 Q t h 2、 Q t h 3の比較を行う。 バッファ使用量の最大値 Quが閾値 Q t h 3以上のとき (S 1 0 1) 、 全ての発側の通信端末 50— 1〜 50— 4に輻輳を通知する (S 1 02) 。 バッファ使用量の最大値 Quが閾値 Q t h 2以上であり、 閾値 Q t h 3より小さいとき (S 1 03) 、 送信レートが閾 値 R t h 1以上の発側の通信端末 50— 1〜 50— 4に輻輳を通知する (S 1 0 4) 。 バッファ使用量の最大値 Quが閾値 Q t h 1以上であり、 閾値 Q t h 2よ り小さいとき (S 1 05) 、 送信レートが閾値 R t h 2以下の発側の通信端末 5 0 - 1-50— 4に輻輳なしを通知する (S 1 06) 。 バッファ使用量の最大値 Quが閾値 Q t h 1より小さいとき (S 1 07) 、 全ての発側の通信端末 50一 1〜50— 4に輻輳なしを通知する (S 1 08) 。 そして図 1 8はバッファ使用 量の最大値 Quと発側の通信端末 50- 1-50— 4の送信レートおよびそのと きの輻輳の通知内容の関係を表す図であるが、 図 1 8のとおり比較結果に基づい て各発側の通信端末 50- 1-50-4に輻輳情報を RMセルを生成し、 送信す ることで伝える。 各発側の通信端末 50— 1〜50— 4は、 ABRのプロトコル にしたがい輻輳なしの通知を受けたとき、 送信レートを増加させる機会を得る。 反対に輻輳があるという通知を受けたとき、 送信レートを下げる。
本発明第四実施例では、 変更前の送信レートと共用して使われるバッファ長に 応じて、 発側の通信端末 50— 1〜50— 4に輻輳を通知するタイミングが異な つている。 これにより、 帯域やバッファに余裕がある場合には、 全体を高い送信 レートに推移させる効果、 送信レー卜のばらつきを小さくして発側の通信端末 5 0- 1-50— 4間で公平性を持たせる効果、 特に、 送信レートの低いものの送 信レートを高速に高くする効果がある。 逆に、 帯域やバッファ長が不足しはじめ ると、 送信レートの高いものの送信レートを下げ、 さらに不足した場合には、 全 体の送信レートを低く推移させる効果がある。 いずれの場合も、 RMセルが発着 の通信端末間を往復することなしに、 この機能を実現できる。 (第五実施例)
ATM通信網において、 その一部に他の方式が混在するような場合には、 交換 機 3 0、 4 0および着側の通信端末 6 0 - 1 - 6 0— 4が自主的に RMセルを送 信する場合がある。 このような場合には、 当該 RMセルに輻輳なしと記述されて いると、 交換機 2 0において発側の通信端末 5 0 - 1 -5 0— 4の送信レートを 下げる動作を行っても、 折り返してきた RMセルによりそれとは反対の動作を要 求されることになる。 そこで、 本発明第五実施例では、 発側の通信端末 5 0— 1 〜5 0— 4に対する RMセルが他から到着しても交換機 2 0においてこれを廃棄 する。 このようにすることにより、 誤った輻輳情報をもった RMセルによる誤つ た送信レート制御を防止することができる。
(第六実施例)
本発明第六実施例の構成を図 1 9を参照して説明する。 図 1 9は本発明第六実 施例の全体構成図である。 ここでは伝送路 5を共用する通信端末 5 0 - 1〜 5 0 一 3と通信端末 6 0— 1〜 6 0— 3との間のコネクシヨン 7 0— 1〜 7 0— 3に 着目して説明する。 すなわち、 通信端末 5 0— 1と 6 0 - 1、 5 0— 2と 6 0— 2、 5 0— 3と 4 0はそれぞれ、 伝送路 5を介して互いに接続された交換機 2 0 〜4 0を経由するコネクション 7 0 - 1 -7 0— 3により互いに接続され、 可変 の送信レートで情報の送受信を行う。 交換機 2 0〜4 0にはそれぞれ、 回線交換 を行う交換部 3 0 1と、 この交換部 3 0 1の制御を行うとともに、 収容するコネ クシヨン 7 0— 1〜 7 0— 3の発側の通信端末 5 0— 1〜 5 0— 3に対する受け 入れ可能な送信レートに関する情報の通知、 コネクション 7 0— 1〜7 0— 3に 許容されている許容送信レートおよび実際の送信レート、 共用する伝送路 5の全 帯域幅および全入力帯域幅、 ならびにその伝送路 5を共用するコネクション数の 各情報の収集を行う制御部 3 0 2と、 制御部 3 0 2により収集された情報を保持 する記憶部 3 0 3と、 記憶部 3 0 3に保持された情報に基づいて発側の通信端末 5 0 - 1 -5 0一 3に通知する受け入れ可能な送信レ一トを各コネクション毎に 算出する演算部 3 0 4とを備える。 この構成において、 発側の通信端末 50— 1〜50— 3は、 一定セル数間隔毎 に制御用セルを生成し、 着側の通信端末 60- 1-60- 3に向けて送信する。 制御用セルには、 各コネクション 70- 1-70— 3の許容送信レートを通知す る CCRフィールドと、 受け入れ可能な送信レートを通知する E Rフィールドと が設けられる。 発側の通信端末 50— 1〜50— 3は、 制御用セルを送信すると き、 CCRフィールドに各コネクション 70 - 1 - 70— 3の現在の許容セルレ ート ACRi ( j = l、 2、 ···、 n) を書き込む。
交換機 20〜40のそれぞれの制御部 302は、 通過するコネクション数 n、 出力側の伝送路の全帯域幅 Bal l および全入力帯域幅 Buse 、 および各コネクシ ョンの現在の送信レート r a t e』 (j = l、 2、 ···、 n) を測定し、 その情報 をその交換機 20〜40内の記憶部 303に保持しておく。 また、 交換機 20〜 40を通過する制御用セルの C C Rフィールドに書かれた各コネクション毎の許 容送信レート情報を読み取り、 c c r』 (j = l、 2、 "·、 n) として各交換機 20〜40内の記憶部 303にその情報を保持しておく。
図 20は交換機による制御の流れを示す図であり、 受け入れ可能な送信レート の算出を示す。 ここでは、 交換機 30を例に説明する。 ここで、 各コネクション j ( j = l、 2、 ···、 n) には、 呼接続時に、 許容送信レートの取りうる最大値 と最小値とが通信網との交渉により決定される。 その最大値を PCRj (Peak Cell Rate ) 、 最小値を MCR』 (Minimum Cell Rate ) と表す。
交換機 30は、 コネクション数 n、 全帯域幅 Bal l 、 全入力帯域幅 Buse 、 現 在の送信レート r a t e』 、 許容送信レート c c r』 ( j = 1、 2、 ·■·、 n) の 各データを記憶部 303に保持する。
図 20に示すように、 交換機 30は、 各コネクション 70 _ 1〜 70— 3毎に 許容送信レートと実際の送信レート、 すなわち c c r , と r a t e, 、 c c r2 と r a t e2、 c c r3 と r a t e3 を比較して、 実際の送信レート r a t e j が許容送信レートの一定の割合以上、 すなわち r a t ej 〉 c c rj ' G (Gは 0以上 1以下の定数) ならば (S 1 1 1 ) 、 そのコネクション jの要求セルレー ト r』 ( j = l、 2、 ··'、 n) を PCRj とみなす (S 1 1 3) 。 反対に、 許容 送信レートが一定の割合未満のときには、 そのコネクションの要求セルレートは MCRj であるとみなす (S 1 1 2)。 ERQj の更新の式は、 各コネクション 70— 1〜70— 3の要求レートに対する許容送信レートの比の分散
V( {ccn, ccr2,… , ccrj , {r]( r2, ··· , r„} )
= (l/n)∑j (ccr j /r」一(1/n)∑ i ccr i /r】) 2
を評価関数として決定される。 そして、 演算部 304により、
ERQj
Figure imgf000035_0001
- j · sign {n · ccn/r』—w · ∑ iCc / }
を演算して、 コネクション j ( j = K 2、 ···、 n) についての交換機 3 0での 受け入れ可能な送信レート ERQj が求められる (S 1 1 4) 。 ただし、 ∑i 、 ∑ j はそれぞれ i、 j = l〜nの総和、 c c r j 、 r』 はそれぞれコネクション jの許容送信レートと要求レート、 nはデータを送信しているコネクション 70 一 1〜 70— 3の数、 ひ j 、 wは重み関数、 s i g n {} は {} 内の値の符号を 表す関数である。
ひ j としては、 コネクション 70— 1〜70— 3毎に異なる正の一定の値とす る。 wはコネクション 70— 1〜70— 3が共用する伝送路の全入力帯域幅の減 少関数、 例えば、 コネクション 70— 1〜 70 - 3が共用する伝送路 5の全帯域 幅 Bal l と全入力帯域幅 Buse との関数
w= (Ββΐ . +P i ) / (Buse +p2 ) x p3
とする。 ただし、 p2 は分母が零となることを防止するための定数、 p, は p2 に対する補正定数、 p3 は振れ幅を設定するための定数である。
ひ j としては、
{n · ccn/n一 w · ∑ iCcri/ }
の絶対値と等しい値としてもよい。 また、 wとしては、 コネクションが共有する 伝送路 5の全入力帯域幅 Buse の関数
W=- P 4 · B u s e +P 5
とすることもできる。 ただし、 P 4 は振れ幅を設定するための正の定数、 P 5 は 補正のための定数である。
交換機 3 0はさらに、 着側の通信端末 6 0— 1〜6 0— 3で折り返してきた制 御用セルの E Rフィールドに書かれている受け入れ可能な送信レートよりも新た に算出された受け入れ可能な送信レートが小さいとき、 新たに算出された値に E Rフィールドを書き換え、 そうでないときには書き換えずに、 制御用セルを次に 中継し、 発側の通信端末 5 0 - 1 - 5 0— 3に通知する。 ただし、 コネクション jの発側の通信端末が制御用セルを生成するとき、 E Rフィールドにはコネクシ ヨン jの P C R』 が書かれているものとする。
(第七実施例)
本発明第七実施例を図 2 1を参照して説明する。 図 2 1は本発明第七実施例の 全体構成図である。 受け入れ可能な送信レートの算出を交換機 2 0のみが行う。 この構成では、 伝送路 5を介して互いに接続された交換機 2 0〜3 0と、 これら の交換機 2 0〜3 0を経由するコネクション 7 0 - 1〜7 0— 3により互いに接 続され可変の送信レ一トで情報の送受信を行う通信端末 5 0 - 1〜 5 0— 3、 6 0— 1〜 6 0— 3とを備え、 通信端末 5 0— 1〜 5 0— 3を直接に収容する交換 機 2 0には、 その収容する通信端末 5 0— 1〜5 0— 3が発側となるとき、 その 通信端末 5 0— 1〜5 0— 3に対して受け入れ可能な送信レートに関する情報を 通知する制御部 3 0 2を備える。 さらに交換機 2 0には、 その収容する通信端末 5 0— 1〜5 0— 3が発側となるコネクション 7 0— 1〜7 0— 3とルートを共 用する複数のコネクションについて、 それぞれのコネクションに許容されている 許容送信レートおよび実際の送信レート、 許容されるルートの帯域幅および全入 力帯域幅、 ならびにそのルートを共用するコネクション数の各情報を収集して保 持する記憶部 3 0 3と、 この記憶部 3 0 3に保持された情報に基づいて端末に通 知する受け入れ可能な送信レートを各コネクション毎に算出する演算部 3 0 4と を倔んる。
