WO1996041937A1 - Double circular slider crank reciprocating piston internal combustion engine - Google Patents

Double circular slider crank reciprocating piston internal combustion engine Download PDF

Info

Publication number
WO1996041937A1
WO1996041937A1 PCT/CN1996/000043 CN9600043W WO9641937A1 WO 1996041937 A1 WO1996041937 A1 WO 1996041937A1 CN 9600043 W CN9600043 W CN 9600043W WO 9641937 A1 WO9641937 A1 WO 9641937A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
crank
circular
internal combustion
combustion engine
Prior art date
Application number
PCT/CN1996/000043
Other languages
English (en)
French (fr)
Inventor
Ming Li
Zhen Zhong Li
Original Assignee
Ming Li
Zhen Zhong Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming Li, Zhen Zhong Li filed Critical Ming Li
Priority to US08/983,011 priority Critical patent/US5934229A/en
Priority to DE69637547T priority patent/DE69637547D1/de
Priority to EP96917324A priority patent/EP0846849B1/en
Priority to AU59955/96A priority patent/AU5995596A/en
Publication of WO1996041937A1 publication Critical patent/WO1996041937A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/023Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft of Bourke-type or Scotch yoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/026Rigid connections between piston and rod; Oscillating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/047Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with rack and pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • F02B75/224Multi-cylinder engines with cylinders in V, fan, or star arrangement with cylinders in fan arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/246Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "pancake" type, e.g. pairs of connecting rods attached to common crankshaft bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the present invention relates to an internal combustion engine, in particular a crank block reciprocating piston internal combustion engine with a circular slider instead of a connecting rod.
  • crank-link mechanism to achieve the reciprocating movement of the piston.
  • crank circular slider reciprocating piston internal combustion engine Use a crank circular slider mechanism instead of a crank connecting rod mechanism, such as "Internal Combustion Engine Off"
  • the object of the present invention is to provide a crank double reciprocating piston internal combustion engine with good dynamic balance, high reliability, good energy saving, simple structure, small size and light weight.
  • the crank double-circular slider reciprocating piston internal combustion engine of the present invention includes a cylinder block and the cylinder, a piston, a crankshaft, and an eccentric shaft hole rotatably installed in a circular hole of the piston and sleeved on the crankshaft.
  • the crank circular slider mechanism, the gas distribution mechanism and the fuel supply system of the circular slider (27) on the upper side, the above-mentioned cylinder block has a dynamic balancing slider that reciprocates in cooperation with the runway, and is rotatably mounted on the dynamic balance.
  • the eccentric shaft hole is sleeved on the crankshaft, and the circular slider
  • the above-mentioned piston (13) may be a double-sided piston working at both ends; the above-mentioned running path (26) may be spatially perpendicular to the discourager (8). Therefore, a horizontal I-shaped horizontal double-cylinder machine may be formed.
  • the piston (50) may be a double-sided piston working at both ends, and the dynamic balancing slider (52) may be a single-sided piston working at one end; the above runway
  • the piston (61) and the dynamic balance slider (62) may each be a single-sided piston working at one end; the runway (60) may be a cylinder structure, and is spatially perpendicular to the cylinder (59). Therefore, it can be constituted V-shaped double-cylinder machine.
  • the shape and size of the two circular sliders (27, 28) can be the same, and the eccentricity (e) of the shaft hole (29) is the same.
  • the eccentricity (e) of the shaft hole (29) of the circular slider (27, 28) is equal to the crank radius (e) of the crankshaft.
  • the two circular sliders (27, 28) can be fixed and integrated by two positioning pins (35, 36), or they can be fixed and integrated by other coupling structures.
  • crankshaft (37) is a single-crank structure.
  • crankshaft (37) is a combined structure of one end of the crank pin (38) and the main journal (40) of the end. Therefore, the round slider (27, 28) can use the overall structure.
  • the above-mentioned circular slider may be a combined structure along a radial portion. Therefore, the crankshaft may adopt an integrated structure.
  • the rotation radius of the crankshaft and the crank pin that is, the crank radius is e
  • the rotation eccentricity of the circular slider 27 and the circular slider 28 are both e, and It is 180 ° out of phase and connected together.
  • One circular slider 27 drives the piston assembly to reciprocate along the X axis
  • the other The circular slider 28 drives the balance slider assembly to reciprocate along the Y axis.
  • the X axis and the ⁇ axis are perpendicular to each other.
  • M1, M2, and M3 are the displacement points of the center of the crank pin 38
  • Al, ⁇ 2, and A3 are circular sliders.
  • the displacement point at the center of 27, Bl, ⁇ 2, ⁇ 3 are the displacement points at the center of the circular slider 28.
  • the crankshaft and the crank pin rotate at the ⁇ speed
  • the circular slider 27 and the circular slider 28 rotate in the reverse direction at - ⁇ angular speed.
  • the piston Both the assembly and the dynamic balance slider assembly move according to the cosine and sine rules.
  • Q) t 0, the crank pin 38, the circular slider 27, and the circular slider 28 are shown as two-dot chain lines.
  • the positions of its centers are Ml, Al, Bl.
  • the crank pin rotates ⁇ angle the above three pieces are shown as dotted lines.
  • the positions of its centers are M2, ⁇ 2, ⁇ 2.
  • ot 90.
  • the above three pieces are shown as solid lines, and the positions of their centers are M3, A3, A3.
  • the motion law of the dynamic balance slider assembly is:
  • the movement force of the present invention is shown in Figure 4. Let the mass of the piston assembly be mi , the mass of the dynamic balance slider assembly m 2 and the mass of the balance weight m.
