WO1997002363A1 - Procede ameliorant la transportabilite du charbon pulverise - Google Patents

Procede ameliorant la transportabilite du charbon pulverise Download PDF

Info

Publication number
WO1997002363A1
WO1997002363A1 PCT/JP1996/001875 JP9601875W WO9702363A1 WO 1997002363 A1 WO1997002363 A1 WO 1997002363A1 JP 9601875 W JP9601875 W JP 9601875W WO 9702363 A1 WO9702363 A1 WO 9702363A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulverized coal
solid compound
coal
silicon dioxide
average particle
Prior art date
Application number
PCT/JP1996/001875
Other languages
English (en)
French (fr)
Inventor
Reiji Ono
Yoshio Kimura
Takashi Nakaya
Kenichi Miyamoto
Takashi Matoba
Takehiko Ichimoto
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to EP96922245A priority Critical patent/EP0837143A1/en
Publication of WO1997002363A1 publication Critical patent/WO1997002363A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus

Definitions

  • the present invention relates to a pulverized coal transportability improver which improves the transportability of pulverized coal blown from an injection port of a metallurgical furnace or a combustion furnace, enables a large amount of pulverized coal to be injected, and a metallurgical furnace or combustion using the same. It relates to the method of operating the furnace.
  • Coal has also been reviewed as an alternative to heavy oil as fuel for boilers and other combustion furnaces.
  • Examples of the type of coal used in the combustion furnace include C WM (coal-water slurry), COM (coal-fuel oil blended fuel), and pulverized coal.
  • C WM coal-water slurry
  • COM coal-fuel oil blended fuel
  • pulverized coal combustion furnaces use other media such as water and oil. It is attracting attention because it does not need it. However, this pulverized coal combustion furnace has the same problems as the use of pulverized coal in blast furnace operation.
  • pulverized coal injection pulverized coal production by dry milling of raw coal, classification, storage and discharge in a hopper, gas transport in pipes, injection into metallurgical or combustion furnaces through injection ports, metallurgical or combustion furnaces The process of combustion in the furnace is followed, but there are the following problems with the discharge of pulverized coal from the hopper and the gas transport through the piping.
  • the discharge / transport situation changes greatly because the basic physical properties of the pulverized coal such as the fluidity of the pulverized coal change due to the difference in the coal type, particle size, and moisture of the pulverized coal to be discharged / transported.
  • the basic physical properties of pulverized coal are out of the optimum range, shelving with a hopper will cause blow-through, blockage of pipes during gas transport, etc., and stable pulverized coal injection will be continued for a long time. It is difficult.
  • the amount of pulverized coal injected from the injection port is about 50 to 250 kg Z pig iron about 1 t, but it is desirable to further increase the amount of pulverized coal injected from the viewpoint of cost.
  • the pulverized coal transportability is not always sufficient, so that the amount of pulverized coal blown cannot be significantly improved.
  • an object of the present invention is to solve the above-mentioned problems in the conventional method, improve the pulverized coal transportability, remove the restriction on the type of coal, prevent pipe clogging, prevent shelves from hanging in the hopper, and achieve stability. It is possible to blow a large amount of pulverized coal.
  • the present inventors have conducted intensive studies to achieve the above object.As a result, a solid compound having a volume average particle diameter of 5 m or less satisfying a specific relation between the volume average particle diameter and the added amount was obtained. The present inventors have found that the transportability of such pulverized coal is drastically improved by adhering it to 30 or more pulverized coals, and completed the present invention.
  • the present invention relates to a method for improving the transportability of dry pulverized coal having an average HGI of 30 or more in raw coal, wherein a solid compound having a volume average particle diameter of 5 or less is obtained by the following formula.
  • a method for improving the transportability of pulverized coal characterized by adding to the pulverized coal and attaching it to the surface of the pulverized coal.
  • the amount of the solid compound defined by the above formula is the volume% of the solid compound based on the volume of the pulverized coal. However, each volume is a value obtained by dividing the weight by the bulk density in a loosely packed state. The bulk density in the loosely packed state will be described later.
  • the present invention provides a pulverized coal mixture comprising a pulverized coal transportability improver and fine pulverized coal used in the above method, and a solid compound having a volume average particle diameter of 5 zm or less,
  • the pulverized coal which is attached to the surface of dry pulverized coal whose average HGI (crushing ability index) of the raw coal is 30 or more by volume (% by volume) is blown through the blowing port.
  • a method for operating a metallurgical furnace or a combustion furnace is provided.
  • the present invention provides a method of adding fine pulverized coal having an average HGI of 30 or more to a solid compound having a volume average particle diameter of 5 m or less represented by the following formula (volume%). It is also a method of transporting pulverized coal by attaching it to the surface of pulverized coal. Further, the present invention also includes a use of treating pulverized coal with a solid compound and a method of treating pulverized coal with a solid compound.
  • the solid compound refers to a compound which is solid at 1.01 ⁇ 10 5 Pa (latm) at 80 ° C., regardless of whether it is crystalline or amorphous.
  • the solid compound is insoluble in water
  • the average HGI of the raw coal of pulverized coal is 50 or more
  • the solid compound is a metal oxide, a phosphate, a carbonate, a silicate, or a nitride.
  • the solid compound is a fine powder of silicon dioxide; and
  • the solid compound has a volume average particle diameter of 0.01-5.
  • the solid compound has a solubility in water of 1 or less, more preferably 0.1 or less, and particularly preferably 0.01 or less.
  • the solid compound is more preferably a metal oxide or dust, and particularly preferably a metal oxide.
  • the method of operating a metallurgical furnace or a combustion furnace using the transportability improver of the present invention is as follows: for the pulverized coal blown from the inlet of the metallurgical furnace or the combustion furnace, the transportability improver is converted into pulverized coal within the range of the above formula. And pulverize the pulverized coal from the injection port of the metallurgical furnace or combustion furnace.
  • the addition amount for this pulverized coal, ⁇ r Q ' preferably from the side at 59% by volume or higher transportability improver effect and the effect commensurate with the addition amount even if added over 10% by weight increase was not observed Economically disadvantageous.
  • the amount of the solid compound to be attached to the surface of the pulverized coal is preferably
  • FIG. 1 shows the relationship between the volume average particle diameter (r) of the solid compound according to the present invention and the amount (h) added.
  • the “solid compound insoluble in water” refers to a solid compound having a solubility of the solid compound at 25 ° C. (mass (g) of the solid compound contained in 100 g of the saturated solution) of 1 or less, Preferably, it indicates a solid compound in which the solubility of the solid compound at 25 ° C is 0.1 or less, and particularly preferably, a solid compound in which the solubility of the solid compound at 25 ° C is 0.01 or less.
  • the solubility is preferably 1 or less from the viewpoint of suppressing moisture absorption into the solid compound.
  • the pulverized coal to be used in the present invention is dry pulverized coal having an average HGI of 30 or more.
  • dry means the loss in air drying defined in JIS M 8812-1984. It means that the water content by the measurement method is 10% by weight or less. Pulverized coal with high moisture content is not suitable as fuel for metallurgical furnace injection or combustion furnace.
  • Such pulverized coal having an average HGI of 30 or more has poor transportability, but by using the transportability improver of the present invention, smooth transport of such pulverized coal became possible. Further, the present invention is effective for pulverized coal having an average HG of 150 or more of raw coal, which is considered to be extremely difficult to transport gas by current technology.
  • HGI Hardgrove Grinding Index
  • volume average particle size can be measured using Elzone's Particle Counter 180XY [Particle de Ichiyu (US), measuring range: 0.2 to 1200 mm] or Submicron sizer (Brookhaven, US), measuring range 0.005 ⁇ 5 m] in the applicable range.
  • the transportability improver of the present invention may be added before the pulverization of the raw coal and attached during the pulverization of the raw coal or after the pulverization of the raw coal. In each case, the same effect is exhibited.
  • solid compounds serving as the transportability improver of the present invention will be described.
  • iron oxide titanium oxide
  • aluminum oxide titanium oxide
  • silicon dioxide silicon dioxide is particularly preferable. History
  • Examples thereof include potassium phosphate, calcium phosphate, zinc phosphate, magnesium phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, and double salts thereof.
  • potassium carbonate calcium carbonate, potassium bicarbonate, sodium bicarbonate Platinum, iron carbonate, copper carbonate, sodium carbonate, lead carbonate, nickel carbonate, magnesium carbonate, manganese carbonate, and double salts thereof.
  • Examples include aluminum silicate, iron silicate, calcium silicate, magnesium silicate, potassium silicate, sodium silicate and double salts thereof.
  • aluminum nitride, silicon nitride, boron nitride, magnesium nitride, and the like can be given.
  • Examples include magnesium silicide, calcium silicide, iron silicide, potassium silicide, etc.
  • Examples include aluminum carbide, calcium carbide, silicon carbide, iron carbide, sodium carbide and the like.
  • Clay minerals are the main constituent minerals that make up clay, such as sericite, talc, mica, bentonite, kaolinite, halloysite, montmorillonite, illite, makiuraito, chlorite, and heat-treated products of these. Is mentioned. Further, fumes and the like derived from clay minerals in coal are also preferable.
  • dust refers to solid compounds collected from soot and smoke specified by the Air Pollution Control Law by an electric dust collector or the like. Specific examples include dust collected from soot and smoke discharged from pulverized coal-fired boilers, heavy oil-fired boilers, converters, and the like. Examples of the solid compound having a solubility in water at 25 ° C. of 1 or less include the above solid compounds excluding the following compounds.