すなわち交換機 2 0は、 通信端末 5 0 - 1 - 5 0一 3から到着した制御セルを その交換機 2 0で新たに算出した受け入れ可能な送信レートに書き換えて、 元の 通信端末 5 0— 1〜5 0— 3に向けて折り返す。 これにより、 受け入れ可能な送 信レートが発側の通信端末 5 0 - 1 - 5 0— 3に通知される。
本発明第六および第七実施例では受け入れ可能な送信レートを通信端末 5 0 - 1〜5 0— 3に通知したが、 通信端末 5 0 - 1 - 5 0一 3には許容送信レートの 上げ下げを指示する情報を通知し、 通信端末 5 0 - 1 - 5 0一 3では、 あらかじ め定められた算出式にしたがつて自己の許容送信レートを増減することもできる。 例えば、 新たに交換機で算出された受け入れ可能な送信レートが算出に用いた現 在の許容送信レートよりも小さい値となった場合に、 着側の通信端末で折り返さ れた制御用セルに輻輳があることを書き込み、 それを発側の通信端末に通知する。 発側の通信端末では、 輻輳が通知されると自動的に許容送信レートを小さくすれ ばよい。
(第八実施例)
本発明第八実施例の構成を図 2 2ないし図 2 4を参照して説明する。 図 2 2は 本発明第八実施例の A TM通信網の全体構成図である。 図 2 3は本発明第八実施 例の動的レート制御装置のプロック構成図である。 図 2 4は本発明第八実施例の 要部構成図である。
本発明第八実施例は図 2 2に示すように A TM通信網内に備えられ、 図 2 3に 示すようにセル流が到来する入力端子 I Nと、 到着したセルを一時蓄積するセル ノくッファ C Bと、 指示されるセル送出間隔にしたがつてこのセルバッファ C Bか らセルを読み出すトラヒックシエイビング部 T Sとを備えた動的レート制御装置 である。
ここで、 本発明の特徴とするところは、 図 2 4に示すように、 コネクション識 別子 (V P I /V C I ) をアドレスとし前記セル送出間隔 I n tを含むコネクシ ヨン情報を保持するコネクションテーブル C Tを備え、 セルバッファ C Bは、 セ ルがーつずつ収容される複数のメモリ領域 C e 1 1と、 このメモリ領域 C e 1 1 とコネクションテーブル C Tとを対応させるポインタ値を示すポインタ領域 P t rとを含むところにある。 本発明第八実施例は、 全てのコネクションのセルを蓄積する共通のセルバッフ ァ C Bとセルバッファ C B内に蓄積された各コネクション毎のセル送出間隔 I n tとセルの到着順のチェインのセルバッファ C B内の先頭と末尾のァドレスを持 つコネクションテーブル C Tからなり、 所定のスケジユーリング規則にしたがつ て各コネクションのセルをセルバッファ C Bから読み出す。
コネクションテーブル C Tはコネクション毎の情報を保持するテーブルである c コネクション毎のトークン T kとセル送出間隔 I n tとポインタへッ ド h e a d , ポインタティル t a i 1を持つ。 トークン T kは当該コネクションの次に到着 するセルが到着時刻に転送される権利を有することを示す。 セル送出間隔 I n t は当該コネクションが保持しなければいけない最小のセル送出間隔 I n tを示す c ポインタへッド h e a d , ポインタティル t a i 1はセルバッファ C Bへのリン ク関係 (図 2 4の(1), (2) の矢印) を示し、 当該コネクションの先頭 ((1) の矢 印) と末尾 ((2) の矢印) のセルの保持されている番地を保持している。
あるコネクションのセルをセルバッファ C Bに書込むとき、 まず、 セルバッフ ァ C Bの空き領域にセルを書込む。 このときの書込み動作例を図 2 5に示す。 図 2 5はセルバッファ C Bへのセル書込み動作を示す図である。 図 2 5はセルバッ ファ内の空きセルのチェインを示しており、 C Bフリーポインタの付け換えによ り、 空きセルチェインの先頭のアドレスが到着セルに割当てられている。 図 2 5 は到着セルをセルバッファ C Bに書込んだだけであり、 当該セルとコネクション の対応をとる必要がある。 そこで、 当該コネクションのリストの組み換え処理を 行う。 このときの当該コネクションのリストの組み換え処理を図 2 6および図 2 7に示す。 図 2 6および図 2 7はコネクションリストの組み換え処理を示す図で ある。 図 2 6では、 セルバッファ C B内の該当コネクションのセルのチェインの 末尾に到着したセルのアドレスを付け加えている。 図 2 7に示すように、 セルバ ッファ C Bにチェインがない場合は新たにチェインを作る。
あるコネクションのセルをセルバッファ C Bから取り出す場合を図 2 8に示す c 図 2 8は、 セルバッファ C Bからセルを取り出す動作を示す図である。 図 2 8で はセルバッファ C B内の該当コネクションのセルチェインの先頭のセルを取り出 して、 ポインタヘッドを付け換えている。
このようにセルバッファ C Bは全コネクションのセルの共通バッファであり、 各コネクション毎の F I F Oキューを論理的に構成している。 図 2 4において、 C Bフリーポインタはセルバッファ C Bの空き領域の先頭 ((3) の矢印) と末尾 ((4) の矢印) の番地を保持する。 セルバッファ C Bと C Bフリーポインタは組 み合わせて用いられる。 セルバッファ C Bはセルの内容を保持するメモリ領域 C e 1 1 とコネクション毎のセルの読み出し順序を指示するためのポインタ領域 P t rとを一^ ^のェントリとして構成される。 セルバッファ C Bにはポインタで指 示する読み出し順序の関係で論理的にコネクション毎のセルのリストが構成され ている。 つまり、 あるコネクションを例に取り上げると、 コネクションテーブル C Tの当該コネクションのポインタへッ ド h e a dが示す番地 ((1) の矢印) で セルバッファ C Bをアドレツシングし、 セルバッファ C Bのその番地のボイン夕 が示す番地 ((5), (6) の矢印) でリストを順次手繰ることにより当該コネクショ ンのセルをその読み出し順にアクセスすることができる。 コネクションテーブル C Tはセルバッファ C B上の当該コネクションのリストの末尾の番地をリンク情 報としてポインタティル t a i 1に保持する ((2) の矢印) 。 また、 空き領域も コネクション毎の場合と同じように論理的にリストで構成されている。 セルバッ ファ C Bの空き領域の先頭と末尾の番地は C Bフリーポインタのポインタへッ ド h e a d ((3) の矢印) 、 ポインタティル t a i 1 ((4) の矢印) に保持される。 つまり、 ポインタヘッド h e a dは次に空き領域として使う番地を示し ((3) の 矢印) 、 セルバッファ C Bのその番地のポインタにはその次に空き領域として使 う番地が示されている。 C Bフリーポインタはセルバッファ C Bに保持されてい る空き領域のリストの末尾の番地をリンク情報としてポインタティル t a i 1に 保持する ((4) の矢印) 。
(第九実施例)
本発明第九実施例を図 2 9を参照して説明する。 図 2 9は本発明第九実施例の 要部構成図である。 本発明第九実施例は、 本発明第八実施例の構成に加えて時刻 とコネクションの対応関係を持つスケジュ一リングテーブル S Tとタイマ T i m からなる。 タイマ T i mは現時刻を示すタイマであり、 夕イマ T i mが示す時刻 において、 スケジュ一リングテーブル S Tに記載されたコネクションのセルを読 み出す。 セルを読み出すと同時に当該コネクションの次のセルの読み出し時刻を スケジューリングする。 すなわち、 タイマ T i mが示す現時刻より当該コネクシ ヨンのセル間隔 (コネクションテーブル C Tのセル送出間隔 I n tフィールドに 記載されている) だけ後にスケジュ一リングテーブル S Tのェントリーに当該コ ネクシヨンを記載する。
(第十実施例)
本発明第十実施例を図 3 0を参照して説明する。 図 3 0は本発明第十実施例の 要部構成図である。 本発明第十実施例は、 本発明第九実施例のスケジューリング テーブル S Tに複数のコネクションを同一時刻に割り当てるためにフィールドを 複数持つものである。 また、 現在の時刻を示すタイマ T i mに加え、 仮想時刻を 示す仮想夕イマ HT i mを具備する。
本発明第九実施例にぉレ、ては同一時刻にスケジユーリングされたコネクション のうち一つしか実際にはスケジユーリングされないが、 本発明第十実施例では複 数のコネクションをスケジユーリングすることができる。
仮想夕イマ HT i mの値はスケジユーリングテーブル S Tの所定の番地を指示 するのに用いられる。 夕イマ T i mは常に正確に現時刻を示すのに対し、 スケジ ユーリングテーブル S Tが同一時刻に読み出すようにスケジュ一リングされた複 数のセルをセルバッファ C Bから読み出す間は仮想夕イマ HT i mは同じ時刻を 示したままになる。
(第十一実施例)
本発明第十一実施例を図 3 1を参照して説明する。 図 3 1は本発明第十一実施 例の要部構成図である。 本発明第十一実施例は、 コネクションテーブル C T、 セ ルバッファ C B、 セルバッファ C Bの空きァドレスのリストの先頭と末尾のァド レスを保持する C Bフリーポインタ、 スケジューリングテーブル S T、 現時刻を 示すタイマ T i m、 仮想時刻を示す仮想タイマ HT i m、 同時到着コネクション リスト S L、 同時到着コネクシヨンリスト S Lの空きァドレスのリストの先頭と 末尾のァドレスを保持する S Lフリーポインタからなる。
スケジュ一リングテーブル S Tはセルの読み出しをスケジュ一リングするテ一 ブルである。 スケジユーリングテーブル S Tは同一時刻にセルバッファ C Bから 読み出すようにスケジューリングされているコネクション識別子を保持するリス トである同時到着コネクションリスト S Lへのポインタへッド h e a d, ボイン 夕ティル t a i 1 と時刻を対として管理している。 ポインタへッド h e a d、 ポ インタティル t a i 1は同時到着コネクションリスト S Lへのリンク関係 (図 3 1の (20), (21) の矢印) を示し、 その時刻にセルバッファ C Bから読み出すこと になっている先頭と末尾のセルの識別子を保持する。
現在の時刻を示すタイマ T i mに加え、 仮想時刻を示す仮想夕イマ HT i mを 具備する。 仮想夕イマ HT i mの値はスケジユーリングテーブル S Tの所定の番 地を指示するのに用いられる。