  • the resultant force is the centrifugal force from the center of the crankshaft to the center of the crank pin So that the present invention can obtain the ideal dynamic balance effect, without the need to add other auxiliary devices such as the sun gear.
  • Figure 1 is a schematic diagram of the structure of a crank double circular slider reciprocating piston internal combustion engine of the present invention. Shows the structure of the I-type horizontal double cylinder engine.
  • FIG 2 is a simplified schematic diagram of the crank double circular slider mechanism of Figure 1. Shows the structure of the piston 13 and its circular slider 27, the dynamic balance slider 21 and its circular slider 28, and the crank pin 38 of the double-sided working structure.
  • FIG. 3 is a simplified schematic diagram of a crank double-circle slider mechanism of another crank double-circle slider reciprocating piston internal combustion engine of the present invention. Shown is an inverted T-shaped three-cylinder machine with a single-sided piston structure of dynamic balancing slider 52 .
  • FIG. 4 is a simplified schematic diagram of a crank double-circle slider mechanism of another crank double-circle slider reciprocating piston internal combustion engine of the present invention.
  • the figure shows a V-shaped double-cylinder engine, and its piston 61 with a single-sided piston structure, and its dynamic balance
  • the slider 62 is a single-sided piston structure.
  • Figure 5 is a schematic diagram of the movement principle of the two circular sliders 27, 28 and the crank pin 38 of the present invention.
  • Figure 6 is a balance diagram of the movement force of the piston assembly and the dynamic balance slider assembly of the present invention.
  • Figure 7 is a schematic diagram of the structure of cylinder 8 and runway 26 of Figure 1.
  • Fig. 8 is a schematic diagram of the structure of the button body of Fig. 4.
  • the cylinder body 59 and the track body 60 of the cylinder structure are arranged in a V shape perpendicular to each other.
  • Figure 9 is a schematic plan view of the structure of Figure 8. It shows that the two cylinders are vertically spaced, and the crankshaft 37.
  • Figure 10 is a schematic diagram of the pistons 13 and 50 of the double-sided piston structure in Figures 2 and 3.
  • FIG. 11 is a schematic plan view of the structure of Figure 10.
  • FIG. 12 is a schematic structural diagram of the dynamic balance slider 21 in FIG. 2.
  • Figure 13 is a schematic plan view of the structure of Figure 12.
  • Figure 14 is a schematic diagram of the left-view structure.
  • Fig. 15 is a piston 60 of the single-sided piston structure in Figs. 3 and 4
  • Figure 16 is a schematic top view of Figure 15.
  • Figure 17 is a schematic diagram of the structure of a circular slider in the present invention.
  • the display is a whole structure.
  • Figure 18 is a schematic diagram of the left-view structure of Figure 17.
  • Figure 19 is a schematic structural diagram of two circular sliders integrated into a double circular slider.
  • Figure 20 is a schematic structural diagram of a crankshaft in the present invention. The display is a combined structure.
  • FIGS. 1, 2, 5-7, 10-14, 17-20 A reciprocating piston internal combustion engine with a crank double-circular slider according to the present invention is shown in FIGS. 1, 2, 5-7, 10-14, 17-20.
  • This embodiment is an I-shaped horizontal twin-cylinder machine.
  • the horizontally arranged cylinder block 1 the gas distribution mechanism 2, the fuel supply system including the vaporizer 3, the ignition system including the distributor 4, the lubrication system including the oil pump and the filter 5, and the cooling of the water-containing pump 6
  • the system includes a starting device for the starter 7 and a crank circular slider mechanism.
  • the above structure constitutes a gasoline engine. When a diesel engine is required, the components constituting the diesel engine can be removed and added, such as removing the carburetor, distributor and other components, while adding fuel injection pump components .
  • the crank circular slider mechanism of the present invention is a crank double circular slider mechanism, which is composed of a cylinder, a piston, a dynamic balance slider, a runway, two circular sliders, a crankshaft, a flywheel, a pulley and the like.
  • the above-mentioned cylinder 8 as shown in FIG. 7, has two ends at a cylindrical cavity of the cylinder bore 9.
  • the cylinder may have a cylinder liner, and a middle portion is provided with a crankshaft bearing hole 10, 11 for mounting a bearing.
  • the above-mentioned piston 1 3 as shown in Figs. 10 and 11, has a double-acting piston structure. Both ends are working portions 14 having the same shape and size.
  • the working portion is cylindrical and has a piston ring groove 15 in which a piston ring is installed.
  • the middle section is the guide portion 16, which is a flat body.
  • the guide surface 17 cooperates with the cylinder, and an oil groove 18 is formed along the guide surface.
  • a circular hole 19 is formed along the lateral direction between the circular hole 19 and the oil groove 18.
  • Made of oil holes 20 There are plain bearings in round holes.
  • the above-mentioned dynamic balance slider 21, as shown in Figs. 12, 13, and 14, has a flat body shape, and its symmetrical sides are arc-shaped cylindrical guide portions 22, and an oil groove 23 is made along the cylindrical surface. In the center, a circular hole 24 is made in the transverse direction. An oil hole 25 is made between the circular hole 24 and the oil groove 23. There is a sliding bearing in the circular hole.
  • the above runway 26, as shown in Figs. 2 and 7, is a cavity opened in the cylinder block 1.
  • the cross-sectional shape of the cavity coincides with the dynamic balancing slider 21; the centerline of the runway is perpendicular to the cylinder and is at a proper distance.
  • the distances L and L can be determined according to the thickness of the guides of the piston and the dynamic balance slider.