  • the metal oxide of (1) and the dust of (9) are preferable, and the metal oxide of (1) is more preferable, from the viewpoint of volume average particle size / price.
  • the fluidity index can simulate the discharge characteristics in a hopper, etc.
  • the pressure loss can simulate the flow characteristics in a pipe during gas transport.
  • the fluidity index must be 40 or more and the pressure loss must be 16 dishes nH 20 / m or less.
  • the metallurgical furnaces and combustion furnaces that are the object of the present invention include furnaces that use pulverized coal as fuel and / or a reducing agent (blast furnaces, cuvolaes, open-air kilns, smelting reduction furnaces, cold iron source melting furnaces, boilers And carbonization equipment using pulverized coal (eg, fluidized bed carbonization furnace, gas reforming furnace, etc.). o
  • the transportability of pulverized coal having an average HGI of 30 or more in raw coal is improved, and mass transport of such pulverized coal can be achieved. Further, by adding the transportability improving agent of the present invention to coal having poor transportability, the transportability can be improved and a large amount of coal can be transported, so that the types of coal that can be used for pulverized coal injection can be expanded.
  • FIG. 1 is a diagram showing the relationship between the volume average particle diameter of a solid compound and the amount added.
  • FIG. 2 is a schematic diagram of an apparatus used for measuring pipe transport characteristics.
  • FIG. 3 is a schematic diagram of an actual blast furnace pulverized coal injection device used in Example 46.
  • FIG. 4 is a chart showing the result of the transfer time in Example 46.
  • FIG. 5 is a chart showing a result of piping pressure loss in Example 46.
  • FIG. 6 is a chart showing the result of piping pressure loss in Example 46.
  • FIG. 7 is a schematic diagram of a pulverized coal-fired boiler used in Example 47.
  • FIG. 8 is a chart showing the result of piping pressure loss in Example 47.
  • 1 indicates pulverized coal
  • 2 indicates a table feeder
  • 3 indicates a flow meter
  • 4 indicates a horizontal pipe
  • 5 indicates a cyclone
  • 6 indicates a blast furnace
  • 19 indicates a boiler combustion chamber
  • 20 indicates a burner.
  • Pulverized coal having a particle size of 106 m or less was obtained by sifting through a 106 m sieve.
  • the water content in pulverized coal (0.5 to: L 0) and the volume average particle size (75 m) were all adjusted to the same value.
  • volume average particle diameter is defined by the following equation.
  • the transportability improvers used in this example are shown below.
  • Dust collected from soot and smoke emitted from pulverized coal combustion boilers by an electric precipitator equipped with a multi-cyclone at the front stage Volume average particle size 1.0 m
  • Dust collected from the soot and smoke discharged from the converter by an electric precipitator equipped with a multi-cyclone at the front stage were Dust collected from the soot and smoke discharged from the converter by an electric precipitator equipped with a multi-cyclone at the front stage.
  • particles other than colloidal silica were adjusted to a predetermined particle size by gravity, inertia, centrifugal force, filtration, and an electrostatic precipitator.
  • the fluidity index is an index for evaluating the fluidity of powder, and four factors of powder (Angle of repose, degree of compression, degree of spatula, degree of cohesion) are indexed and calculated from the sum of the indices. Details of the measurement method and index of each factor are described in “Powder Engineering Handbook” (edited by the Society of Powder Engineering, published by Nikkan Kogyo, 1987), pp. 151-152. The method for measuring each factor is described below.
  • Angle of repose Pass the powder through a standard sieve (25 mesh), pour it through a funnel onto a disk with a diameter of 8 and measure the inclination angle of the formed sedimentary layer.
  • Spatula angle Insert a spatula (spatula) of a fixed width (22 references) into the deposited powder, lift it and measure the tilt angle of the powder placed on it. Next, a slight impact is applied to the spatula, this angle is measured again, and the average of these two values is taken as the spatula angle.
  • Manometer Pi doing sampling 500Hz Dede Isseki in P 2. Pressure drop during transport time (6 minutes) - is given by the total average of P 2.
  • Tables 1 to 6 show the pulverized coal, the transportability improver, the fluidity, and the pressure loss of Examples 1 to 51 and Comparative Examples 1 to 20 described above.
  • the flowability index and the pressure loss also show how much the flowability index and the pressure loss increased or decreased compared to Comparative Example 4 in which the transportability improver was not added.
  • Comparative Example 5-20, Example 11-21, the pulverized coal was added silicon dioxide 46 to 51, which the amount is in the range of 10 teeth 4 2 ⁇ ⁇ ° ⁇ 5 9 ⁇ Fei ⁇ 10 is In all cases, it can be seen that the fluidity index is 40 or more and the pressure loss is 16 mmH 20 / m or less (Examples 11 to 21, 46 to 51).
  • Example 1 d ash 96 75 silicon dioxide 0.01 0.10 15 9 16 40 6 15.9 13.1
  • Example 2 d ash 96 75 silicon dioxide 0.05 0.10 16 9 17 42 8 12.1 16.9
  • Example 3 d ash 96 75 silicon dioxide 0.1 0.10 17 10 18 45 11 10.3 18.7
  • Example 4 d ash 96 75 silicon dioxide 0.5 0.10 19 11 19 49 15 9.9 19.1
  • Example 5 d charcoal 96 75 silicon dioxide 1 0.10 19 12 20 51 17 9.0 20.0
  • Example 7 96 75 Silicon dioxide 5 0.10 20 14 21 55 21 8.5 20.5
  • Example 8 d charcoal 96 75 Silicon dioxide 10 0.10 20 14 21 55 21 8.5 20.5
  • Particles of transportability improver The diameter means the volume average particle diameter (the same applies hereinafter)
  • Example 17 coal 96 75 silicon dioxide 0.01 0.5 5.0 16 9 17 42 8 15.0 14.0
  • Example 18 d coal 96 75 silicon dioxide 1 5.0 17 10 18 45 11 12.0 17.0
  • Example 19 d coal 96 75 silicon dioxide 3 5.0 19 11 19 49 15 10.2 18.8
  • Example 20 d coal 96 75 silicon dioxide ⁇ 5 5.0 19 12 20 51 17 9.5 19.5
  • Example 21 d coal 96 75 silicon dioxide 10 5.0 20 13 20 53 19 8.8 20.2
  • Comparative example 11 d coal 96 75 silicon dioxide 0.1 10 12 7 15 34 0 28.8 0.2
  • Comparative example 12 d coal 96 75 silicon dioxide ⁇ 0.5 10 12 7 15 34 0 28.6 0.4
  • Comparative 13 d coal 96 75 silicon dioxide 1 10 13 7 15 35 1 28.5 0.5
  • Comparative 14 d coal 96 75 silicon dioxide 3 10 13 7 15 35 1 28.3 0.7
  • Comparative 15 d Charcoal 96 75 Silicon dioxide 5 10 13 8 15 36 2 28.1 0.9
  • Comparative example 16 d Charcoal 96 75 Silicon dioxide 10 10 13 8 15 36 2 27.
  • Example 23 d charcoal 96 75 co ⁇ -idal; / Jamaica 0.01 0.05 0.10 16 9 17 42 8 12.0 17.0 or less
  • Example 24 d ash 96 75 ⁇ ⁇ idallica 0.1 0.10 17 10 18 45 11 10.2 18.8
  • Example 25 d char 96 75 ⁇ ⁇ ⁇ ⁇ ⁇ silica 0.5 0.10 19 11 19 49 15 9.8 19.2
  • Example 26 d char 96 75 ⁇ idal silica 1 0.10 19 12 20 51 17 9.0 20.0
  • Example 27 96 75 idal silica 3 0.10 20 13 20 53 19 8.8 20.2
  • Example 28 ⁇ ash 96 75 co [1 idal silica 5 0.10 20 14 21 55 21 8.5 20.5
  • Example 29 d Charcoal 96 75] [!
  • Example 35 96 75 Carbonate 7 gnesium 24 0.1 1.0 16 9 17 42 8 11.9 17.1
  • Example 37 96 75 silicon carbide 0.1 1.0 16 9 17 42 8 11.9 17.1
  • Example 38 d coal 96 75 silicon nitride 0.1 1.0 16 9 17 42 8 11.2 17.8
  • Example 39 d coal 96 75 sericite 0.1 1.0 16 9 17 42 8 11.4 17.6
  • Example 40 cm 96 75 Talc 0.1 1.0 16 9 17 42 8 11.5 17.5
  • Example 41 ⁇ ash 96 75 My power ⁇ 0.1 1.0 16 9 17 42 8 11.8 17.2
  • Example 42 d ash 96 75 Bentonite ⁇ 0.1 1.0 16 9 17 42 8 11.9 17.1
  • Example 43 ⁇ ash 96 75 Pulverized coal combustion 0.1 1.0 17 10 18 45 11 10.2 18.8 Dust
  • Example 49 dm.96 75 silicon dioxide 3 4.0 19 12 19 50 16 10.0 19.0
  • Pulverized coal injection volume 40 t / Hr
  • Conveyance improver silicon dioxide (particles with a volume average particle size of 5 zm or less account for 80%)
  • Pulverized coal volume average particle size ... 74 / m
  • FIG. 3 is a schematic view of the blast furnace pulverized coal injection device used in this example.
  • 6 is a blast furnace
  • 7 is an inlet
  • 8 is an injection pipe
  • 9 is a distribution tank
  • 10 is a valve
  • 11 is an equalizing tank
  • 12 is a valve
  • 13 is a pulverized coal storage tank
  • 14 is a coal crusher.
  • 15 is an additive spray nozzle
  • 16 is a coal conveyor belt conveyor
  • 17 is a coal receiving hopper
  • 18 is an air nitrogen compressor.
  • the coal is put into a receiving hopper 17 and supplied to a crusher 14 by a conveyor 16. On the way, a transportability improver is spray-added from the nozzle 15.
  • the coal is pulverized by the pulverizer 14 into pulverized coal having the above-mentioned particle size and sent to the storage tank 13.
  • the valve 12 is opened, and a specified amount of pulverized coal is supplied from the storage tank 13 to the equalizing tank 11.
  • the internal pressure of the equalizing tank 11 is increased until the internal pressure of the distribution tank 9 becomes the same.
  • valve 10 opens and pulverized coal falls by gravity.
  • the pulverized coal is gas-transported from the distribution tank 9 to the blow-in port 7 by the blow-in air supplied from the compressor 18 through the blow-in pipe 8, and is blown into the blast furnace 6 from the blow-in port 7.
  • FIGS. 4 and 5 are relative evaluations in which the case where no transportability improver is added is set to 1.
  • Figure 6 shows the change in pipe pressure loss when the average HGI of raw coal was changed to 45, 55, and 70.
  • a transportability improver By adding a transportability improver, even if high HGI coal is used, the piping pressure loss will be below the upper limit of the equipment, and the type of coal used can be expanded, and inexpensive coal can be used.
  • FIG. 6 shows a relative evaluation where the case where the transportability improver is not added to pulverized coal having an average HGI of 45 is set to 1.
  • Transportability improver silicon dioxide (particles with a volume average particle size of 5 // m or less account for 80%)
  • Pulverized coal volume average particle size ... 74 m
  • FIG. 7 shows a schematic diagram of the pulverized coal-fired boiler used in this example.
  • 19 is a boiler combustion chamber
  • 20 is a burner
  • 21 is a blowing pipe
  • 22 is a pulverized coal storage tank
  • 23 is a coal pulverizer
  • 24 is an additive spray nozzle
  • 25 is a coal conveyor belt conveyor
  • 26 is coal receiving Hotsuba
  • 27 means air and nitrogen compressor.
  • the coal is put into a receiving hopper 26 and supplied to a crusher 23 by a conveyor 25. On the way, a transportability improver is spray-added from the nozzle 24.
  • the coal is pulverized into pulverized coal having the above-mentioned particle size by the pulverizer 23 and sent to the storage tank 22.
  • the air is conveyed by the blown air supplied from the compressor 27 and supplied to the burner 20 for combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Manufacture Of Iron (AREA)