タイマ T i mは常に正確に現時刻を示すのに対し、 同時到着コネクションリス ト S Lが同一時刻に読み出すようにスケジユーリングされた複数のセルをセルバ ッファ C Bから読み出す間は仮想タイマ HT i mは同じ時刻を示したままになる c 同時到着コネクシヨンリスト S Lは同一時刻にセルバッファ C Bから読み出す ことになるスケジュ一リングされているコネクションのチェインを構成する。 こ れにより同一時刻にスケジユーリングされたコネクション数を柔軟に増やすこと ができる。 チェインの構成は共通のセルバッファ C Bで各コネクションの F I F 〇のキューを構成したのと同様の方法である。 すなわち、 S Lフリーポインタは 同時到着コネクシヨンリスト S Lの空き領域の先頭と末尾の番地を保持する。 同 時到着コネクシヨンリスト S Lと S Lフリーポインタは組み合わせて用いられる c 同時到着コネクシヨンリスト S Lはセルのコネクション識別子を保持するリスト であり、 コネクション識別子と同一時刻にセルバッファ C Bから読み出すコネク ション識別子の順序関係を指示するためのボイン夕 (図 3 1の (22). (23) の矢印) とを一つのェントリとして構成される。 同時到着コネクシヨンリスト S Lにはポ インタで指示する読み出し順序の関係で論理的に同一時刻で読み出すようにスケ ジユーリングされたセルのコネクション識別子のリストが構成されている。 つま り、 ある時刻を例に取り上げると、 仮想夕イマ HT i mのポインタヘッド h e a dが示す番地 (図 3 1の (20)の矢印) で同時到着コネクシヨンリスト S Lをアド レツシングし、 同時到着コネクシヨンリスト S Lのその番地のボイン夕が示す番 地 (図 3 1の (22), (23) の矢印) でリストを順次手繰ることにより当該時刻に読 み出すようにスケジユーリングされたセルのコネクション識別子をその読み出し 順にアクセスすることができる。 仮想夕イマ HT i mは同時到着コネクションリ スト S L上の当該時刻のリストの末尾の番地 (図 3 1の (21)) をリンク情報とし てポインタティル t a i 1に保持する。 また、 空き領域も時刻毎の場合と同じよ うに論理的にリストで構成されている。 同時到着コネクシヨンリスト S Lの空き 領域の先頭と末尾の番地は S Lフリーポインタのポインタへッ ド h e a d (図 3 1の (20)) 、 ポインタティル t a i l (図 3 1の (21)) に保持される。 つまりポ インタへッ ド h e a dは次に空き領域として使う番地を示し、 同時到着コネクシ ヨンリスト S Lのその番地のポインタにはその次の空き領域として使う番地が示 されている。 S Lフリーポインタは同時到着コネクシヨンリスト S Lに保持され ている空き領域のリストの末尾の番地をリンク情報としてポインタティル t a i 1 (図 3 1の (21)) に保持する。
ある時刻にスケジユーリングされたセルのコネクション識別子を同時到着コネ クシヨンリスト S Lに書込む場合を図 3 2および図 3 3に示す。 図 3 2および図 3 3はコネクション識別子を同時到着コネクシヨンリスト S Lに書込む動作を示 す図である。 図 3 2では、 新たにスケジューリングされたコネクションをチエイ ンの先頭につける場合と末尾につける場合を示す。 また、 図 3 3に示すように、 同時到着コネクションリスト S Lにチェインがない場合にはチェインを新たに作 。 ある時刻にスケジユーリングされたコネクション識別子を同時到着コネクショ ンリスト S Lから取り出す場合を図 3 4に示す。 図 3 4は、 コネクション識別子 を同時到着コネクションリスト S Lから取り出す動作を示す図である。 図 3 4で はチェィンの先頭からコネクション識別子を取り出している様子を示している。 上の説明ではコネクション識別子を組み込む位置は同一時刻でスケジユーリン グされているコネクション識別子のリストのポインタティル t a i 1であった。 また、 コネクション識別子を読み出す位置は同一時刻でスケジユーリングされて いるコネクション識別子のリストのポインタへッド h e a dであった。 つまり同 一時刻にスケジユーリングされるコネクション識別子は先着順 F I F〇で読み出 されることになる。 また、 同一時刻にスケジューリングされるコネクション識別 子はセル間隔が短いほど、 後でリストに組み込まれるため、 セル間隔が短いほど、 逆にいうと、 セル速度が速いほど後ろにスケジューリングされる。 コネクション 識別子を組み込む位置を同一時刻でスケジュ一リングされているコネクション識 別子のリストのポインタへッド h e a dにすることにより、 同一時刻にスケジュ ーリングされるコネクション識別子は後着順 L I F Oで読み出される。 このよう にすると速度が速いコネクションほど速く読み出されることになる。 また、 コネ クション毎にコネクション識別子を組み込む位置を同一時刻でスケジュ一リング されているコネクション識別子のリストのポインタティル t a i 1かポインタへ ッ ド h e a dのいずれかを決めておけば、 コネクションを 2つのクラスに分類す ることができる。 すなわち、 同一時刻にスケジューリングされたコネクションの 中で先にスケジユーリングされるものと後にスケジユーリングされるものの 2ク ラスを作ることができる。
以上で、 各ブロックの機能を個別に述べた。 以下では各ブロックがどのように して相互に作用し、 所望の目的を達するかを説明する。 図 3 5にフローを示す。 図 3 5は本発明第十一実施例の動作を示すフローチャートである。 セルを読み出 すコネクションの決定 (S 1 2 1 ) 、 当該コネクションのセルの読み出し (S 1 2 2 ) 、 当該コネクションの次のセルの読み出しスケジユーリング (S 1 2 3 )、 到着セルのセルバッファ C B内の F I F Oキューへの書込み (S 1 2 4 ) の順で 処理が行われる。
(セルの到着処理)
セルの到着にともない必要な処理は当該セルのセルバッファ C Bへの書込みと 当該セルの転送スケジユーリングの有無の判断である。 セルのセルバッファ C B への書込み処理は既に当該セルのコネクシヨンのリストがセルバッファ C Bにあ るか否かで異なる。 当該コネクションのリストがない場合はまず、 セルバッファ C B上に当該コネクションのリストが新たに作成される。 さらに、 セルバッファ C Bの空き領域にセルを書込む。 この手順については図 2 5を用いて詳述したと おりである。 次にセルバッファ C B上に当該コネクションのリストの論理的な関 係を新たに作成する。 この手順についても図 2 6および図 2 7を用いて詳述した とおりである。
リストが既にある場合には、 次のように処理が実行され、 セルバッファ C B上 の当該コネクションのリストが変更される。 まず、 セルバッファ C Bの空き領域 にセルを書込む。 この手順については図 2 5を用いて詳述したとおりである。 次 に、 セルバッファ C B上の当該コネクションのリストの論理的な関係を変更する c この手順についても図 2 6および図 2 7を用いて詳述したとおりである。
セルの転送スケジュ一リングの有無は当該セルのコネクションがトークン T k を持つか否かで決まる。 セルが到着するとヘッダに搭載されているコネクション 識別子を元にコネクションテーブル C Tを検索する。
トークン T kがセッ トされていなければ、 その時点では当該セルの転送スケジ ユーリングは行われず、 当該コネクションのその時点の末尾のセルが転送された 時点でスケジユーリングされる。 これについてはセル読み出し処理の項で詳細に 説明する。
トークン T kがセットされていれば、 現時刻を示すタイマ T i mでァドレッシ ングしてスケジユーリングテーブルを検索する。 以降の処理はその時刻に既にス ケジユーリングされたコネクションがあるか否かで異なる。 スケジューリングされたコネクションがない場合はつぎのように処理が実行さ れ、 同時到着コネクシヨンリスト S L上にタイマ T i mが示す現時刻に転送され ることになつているセルのリストが新たに作成される。 まず、 同時到着コネクシ ヨンリスト S Lの空き領域に当該コネクション識別子を書き込む。 次に同時到着 コネクションリスト S L上にタイマ T i mが示す現時刻に転送されることになつ ているセルのリストの論理的な関係を新たに作成する。 この手順については図 3 2および図 3 3を用いて詳述したとおりである。
既にスケジューリングされたコネクションがある場合はつぎのように処理が実 行され、 同時到着コネクシヨンリスト S L上に夕イマ T i mが示す現時刻に転送 されることになつているセルのリストが変更される。 まず、 同時到着コネクショ ンリスト S Lの空き領域に当該コネクション識別子を書込む。 次に同時到着コネ クシヨンリスト S L上のタイマ T i mが示す現時刻に転送されることになってい るセルのリストの論理的な関係を変更する。 この手順についても図 3 2および図 3 3を用いて詳述したとおりである。
上で説明したとおりにトークン T kがセッ トされている場合には当該セルは夕 イマ T i mが示す現時刻にスケジュ一リングされる力く、 スケジュ一リングテープ ル S Tを処理中の仮想タイマ HT i mが示す仮想時刻が遅れている場合には当該 セルを転送したい場合もある。 この場合は仮想タイマ HT i mが示す時刻でスケ ジユーリングテーブル S Tをアドレッシングし、 その番地のポインタへッド h e a dが示すリストの先頭に当該セルのコネクション識別子を追加する。
(セルの読み出し処理)
セルの読み出しにともない必要な処理はセルを読み出すコネクションの決定と セルの読み出しと次のセルのスケジユーリングである。 コネクションの決定は仮 想タイマ HT i mが示す仮想時刻に転送することになつているセルがあるか否か で異なる。 転送するセルがない場合には、 仮想タイマ HT i mを一単位時間毎進 め、 その都度その時刻に転送するセルがあるか否かを検査する。 転送するセルが 見つかるまで仮想タイマ HT i mは通常の速度より速く進める。 所定の時間だけ 進めて見つからない場合はセルの読み出しを諦める。 この処理をより効率的に実 行するにはスケジューリングテーブル S Tにもリストの概念を導入すればよい。 これについては一単位時間内に行う処理の項で説明する。 所定の時間内に転送す るセルが見つかつた場合は以降の処理は転送するセルがある場合と共通である。 転送するセルがある場合は、 この時刻に読み出すコネクションを決定する。 つ まり、 この時刻にスケジユーリングされたコネクション識別子を同時到着コネク シヨンリスト S Lから取り出す。 この手順につレ、ては図 3 4を用レ、て詳述したと おりである。
次に、 当該コネクションのセルをセルバッファ C Bから読み出す。 セルのセル バッファ C Bからの読み出し処理は当該コネクションのセルがセルバッファ C B にあるか否かで処理が異なる。 先に決定されたコネクション識別子を元にコネク シヨンテーブル C Tをアクセスする。
当該コネクションのセルがセノ くッファ C Bになレ、場合はコネクションテープ ル C Tのトークン T kをセッ 卜するだけで、 セルバッファ C Bからのセルの読み 出しは実行しない。
当該コネクションのセルがセルバッファ C Bにある場合はセルを取り出す。 こ の処理については先にセルバッファ C Bの項で詳述したとおりである。
次のセルのスケジユーリング処理は当該コネクションのトークン T kがセッ ト されているか否かで異なる。 先に決定されたコネクション識別子を元にコネクシ ョンテーブル C Tをアクセスする。