  • the above two circular sliders 27, 28, as shown in Figures 17, 18, have the same shape and size, and are in the shape of flat cylinders.
  • a shaft hole 29 with an eccentric distance e in the axial direction there is a bearing shell 30 is installed in the shaft hole.
  • On the two sides of the shaft hole there are two symmetrical two pin holes 31 and 32 in the axial direction.
  • An oil hole 33 is formed between the shaft hole of the circular slider and the outer cylindrical surface.
  • the cross-shaped oil groove 34 with the same holes is inserted.
  • the two positioning pins 35 and 36 are fixedly inserted into the pin holes 31 and 32, and the two circular sliders are fixedly connected into one.
  • the opening of the two pin holes should enable the phase of the two circular sliders.
  • the difference is 180 °, and the two shaft holes are superimposed and fixed together to form a double-circular slider.
  • the above-mentioned circular slider is a monolithic structure, and it can also be along the axial diameter of the circular slider.
  • Two semi-circular sliders are usually connected.
  • the structure constitutes a circular slider of a combined structure.
  • the crankshaft 37 as shown in FIG. 20, is a single-crank structure, and the crank radius and the eccentricity of the shaft hole of the circular slider are equal to e.
  • the crank pin 38 of the crankshaft and the main shaft at one end The neck 39 is integrated, and the other end of the main journal 40 is set on the end of the crank pin.
  • crankshaft is installed in the crankshaft bearing holes 10, 11 of the cylinder block.
  • the above-mentioned crankshaft has a combined structure, and this structure is matched with the integral slider of the above-mentioned integrated structure.
  • the crankshaft can also Made into a monolithic structure, equipped with the circular slider of the combined structure.
  • the shaft hole 29 of the double circular slider is set on the crank pin 38 of the crankshaft, and the two circular sliders are respectively inserted into the circular hole 19 of the piston and the circular hole 24 of the dynamic balance slider.
  • the flywheel 46 of the above-mentioned general structure And the pulley 47 is installed at both ends of the crankshaft 37.
  • the mass of the two circular sliders 27 and 28 should be equal and the center of gravity should be the same.
  • the mass of the piston assembly and the dynamic balance slider assembly should also be equal and the centers of gravity should be on their respective centerlines.
  • the balance weight and deduplication can be set on demand.
  • This embodiment is made of ZB-2105 water-cooled, direct-injection diesel engine, which
  • D 105mm
  • S 80mm
  • 25ps / 1600rpm
  • Me 115kgf- m / 1100rpm
  • ge 180g / ps.h
  • W 80kg
  • V 380 x 620 x 350mm 3 .
  • the operating method of this embodiment is the same as that of the existing internal combustion engine. Compared with the existing similar crank-link reciprocating piston internal combustion engine, the fuel consumption of the above three examples is reduced by 13-16% , The weight is reduced by 50-60%, the volume is reduced by 60-70%, the dynamic balance is improved, almost no vibration, and the sewage is rarely discharged, which is only 5-10% of similar Japanese machines.
  • FIG. 3 Another crank double-circular slider reciprocating piston internal combustion engine of the present invention is shown in the attached drawings 3, 5, 6, 10, 11, 15-20.
  • This embodiment is an inverted T-shaped three-cylinder machine. Its structure and implementation Example 1 is substantially the same. Its feature is that the cylinder 48 is approximately T-shaped inverted. There is a horizontal cylinder 49, which has a piston 50, the structure of which is the same as the piston of Example 1, is a double-sided piston.
  • the structure of the runway 51 is the same as the normal cylinder structure and is perpendicular to the cylinder 49.
  • the dynamic balance slider 52 in the runway has a single-sided piston structure as shown in Figs.
  • the structure of the guide portion 54, the circular hole 55, the oil groove 56, and the oil hole 57 are the same as the corresponding components of the double-sided piston of Embodiment 1.
  • FIGS. 4-6, 8, 9, 15-20 Another type of crank double circular slider reciprocating piston internal combustion engine of the present invention is shown in FIGS. 4-6, 8, 9, 15-20.
  • This embodiment is a V-shaped two-cylinder engine, and its structure is roughly the same as that of Embodiment 2. It is the same. Its characteristics are that the body 58 is V-shaped, and the structure of the cylinder 59 and the runway 60 is the same as the normal cylinder structure. The two are arranged in a V shape and are perpendicular to each other. The center lines of the two are at an appropriate distance.
  • the structure of the piston 61 and the dynamic balance slider 62 is a single-sided piston structure as shown in Figs. 15 and 16.
  • the operation method of this embodiment is the same as that of the existing internal combustion engine. Compared with the existing similar crank-crank reciprocating piston internal combustion engine, the fuel consumption of the above two embodiments is reduced by 8-13%, The volume is reduced by 46% and the volume is reduced by 55%.
  • crank double circular slider reciprocating piston internal combustion engine of the present invention has the following obvious advantages and significant effects.
  • the combined motion of the piston assembly and the dynamic balance slider assembly of the present invention is the centrifugal force passing through the center of the crankshaft and the crank pin, which can achieve the ideal dynamic balance, and its dynamic balance is excellent.
  • two circular sliders are integrated to replace the connecting rod of the existing crank linkage mechanism, so as to connect with the crankshaft to form a crank double circular slider mechanism, which is connected with the piston and the dynamic balance slider transmission so as to be perpendicular to each other.
  • the movement of the moving piston assembly and the dynamic balance slider assembly mutually restricts the movement of work. It replaces the internal gear transmission paired with the crank single-circle slider, which makes the dynamic balance of the present invention more excellent.
  • the number of moving parts is reduced. To make the structure more delicate and more reliable to use.