Description

明細書
微粉炭の搬送性向上方法
【技術分野】
本発明は、 冶金炉又は燃焼炉の吹き込み口から吹き込む微粉炭の搬送性を改良し、 安定な微粉炭の多量吹き込みを可能にした微粉炭の搬送性向上剤及びこれを用いた 冶金炉又は燃焼炉の操業方法に関するものである。
【背景技術】
冶金炉、 例えば高炉の操業においては、 コークスと鉄鉱石を炉頂から交互に装入 する方法が一般的に行われてきたが、 近年、 炉頂から装入するコークスの一部を安 価で燃焼性が良く発熱量の高い微粉炭を熱風とともに高炉の吹き込み口より吹き込 むことで代替する方法が盛んに行われている。 このような微粉炭吹き込み操業法は、 オールコークス操業に比べて燃料費を低減できる等の点で優れている。
また、 ボイラー等の燃焼炉の燃料としても重油に代わるものとして石炭が見直さ れている。 燃焼炉における石炭の使用形態としては C WM (石炭一水スラリー) 、 C O M (石炭重油混合燃料) 、 微粉炭等があるが、 この中でも特に微粉炭燃焼炉は 水や油等の他の媒体を必要としないため、 注目されている。 しかし、 この微粉炭燃 焼炉においても高炉操業における微粉炭の使用と同様の問題を抱えている。
微粉炭吹き込みにおいては、 原炭の乾式粉碎による微粉炭製造、 分級、 ホッパー での貯蔵 ·排出、 配管での気体輸送、 吹き込み口からの冶金炉又は燃焼炉への吹き 込み、 冶金炉又は燃焼炉内での燃焼という工程をたどるが、 微粉炭のホッパーから の排出 ·配管での気体輸送について以下の問題点がある。
すなわち、 排出 ·輸送せんとする微粉炭の炭種、 粒子径、 水分の違いによって微 粉炭の流動性等の粉体の基礎物性が変化することにより、 排出 ·輸送状況が大きく 変化する。 このため、 微粉炭の基礎物性が最適範囲を外れた場合には、 ホッパーで の棚吊り '吹き抜け、 気体輸送中の配管閉塞などを引き起こすことになり、 安定な 微粉炭吹き込みを長期間継続することは困難である。
このような問題点を解決するために、 微粉炭の搬送性を改善することが考えられ、 従来種々の方法が提案されている。 例えば、 チヤ一を微粉炭中に 5〜20%混合する (特開平 4一 268004号公報) 、 石炭中のイナート (JIS M8816-1979に規定されてい るミクリニヅト、 1 / 3セミフジニット、 フジニットおよび鉱物質を合計したもの) 成分量を調節した後微粉砕する (特閧平 5— 9518号公報、 特開平 5— 25516 号公報、 特開平 5— 222415号公報) 、 吹き込む微粉炭の石炭種を限定することにより流動性 指数を用いる高炉の基準値以上とする (特開平 4一 224610号公報) 、 微粉炭と配管 との摩擦係数を調整する (特開平 5— 214417号公報) 、 微粉炭中の水分を適正値に なるように制御する (特開平 5— 78675 号公報) 等が挙げられる。 また、 微粉炭の 粉砕効率を向上させる方法として分散剤を吸着させる方法 (特開昭 63— 224744号公 報) があるが、 この方法では微粉炭の搬送性については言及されていない。
しかしながら、 上記のような方法では微粉炭吹き込みに使用できる石炭種が限定 されたり、 ホッパーでの棚吊り ,吹き抜け、 配管の閉塞が充分に解消されなかった り、 制御の装置や設備などにコストがかかるなどの問題点があり、 実用上満足のい く方法は提供されていない。
更に、 例えば現在の高炉の操業方法では、 吹き込み口から吹き込む微粉炭の量は 50〜250kg Z銑鉄 1 t程度であるが、 コス卜の面からは更に微粉炭の吹き込み量を 増やすことが望ましい。 しかしながら、 前記の方法では微粉炭の搬送性が必ずしも 充分でないため、 微粉炭の吹き込み量の大幅な向上は達成できない。
【発明の開示】
従って、 本発明の目的は、 上記した従来方法にあった問題点を解決し、 微粉炭の 搬送性を改良し、 石炭種の限定を取り除き、 配管閉塞 ·ホッパーでの棚吊りを防止 し、 安定した微粉炭多量吹き込みを可能とすることである。
本発明者らは上記の目的を達成すベく鋭意研究した結果、 体積平均粒子径と添加 量が特定の関係を満たす体積平均粒子径が 5 m以下の固体化合物を、 原炭の平均 H G Iが 30以上の微粉炭に付着させることにより、 かかる微粉炭の搬送性が飛躍的 に向上することを見出し、 本発明を完成するに至った。
すなわち本発明は、 原炭の平均 H G Iが 30以上の乾燥した微粉炭の搬送性を向上 させる方法であって、 体積平均粒子径が 5 以下の固体化合物を、 下式のひ (体 積%) で示される量、 前記微粉炭に添加し当該微粉炭の表面に付着させることを特 徴とする微粉炭の搬送性向上方法である。
k ! · r °- 5 9≤α≤10 (体積%) 〔ここで、 1^ = 10— 1 42、 rは添加する固体化合物の体積平均粒子径 ( ! ii)で あ 。 〕
上記式で定義する固体化合物の量は微粉炭の体積に対する固体化合物の体積%で ある。 ただし、 いずれの体積も重量を疎充填の状態での嵩密度で除した値である。 疎充填の状態での嵩密度は後に記載する。
さらに本発明は、 上記の方法に用いられる微粉炭の搬送性向上剤と微細な微粉炭 とからなる微粉炭混合物を提供し、 また、 体積平均粒子径が 5 zm以下の固体化合 物を、 上記のひ (体積%) で示される量の、 原炭の平均 H G I (粉砕能指数) が 30 以上の乾燥した微粉炭の表面に付着させてなる微粉炭を、 吹き込み口から吹き込む ことを特徴とする冶金炉又は燃焼炉の操業方法を提供する。
換言すると、 本発明は、 平均 H G Iが 30以上の乾燥した微粉炭を、 下式のひ (体 積%) で示される量の体積平均粒子径が 5 m以下である固体化合物を添加して微 粉炭の表面に付着させることにより微粉炭を搬送する方法でもある。 さらに、 本 発明は、 固体化合物で微粉炭を処理する用途や固体化合物で微粉炭を処理する方法 も含む。
本発明において固体化合物とは、 1.01xl05Pa (latm)、 80°Cにおいて結晶、 非晶質 を問わず固体である化合物をいう。
上記の発明において、 好ましくは、 固体化合物が水に不溶である、 微粉炭の原炭 の平均 H G Iが 50以上である、 固体化合物が、 金属酸化物、 燐酸塩、 炭酸塩、 珪酸 塩、 窒化物、 珪化物、 炭化物、 ダスト及び粘土鉱物から選ばれる 1種または 2種以 上である、 固体化合物が二酸化珪素微粉末である、 固体化合物は体積平均粒子径が 0.01— 5
Figure imgf000005_0001
である、 固体化合物は水への溶解度が 1以下、 より好ましくは 0.1以下 特に好ましくは 0.01以下、 である。
固体化合物は金属酸化物またはダストがさらに好ましく、 金属酸化物が特に好ま しい。
本発明の搬送性向上剤を用いた冶金炉或いは燃焼炉の操業方法は、 冶金炉或い は燃焼炉の吹き込み口から吹き込む微粉炭に対し、 上式の範囲で搬送性向上剤を微 粉炭に添加し、 当該微粉炭を冶金炉或いは燃焼炉の吹き込み口から吹き込むことを 特徴とする。 この微粉炭に対する添加量は、 · rQ' 59 体積%以上である 方が 搬送性向上効果から好ましく、 また 10重量%を超えて添加しても添加量に見合う効 果の向上は認められず経済的には不利となる。
搬送性向上効果より、 微粉炭の表面に付着させる固体化合物の添加量は、 好ましくは
k2 - r°- 59≤a≤10 (k2 = 10— 1 10)
より好ましくは