コネクションテーブル C Tのトークン T kがセッ 卜されている場合には次に当 該コネクションのセルが到着したときに、 当該コネクションのスケジユーリング が行われる。 これにつレ、てはセルの到着処理の項で詳述したとおりである。 コネクションテーブル C Tのトークン T kがセットされていない場合にはコネ クシヨンテーブル C Tにある当該コネクションの最小セル間隔 I n tを夕イマ T i mが計時する現時刻に加えたものを次のセルの転送時刻として当該コネクショ ンをスケジユーリングする。 つまり、 I n t +T i mとなるようにスケジュ一リ ングテーブル S Tをアドレッシングし、 そのポインタへッド h e a dが示す同時 到着コネクションリスト S L上の時刻 I n t +T i mにスケジユーリングされた セルのコネクション識別子のリストに当該コネクション識別子を追加する。 この 追加の処理については先に同時到着コネクシヨンリスト S Lの説明の項で詳述し たので省略する。 ここでセルの転送スケジユーリングは仮想タイマ HT i mでな くて現在の時刻を示すタイマ T i mを用いているので、 当該コネクションのセル 送出間隔 I n tは所定のセル送出間隔 I n tより厳密に小さくならないことに注 意する。 同時刻にスケジューリングされたセル同士の揺らぎを許容すれば、 I n t +HT i mの時刻にスケジユーリングすれば当該コネクションはより早く転送 することができる。 スケジユーリングテーブル S Tへの登録はセルの到着処理の 項でトークン T kがセットされていないときとほぼ同等である。
(第十二実施例)
本発明第十二実施例を図 3 6を参照して説明する。 図 3 6は本発明第十二実施 例の要部構成図である。一単位時間は出力回線上にセルを転送するのに必要な時 間である。 一単位時間内にはセルの到着処理、 セルの読み出し処理をこの順番で 行う。 本発明第十二実施例は、 スケジューリングテーブル S Tの処理対象番地を 示す仮想タイマ HT i mを現時刻を示すタイマ T i mに効率的に追い付かせるた めのものである。 前述したように夕イマ T i mは常に正確に現時刻を示すのに対 し、 同時到着コネクシヨンリスト S Lが同一時刻に読み出すようにスケジユーリ ングされた複数のセルをセルバッファ C Bから読み出す間は仮想夕イマ HT i m は同じ時刻を示したままになる。 同一時刻に多量のコネクションがスケジユーリ ングされたとき、 仮想夕イマ HT i mとタイマ T i mの時間差が大きくなる。 仮 想 HT i mが示す時刻にスケジユーリングされたセルの読み出し処理が完了した 後に仮想 HT i mに追い付くのに時間がかかる。
そこで本発明第十二実施例においてはスケジユーリングテーブル S Tの各時刻 のェントリーにポインタフィールドを導入し、 セルが送出すべき時刻のリストを 組むことで効率的に仮想夕イマ HT i mに追い付くようにしている。 図 3 6においてはセルを送出すべき時刻のリストがスケジュ一リングテ一ブル S T上に構成されており、 リストの先頭は仮想夕イマ HT i mが示す番地であり、 末尾は追従タイマ TT i mが示す番地である。 スケジユーリングテーブル S Tに はポインタで指示する関係でセルを送出すべき時刻のリストが論理的に構成され ている。 つまり、 仮想タイマ HT i mが示す番地でスケジューリングテーブル S Tをァドレッシングし、 仮想夕イマ HT i mのその番地のポインタが示す番地リ ストを順次手繰ることによりセルを読み出すことになつている時刻を順次ァクセ スすることができる。
初期状態としては仮想夕イマ HT i m、 追従夕イマ TT i m、 タイマ T i mは 共に同じ時刻を示すが、 ある時刻において同一時刻にスケジユーリングされたセ ルが複数あると、 仮想タイマ HT i mは遅れ出し相対的にタイマ T i mが先行す る。 仮想タイマ HT i mとタイマ T i mがずれても新たにセルの到着がなくかつ 夕イマ T i mがセルのスケジユーリングされた時刻を指すことがなければ、 その 間、 追従夕イマ TT i mは仮想タイマ HT i mと同じ時刻を示す。
新たにセルの到着があつたとすると、 追従夕イマ TT i mが示すスケジユーリ ングテーブル S Tの番地のポインタに夕イマ T i mが示す番地を書込み、 追従夕 イマ TT i mにもその番地を示す。 タイマ T i mがセルのスケジユーリングされ た時刻を指したときも同じ処理を行レ、、 セルを読み出すことになつている時刻の リストに現時刻を追加する。
(第十三実施例)
次に、 本発明第十三実施例を図 3 7を参照して説明する。 図 3 7は本発明第十 三実施例の要部構成図である。 本発明第十三実施例は、 コネクション毎にセルバ ッファ C B内セル数の制限を与え、 コネクション間の品質の影響を低減するもの である。 本発明にぉレ、てはセルバッファ C Bは共通バッファなので特定のコネク ションのセルが過剰に到着した場合にはセルバッファ C Bを占有してしまい、 他 のコネクションの品質へ悪影響が及ぶ危険がある。 本発明第十三実施例はこのよ うな場合に特定のコネクションがセルバッファ C Bを占有しないようにコネクシ ョン毎にセルバッファ C Bに入り得るセル数を制限するものである。
セルをセルバッファ C Bに書込む前にコネクションテーブル C Tの Q 1 e nフ ィールドと B l e nフィールドを比較し、 Q l e nフィールドが小さい場合には セルバッファ C Bに書込むと同時に Q 1 e nを "十 ' する。 Q 1 e nフィール ドが小さくない場合にはセルをセルバッファ C Bに書込むのを禁止する。 また、 セルをセルバッファ C Bから読み出す場合には Q 1 e nフィールドの値を "― 1 " する。 Q l e nフィールドは当該コネクションのセルバッファ C B内のセル数を 示し、 B 1 e nフィールドは当該コネクションの許容されるセルバッファ C B内 のセル数を示す。
(第十四実施例)
本発明第十四実施例を図 3 8を参照して説明する。 図 3 8は本発明第十四実施 例の要部構成図である。 本発明第十四実施例は、 コネクションのスケジユーリン グに優先権の概念を導入したものである。 前述したように同一時刻にスケジュ一 リングされるコネクション識別子は先着順 F I F Oで読み出されることになる。 また、 同一時刻にスケジユーリングされるコネクション識別子はセル送出間隔 I n tが短いほど後でリストに組み込まれるため、 セル送出間隔 I n tが短いほど、 逆にいうと、 セル速度が速いほど後ろにスケジューリングされる。 コネクション 識別子を組み込む位置を同一時刻でスケジユーリングされているコネクション識 別子のリストのポインタへッ ド h e a dにすることにより、 同一時刻にスケジュ ーリングされるコネクション識別子は後着順 L I F〇で読み出される。 このよう にすると速度が速いコネクションほど速く読み出されることになる。 また、 コネ クション毎にコネクション識別子を組み込む位置を同一時刻でスケジユーリング されているコネクション識別子のリストのボイン夕ティル t a i 1かポインタへ ッ ド h e a dのいずれかを決めておけば、 コネクションを 2つのクラスに分類す ることができる。 すなわち、 同一時刻にスケジューリングされたコネクションの 中で先にスケジユーリングされるものと後にスケジユーリングされるものの 2ク ラスを作ることができる。 コネクションテーブル C Tにはコネクション毎の優先権の高低を表示するフィ 一ルド P r iが設けられている。 同時到着コネクションリスト S L上の同一時刻 にスケジューリングされたコネクション識別子のリストに要素を追加するときに、 その要素のコネクション識別子に該当するコネクションテーブル C Tのフィール ド P r iが高優先であれば、 スケジューリングテーブル S Tのポインタへッド h e a dが指す位置に新しい要素を追加し、 低優先であれば、 スケジューリングテ 一ブル S Tのポインタティル t a i 1が指す位置に新しい要素を追加する。
これまでの説明では全ての実施例において同時到着コネクシヨンリスト Sしに コネクション識別子を記載していたが、 その代わりにコネクションテーブル C T のァドレスを記載することも可能である。
(第十五実施例)
本発明第十五実施例を図 3 9および図 4 0を参照して説明する。 図 3 9は本発 明第十五実施例の動的レート制御装置のブロック構成図である。 図 4 0は本発明 第十五実施例の動的レート制御装置の動作を示すフローチヤ一トである。
本発明第十五実施例の動的レ一ト制御装置は、 セル流量を測定する手段として のセル流量測定部 1と、 この測定されたセル流量と閾値とを比較する手段として の輻輳検出部 2と、 この比較結果にしたがってセル流量の規制率を含む規制情報 をセル発生源に通知する手段としての輻輳通知部 4とを備えている。
ここで、 本発明第十五実施例の動的レート制御装置の特徴とするところは、 一 つのセル発生源に対して規制状態にあるときにそのセル発生源からのセル流量測 定値が前記閾値を下回り設定された流量になるまでその規制状態を継続する手段 としての輻輳制御部 3を含むところにある。
図 4 0に示すように、 規準化されたセル流量を; I、 規準化された閾値を Λ二 1 とするとき、 前記規制率 Rを
R = \ / λ
とし (S 1 3 3 ) 、
λ < 1 /R となるとき (S 1 3 4 ) 、 規制率 Rを
R = 1
とする (S 1 3 5 ) 。
すなわち、 本発明第十五実施例の動的レート制御装置は、 セルバッファ 5と、 セル流量測定部 1と、 輻輳検出部 2および輻輳制御部 3を含む輻輳通知部 4とか ら構成され、 セル流量測定部 1にて得られたセル流量にしたがって輻輳検出部 2 で輻輳を検出し、 輻輳制御部 3にて規制の開始、 解除を決定し、 輻輳通知部 4は、 輻輳している方向と逆方向に流れる RMセルを用いて規制率 Rをセル発生源の通 信端末に通知する。
輻輳検出部 2および輻輳制御部 3の動作のフローチャートを図 4 0に示す。 輻 輳中でない場合は (S 1 3 1 ) 、 セル流量測定部 1により測定されたセル流量; I と輻輳検出閾値 Λとを比較する (S 1 3 2 ) 、 ここではセル流量に関する量は全 て伝送路容量を 1として正規化する。 セル流量; Iが閾値 Λを越えた場合には輻輳 と判断し、 セル発生源からのセル送出速度の規制率 Rを 1 /スとする(S 1 3 3 )。 すなわち、 セル発生源の現在のセル送出速度の 1 /ス以下に規制することにより セル発生源からのバケツト流量が " 1 " 以下に抑えられて輻輳が収まる。
輻輳中の場合は (S 1 3 1 ) 、 セル流量; Iと現時点の規制率 Rの逆数 1 ZRを 比較し、 セル流量; Iの方が小さければ輻輳が収まったと判定し (S 1 3 4 ) 、 規 制を解除する (S 1 3 5 ) 。 規制を解除することによりセル流量; Iは R倍に増加 する力、 規制解除前のセル発生源からのセル流量が 1 /R以下であるので、 セル 発生源からのセル流量は 1を越えることはなレ、。