  • the present invention reduces the size and weight of the entire machine due to its use of a crank double circular slider mechanism.
  • the crank radius and the eccentricity of the circular slider are equal to e.
  • the piston stroke of the present invention It is 4e, but the existing internal combustion engine of the same specification using a crank-link mechanism has a crank radius of e and a piston stroke of only 2e. Therefore, the volume and weight of the entire machine of the present invention can be reduced and reduced by 50-67% .
  • the machining surfaces of the main moving parts such as pistons, circular sliders, and crankshafts of the present invention are mainly cylindrical surfaces and planes.
  • the machining process is superior, and it is more than 70% of the common parts of the same type of internal combustion engine.
  • the inheritance is also good. .

Description

曲柄双圆滑块往复活塞式内燃机
技术领域: 本发明涉及内燃机,特别是用圆滑块取代连杆的曲柄圆滑 块往复活塞式内燃机.
背景技术
已有的往复活塞式内燃机,采用曲柄连杆机构实现活塞的 往复运动. 为克服曲柄连杆机构存在往复惯性力等缺点, 已 发明了多种机型, 其中的曲柄圆滑块往复活塞式内燃机, 采 用曲柄圆滑块机构取代曲柄连杆机构, 如曰本的 《内燃机关》
1981年第 8期所报导, 日本工业大学研制 无连杆内燃机", 其气缸呈十字型布置, 因润滑油易于窜入活塞顶部而引发事 故. 此外, 尚有给曲柄圆滑块机构配置太阳轮系的结构, 试 图解决平衡问题, 但因其结构复杂而难于推广使用. 中囯专 利局在 CN85100358A中公布的本发明人所发明的 "曲柄圆滑 块往复活塞式内燃机" , 采用一个圆滑块并配置一对内齿轮 传动副结构, 其结构简单, 重量轻, 但其.动平衡性仍不甚理 想,
鉴于此, 本发明的目的就在于提供一种动平衡性好, 可靠 性高, 节能性好, 结构简单, 体积小, 重量轻的曲柄双圆滑 块往复活塞式内燃机.
发明内容
本发明的曲柄双圆滑块往复活塞式内燃机 (参见附图) , 包含有缸体及其内的气缸、 活塞、 曲轴、 可旋转地装在活塞 的圆孔中且其偏心的轴孔套装在曲轴上的圆滑块 ( 27 ) 的曲 柄圆滑块机构, 配气机构和燃料供给系, 上述缸体中有与跑 道相配合作往复运动的动平衡滑块, 有可旋转地装在动平衡 滑块的圆孔中、 其偏心的轴孔套装在曲轴上, 与上述圆滑块
( 27 ) 相位差 180。且成一体的圆滑块 ( 28 ) .
上述活塞 ( 13 ) , 可以是两端工作的双面活塞; 上述跑 道 ( 26 ) , 可以与气釭 ( 8 ) 呈空间垂直. 从而, 可以构成 横置的 I字型卧式双缸机.
上述活塞 ( 50 ) , 可以是两端工作的双面活塞, 上述动 平衡滑块 ( 52 ) , 可以是一端工作的单面活塞; 上述跑道
( 51 ) , 可以是气缸结构、 且与上述气缸 ( 49 )呈空间垂直. 从而, 可以构成倒置的 T字型三缸机.
上述活塞 ( 61 ) 和动平衡滑块 ( 62 ) , 可以均是一端工 作的单面活塞; 上述跑道 ( 60 ) , 可以是气缸结构、 且与上 述气缸 ( 59 )呈空间垂直. 从而, 可以构成 V字型的双缸机. 上述两个圆滑块 ( 27、 28 ) 的形状和尺寸均可以相同, 其轴孔 ( 29 ) 的偏心距 ( e ) 相等.
上述圆滑块 ( 27、 28 ) 的轴孔 ( 29 ) 的偏心距 ( e ) 与曲轴的曲柄半径 ( e ) 相等.
上述两个圆滑块 ( 27、 28 ) , 可以被两个定位销 ( 35、 36 ) 固联成一体, 也可以采用其他联接结构固联成一体.
上述曲轴 ( 37 ) , 是单拐式结构.
上述曲轴 ( 37 ) , 是曲柄销 ( 38 ) 的一端与该端的主轴 颈 ( 40 )采用联接式的组合结构.从而,使圆滑块 ( 27、 28 ) 可以釆用整体结构.
上述圆滑块, 可以是沿径向部分的组合式结构. 从而, 使 曲轴可以采用整体式结构.
本发明的运动原理和平衡原理参照图 5和图 6说明如下. 图中, 设曲轴和曲柄销的旋转半径即曲柄半径为 e, 圆滑块 27 和圆滑块 28的旋转偏心距均为 e, 并呈 180°相位差且联成一 体. 一个圆滑块 27带动活塞总成沿 X轴作往复运动, 另一个 圆滑块 28带动动平衡滑块总成沿 Y轴作往复运动. X轴与 Υ 轴相互垂直.图中, Ml、 Μ2、 Μ3为曲柄销 38中心的位移 点, Al、 Α2、 A3为圆滑块 27中心的位移点, Bl、 Β2、 Β3为圆滑块 28中心的位移点. 当曲轴连同曲柄销以 ω速度旋 转时, 圆滑块 27和圆滑块 28以 - ω角速度反向旋转. 此时, 活塞总成和动平衡滑块总成均按余弦、 正弦规律运动. 设运 动时间为 t. 当 Q)t = 0时, 曲柄销 38、 圆滑块 27、 圆滑块 28 如双点划线所示, 其各中心的位置分别为 Ml、 Al、 Bl . 当曲柄销旋转 ωί 角时, 上述三件如点划线所示. 其中心的位 置分别为 Μ2、 Α2、 Β2. 当 ot = 90。时, 上述三件如实线所 示, 其中心的位置分别为 M3、 A3、 A3.