k2 - r°- 59≤ ≤k3 - r0- 59 (k2 = 10—し lo,k3 = 10。' 60) また、 微粉炭の表面に付着させる固体化合物の体積平均粒子径は、 固体化合物に よる粉塵を抑制する点と固体化合物の製造コス卜の観点から、
好ましくは
Figure imgf000006_0001
より好ましくは
Λ≤ Γ ≤ 5 r.
特に好ましくは
O.l^r≤4 /mである。
なお、 本発明における固体化合物の体積平均粒子径 (r) と添加量 (ひ) の関係 を図 1に示す。
また、 固体化合物としては、 水に不溶の固体化合物を用いることが好ましい。 ここで、 「水に不溶の固体化合物」 とは、 当該固体化合物の 25°Cにおける溶解度 (飽和溶液 100g中に含まれる固体化合物の質量 (g) ) が 1以下である固体化合 物を示し、 好ましくは当該固体化合物の 25°Cにおける溶解度が 0.1以下である固体 化合物を示し、 特に好ましくは、 当該固体化合物の 25°Cにおける溶解度が 0.01以下 である固体化合物を示す。
微粉炭の表面に付着した固体化合物が吸湿すると、 水により微粉炭は凝集し、 搬 送性が低下するため、 固体化合物への吸湿を抑制する観点から溶解度は 1以下が好 ましい。
また本発明の対象とする微粉炭は、 原炭の平均 HG Iが 30以上の乾燥した微粉炭 である。 ここで、 「乾燥した」 とは JIS M 8812-1984 で定義される空気中乾燥減量 測定法による水分量が 10重量%以下であることを意味する。 水分量の多い微粉炭は 冶金炉吹き込み用或いは燃焼炉用の燃料として不適当である。
このような原炭の平均 HGIが 30以上の微粉炭は搬送性が悪いが、 本発明の搬送 性向上剤を使用することにより、 かかる微粉炭のスムースな輸送が可能となった。 さらに本発明は、 現在の技術では気体輸送が非常に困難とされている原炭の平均 H G 150以上の微粉炭に対しても効果がある。
ここで、 「HGI」 とは 「Hardgrove Gr ind ing Index」 (粉碎能指数) の略であり、 これは ASTM D 409で定義される石炭の粉碎抵 抗をあらわす指数である。
また、 体積平均粒子径は、 エルゾーン 'パーチクルカウンター 180 XY 〔パーチ クルデ一夕社 (米国) 製, 測定範囲 0.2〜1200〃m〕 又はサブミクロンサイザ一 (ブルックヘブン社 (米国) 製, 測定範囲 0.005〜5〃m〕 をそれそれ適用できる ¾囲において測定する。
また、 本発明の搬送性向上剤の添加時期は原炭の粉砕前に添加して原炭の粉砕時 に付着させてもよく、 粉砕後でもよい。 いずれの場合も同様に効果を発揮する。 以下に、 本発明の搬送性向上剤となる固体化合物 例^す
(1) 金属酸化物
例えば、 酸化鉄、 酸化チタン、 酸化アルミ二
リウム、 酸化カルシウム、 酸化スズ、 酸化ナト 1
ネシゥム、 酸化ジルコニウム、 酸化珪素及びこォ
酸化珪素としては、 特に二酸化珪素が良い。 ニ歴
とも、 またコロイダルシリカのようなコロイ ド^
ずれの場合も本発明の効果が得られる。
(2)燐酸塩
例えば、 燐酸カリウム、 燐酸カルシウム、 燐酸 ^ 酸亜鉛、 燐酸マグネシウム、 燐酸二水素カリウム、 燐酸二水素ナトリウム及びこ れらの複塩等が挙げられる。
(3) 炭酸塩
例えば、 炭酸カリウム、 炭酸カルシウム、 炭酸水素カリウム、 炭酸水素ナトリ ゥム、 炭酸鉄、 炭酸銅、 炭酸ナトリウム、 炭酸鉛、 炭酸ニッケル、 炭酸マグネシ ゥム、 炭酸マンガン及びこれらの複塩等が挙げられる。
(4) 珪酸塩
例えば、 珪酸アルミニウム、 珪酸鉄、 珪酸カルシウム、 珪酸マグネシウム、 珪 酸カリウム、 珪酸ナトリウム及びこれらの複塩等が挙げられる。
(5 ) 窒化物
例えば、 窒化アルミニウム、 窒化珪素、 窒化ホウ素、 窒化マグネシウム等が挙 げられる。
(6 ) 珪化物
例えば、 珪化マグネシウム、 珪化カルシウム、 珪化鉄、 珪化カリウム等が挙げ られ c
( 7) 炭化物
例えば、 炭化アルミニウム、 炭化カルシウム、 炭化珪素、 炭化鉄、 炭化ナトリ ゥム等が挙げられる。
(8) 粘土鉱物
粘土鉱物は粘土を構成する主成分鉱物であり、 例えばセリサイ ト、 タルク、 マ イカ、 ベントナイ ト、 カオリナイ ト、 ハロイサイ ト、 モンモリロナイ ト、 ィライ ト、 マ一ミキユラィ ト、 緑泥石及びこれらの熱処理物等が挙げられる。 また、 石 炭中の粘土鉱物に由来するヒューム等も好ましい。
( 9) ダスト
ここで、 ダストとは、 大気汚染防止法に規定されるばい煙から電気集塵機等に より捕集された固体化合物をいう。 具体的には、 微粉炭燃焼ボイラー、 重油燃焼 ボイラー、 転炉等から排出されるばい煙から捕集されたダストが挙げられる。 25°Cにおける水への溶解度が 1以下の固体化合物としては、 上記の固体化合物の うち以下の化合物を除いたものが挙げられる。
酸化アルミニウム、 燐酸カリウム、 燐酸水素ニナトリウム、 燐酸二水素カリウム、 燐酸二水素ナトリウム、 炭酸カリウム、 炭酸水素カリウム、 炭酸水素ナトリウム、 炭酸ナトリウム、 炭酸ニッケル、 炭酸マグネシウム、 珪酸ナトリウム、 炭化ナトリ ゥム。 上記の固体化合物のうち、 体積平均粒子径ゃ価格の観点から(1 )の金属酸化物と ( 9 )のダス卜が好ましく、 (1 )の金属酸化物がより好ましい。
また、 (1 ) 〜(9) で示された無機固体化合物を各種のイオン性界面活性剤或いは 脂肪酸塩等で示される水溶性極性有機化合物と併用しても好ましい結果を得ること ができる。
微粉炭の搬送性の指標としては、 後述の実施例で詳細に記載した流動性指数と配 管輸送テストの圧力損失を用いた。 流動性指数はホッパー等での排出特性を、 また 圧力損失は気体輸送中の配管内での流動特性をそれそれシミュレ一卜することがで きる。 搬送性向上の目安は流動性指数は 3ポイント以上の向上、 圧力損失は 3鲫 H2 0 /m以上減少することが必要である。 また非常に搬送性の悪い微粉炭に対しては、 流動性指数は 40以上、 圧力損失は 16皿 nH20 /m以下にする必要がある。
さらに、 流動性指数を 42以上、 圧力損失を 13画 H20/m未満にすれば、 現在使用さ れている最も搬送性の良い微粉炭の搬送性を上回ることができ、 より好ましい。 本発明の対象となる冶金炉、 燃焼炉としては、 微粉炭を燃料及び/又は還元剤と して使用する炉 (高炉、 キュボラ、 口一夕リーキルン、 溶融還元炉、 冷鉄源溶解炉、 ボイラー等) や、 微粉炭を使用する乾留装置 (例えば流動層乾留炉、 ガス改質炉等) 等であ。 o
本発明によれば、 原炭の平均 H G Iが 30以上の微粉炭の搬送性が改良され、 かか る微粉炭の多量輸送が達成できる。 また、 搬送性の良くない石炭に本発明の搬送性 向上剤を添加することにより、 搬送性を改良でき、 多量輸送できるため、 微粉炭吹 き込みに使用することができる石炭種が拡大できる。
同時に、 本発明の搬送性向上剤により処理された吹き込み口から吹き込むべき微 粉炭は流動性の良い状態が実現されているので、 ホッパー内での棚吊りも防止でき、 更に、 ホッパーからの切り出し量の時間的変化や分配量の偏差も大きく緩和できる。 【図面の簡単な説明】
図 1は、 固体化合物の体積平均粒子径と添加量の関係を示す図である。
図 2は、 配管輸送特性の測定に用いる装置の概略図である。
図 3は、 実施例 46で用いた実機高炉微粉炭吹込装置の概略図である。