図 4 1および図 4 2は本発明第十五実施例の動作をセル流量; Iおよび時間の関 係により示した図である。 横軸に時間をとり、 縦軸にセル流量 λをとる。 まず、 図 4 1の左側の図において、 セル発生源からのセル送出速度の合計が; I ( > Λ) となって輻輳状態となった場合に、 規制率 Rを 1 Ζ λとしてセル発生源の通信端 末に通知する。 所定の時間を経過してセル発生源からのセル送出速度が実効的に ΐ Ζ λになると、 図 4 1の右側の図に示すように輻輳状態が回避される。 輻輳状 態が抑えられるとセル発生源からの再送が起こらなくなり、 カタストロフイツク に輻輳状態に移行することがなくなる。 ただし、 現時点ではセル発生源のセル送 出速度を 1 に規制しているので、 直ちに規制を解除すると R倍のトラヒック が加わることとなり、 また輻輳が起こることになる。 セル発生源からのセル送出 速度が図 4 2の左側の図に示すように、 1 /R以下になって初めて規制を解除す る。 こうすることにより、 図 4 2の右側の図に示すように、 解除後にトラヒック が R倍になつても輻輳状態とはならない。
(第十六実施例)
本発明第十六実施例を図 4 3および図 4 4を参照して説明する。 図 4 3および 図 4 4は本発明第十六実施例の動的レート制御装置のプロック構成図である。 図 4 3に示す動的レート制御装置は、 セルバッファ 5と、 セル流量測定部 1と、 輻 輳検出部 2および輻輳制御部 3を含む輻輳通知部 4と、 速度テーブル 6と、 乗算 器 7とから構成される。 速度テーブル 6にはセル発生源が送信するセル送出速度 力コネクション毎に記載されている。 セル流量測定部 1、 輻輳検出部 2、 輻輳制 御部 3の動作は本発明第十五実施例と同様であるが、 本発明第十六実施例では、 輻輳している方向と逆方向に流れる R Mセルには規則率 Rでなく、 乗算器 7によ つて乗算された規制率 Rと速度との積が搭載され、 セル発生源の通信端末に通知 される。 通信端末はその RMセルに搭載された送出速度で送出速度を規制する。 図 4 4には速度テーブル 6および乗算器 7が交換機 2 0に具備される例を示す c 速度テーブル 6は輻輳検出点である輻輳制御交換機 3 0に具備される必要はなく、 通信端末が収容されている交換機 2 0に配備すればよい。 この場合は輻輳通知用 の RMセルが通信網内を転送される間は規制率 Rを搭載しており、 交換機 2 0か ら加入者に向けて転送される際にバケツト送出速度に変換される。
本発明第十六実施例によれば、 セル発生源の通信端末には、 規制率 Rを規制さ れたセル送出速度に変換するための手順を設ける必要がなくなる利点がある。
(第十七実施例)
本発明第十七実施例の動的レート制御装置を図 4 5を参照して説明する。 図 4 5は本発明第十七実施例の動的レート制御装置のプロック構成図である。 図 4 5 に示す動的レート制御装置は、 セルバッファ 5と、 セル流量測定部 1と、 輻輳検 出部 2と、 輻輳制御部 3を含む輻輳通知部 4とから構成される。 輻輳検出部 2は セルバッファ 5内のセルの溜り具合、 すなわち、 キュー長を元に輻辏を検出する。 キュ一長が輻辏検出用キュ一長閾値を越えたら輻輳と判定して規制を開始する。 規制解除の判定は、 本発明第十五および第十六実施例の場合と同様である。
(第十八実施例)
本発明第十八実施例の動的レート制御装置を図 4 6および図 4 7を参照して説 明する。 図 4 6は本発明第十八実施例の動的レート制御装置のブロック構成図で ある。 図 4 7は本発明第十八実施例の動的レート制御装置の動作を示すフローチ ヤートである。 図 4 6に示す動的レート制御装置は、 セルバッファ 5と、 セル流 量測定部 1と、 輻輳検出部 2および輻輳制御部 3を含む輻輳通知部 4と、 タイマ 8とから構成される。 本発明第十八実施例では、 輻輳検出用閾値を一定時間以上 継続して越えた場合に輻輳と判定する。 さらに、 輻輳と判定してから一定時間以 上輻輳が収まらなければ規制を強化する。
本発明第十八実施例における輻輳検出部 2および輻輳制御部 3の動作のフロー チャートを図 4 7に示す。 輻輳中でない場合は (S 1 4 1 ) 、 セル流量測定部 1 により測定されたバケツト流量 λと輻輳検出閾値 Λとを比較する (S 1 4 2 )。 セル流量; Iが基準値 Λを越えた場合には輻輳と判断し、 セル発生源からのセル送 出速度の規制率 Rを ΐ Ζ λとする (S 1 4 3 ) 。 そうでない場合でも、 セル流量 λが 1以上である状態が一定時間 R TT以上継続したら (S 1 4 4 ) 、 輻輳と判 断し、 セル送出速度の規制率 Rを m i n ( l / λ ) とする (S 1 4 5 ) 。 ここで、 m i nの範囲は R TTの期間である。 すなわち、 R TTの期間における最大のセ ル流量; ax の逆数 (すなわち最小値 m i n ) を規制率 Rとしている。
輻輳中の場合はバケツト流量 λと現時点の規制率 Rの逆数 1 /Rを比較し (S 1 4 6 ) 、 バケツト流量; Iの方が小さければ輻輳が収まったと判定し、 規制を解 除する (S 1 4 7 ) 。 そうでない場合には、 輻輳状態が一定時間 R TT以上継続 したら (S 1 4 8) 、 大きな輻輳と判断し、 セル送出速度の規制率 Rを m i n ( R/λ) と強化する (S 1 4 9) 。 ここで、 m i nの範囲は RTTの期間である。
(第十九実施例)
本発明第十九実施例の動的レート制御装置を図 4 8および図 4 9を参照して説 明する。 図 4 8は本発明第十九実施例の動的レート制御装置を説明するための図 である。 図 4 9は本発明第十九実施例の動的レート制御装置の動作を示すフロー チャートである。 本発明第十九実施例では、 規制率 Rが大きいと輻輳が収まって から解除するまでの網の使用効率が低下するので、 規制の解除を段階的に行う。 図 4 8および図 4 9に示すように、 RTT毎にセル数の観測を行い (S 1 5 1)、 λ 0の観測の時点 (a) で輻輳が発生したら (S 1 52) 、 セル発生源のセル送 出速度を規制する (S 1 5 3) 。 輻輳制御開始時の規制率 R = 1/λ 0 (λ 0 > 1 ) とする (S 1 54) 。 ここで、 λ 0はセル発生源からのセル流量である。 λ 1の観測の時点 (b) で規制を開始しているにもかかわらず一定の時間を経過し ても輻辏が収まらない場合は (S 1 5 1 ) 、 次段の規制率 R' =R/ 1 (λ 1 > λ 0 > 1 ) として規制率を強化する (S 1 5 5 ) 。 ここで、 ス 1はセル発生源 からのセル流量であり、 その値は 1以上である。 λ 2の観測の時点 (c) で輻輳 が収まったときは (S 1 52、 S 1 5 6) 、 規制率を順次緩和していく。 このと き、 再度輻輳が発生しない範囲で規制率を緩和することとし、 規制率 R〃 =R/ λ 2 (A 2 < 1 ) とする (S 1 57) 。 ここで、 λ 2はセル発生源からのセル流 量であり、 その値は 1以下である。 λ 3の観測の時点 (d) でセル流量が規制率 Rの逆数 ( 1ZR) よりも小さければ (S 1 5 8) 、 規制を解除する(S 1 5 9)。 このようにすることにより、 規制中の間でも網の使用効率を向上することができ る。
(第二十実施例)
本発明第二十実施例の動的レート制御装置を図 5 0および図 5 1を参照して説 明する。 図 5 0は本発明第二十実施例の動的レート制御装置の動作を示すフロー チャートである。 図 5 1は呼種管理テーブルを示す図である。 本発明第二十実施例の動的レート制御装置は、 本発明第一実施例の図 2で示し たように交換機 20に設けられ、 送信レート演算制御部 1 2を含む。 本発明第二 十実施例の送信レート演算制御部 1 2では、 複数の接続要求についてピーク速度 および平均速度にしたがってその複数の接続要求を i個のグループに分類し、 図 50に示すように、 その複数の接続要求の全てについて平均セル損失率を CLR AVE 平均速度の和を ael l、 VP帯域を cとし、 グループ iのピーク速度を r i、 平均速度を ai とするとき、 i番目のグループのセル損失率 CLRi を
CLRi ≤ (a.,, /c) · (r i /a , ) · CLRAVE … (式 2) として演算し、 このセル損失率 CLRi を満たすグループの接続受付を許可する c すなわち、 図 50に示すように、 第一のステップとして接続要求のあったコネ クシヨンを呼種管理テーブルに仮登録する (S 1 6 1) 。 呼種管理テーブルは図 5 1にあるように呼種別にコネクション数およびピーク速度および平均速度の値 を記録するフィールドを持つ、 接続要求のあつたコネクションのピーク速度と平 均速度をみて、 既に呼種管理テーブルに該当の値を持つ呼種のェントリがあれば、 該当のコネクション数を "+ 1 " とする。 エントリがなければ、 ピーク速度と平 均速度のフィールドに値を登録し、 コネクション数フィールドを 1とし、 新たに テーブルに呼種ェントリを追加する。
次に、 第二ステップとして平均のセル損失率を計算する。 呼種管理テーブルを 使って、 呼種 iのセル速度確率密度関数 i i (X) を計算する。
Figure imgf000055_0001
(式 3) ここで、 Ni は呼種 iの VC数を、 Pi は呼種 iのピーク速度に対する平均セ ル速度の比を表す。 全ての呼種 iについて f i (x) を畳み込み、 全ての呼種の セル速度確率密度関数 F (X) を求める。 F (x) =f i *…氺 f n (x) - (式 4) ここで、 nは呼種数であり、 *は畳み込み演算子を表す。 F (X) を用いて平均 のセル損失率 CLRAVE は、
CLRAVE = S 0 (x-c) F (x) dx .··· (式 5) で表される (S 1 62)。
次に、 第三ステップとして呼種別のセル損失の計算を行う。 式 2にあるように、 呼種 iのセル損失率 CLRi は、
CLRi ≤ (attlI /c) · (r -t /a s ) · CLRAVE … (式 2) で求められる。 ここで aall /cは全ての呼種について共通となる第一の安全係 数であり、 ri Zai は呼種 i特有の第二の安全係数である (S 1 63)。
次に、 第四のステップとして呼種 iのセル損失率 CLRi がセル損失率規準値 よりも小さいかどうか判定し、 大きい場合は接続要求を拒絶と判定し、 判定フロ —を終了する (S 1 64)。
zj、さい場合は、 次のステップに進む。 ここで、 セル損失率の基準値は呼種別に 変えることにより、 複数の要求品質を持つ場合にも対応可能である。
次に、 第五のステップとして全ての呼種についてセル損失率と基準値との比較 を行つたかどうか判定し、 全ての呼種にっレ、て基準値を満足していることが判定 されたことが判明したら次のステップに進む。 全ての呼種について判定が終了し ていなければ次の呼種について第三のステップ以降の処理を繰り返す (S 1 65、 S 1 67)。 最後に、 第六のステップとして、 第五のステップにおいて全ての呼 種についてセル損失率の基準値を満足していることが判明したら、 第一のステツ プで呼種管理テーブルに仮登録したコネクション接続要求を正式に登録し、 判定 フローを終了する (S 1 66)。