活塞总成的运动规律为:
位移: Sx = 2e(l-Cos t)
速度: Vx=2e Sino t
加速度:αχ =2ero2Cos0t
动平衡滑块总成的运动规律为:
位移: Sy = 2e(l-Sinot)
速度: Vy= - 2ecoCoscDt
加速度: aY =2effl2Sinrot
本发明的运动力如图 4所示. 设活塞总成质量为 mi,动平 衡滑块总成质量 m2,平衡配重块质量为 m .
活塞总成的运动惯性力 Ffm^e^Cosot
动平衡滑块总成的运动惯性力 F2=m22ea)2Sino)t
飞轮等的平衡配重块的运动惯性力 F = ιηΚω2
当 mfii^时, F = Fl + F2 mR m e m e KJK:为常数, 便于设计配重块.
如上所述, 若使本发明的活塞总成和动平衡滑块总成的运动方 向相互垂直, 则其合力为由曲轴中心指向曲柄销中心的离心力, 所 以, 本发明可获得理想的动平衡效果, 而无须增加如太阳轮系等其 他附属装置.
下面, 再用实施例及其附图, 对本发明作进一步说明. 附图概述
图 1是本发明的一种曲柄双圆滑块往复活塞式内燃机的 结构示意图. 显示 I字型卧式双缸机的结构.
图 2是图 1的曲柄双圆滑块机构的简化结构示意图. 显示 双面工作结构的活塞 13及其圆滑块 27, 动平衡滑块 21及其 圆滑块 28, 曲柄销 38的结构.
图 3是本发明的另一种曲柄双圆滑块往复活塞式内燃机 的曲柄双圆滑块机构的简化结构示意图. 显示是倒置的 T字 型三缸机, 其动平衡滑块 52的单面活塞结构.
图 4是本发明的又一种曲柄双圆滑块往复活塞式内燃机 的曲柄双圆滑块机构的简化结构示意图. 显示是 V字型双缸 机, 及其单面活塞结构的活塞 61, 其动平衡滑块 62为单面活 塞结构.
图 5是本发明的两个圆滑块 27、 28、 曲柄销 38的运动 原理示意图.
图 6是本发明的活塞总成、动平衡滑块总成的运动力平衡 图.
图 7是图 1的气缸 8和跑道 26的结构示意图.
图 8是图 4的鈕体的结构示意图. 显示气缸体 59和气缸 结构的跑道体 60相互垂直呈 V字形布置.
图 9是图 8的俯视结构示意图. 显示两个气缸呈空间垂 直, 和曲轴 37 .
图 10是图 2和图 3中的双面活塞结构的活塞 13和 50的 结构示意图.
图 11是图 10的俯视结构示意图. 图 12是图 2中的动平衡滑块 21的结构示意图.
图 13是图 12的俯视结构示意图.
图 14是图 13是左视结构示意图.
图 15是图 3和图 4中的单面活塞结构的活塞 60
动平衡滑块 52的结构示意图.
图 16是图 15的俯视示意图.
图 17是本发明中的一种圆滑块的结构示意图. 显示呈整 体式结构.
图 18是图 17的左视结构示意图.
图 19是两个圆滑块连成一体成双圆滑块的结构示意图. 图 20是本发明中的一种曲轴的结构示意图. 显示呈组合 式结构.
本发明最佳实施方式
实施例 1
本发明的一种曲柄双圆滑块往复活塞式内燃机, 如附图 1 、 2 、 5 - 7、 10 - 14、 17 - 20所示. 本实施例为 I字 型卧式双缸机. 有与通常结构相类似的横置的缸体 1 , 配气机 构 2, 含汽化器 3的燃料供给系, 含分电器 4的点火系, 含机 油泵及滤清器 5的润滑系, 含水泵 6的冷却系, 含起动机 7的 起动装置, 和曲柄圆滑块机构. 以上结构构成汽油机, 当需 构成柴油机时, 可去除并增加构成柴油机的部件, 如去掉汽 化器、 分电器等部件, 同时增加喷油泵部件.
本发明的曲柄圆滑块机构, 是曲柄双圆滑块机构, 由缸体 中的气釭、 活塞、 动平衡滑块、 跑道、 两个圆滑块、 曲轴、 飞轮、 皮带轮等构成.
上述气缸 8 , 如图 7, 在圆柱形的空腔的缸孔 9 , 其两端 为工作 , 气缸中可以有缸套, 其中部横向制有可安装轴承 的曲轴轴承孔 10、 11 . 气缸顶有缸盖 12 . 上述活塞 13, 如图 10、 11 , 呈双作用式活塞结构, 两 端为形状和尺寸均相同的工作部 14, 该工作部呈圆柱形, 有 安装活塞环的活塞环槽 15 . 活塞的中段为导向部 16, 呈扁形 体, 其导向面 17与气缸相配合, 沿导向面制有油槽 18 ; 在导 向部中心, 沿其横向制有圆孔 19, 在圆孔 19与油槽 18之间 制有油孔 20 . 在圆孔中有滑动轴承.
上述动平衡滑块 21, 如图 12、 13、 14, 呈扁长体形, 其对称的两侧棱为呈弧形柱面形的导向部 22, 沿柱面制有油 槽 23 . 在扁长体中心, 沿横向制有圆孔 24 . 在圆孔 24与油 槽 23之间制有油孔 25 . 在圆孔中有滑动轴承.