図 4は、 実施例 46における移送時間の結果を示すチャートである。 図 5は、 実施例 46における配管圧損の結果を示すチャートである。
図 6は、 実施例 46における配管圧損の結果を示すチャートである。
図 7は、 実施例 47で用いた微粉炭焚きボイラーの概略図である。
図 8は、 実施例 47における配管圧損の結果を示すチャートである。
【符号の説明】
1は微粉炭、 2はテーブルフィーダ一、 3は流量計、 4は水平管、 5はサイクロ ン、 6は高炉、 19はボイラ燃焼室、 20はバーナーを示す。
【実施例】
以下実施例にて本発明を説明するが、 本発明はこれらの実施例に限定されるもの ではない。
実施例 1〜51及び比較例 1〜20
〔 1〕 原炭の粉碎及び評価用微粉炭の調整
' 原炭の粉砕及び流動性向上剤の添加は以下の手順で行った。
①表 1〜6に示す原炭と流動性向上剤を粉砕機 〔小型粉碎機 SCM-40A (石崎電気 製作所製) 〕 に入れ、 粉砕 '混合し、 必要粒子径となるような粉碎時間で調整す る。 その際、 流動性向上剤は、 微粉炭に対する添加量が表中に示す量となるよう に原炭を粉砕しながら添加する。
② 105°Cで 1時間乾燥し、 微粉炭中の水分が 0. 5〜; 1 . 0 %となるように調整する。
③ 106 m のふるいにかけ、 粒子径 106 m以下の微粉炭を得た。 微粉炭中の水 分量(0. 5〜: L 0 ) 、 体積平均粒子径 (75 ^m ) は全て同一に調整した。
④ここで体積平均粒子径は次式で定義されるものである。
Figure imgf000010_0001
d i :粒子径
η ι:粒子径 を有する粒子の個数
〔2〕 微粉炭搬送性向上剤
本例で使用した搬送性向上剤を以下に示す。
•二酸化珪素:試薬特級
-コロイダルシリカ :水澤化学工業 (株) 製 RM-5 •酸化アルミニウム :試薬特級
•酸化チタン:試薬特級
•酸化ジルコニウム :試薬特級
•燐酸カルシウム :試薬特級
•炭酸カルシウム :試薬特級
•炭酸マグネシウム :試薬特級
•珪酸アルミニウム :試薬特級
•炭化珪素:試薬特級
•窒化珪素:試薬特級
•セリサイ ト
•タルク
•マイ力
•ベントナイ ト
'微粉炭燃焼ボイラーダスト (シリカヒューム) :
微粉炭燃焼ボイラーから排出されるばい煙からマルチサイクロンを前段に 配置した電気集塵装置で捕集したダスト。 体積平均粒子径 1.0 m
•重油燃焼ボイラーダスト :
重油燃焼ボイラーから排出されるばい煙からマルチサイクロンを前段に配 置した電気集塵装置で捕集したダス 卜。 体積平均粒子径 0. 12// m
•転炉ダスト :
転炉から排出されるばい煙からマルチサイクロンを前段に配置した電気集 塵装置で捕集したダスト。 体積平均粒子径 0. 21 m
上記化合物中、 コロイダルシリカ以外は重力、 慣性力、 遠心力、 濾過、 電気集塵 機により、 粒子径を所定の値に揃えた。
〔3〕 微粉炭の評価
このようにして得た微粉炭の流動性指数、 配管輸送特性に対する添加剤の効果を 以下の方法で調べた。
ぐ流動性指数測定方法 >
流動性指数とは粉体の流動性を評価するための指数であり、 粉体の 4つの因子 (安息角、 圧縮度、 スパチュラ角、 凝集度) を指数化し、 その各指数の総和から求 めるものである。 各因子の測定方法および指数については、 その詳細が 「粉体工学 便覧」 (粉体工学会編、 1987年日刊工業発行) の 151〜152頁に記載されている。 なお、 各因子の測定方法を以下に記載する。
1. 安息角:粉体を標準ふるい (25mesh) に通し、 さらに漏斗を介して直径 8顧 の円板上に注入し、 形成された堆積層の傾斜角を測定する。
2. 圧縮度:粉体を充填するための円筒容器 (容積 100cm3) を用いて、 疎充填の 状態のかさ密度 (g/cm3 ) とタッピングを一定回数 (180回) 行った後の 密充填密度 p。 (g/cm3) とから圧縮度 (%) を次式により求める。
= i p - p s) x 100 /p c (%)
3. スパチュラ角:堆積した粉体中に一定幅 (22誦) のスパチュラ (へら) を差 し込み、 これを持ち上げて上に載った粉体の傾斜角を測定する。 次にスパチュラ に軽い衝撃を与え、 再びこの角度を測定し、 この二つの平均値をスパチュラ角と する。
4. 凝集度: 3種類の目開きの異なるふるい (各ふるいは上段より 60, 100, 200 mesh) を重ね、 最上段に粉体を 2 g載せ、 次にこれらを同時に振動させ、 振動停 止後に各ふるいに残った量を秤量して、
(上段ふるいの粉体の量 Z2 g) xlOO、
(中段ふるいの粉体の量 /2 g) xlOO x 3/5, 及び
(下段ふるいの粉体の量 /2 g) lOO x 1/5
の三つの計算値を合計することにより求める。
なお、 本発明で用いるような微粉炭の場合は、 各ふるいに残る微粉炭の量に差が なく、 凝集度比較の意味がないため、 本発明においては、 安息角、 圧縮度、 スパチ ユラ角の 3つの合計点から流動性指数の評価を行なった。
<配管輸送特性測定方法 >
「CAMP— I S I J Vo l. 6」 (1993) の 91頁で詳細に説明されている方 法に準じ、 図 2の装置で圧力損失を測定することにより配管輸送特性を評価した。 図 2中、 1は微粉炭、 2はテーブルフィーダ一、 3は流量計、 4は管径 12.7腿の水 平管、 5はサイクロンを意味する。 本装置は、 粉体フィーダ 8より排出される微粉 炭 7を、 搬送ガスにより気体輸送し圧力測定孔 , P2 ) 間での圧力損失を測 定するものである。 実験条件は以下の条件で行った。
微粉炭供給量 0.8 kg/rain
搬送ガス 窒素 (N2)
搬送ガス量 4Nm3 /h (67リヅトル/ min )
輸送時間 6分間
評価は次の項目である。
1. 圧力損失
圧力計 Pi , P2 では 500Hz でデ一夕のサンプリングを行っている。 圧力損失 は、 輸送時間中 (6分間) の — P2の全平均で与えられる。
Figure imgf000013_0001
以上の実施例 1〜51および比較例 1〜20の微粉炭、 搬送性向上剤、 流動性、 圧力 損失について、 表 1〜6に示す。 なお、 流動性指数及び圧力損失は、 搬送性向上剤 を添加しない比較例 4に対してどの程度増加或いは減少したかも併せて示した。 比較例 5〜20、 実施例 11〜21、 46〜51の二酸化珪素を添加した微粉炭について、 その添加量が 10—し 4 2 · Γ°· 5 9 ^ひ≤10の範囲にあるものは全て、 流動性指数 が 40 以上、 圧力損失が 16mmH20/m以下になっていることがわかる (実施例 11〜21、 46〜 51) 。 さらに、 10— 10 · r0' 59≤ひ≤10の実施例 (実施例 2〜8、 10〜 15、 18〜 21、 46〜51) については、 流動性指数が 42以上、 圧力損失が 13翻 H20/m未満でさら に効果があることがわかる。 また、 さらに、 ひ >10°· 6° · r。' 59の実施例 (実施例 6〜8、 14、 15、 51) について搬送性向上効果が頭打ちになっていることがわかる。 搬送性向上剤の体積平均粒子径については、 4 zmでは搬送性向上効果がさらに 向上することがわかる (実施例 16~21、 46〜51) 。 微 粉 炭 搬送性向上剤性 流 動 性 圧力損失 実機 kmmH20/m) 原 灰 粒 径 化合物名 溶解度 添 加 拉子径 安息角 圧縮度 スパチ 流動性 流動性 閉塞 濃 度 ユラ角 指 数 指数の 滅少量 種類 HG! (〃m) (vol¾) (Aim) 増加量