Claims

請求の範囲
1 . 多数の通信端末が収容されそのうちの一つの通信端末からの要求に基づいて その一つの通信端末にバーチャルパスを設定する手段を備えた動的レート制御装 置において、
一^ ^の通信端末に対して送信レートを指定していつたん設定したパーチャルバ スの空き帯域情報を含むルート情報を収集する手段と、 前記一つの端末の要求送 信レートを保持する手段と、 前記ルート情報に基づきいつたん設定したバ一チヤ ルパスの送信レートを動的にその端末の要求送信レートまで可及的に大きくかつ 接続要求のある複数の通信端末に対して公平に制御する制御手段とを備えたこと を特徴とする動的レート制御装置。
2 . 前記制御手段は、 前記通信端末に許容されるセルの送信レートを演算設定す る手段を備えた請求項 1記載の動的レート制御装置。
3 . 前記空き帯域情報は数値情報であり、 前記演算設定する手段は、 空き帯域情 報に定数 C ( 0 < C≤ 1 ) を乗じて前記許容されるセルの送信レートを演算する 手段を含む請求項 1記載の動的レート制御装置。
4 . 前記通信端末からの送信開始要求に含まれるセルの最小送信レートが前記許 容されるセルの送信レートよりも小さいとき、 当該通信端末のセルの初期送信レ 一トを前記許容されるセルの送信レートに設定する手段を備えた請求項 2または 3言己載の動的レート制御装置。
5 . 前記許容されるセルの送信レートの増減は単位増加量毎に段階的に実行され る請求項 2または 3記載の動的レート制御装置。
6 . 前記ルート情報は、 そのルートに含まれるバーチャルパスの空き帯域量を段 階的に示す数量であり、 前記演算設定する手段はこの数量にしたがつて許容され るセルの送信レートを一義的に設定する手段を含む請求項 1または 2記載の動的 レート制御装置。
7 . 前記ルート情報は、 そのルートに含まれるノードに設けられたセルバッファ のキュ一長を段階的に示す数量であり、 前記演算設定する手段はこの数量にした 力つて許容されるセルの送信レートを一義的に設定する手段を含む請求項 1また は 2記載の動的レート制御装置。
8 . 前記ルート情報を他の交換機に伝達するための RMセルを送信する交換機が 混在する請求項 1ないし 7のいずれかに記載の動的レート制御装置において、 前記演算設定する手段は受信される R Mセルを廃棄する手段を含むことを特徴 とする動的レート制御装置。
9 . 前記制御手段は、 自己の収容するコネクションの発側の通信端末に対して、 受け入れ可能な送信レートに関する情報を通知する手段と、 自己に収容され伝送 路を共用する複数のコネクションについて、 各コネクションに許容されている許 容送信レートおよび実際の送信レート、 共用する伝送路の全帯域幅および全入力 帯域幅、 ならびにその伝送路を共用するコネクション数の各情報を収集して保持 する手段と、 この収集して保持する手段に保持された情報に基づいて前記通知す る手段が発側の通信端末に通知する受け入れ可能な送信レートを各コネクション 毎に算出する手段とを含む請求項 1記載の動的レート制御装置。
1 0 . 前記制御手段は、 自己の収容する通信端末が発端末となるとき、 その通信 端末に対して受け入れ可能な送信レートに関する情報を通知する手段と、 自己の 収容する通信端末が発端末となるコネクシヨンとルートを共用する複数のコネク シヨンについて、 それぞれのコネクションに許容されている許容送信レートおよ び実際の送信レート、 共用されるルートの帯域幅および全入力帯域幅、 ならびに そのルートを共用するコネクション数の各情報を収集して保持する手段と、 この 収集して保持する手段に保持された情報に基づいて前記通知する手段が通知する 受け入れ可能な送信レートを各コネクション毎に算出する手段とを含む請求項 1 記載の動的レート制御装置。
1 1 . 前記通知する手段が通信端末に通知する情報は許容送信レートの上げ下げ を指示する情報であり、 前記複数の通信端末はそれぞれ、 あらかじめ定められた 算出式にしたがって自己の許容送信レートを増減する手段を含む請求項 9または 10記載の動的レート制御装置。
12. 前記算出する手段は、 各コネクションの要求レートに対する許容送信レー トの比の分散
V( {ccri, ccr2.― , ccrj , {Ι ,Γ2,··· ,rn} )
= (1/η)∑』 (ccri/r』—(1/n)∑ i ccr i /r i ) 2
を評価関数として、
ERQj
Figure imgf000059_0001
一ひ』 - sign {n · cc / - w ·∑ iCc / }
により、 コネクション j (j = l、 2、 ···、 n) についてその交換機での受け入 れ可能な送信レート ERGj を求める演算手段を含む請求項 9ないし 1 1のいず れか記載の動的レート制御装置。
ただし、 ∑; 、 ∑』 はそれぞれ i、 j = 1〜!!の総和、 c c r』 、 r』 はそれぞ れコネクション jの許容送信レートと要求レ一ト、 nはデータを送信しているコ ネクシヨンの数、 ひ』 、 wは重み関数、 s i gn {} は {} 内の値の符号を表す 関数である。
13. ひ』 は正の定数である請求項 12記載の動的レート制御装置。
1 . ひ』 は
{n · ccrj/r j -w ·∑ iCc /rJ
の絶対値と等しい値である請求項 12記載の動的レート制御装置。
15. wはコネクションが共用する伝送路あるいはルートの全入力帯域幅の減少 関数である請求項 12記載の動的レート制御装置。
1 6. wは、 コネクションが共用する伝送路あるいはルートの全帯域幅 Ball と 全入力帯域幅 Buse との関数
w= (Ban +P! ) / (BUSe +p2 ) p3
である請求項 12記載の動的レート制御装置。
ただし、 p2 は分母が零となることを防止するための定数、 P: は p2 に対する 補正定数、 p3 は振れ幅を設定するための定数である。
17. wはコネクションが共有する伝送路あるいはルートの全入力帯域幅 Buse の関数
W=~ P 4 · BU S e + P 5
である請求項 12記載の動的レート制御装置。
ただし、 p4 は振れ幅を設定するための正の定数、 p5 は補正のための定数であ る。
1 8. 前記演算手段は、 各コネクションの要求レートが明確でないとき、 通信端 末が現在の許容送信レートの一定の割合以上で送信を行つている場合にはそのコ ネクシヨンにおける許容送信レートのとりうる最大値を要求レートとみなし、 そ れ以外の場合には許容送信レー卜のとりうる最小値を要求レートとみなす手段を 含む請求項 12記載の動的レ一ト制御装置。
1 9. 前記制御手段は、 セル流が到来する入力端子と、 到着したセルを一時蓄積 するセルバッファと、 指示されるセル送出間隔にしたがつてこのセルバッファか らセルを読み出すトラヒックシエイビング部と、 コネクション識別子 (VP \/ VC I) をァドレスとし前記セル送出間隔の情報 ( I n t) を含むコネクション 情報を保持するコネクションテーブルとを備え、
前記セルバッファは、 セルが一つずつ収容される複数のメモリ領域と、 このメ モリ領域と前記コネクションテーブルとを対応させるポインタ値 (Pt r) を示 すボイン夕領域とを含む請求項 1記載の動的レート制御装置。
20. 前記コネクション情報には、 コネクション識別子対応に同一のコネクショ ン識別子を有するセルの先頭および末尾が収容される前記メモリ領域のポインタ 値を含む請求項 1 9記載の動的レ一ト制御装置。
21. 前記ポインタ値により前記セルバッファに蓄積された複数のセルがチエイ ンを構成する請求項 20記載の動的レート制御装置。
22. 前記コネクション情報は、 当該コネクションの末尾セルの到着後に送出ス ケジユーリングの実行の可否を表すトークン (Tk) を含む請求項 20記載の動 的レート制御装置。
23. 前記セルバッファの空きメモリ領域の先頭ポインタ値および末尾ポインタ 値を保持する手段を備えた請求項 1 9ないし 2 2のいずれかに記載の動的レート 制御装置。
2 4 . 現在時刻を計時するタイマと、 このタイマにしたがってセル送出予定をス ケジユーリングする手段とを備えた請求項 1 9ないし 2 3のいずれかに記載の動 的レート制御装置。
2 5 . 前記スケジューリングする手段は、 複数のセルがほとんど同時に到着しそ の複数のセル送出予定時刻が重複するときには、 その重複するセル送出予定時刻 を順次ずらして送出させるようにスケジユーリングする手段を備えた請求項 2 4 記載の動的レート制御装置。
2 6 . 前記スケジユーリングする手段は、 前記セル送出予定時刻が重複する複数 のセルについて全部の送出が完了するまで計時を中止する仮想タイマを前記タイ マとは別に備えた請求項 2 4または 2 5記載の動的レート制御装置。
2 7 . 前記セル送出予定時刻が重複する複数のコネクションについてそのコネク ション識別子の情報が収容されるメモリ領域と、 このメモリ領域に対応して設け られこのメモリ領域に付与されたポインタ値を示すボイン夕領域とを含む同時到 着コネクションリストと、 この同時到着コネクシヨンリストの空きメモリ領域の 先頭ボイン夕値および末尾ボインタ値を保持する手段とを備えた請求項 2 4ない し 2 6のいずれかに記載の動的レート制御装置。
2 8 . 前記スケジューリングする手段には、 あらかじめ複数のセル送出予定時刻 を表示する手段を含む請求項 2 4ないし 2 6のいずれかに記載の動的レート制御
2 9 . 前記セルバッファのメモリ領域には、 コネクション毎の蓄積セル数につい てその上限値が設けられた請求項 1 9ないし 2 8のいずれかに記載の動的レート 制御装置。
3 0 . 前記コネクション情報には、 セル送出順位についての優先権情報を含む請 求項 1 9ないし 2 7記載の動的レート制御装置。
3 1 . 前記制御手段は、 セル流量を測定する手段と、 この測定されたセル流量と 閾値とを比較する手段と、 この比較結果にしたがってセル流量の規制率を含む規 制情報をセルの発端末に通知する手段と、 一つの発端末に対して規制状態にある ときにその発端末からのセル流量測定値が前記閾値を下回り設定された流量にな るまでその規制状態を継続する手段とを含む請求項 1記載の動的レート制御装置 c 32. 規準化されたセル流量を; I、 規準化された閾値を Λ= 1とするとき、 前記 規制率 Rを
R= \ /λ
とし、
λ < 1/R
となるとき規制率 Rを
R= 1
とする
請求項 3 1記載の動的レート制御装置。
3 3. 複数のセル発生源のセル送出速度を保持するテーブルと、 前記規制率とこ のセル送出速度とを乗算する乗算器とを備え、 前記発端末に通知する手段は、 規 制情報として規制されたセル送出速度の値を通知する請求項 3 1または 3 2記載 の動的レート制御装置。
34. セルを一時蓄積するセルバッファを備え、 前記測定する手段は、 このセル ノくッファに蓄積されたセル数からセル流量を測定する請求項 3 1または 32記載 の動的レート制御装置。
35. 前記比較する手段は、 一定時間にわたり比較結果の変化を観測する手段を 備えた請求項 3 1記載の動的レート制御装置。
3 6. 前記規制率を複数個 (R、 R' 、 R〃 ) 設定し、 前記観測する手段の観測 結果にしたがつてこの複数個の規制率を段階的に適用する請求項 35記載の動的 レート制御装置。
37. 前記複数個の規制率 R、 R' 、 R〃 は、 それぞれ
R= 1/λ 0 (Λ 0 > 1 ) R' = /X 1 (λ 1 > λ 0 > 1 )
R" =R/X 2 (R< λ 2 < 1 )
である請求項 36記載の動的レート制御装置。 ただし、 ス 0、 λ Κ ス 2はそれ ぞれ測定時刻の異なるセル流量であり、 閾値 Λ= 1とする。
38. 前記制御手段は、 通信端末からの接続要求についてセル損失率にしたがつ て接続受付の可否を判定する手段を含み、 この判定する手段は、 i番目のグルー プのセル損失率 CLRi を演算する手段と、 このセル損失率 CLRi を満たすグ ループの接続受付を許可する手段とを備えた請求項 1記載の動的レート制御装置。
39. 前記セル損失率 CLRi を演算する手段は、 複数の接続要求についてピー ク速度および平均速度にしたがってその複数の接続要求を i個のグループに分類 し、 その複数の接続要求の全てについて平均セル損失率を CL RAVE 、 平均速度 の和を ael l 、 VP帯域を cとし、 グループ iのピーク速度を r i 、 平均速度を a とするとき、 i番目のグループのセル損失率 CLRi を
CLRi ≤ (aal l /c) · (r i /a ; ) - CLRAvE
として演算する手段を備えた請求項 38記載の動的レート制御装置。
40. 請求項 1ないし 39のいずれか記載の動的レート制御装置を備えた交換装 置。
4 1. 請求項 1ないし 39のいずれかに記載の動的レート制御装置を備えた AT M通信網。
PCT/JP1996/002131 1995-08-02 1996-07-29 Unite de commande de vitesse dynamique WO1997005724A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96925120A EP0812083B1 (en) 1995-08-02 1996-07-29 Dynamic rate controller
DE69637027T DE69637027T2 (de) 1995-08-02 1996-07-29 Steuereinrichtung für dynamische übertragungsraten
US08/825,936 US6046983A (en) 1995-08-02 1997-04-01 Dynamic rate control system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP7/197728 1995-08-02
JP19772895A JP3287529B2 (ja) 1995-08-02 1995-08-02 トラヒックシェイピング装置
JP22674695A JP3087941B2 (ja) 1995-09-04 1995-09-04 Atm通信網
JP7/226746 1995-09-04
JP7/238691 1995-09-18
JP23869195A JP3087942B2 (ja) 1995-09-18 1995-09-18 フロー制御装置
JP7/264422 1995-10-12
JP26442295A JP3085516B2 (ja) 1995-10-12 1995-10-12 適応送信レート制御通信装置
JP7/285289 1995-11-01
JP28528995A JP3039849B2 (ja) 1995-11-01 1995-11-01 セル損失率演算方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/825,936 Continuation US6046983A (en) 1995-08-02 1997-04-01 Dynamic rate control system