上述跑道 26 , 如图 2、 7, 为开制在缸体 1 中的空腔, 空腔的横截面形状与上述动平衡滑块 21相吻合; 跑道中心线 与气缸相垂直、、 且相距适当距离 L , L可根据活塞和动平衡 滑块的导向部厚度确定.
上述两个圆滑块 27、 28 , 如图 17、 18, 其形状和尺寸 均相同, 呈扁圆柱体形, 在中部有沿轴向的偏心距为 e的轴孔 29 , 轴孔内装有轴瓦 30 . 在轴孔两侧有两相对称的沿轴向的 两个销孔 31 、 32 . 在圆滑块的轴孔与外圆柱面间制有油孔 33, 在圆滑块的两端面上, 有与轴孔相通的十字形油槽 34 . 用两个定位销 35和 36固插入销孔 31 、 32中, 将两个圆滑块 固联成一体. 两销孔的开制应能使两个圆滑块的相位差 180° 且两个轴孔相重合地固联成一体, 从而成为双圆滑块. 上述 圆滑块为整体式结构, 也可以沿圆滑块的轴孔径向部分, 由 两个半圆滑块采用通常联接结构, 构成组合式结构的圆滑块. 上述曲轴 37, 如图 20, 为单拐式结构, 其曲柄半径与上 述圆滑块的轴孔偏心距相等均为 e . 曲轴的曲柄销 38与一端 的主轴颈 39成一体结构, 另一端的主轴颈 40套装在曲柄销的 端头上, 并用通常的联接件 41固联成一体. 主轴颈的半径可 大于曲柄销直径, 使曲柄销 38全部包含在主轴颈内, 其曲柄 重叠度达 100 % . 在曲柄销中心有沿轴向的油道 42, 在油道 与曲柄销表面和主轴颈表面之间,有多条油孔 43、 44、 45 . 曲轴安装在缸体的曲轴轴承孔 10、 11中.上述曲轴为组合式 结构, 此种结构与上述整体式结构的圆滑块相配装. 曲轴也 可以制成整体式结构, 与上述组合式结构的圆滑块配装.
组装时, 将双圆滑块的轴孔 29套装在曲轴的曲柄销 38 上, 将两个圆滑块分别装入活塞的圆孔 19和动平衡滑块的圆 孔 24中. 上述通常结构的飞轮 46和皮带轮 47安装在曲轴 37 的两端.
设计制造时, 应使两个圆滑块 27和 28的质量相等、 重心 相同. 还应使活塞总成和动平衡滑块总成的质量相等, 且重 心在各自的中心线上. 在飞轮和皮带轮上可按需设置平衡配 重和去重.
本实施例制成 ZB - 292水冷、 顶置凸轮式汽油机, 其缸 径 D=92mm, 活塞行程 S=70mm, 功率 N = 25ps/3000rpm, 扭矩 Me=7kgf-m/2000rpm , 最低油耗率 ge=212g/ps.h, 净重 W=70kg , 体积 V = 320 X 546 χ 320mm3.
本实施例制成 ZB - 2105水冷、 直喷式柴油机, 其
D=105mm , S=80mm , Ν = 25ps/1600rpm , Me=115kgf- m/1100rpm , ge=180g/ps.h , W=80kg , V = 380 x 620 x 350mm3.
本实施例制成 ZB - 293水冷、 下置凸轮式汽油机, 其 D=93mm , S=76mm, N = 36ps/3600rpm, Me=7.6kgf- m/2000rpm , ge=210g/ps.h , W=56kg , V = 320 χ 580 χ 320mm3 - 本实施例的运行方法与已有的内燃机相同. 与已有的同型曲柄 连杆往复活塞式内燃机相比,上述三个实例的油耗降低 13 - 16 % , 重量减小 50 - 60 % , 体积缩小 60 - 70 % , 动平衡性提高, 几乎 无振动, 排污极少只有日本同类机的 5 - 10 % .
实施例 2
本发明的另一种曲柄双圆滑块往复活塞式内燃机, 如附图 3、 5、 6、 10、 11、 15 - 20所示. 本实施例为倒置 T字型三缸机. 其结构与实施例 1大体相同. 其特点是, 缸体 48呈近似倒置的 T字 形. 有横置的气缸 49, 该气缸 49中有活塞 50, 其结构与实施例 1 的活塞相同, 为双面活塞. 其跑道 51的结构与通常的气缸结构相 同, 并与气缸 49相垂直, 跑道中的动平衡滑块 52, 呈如图 15、 16 所示的单面活塞结构, 其一端的工作部 53另一端的导向部 54、 圆 孔 55、 油槽 56、 油孔 57的结构, 与实施例 1的双面活塞的对应部 件均相同.
本实施例的运行与已有的内燃机相同.
实施例 3
本发明的又一种曲柄双圆滑块往复活塞式内燃机, 如附图 4 - 6、 8、 9、 15 - 20所示. 本实施例为 V字型双缸机, 其结构与 实施例 2大体相同. 其特点是, 机体 58呈 V字形, 其气缸 59和跑 道 60的结构, 与通常的气缸结构相同, 二者呈 V形布置, 相互垂 直, 二者中心线相距适当距离.本实施例的活塞 61和动平衡滑块 62 的结构, 呈如图 15、 16所示的单面活塞结构.
本实施例制成 ZBV - 2E50F风冷、 二冲程汽油机, 其 D = 50mm , S=34mm , N=7ps/5000rpm, Me = 0.85kgf-m/3000rpm, ge=340g/ps.h , W=4.5kg,V=126 χ 108 χ 122mm3 .