比較例 1 am. 42 81 な し 16 9 16 41 _ 13.0 ― 無し 比較例 2 b炭 48 72 な し 15 9 16 40 一 16.0 ― 無し 比較例 3 c灰 67 74 な し 12 8 15 35 24.0 ― 閉塞 比較例 4 d炭 96 75 な し 12 7 15 34 _ 29.0 ― 閉塞 比較例 5 d炭 96 75 二酸化珪素 0.01 0.005 0.10 13 7 15 35 1 27,3 1.7
以下
実施例 1 d灰 96 75 二酸化珪素 0.01 0.10 15 9 16 40 6 15.9 13.1 実施例 2 d灰 96 75 二酸化珪素 0.05 0.10 16 9 17 42 8 12.1 16.9 実施例 3 d灰 96 75 二酸化珪素 0.1 0.10 17 10 18 45 11 10.3 18.7 実施例 4 d灰 96 75 二酸化珪素 0.5 0.10 19 11 19 49 15 9.9 19.1 実施例 5 d炭 96 75 二酸化珪素 1 0.10 19 12 20 51 17 9.0 20.0 実施例 6 α灰 96 75 二酸化珪素 3 0.10 20 13 20 53 19 8.9 20.1 実施例 7 96 75 二酸化珪素 5 0.10 20 14 21 55 21 8.5 20.5 実施例 8 d炭 96 75 二酸化珪素 10 0.10 20 14 21 55 21 8.5 20.5 注) 搬送性向上剤の粒子径は体積平均粒子径を意味する (以下同じ)
微 粉 炭 搬送性向上剤 流 動 性 圧力損失 、翻 H20/m) 原 炭 粒 径 化合物名 溶解度 添 力 H 粒子径 安息角 圧縮度 スパチ 流動性 流動性
濃 度 ユラ角 指 数 指数の 減少量 種類 HGI ( (vol¾) (Aim) 増加量
比較例 6 d炭 96 75 二酸化珪素 0.01 0.005 1.0 13 7 15 35 1 28.5 0.5
以下
比較例 7 d炭 96 75 二酸化珪素 0.01 1.0 13 8 15 36 2 27.2 1.8 実施例 9 d炭 96 75 二酸化珪素 0.05 1.0 15 9 16 40 6 16.0 13.0 実施例 10 96 75 二酸化珪素 0.1 1.0 16 9 17 42 8 12.0 17.0 実施例 11 d灰 96 75 二酸化珪素 0.5 1.0 17 10 18 45 11 11.2 17.8 実施例 12 a灰 96 75 二酸化珪素 1 1.0 19 11 19 49 15 10.3 18.7 実施例 13 d炭 96 75 二酸化珪素 ,/ 3 1.0 19 12 20 51 17 9.0 20.0 実施例 14 d灰 96 75 二酸化珪素 5 1.0 20 13 20 53 19 8.0 21.0 実施例 15 d炭 96 75 二酸化珪素 10 1.0 20 13 20 53 19 8.0 21.0 比較例 8 α灰 96 75 二酸化珪素 0.005 5.0 12 7 15 34 0 28.8 0.2 比較例 9 dm. 96 75 二酸化珪素 0.01 5.0 13 7 15 35 1 27.2 1.8 比較例 10 d炭 96 75 二酸化珪素 0.05 5.0 13 8 15 36 2 27.0 2.0 実施例 16 α灰 96 75 二酸化珪素 0.1 5.0 15 9 17 41 7 16.0 13.0
微 粉 炭 搬送性向上剤 流 動 性 圧力損失
unmH20/m) 原 炭 粒 径 化合物名 溶解度 添 力 [1 粒子径 安息角 圧縮度 スパチ 流動性 流動性
濃 度 ユラ角 指 数 指数の 減少量 種類 HGI (jum) (vol¾) (jxm) 增加量
実施例 17 d炭 96 75 二酸化珪素 0.01 0.5 5.0 16 9 17 42 8 15.0 14.0
以下
実施例 18 d炭 96 75 二酸化珪素 1 5.0 17 10 18 45 11 12.0 17.0 実施例 19 d炭 96 75 二酸化珪素 3 5.0 19 11 19 49 15 10.2 18.8 実施例 20 d炭 96 75 二酸化珪素 〃 5 5.0 19 12 20 51 17 9.5 19.5 実施例 21 d炭 96 75 二酸化珪素 10 5.0 20 13 20 53 19 8.8 20.2 比較例 11 d炭 96 75 二酸化珪素 0.1 10 12 7 15 34 0 28.8 0.2 比較例 12 d炭 96 75 二酸化珪素 〃 0.5 10 12 7 15 34 0 28.6 0.4 比較例 13 d炭 96 75 二酸化珪素 1 10 13 7 15 35 1 28.5 0.5 比較例 14 d炭 96 75 二酸化珪素 3 10 13 7 15 35 1 28.3 0.7 比較例 15 d炭 96 75 二酸化珪素 5 10 13 8 15 36 2 28.1 0.9 比較例 16 d炭 96 75 二酸化珪素 10 10 13 8 15 36 2 27.8 1.2 比較例 17 d炭 96 75 コ πイダルシリカ 0.005 0.10 13 7 15 35 1 27.2 1.8 実施例 22 d炭 96 75 コ πイダルシリカ 0.01 0.10 15 9 16 40 6 16.0 13.0
微 粉 炭 搬送性向上剤 流 動 性 圧力損失 unmHsO/m) 原 炭 粒 径 化合物名 溶解度 添 加 粒子径 安息角 圧縮度 スパチ 流動性 流動性
濃 度 ユラ角 指 数 指数の 減少量 種類 HG1 (^ηι) (volD (; m) 増加量
実施例 23 d炭 96 75 コ πィダル;/リカ 0.01 0.05 0.10 16 9 17 42 8 12.0 17.0 以下
実施例 24 d灰 96 75 コ πイダルンリカ 0.1 0.10 17 10 18 45 11 10.2 18.8 実施例 25 d炭 96 75 コ π·ίダルシリカ 0.5 0.10 19 11 19 49 15 9.8 19.2 実施例 26 d炭 96 75 コ Πイダルシリカ 1 0.10 19 12 20 51 17 9.0 20.0 実施例 27 96 75 コ Πィダルシリカ 3 0.10 20 13 20 53 19 8.8 20.2 実施例 28 α灰 96 75 コ[1ィダルシリカ 5 0.10 20 14 21 55 21 8.5 20.5 実施例 29 d炭 96 75 ][!■(ダル;リカ 10 0.10 20 14 21 55 21 8.5 20.5 実施例 30 d炭 96 75 酸化了ルミニゥム 0.1 1.0 16 9 17 42 8 11.9 17.1 実施例 31 d灰 96 75 酸化チタン 0.1 1.0 16 9 17 42 8 11.8 17.2 実施例 32 d灰 96 75 酸化;;ルコニゥ /> 0.1 1.0 16 9 17 42 8 11.5 17.5 実施例 33 α灰 96 75 カルシウム 0.1 1.0 16 9 17 42 8 11.6 17.4 実施例 34 d炭 96 75 炭酸カルシウム 0.1 1.0 16 9 17 42 8 11.9 17.1
徹 粉 炭 搬送性向上剤 流 動 性 圧力損失
UnmHzO/m) 原 炭 粒 径 化合物名 溶解度 添 加 粒子径 安息角 圧縮度 スパチ 流動性 流動性