Publications (1)

Publication Number Publication Date
WO1997005724A1 true WO1997005724A1 (fr) 1997-02-13

Family

ID=27529173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002131 WO1997005724A1 (fr) 1995-08-02 1996-07-29 Unite de commande de vitesse dynamique

Country Status (4)

Country Link
US (1) US6046983A (ja)
EP (1) EP0812083B1 (ja)
DE (1) DE69637027T2 (ja)
WO (1) WO1997005724A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490251B2 (en) * 1997-04-14 2002-12-03 Nortel Networks Limited Method and apparatus for communicating congestion information among different protocol layers between networks
US6192406B1 (en) * 1997-06-13 2001-02-20 At&T Corp. Startup management system and method for networks
US6385168B1 (en) * 1997-06-19 2002-05-07 Alcatel Canada Inc. Fair share bandwidth allocation algorithm and device
JPH1132055A (ja) * 1997-07-14 1999-02-02 Fujitsu Ltd バッファ制御装置及びバッファ制御方法
JP3607466B2 (ja) * 1997-09-05 2005-01-05 株式会社東芝 ルータ装置及び制御フレーム処理方法
JP3067718B2 (ja) * 1997-10-31 2000-07-24 日本電気株式会社 Abr機能を有するatmシステム
FR2779302B1 (fr) * 1998-05-28 2000-06-23 Alsthom Cge Alcatel Controle de congestion dans un noeud atm
EP0982970B1 (en) * 1998-08-21 2006-10-04 Nippon Telegraph and Telephone Corporation ATM switch
US6614757B1 (en) * 1998-11-23 2003-09-02 3Com Corporation Method of local flow control in an asynchronous transfer mode network utilizing PNNI routing protocol
US6621797B1 (en) * 1999-03-18 2003-09-16 Lucent Technologies Inc. System for determining individual cell/pocket loss in ATM/IP networks among on-off sources
US20030195983A1 (en) * 1999-05-24 2003-10-16 Krause Michael R. Network congestion management using aggressive timers
US6198745B1 (en) * 1999-06-24 2001-03-06 Qwest Communications International Inc. ATM based VDSL communication system for providing video and data alarm services
JP3309834B2 (ja) * 1999-07-16 2002-07-29 日本電気株式会社 Atm交換装置及びセルバッファ使用率監視方法
US6760337B1 (en) 1999-08-17 2004-07-06 Conexant Systems, Inc. Integrated circuit that processes communication packets with scheduler circuitry having multiple priority levels
AUPQ274199A0 (en) * 1999-09-09 1999-09-30 Ericsson Australia Pty Ltd Information transmission rate control across a core network
AU764794B2 (en) * 1999-09-09 2003-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Information transmission rate control across a core network
US6801501B1 (en) * 1999-09-14 2004-10-05 Nokia Corporation Method and apparatus for performing measurement-based admission control using peak rate envelopes
WO2001028142A1 (fr) * 1999-10-14 2001-04-19 Fujitsu Limited Procede et dispositif de raccordement de circuit
FI20000542A (fi) * 2000-03-09 2001-09-10 Nokia Networks Oy Siirtokapasiteettien sovittaminen pakettivälitteisessä verkossa
JP2002074207A (ja) * 2000-09-04 2002-03-15 Fujitsu Ltd サーバー
US20020124083A1 (en) * 2000-09-06 2002-09-05 Sun Microsystems, Inc. Method and apparatus for increasing the efficiency of transactions and connection sharing in an enterprise environment
GB0031535D0 (en) 2000-12-22 2001-02-07 Nokia Networks Oy Traffic congestion
US7088678B1 (en) * 2001-08-27 2006-08-08 3Com Corporation System and method for traffic shaping based on generalized congestion and flow control
CA2357785A1 (en) * 2001-09-14 2003-03-14 Alcatel Canada Inc. Intelligent routing for effective utilization of network signaling resources
US8145787B1 (en) * 2001-10-16 2012-03-27 Cisco Technology, Inc. Adaptive bandwidth utilization over fabric links
US7464180B1 (en) 2001-10-16 2008-12-09 Cisco Technology, Inc. Prioritization and preemption of data frames over a switching fabric
US7161907B2 (en) * 2002-03-05 2007-01-09 Sun Microsystems, Inc. System and method for dynamic rate flow control
DE102004001008B3 (de) * 2004-01-02 2005-07-14 Siemens Ag Verfahren zur Bestimmung von Grenzwerten für eine Verkehrskontrolle in Kommunikationsnetzen mit Zugangskontrolle
US9210073B2 (en) * 2004-04-30 2015-12-08 Hewlett-Packard Development Company, L.P. System and method for message routing in a network
JP2006019886A (ja) * 2004-06-30 2006-01-19 Nec Corp 適応伝送レート制御方法/プログラム/記録媒体、無線バースト信号伝送システム、端末局、基地局
US7895329B2 (en) * 2006-01-12 2011-02-22 Hewlett-Packard Development Company, L.P. Protocol flow control
EP2109979B1 (fr) * 2006-12-29 2018-10-31 Orange Procédé et dispositif de gestion de connexions dans un réseau de télécommunications
JP5445271B2 (ja) * 2010-03-30 2014-03-19 富士通株式会社 帯域制御装置,帯域制御方法,及びプログラム
JP5601193B2 (ja) * 2010-12-22 2014-10-08 富士通株式会社 ネットワーク中継システム、ネットワーク中継装置、輻輳状態通知方法、及びプログラム
US9537743B2 (en) * 2014-04-25 2017-01-03 International Business Machines Corporation Maximizing storage controller bandwidth utilization in heterogeneous storage area networks
CN103997465B (zh) * 2014-05-27 2018-02-23 华为技术有限公司 一种生成cnm的方法及设备
JP2017059912A (ja) * 2015-09-14 2017-03-23 富士通株式会社 伝送装置
WO2017053957A1 (en) 2015-09-25 2017-03-30 Fsa Technologies, Inc. High-speed communications platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268242A (ja) * 1992-03-19 1993-10-15 Fujitsu Ltd 管理セルによるネットワーク管理装置及びその方法
JPH0646085A (ja) * 1992-07-27 1994-02-18 Toshiba Corp Atm交換機におけるトラヒックパラメータ制御方式
EP0635958A2 (en) * 1993-07-21 1995-01-25 Fujitsu Limited Design and managing method for communication networks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038646C (en) * 1990-03-20 1995-02-07 Katsumi Oomuro Atm communication system with optimal traffic control by changing the allocated bandwidth
US5381407A (en) * 1992-06-04 1995-01-10 Bell Communications Research, Inc. Method and system for controlling user traffic to a fast packet switching system
WO1994021068A1 (en) * 1993-03-12 1994-09-15 Fujitsu Limited Control method and apparatus in atm
KR100293920B1 (ko) * 1993-06-12 2001-09-17 윤종용 비동기전송모드의사용자망접속인터페이스의트래픽제어장치및방법
WO1995019675A1 (en) * 1994-01-14 1995-07-20 Codex Corporation Method and system for atm traffic management
JP2928452B2 (ja) * 1994-03-17 1999-08-03 富士通株式会社 Atm交換機及びatm交換機における呼受付け装置及び呼受付け方法
US5583861A (en) * 1994-04-28 1996-12-10 Integrated Telecom Technology ATM switching element and method having independently accessible cell memories
US5734825A (en) * 1994-07-18 1998-03-31 Digital Equipment Corporation Traffic control system having distributed rate calculation and link by link flow control