本实施例制成 ZBV - 293F风冷汽油机, , 其 D = 93mm, S = 76mm , Ν = 30ps/3200rpm, Me = 7.5kgf ― m/2300rpm , ge = 225g/ps.h, W=48.5kg .
本实施例运行方法与已有的内燃机相同. 与已有的同型曲柄连 杆往复活塞式内燃机相比, 上述两实施例的油耗降低 8 - 13 %, 重 量减小 46 %, 体积缩小 55 % .
工业应用性
本发明的的曲柄双圆滑块往复活塞式内燃机与已有技术 相比, 具有如下明显的优点和显著的效果.
一、本发明的活塞总成和动平衡滑块总成的运动合力为通 过曲轴、 曲柄销中心的离心力, 可达到理想的动平衡, 其动 平衡性优良.
二、本发明采用将两圆滑块连成一体取代已有的曲柄连杆 机构的连杆, 从而与曲轴联接构成曲柄双圆滑块机构, 与活 塞和动平衡滑块传动相联, 使作相互垂直运动的活塞总成和 动平衡滑块总成的运动相互制约, 实现作功运动. 取代了曲 柄单圆滑块所配装的内齿轮传动副, 使本发明的动平衡更加 优异. 减少了运动件, 使结构更加精巧, 使用更加可靠.
三、 本发明因其釆用曲柄双圆滑块机构而使整机体积缩 小、 重量减轻. 为便于说明, 设曲柄半径和圆滑块偏心距相 等均为 e , 由图 5可知, 本发明的活塞行程为 4e , 而采用曲 柄连杆机构的已有的同规格内燃机, 因其曲柄半径为 e, 而活 塞行程仅为 2e . 故此, 本发明整机的体积和重量, 可缩小和 50 - 67 %减少.
四、本发明的活塞、 圆滑块、 曲轴等主要运动件的加工面, 以圆柱面和平面为主, 其加工工艺性优越、 且与同型内燃机 的通用零件达 70 %以上, 其继承性也好.
五、 本发明的上述优点, 使其还具有节能和使用可靠性高 的优良.

Claims

权 利 要 求 书
1.曲轴双圆滑块往复活塞式内燃机, 包含有缸体及其内的 气缸、 活塞、 曲轴、 可旋转地装在活塞的圆孔中且其偏心的 轴孔套装在曲轴上的圆滑块 ( 27 ) 的曲柄圆滑块机构, 配气 机构和燃料供给系, 其特征在于缸体中有与跑道相配合作往 复运动的动平衡滑块, 有可旋转地装在动平衡滑块的圆孔中、 其偏心的轴孔套装在曲轴上、与上述圆滑块 ( 27 )相位差 180° 且成一体的圆滑块 ( 28 ) .
2.如权利要求 1所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的活塞 ( 13 ) 是两端工作的双面活塞, 所说 的跑道 ( 26 ) 与气缸 ( S ) 呈空间垂直.
3.如杈利要求 1所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的活塞 ( 5 )的两端工作的双面活塞, 所说的 动平衡滑块 ( 52 )是一端工作的单面活塞,所说的跑道 ( 51 ) 是气缸结构, 且与上述气缸 ( 49 ) 呈空间垂直.
4.如权利要求 1所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的活塞 ( 61 )和动平衡滑块 ( 62 )均是一端 工作的单面活塞, 所说的跑道 ( 60 ) 是气缸结构、 且与上述 气缸 ( 59 ) 呈空间垂直.
5.如杈利要求 1、 2、 3或 4所述的曲柄双圆滑块往复活 塞式内燃机, 其特征在于所说的两个圆滑块 ( 27、 28 )的形 状和尺寸均相同, 其轴孔 ( 29 ) 的偏心距 ( e ) 相等.
6.如杈利要求 5所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的圆滑块 ( 27、 28 ) 的轴孔 ( 29 ) 的偏心 距 ( e ) 与曲轴的曲柄半径 ( e ) 相等.
7.如杈利要求 5所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的两个圆滑块 ( 27、 28 ) 被两个定位销 ( 35、 36 ) 固联.
8.如权利要求 5所述的曲柄双圆滑块往复活塞式内燃机, 其特征在于所说的曲轴 ( 37 ) 为单拐式结构.
9.如权利要求 5所述的曲轴双圆滑块往复活塞式内燃机, 其特征在于所说的曲轴 ( 37 ) 的曲柄销 ( 38 )的一端与该端 的主轴颈 ( 40 ) 为联接结构.
10.如权利要求 5所述的曲柄双圆滑块往复活塞式内燃 机, 其特征在于所说的圆滑块 ( 27、 28 )是沿径向部分的组 合式结构.