濃 度 ユラ角 数 指数の 減少量 種類 HGI (vol¾) ( im) 增加量
実施例 35 96 75 炭酸 7グネシゥム 24 0.1 1.0 16 9 17 42 8 11.9 17.1 実施例 36 α灰 96 75 珪酸了ルミニゥム 0.01 0.1 1.0 16 9 17 42 8 11.3 17.7 以下
実施例 37 96 75 炭化珪素 0.1 1.0 16 9 17 42 8 11.9 17.1 実施例 38 d炭 96 75 窒化珪素 0.1 1.0 16 9 17 42 8 11.2 17.8 実施例 39 d炭 96 75 セリサイ ト 0.1 1.0 16 9 17 42 8 11.4 17.6 実施例 40 cm 96 75 タルク 0.1 1.0 16 9 17 42 8 11.5 17.5 実施例 41 α灰 96 75 マイ力 〃 0.1 1.0 16 9 17 42 8 11.8 17.2 実施例 42 d灰 96 75 ベントナイト 〃 0.1 1.0 16 9 17 42 8 11.9 17.1 実施例 43 α灰 96 75 微粉炭燃焼 0.1 1.0 17 10 18 45 11 10.2 18.8 ダスト
実施例 44 d炭 96 75 重油燃焼 0.1 0.12 17 10 18 45 11 10.3 18.7
- 実施例 45 α灰 96 75 転炉ダスト 0.1 0.21 17 10 18 45 11 11.3 17.7
微 粉 炭 搬送性向上剤 流 動 性 圧力損失
UfflnH20/m) 原 炭 粒 径 化合物名 溶解度 粒子怪 安息角 圧縮度 スパチ 流動性 流動性
ユラ角 指 数 指数の 減少量 種類 HGl um) ( 増加量
比 例 18 d灰 96 75 二酸化珪素 0.01 0.005 4.0 13 7 15 35 1 28.6 0.4
以下
比較例 19 d炭 96 75 二酸化珪素 0.01 4.0 13 8 15 36 2 27.2 1.8 比較例 20 d炭 96 75 二酸化珪素 0.05 4.0 14 9 15 38 4 17.0 12.0 実施例 46 am 96 75 二酸化珪素 0.1 4.0 16 9 17 42 8 12.0 17.0 実施例 47 d灰 96 75 二酸化珪素 0.5 4.0 17 10 17 44 10 11.5 17.5 実施例 48 d炭 96 75 二酸化珪素 1 4.0 18 11 18 47 13 11.0 18.0
実施例 49 dm. 96 75 二酸化珪素 3 4.0 19 12 19 50 16 10.0 19.0 実施例 50 α灰 96 75 二酸化珪素 5 4.0 19 12 20 51 17 9.0 20.0 実施例 51 α灰 96 75 二酸化珪素 10 4.0 20 13 20 53 19 8.5 20.5
実施例 52
高炉微粉炭吹込装置への適用例を以下に示す。
条 件
微粉炭吹込量: 40 t/Hr
搬送性向上剤:二酸化珪素 (体積平均粒子径 5 zm以下の粒子が 80%を占め るもの)
添加量: 0又は 1.0体積%
微粉炭:体積平均粒子径… 74 /m
水 分… 1.5 %
原炭の平均 H G I '"45, 55, 70
本実施例で用いた高炉微粉炭吹込装置の概略図を図 3に示す。 図 3において、 6 は高炉、 7は吹込口、 8は吹込配管、 9は分配タンク、 10はバルブ、 11は均圧タン ク、 12はバルブ、 13は微粉炭貯蔵タンク、 14は石炭粉砕機、 15は添加剤噴霧ノズル、 16は石炭搬送ベルトコンベア、 17は石炭受入ホツバ、 18は空気 '窒素圧縮機を意味 する。
石炭は、 受け入れホッパ 17に投入されコンベア 16により粉砕機 14へ供給される。 その途中においてノズル 15より搬送性向上剤を噴霧添加する。 粉砕機 14で石炭は上 記の粒子径の微粉炭に粉砕され、 貯蔵タンク 13へ送られる。 まず、 均圧タンク 11の 内圧が大気圧と等しい状態でバルブ; 12が開き、 貯蔵タンク 13より規定量の微粉炭が 均圧タンク 11へ供給される。 次に均圧タンク 11の内圧を分配タンク 9と同じ内圧に なるまで加圧する。 タンク 9と 11の内圧が等しい状態で、 バルブ 10が開き微粉炭が 重力落下する。 微粉炭は分配タンク 9から吹込口 7へ吹込配管 8を介し、 圧縮機 18 より供給される吹込空気によって気体輸送され、 吹込口 7より高炉 6内へ吹き込ま れる。
<搬送性向上剤添加の効果 >
上記の条件で微粉炭の搬送を行ったときの、 搬送性向上剤添加の有無によるタン ク移送時間 (タンク 11からタンク 9へ微粉炭を移送するのに要する時間) と配管圧 損 (吹込配管 14での圧力損失、 即ちタンク 9と高炉 6との差圧) の変化を評価した。 その結果を図 4、 5及び 6に示す。 図 4、 5中、 (ィ) は搬送性向上剤無添加の場合、 (口) は搬送性向上剤を添加 した場合を意味し、 また図 6中、 Aは設備上限の値を意味する。
平均 H G Iが 45の原炭使用時は、 図 4 , 図 5にみられるように配管圧損および夕 ンク移送時間が低減され、 同一装置での微粉炭吹込量の増加が可能になった。 また、 同一吹込能力を得るためにより簡便な装置で済むようになった。 なお、 図 4 , 5は いずれも搬送性向上剤を添加しない場合を 1とする相対評価である。
また、 原炭の平均 H G Iを 45, 55, 70と変更した場合の配管圧損の変化を図 6に 示す。 搬送性向上剤添加により高 H G I石炭使用でも配管圧損が設備上限以下とな り、 使用石炭の炭種拡大が可能になり安価な石炭を使用出来る。 なお、 図 6は平均 H G Iが 45の微粉炭に搬送性向上剤を添加しない場合を 1とする相対評価である。 実施例 53
微粉炭焚きボイラーへの適用例を以下に示す。
搬送性向上剤:二酸化珪素 (体積平均粒子径 5 //m以下の粒子が 80%を占め るもの)
添加量: 0又は 1.0体積%
微粉炭:体積平均粒子径… 74 m
水 分… 1.5 %
原炭の平均 H G Ι ···45, 55, 65, 75
本実施例で用いた微粉炭焚きボイラーの概略図を図 7に示す。 図 7において、 19 はボイラ燃焼室、 20はバーナー、 21は吹き込み配管、 22は微粉炭貯蔵タンク、 23は 石炭粉碎機、 24は添加剤噴霧ノズル、 25は石炭搬送ベルトコンベア、 26は石炭受入 ホツバ、 27は空気,窒素圧縮機を意味する。
石炭は、 受け入れホッパ 26に投入されコンベア 25により粉砕機 23へ供給される。 その途中においてノズル 24より搬送性向上剤を噴霧添加する。 粉砕機 23で石炭は上 記の粒子径の微粉炭に粉碎され、 貯蔵タンク 22へ送られる。 次いで圧縮機 27より供 給される吹込空気によって気流搬送され、 バーナー 20に供給され燃焼される。
<搬送性向上剤添加の効果 >
上記の条件で微粉炭の搬送を行ったときの、 搬送性向上剤添加の有無による配管 圧損 (吹込配管 27での圧力損失、 即ちタンク 22とバーナー 20との差圧) の変化を評 価した。 その結果を図 8に示すが、 図 8中、 Aは設備上限の値を意味し、 Xは配管 閉塞が起こったことを意味する。 なお、 図 8は原炭の平均 H G Iが 45の微粉炭に搬 送性向上剤を添加しない場合を 1とする相対評価である。
原炭の平均 H G Iを 45, 55, 65, 75と変更した場合、 搬送性向上剤添加により高 H G I石炭使用でも配管圧損が設備上限以下となり、 使用石炭の炭種拡大ができた。