US5515359A (en) * 1994-08-26 1996-05-07 Mitsubishi Electric Research Laboratories, Inc. Credit enhanced proportional rate control system
US5675576A (en) * 1995-06-05 1997-10-07 Lucent Technologies Inc. Concestion control system and method for packet switched networks providing max-min fairness
CA2181206C (en) * 1995-07-24 2001-03-13 Anwar Elwalid A method for admission control and routing by allocating network resources in network nodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268242A (ja) * 1992-03-19 1993-10-15 Fujitsu Ltd 管理セルによるネットワーク管理装置及びその方法
JPH0646085A (ja) * 1992-07-27 1994-02-18 Toshiba Corp Atm交換機におけるトラヒックパラメータ制御方式
EP0635958A2 (en) * 1993-07-21 1995-01-25 Fujitsu Limited Design and managing method for communication networks

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
HASEGAWA H, ET AL.: "ABR EMULATION BY ATM MULTI-PROTOCOL EMULATION NETWORK (ALPEN)", IEICE COMMUNICATION SOCIETY CONVENTION, XX, XX, 15 August 1995 (1995-08-15), XX, pages 14 + ABSTR. NO. B - 347, XP008054392 *
HASEGAWA H, ET AL.: "ABR ER-MODE ON ATM MULTI-PROTOCOL EMULATION NETWORK:ALPEN", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, vol. SSE95-105, 1 October 1995 (1995-10-01), JP, pages 61 - 66, XP002948063, ISSN: 0913-5685 *
HASEGAWA H, ET AL.: "ATM WAN ARCHITECTURE FOR IMPLEMENTATION OF MULTI PROTOCOL, PART 2 - MULTI PROTOCOL ATM-WAN WITH ALPEN -", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, vol. 95-187, 15 March 1996 (1996-03-15), JP, pages 79 - 84, XP008052998, ISSN: 0913-5685 *
IEICE COMMUNICATIONS SOCIETY CONVENTION, B-345, 15 August 1995, NAOAKI YAMANAKA, KOHEI SHIOMOTO, HARUHISA HASEGAWA, "Proposal of ATM Multi Protocol Emulation Network (ALPEN)", p. 12. *
KITAZUME H, ET AL.: "SUPPORT OF ABR SERVICE IN PUBLIC NETWORKS", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, vol. 95-30, 14 July 1995 (1995-07-14), JP, pages 31 - 36, XP008053001, ISSN: 0913-5685 *
NTT R&D, Vol. 42, No. 3, 1993 (NIPPON TELEGRAPH TELEPHONE CORP.), 10 March 1993, KENICHI SATO, YOICHI SATO, NAOAKI YAMANAKA, KAZUHIRO HAYASHI, "Design Technology for Housing A Virtual Path", pp. 343-356. *
OKI E, YAMANAKA N: "IMPACT OF MULTIMEDIA SERVICE REQUIREMENTS ON ATM-VC NETWORK CONFIGURATIONS", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, vol. 94-241, 15 March 1995 (1995-03-15), JP, pages 31 - 36, XP008053000, ISSN: 0913-5685 *
SATO H, ET AL.: "ATM WAN ARCHITECTURE FOR IMPLEMENTATION OF MULTI PROTOCOL, PART 1 ABR SERVICE USING VS/VD METHOD", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, 1 March 1996 (1996-03-01), JP, pages 73 - 78, XP008052999, ISSN: 0913-5685 *
See also references of EP0812083A4 *
SHIOMOTO K, CHAKI S-I, ITODA J: "CELL LOSS PROBABILITY ESTIMATION USING MEASUREMENT OF CELL ARRIVALS IN ATM NETWORKS", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, 1 March 1994 (1994-03-01), JP, pages 93 - 98, XP008053003, ISSN: 0913-5685 *
SHIOMOTO K, YAMANAKA N, HASEGAWA H: "ADMISSION AND FLOW CONTROL BASED ON MEASUREMENTS OF INSTANTANEOUS UTILIZATION", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, 1 December 1995 (1995-12-01), JP, pages 01, XP008053002, ISSN: 0913-5685 *
YAMANAKA N, SATO Y: "JITTER TOLERANT USAGE PARAMETER CONTROL METHOD FOR ATM-BASED B-ISDN", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, 30 September 1993 (1993-09-30), JP, pages 07 - 12, XP008052997, ISSN: 0913-5685 *
YAMANAKA N., SHIOMOTO K., HASEGAWA H.: "ALPEN: A SIMPLE AND FLEXIBLE ATM NETWORK BASED ON MULTI PROTOCOL EMULATION AT EDGE NODES.", IEICE TRANSACTIONS ON COMMUNICATIONS., COMMUNICATIONS SOCIETY, TOKYO., JP, vol. E79B., no. 04., 1 April 1996 (1996-04-01), JP, pages 611 - 615., XP000587977, ISSN: 0916-8516 *

Also Published As

Publication number Publication date
DE69637027D1 (de) 2007-05-31
EP0812083A4 (en) 2005-07-06
EP0812083B1 (en) 2007-04-18
DE69637027T2 (de) 2007-08-23
EP0812083A1 (en) 1997-12-10
US6046983A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
WO1997005724A1 (fr) Unite de commande de vitesse dynamique
JP3732981B2 (ja) 連続ビット・レート仮想パス接続の帯域幅を動的に調節するための方法
US6167030A (en) Buffer-based traffic measurement system and method for nominal bit rate (NBR) service
US6442138B1 (en) Method and apparatus for controlling admission of connection requests
US7324521B2 (en) Communication device with multi-stages of traffic shaping functions
US7068660B2 (en) Method for measurement-based connection admission control (MBAC) in a packet data network
US6633585B1 (en) Enhanced flow control in ATM edge switches
WO1997002685A1 (fr) Reseau de communications a bande variable
GB2338372A (en) Packet-switched networks
AU4133700A (en) Routing device
JPH10135975A (ja) セル交換機におけるフィードバック制御装置及びセルスケジューリング装置
US6385168B1 (en) Fair share bandwidth allocation algorithm and device
USRE43645E1 (en) Measurement-based connection admission control (MBAC) device for a packet data network
Nahrstedt et al. Coexistence of QoS and best-effort flows
Lee et al. Improved dynamic weighted cell scheduling algorithm based on Earliest Deadline First scheme for various traffics of ATM switch
US20020080722A1 (en) Communication controlling apparatus
Giacomazzi et al. Transport of IP Controlled-load service over ATM networks
KR100319457B1 (ko) 비동기 전송 모드 교환기의 트래픽 제어 방법
Lee et al. Simple measurement-based connection admission control for heterogeneous traffic sources
Oliva Optimizing integrated broadband network bandwidth utilization through connection admission control using weighted round robin queue server measurements
EP1163823B1 (en) Buffer-based traffic measurement system and method for nominal bit rate (nbr) service
JP3833664B2 (ja) セル交換機におけるフィードバック制御装置及びセルスケジューリング装置
Yu Integrated congestion management at the user-network interface of an ATM/B-ISDN network
Cerdà Alabern Traffic Management of the ABR. Service Category in ATM Networks
De Silva A simple approach to congestion control of ABR traffic with weighted max-min fairness

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1996925120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08825936

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996925120

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996925120

Country of ref document: EP