Claims

請求の範囲
1、 原炭の平均 H G Iが 30以上の乾燥した微粉炭の搬送性を向上させる方法であつ て、 体積平均粒子径が 5 m 以下の固体化合物を、 下式のひ (体積%) で示される 量、 前記微粉炭に添加し当該微粉炭の表面に付着させることを特徴とする微粉炭の 搬送性向上方法。
k . · r °· 5 9≤α≤10 (体積%)
〔ここで、 k i l O—1 - 4 2 rは添加する固体化合物の体積平均粒子径 ( zm)で あ る。 〕
2、 固体化合物が水に不溶である請求項 1項に記載した方法。
3、 微粉炭の原炭の平均 H G Iが 50以上である請求項 1に記載した方法。
4、 固体化合物が、 金属酸化物、 燐酸塩、 炭酸塩、 珪酸塩、 窒化物、 珪化物、 炭化 物、 ダスト及び粘土鉱物から選ばれる 1種または 2種以上である請求項 1に記載し た方法。
5、 固体化合物が、 二酸化珪素微粉末である請求項 1に記載した方法。
6、 固体化合物は体積平均粒子径が 0.01— δ ^πι である請求項 1に記載した方法。
7、 固体化合物は水への溶解度が 25°Cにおいて 1以下である請求項 1に記載した方
8、 固体化合物が金属酸化物である請求項 1に記載した方法。
9、 固体化合物がダストである請求項 1に記載した方法。
1 0、 請求項 1に記載した方法に使用される微粉炭搬送性向上剤であって、 金属酸 化物、 燐酸塩、 炭酸塩、 珪酸塩、 窒化物、 珪化物、 炭化物、 ダスト及び粘土鉱物か ら選ばれる体積平均粒子径が 5 m 以下の固体化合物の 1種または 2種以上からな る微粉炭搬送性向上剤。
1 1、 固体化合物が水に不溶である請求項 1 0項に記載した向上剤。
1 2、 固体化合物が二酸化珪素微粉末である請求項 1 0に記載した向上剤。
1 3、 請求項 1に記載した式のひ (体積%) で示される量の体積平均粒子径が 5 以下の固体化合物を、 原炭の平均 H G Iが 30以上の乾燥した微粉炭の表面に付着 させてなる微粉炭。
1 4、 固体化合物が水に不溶である請求項 1 3項に記載した微粉炭。
1 5、 原炭の平均 H G Iが 50以上である請求項 1 3に記載した微粉炭。
1 6、 固体化合物が、 金属酸化物、 燐酸塩、 炭酸塩、 珪酸塩、 窒化物、 珪化物、 炭 化物、 ダスト及び粘土鉱物から選ばれる 1種または 2種以上である請求項 1 3に記 載した微粉炭。
1 7、 固体化合物が二酸化珪素微粉末である請求項 1 3に記載した微粉炭。
1 8、 体積平均粒子径が 5 /m以下の固体化合物を、 請求項 1に記載した式のひ (体積%) で示される量の、 原炭の平均 H G Iが 30以上の乾燥した微粉炭の表面に 付着させてなる微粉炭を、 吹き込み口から吹き込むことを特徴とする冶金炉又は燃 焼炉の操業方法。
1 9、 固体化合物が水に不溶である請求項 1 8項に記載した方法。
2 0、 微粉炭の原炭の平均 H G Iが 50以上である請求項 1 8に記載した方法。
2 1、 固体化合物が、 金属酸化物、 燐酸塩、 炭酸塩、 珪酸塩、 窒化物、 珪化物、 炭 化物、 ダスト及び粘土鉱物から選ばれる 1種または 2種以上である請求項 1 8に記 載した方法。
2 2、 固体化合物は体積平均粒子径が 0.01— 5 zm である請求項 1 8に記載した方
2 3、 固体化合物は水への溶解度が 25°Cにおいて 1以下である請求項 1 8に記載し た方法。
2 4、 固体化合物が金属酸化物である請求項 1 8に記載した方法。
2 5、 固体化合物がダストである請求項 1 8に記載した方法。
2 6、 固体化合物が二酸化珪素微粉末である請求項 1 8に記載した方法。
PCT/JP1996/001875 1995-07-05 1996-07-05 Procede ameliorant la transportabilite du charbon pulverise WO1997002363A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96922245A EP0837143A1 (en) 1995-07-05 1996-07-05 Method for improving conveyability of pulverized coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7169821A JP2986717B2 (ja) 1995-07-05 1995-07-05 微粉炭の搬送性向上方法
JP7/169821 1995-07-05

Publications (1)

Publication Number Publication Date
WO1997002363A1 true WO1997002363A1 (fr) 1997-01-23

Family

ID=15893531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001875 WO1997002363A1 (fr) 1995-07-05 1996-07-05 Procede ameliorant la transportabilite du charbon pulverise

Country Status (5)

Country Link
EP (1) EP0837143A1 (ja)
JP (1) JP2986717B2 (ja)
KR (1) KR19990028593A (ja)
CN (1) CN1194010A (ja)
WO (1) WO1997002363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635096A (zh) * 2016-12-06 2017-05-10 神雾环保技术股份有限公司 一种处理煤粉和钙基原料的系统和方法
CN113637495A (zh) * 2020-04-27 2021-11-12 上海梅山钢铁股份有限公司 一种双线配煤控制破碎煤粒径的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110078917A1 (en) * 2009-10-01 2011-04-07 Bland Richard W Coal fine drying method and system
CA2783465A1 (en) 2009-10-01 2011-04-07 Ross Technology Corporation Coal fine drying method and system
US9004284B2 (en) 2009-10-01 2015-04-14 Vitrinite Services, Llc Mineral slurry drying method and system
JP5644365B2 (ja) * 2009-10-29 2014-12-24 Jfeスチール株式会社 高炉操業方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224744A (ja) * 1987-03-16 1988-09-19 三菱重工業株式会社 塊状物の粉砕方法
JPH04268004A (ja) * 1991-02-21 1992-09-24 Nippon Steel Corp 高炉操業法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224744A (ja) * 1987-03-16 1988-09-19 三菱重工業株式会社 塊状物の粉砕方法
JPH04268004A (ja) * 1991-02-21 1992-09-24 Nippon Steel Corp 高炉操業法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 25726/1982 (Laid-open No. 132343/1983) (MITSUI ENGINEERING & SHIPBUILDING CO., LTD.), 6 September 1993, pages 1-2. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635096A (zh) * 2016-12-06 2017-05-10 神雾环保技术股份有限公司 一种处理煤粉和钙基原料的系统和方法
CN113637495A (zh) * 2020-04-27 2021-11-12 上海梅山钢铁股份有限公司 一种双线配煤控制破碎煤粒径的方法

Also Published As

Publication number Publication date
EP0837143A1 (en) 1998-04-22
JP2986717B2 (ja) 1999-12-06
CN1194010A (zh) 1998-09-23
KR19990028593A (ko) 1999-04-15
JPH0920905A (ja) 1997-01-21

Similar Documents

Publication Publication Date Title
US11168274B2 (en) Low sulfur coal additive for improved furnace operation
KR20000004999A (ko) 미분탄 반송성 향상제
JPH06509051A (ja) 乾燥泡立ち流動床における炭素燃焼によるフライアッシュの選別
WO2002077132A1 (fr) Additif anti-scorification pour combustible, et procédé de combustion de combustible
WO1997002363A1 (fr) Procede ameliorant la transportabilite du charbon pulverise
KR102352026B1 (ko) 유동층용 유동 매체
US4402275A (en) Process for the continuous blowing of fine-particled reducing agents consisting predominantly of mineral coal into a shaft furnace
JPS61171794A (ja) ガス化用の石炭含有ペレツトの製造方法
CN112424530B (zh) 操作包括捕获烟道气体夹带的灰分的设备的焚烧装置的方法
CN107726307A (zh) 一种cfb锅炉掺烧石油焦的工艺
CN113227652A (zh) 流化床炉
CN215327933U (zh) 利用飞灰循环改善液态排渣炉入炉煤特性的系统
CN112831354A (zh) 利用飞灰循环改善液态排渣炉入炉煤特性的系统和方法
JPH11503201A (ja) 金属微粉の再利用
JP6544116B2 (ja) コークス炉における煤煙抑制方法
CN114717027A (zh) 一种适用于高碱低灰熔点煤的循环流化床气化装置及工艺
JPH0585807B2 (ja)
JPH10121053A (ja) コークス原料炭の事前処理方法
Engdahl et al. Pulverized Coal for Forge Furnaces
JPS58191784A (ja) コ−クス製造方法
JPS58160710A (ja) 鉱物系燃料の流動床燃焼法
Chernyavskiy et al. Fluidized bed co-combustion of carbon-containing material from ash dumps at anthracite thermal power plants with sludge
HURTER PULVERISED COAL FIRING OF SMALL BOILER PLANT
JPS62121654A (ja) 回転式ミル
JPS58204091A (ja) 装入炭の調整方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196493.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996922245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970709915

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996922245

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996922245

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709915

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019970709915

Country of ref document: KR