PCT/CN1996/000043 1995-06-13 1996-06-13 Double circular slider crank reciprocating piston internal combustion engine WO1996041937A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/983,011 US5934229A (en) 1995-06-13 1996-06-13 Double circular slider crank reciprocating piston internal combustion engine
DE69637547T DE69637547D1 (de) 1995-06-13 1996-06-13 Brennkraftmaschine mit doppeltem, kreisförmigem kulissenkurbelgetriebe
EP96917324A EP0846849B1 (en) 1995-06-13 1996-06-13 Double circular slider crank reciprocating piston internal combustion engine
AU59955/96A AU5995596A (en) 1995-06-13 1996-06-13 Double circular slider crank reciprocating piston internal c ombustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN95111403A CN1067741C (zh) 1995-06-13 1995-06-13 曲柄双圆滑块往复活塞式内燃机
CN95111403.4 1995-06-13

Publications (1)

Publication Number Publication Date
WO1996041937A1 true WO1996041937A1 (en) 1996-12-27

Family

ID=5078699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1996/000043 WO1996041937A1 (en) 1995-06-13 1996-06-13 Double circular slider crank reciprocating piston internal combustion engine

Country Status (7)

Country Link
US (1) US5934229A (zh)
EP (1) EP0846849B1 (zh)
CN (1) CN1067741C (zh)
AU (1) AU5995596A (zh)
DE (1) DE69637547D1 (zh)
RU (1) RU2154178C2 (zh)
WO (1) WO1996041937A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240885B1 (en) * 1998-03-27 2001-06-05 Bruce F. Hanson Inboard four cycle gasoline marine engine for small water craft
UA50790C2 (uk) * 1999-03-09 2002-11-15 Олексій Феліксович Вуль Поршнева машина з безшатунним механізмом
US6629514B1 (en) * 1999-06-22 2003-10-07 Richard A. Gale Two stroke gasoline engine with rotary valve enabling double acting power strokes and rotary air valve to lessen blowback
WO2004113701A1 (en) * 2003-06-20 2004-12-29 3Rd Millennium Solutions, Ltd. Internal combustion engine having dual piston cylinders and linear drive arrangement
AU2003270961B1 (en) * 2003-06-26 2004-06-24 Arvid Murray Johnson Rotatory crank shaft
DE102007030391A1 (de) * 2007-06-29 2009-01-02 Siemens Ag Herstellungsverfahren für einen Stößel und derartiger Stößel
CN101392789B (zh) 2008-11-10 2012-08-29 北京中清能发动机技术有限公司 用于内燃机或压缩机曲轴的零件、曲轴及内燃机、压缩机
CN101655050B (zh) * 2009-06-10 2011-05-11 北京中清能发动机技术有限公司 一种用于二冲程曲柄圆滑块内燃机的活塞及其内燃机
CN102102602B (zh) * 2009-06-10 2013-11-06 北京中清能发动机技术有限公司 一种用于二冲程曲柄圆滑块内燃机的活塞及其内燃机
CN101590508B (zh) * 2009-06-17 2012-07-04 袁永林 用于曲柄滑块机构的平衡滑块装置
CN101634354B (zh) * 2009-06-24 2011-07-20 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及其内燃机、压缩机
CN101644321B (zh) * 2009-08-26 2012-05-09 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及其机械设备
WO2011044743A1 (zh) * 2009-10-16 2011-04-21 北京中清能发动机技术有限公司 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备
CN101761359B (zh) * 2009-10-22 2012-05-09 北京中清能发动机技术有限公司 一种v型机体及其缸套、缸套组、内燃机、压缩机
CN101694169B (zh) * 2009-10-22 2012-07-04 北京中清能发动机技术有限公司 内燃机的润滑系统及其内燃机
CN101749425B (zh) * 2009-12-28 2011-07-20 北京中清能发动机技术有限公司 用于往复-旋转运动相互转换机构的h型机体及其装置
CN101793204B (zh) * 2009-12-28 2011-12-28 北京中清能发动机技术有限公司 H型四缸内燃机机体冷却结构及其内燃机
CN101718340B (zh) * 2009-12-28 2011-07-20 北京中清能发动机技术有限公司 往复-旋转运动转换机构h型机体及设备
CN101865268B (zh) * 2010-05-21 2012-09-26 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及其曲轴、应用该机构的设备
CN101886693B (zh) 2010-07-02 2014-02-12 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及设备
EP2601399B1 (en) * 2010-08-03 2019-10-09 W. Daniel Hamby Dwell cycle crank with rollers
CN101943059B (zh) * 2010-09-30 2012-08-15 浙江钱江摩托股份有限公司 连杆导向往复活塞式内燃机
CN101943058A (zh) * 2010-09-30 2011-01-12 浙江钱江摩托股份有限公司 一种连杆导向往复活塞式内燃机的活塞连杆装置
CN102094962B (zh) * 2010-12-06 2012-12-26 北京中清能发动机技术有限公司 一种v型曲柄圆滑块机构及其内燃机、压缩机
JP6084163B2 (ja) * 2010-12-06 2017-02-22 北京中清能発動機技術有限公司 クランク円形スライダ機構、往復運動部、エンジンブロック、内燃機関、及び圧縮機
CN102080724B (zh) * 2010-12-06 2012-09-26 北京中清能发动机技术有限公司 用于曲柄圆滑块机构的往复运动件及其内燃机、压缩机
CN102003519B (zh) * 2010-12-06 2012-09-26 北京中清能发动机技术有限公司 一种t型曲柄圆滑块机构及其内燃机、压缩机
CN102094963B (zh) * 2010-12-06 2012-09-26 北京中清能发动机技术有限公司 一种i型曲柄圆滑块机构及其内燃机、压缩机
CN102486257B (zh) * 2010-12-06 2016-03-30 北京中清能发动机技术有限公司 用于无连杆往复-旋转运动转换机构的机油泵及设备
CN102086926B (zh) * 2010-12-06 2012-07-25 北京中清能发动机技术有限公司 一种曲柄圆滑块单缸机构及其内燃机、压缩机
CN102383933A (zh) * 2011-10-20 2012-03-21 周春发 带有曲柄圆滑块的内燃机或压缩机
GB2503488A (en) 2012-06-28 2014-01-01 Oliver Jukes A Piston to Shaft Coupling
CN102886652A (zh) * 2012-10-15 2013-01-23 北京中清能发动机技术有限公司 一种加工机体跑道导向面的方法
EA027706B1 (ru) * 2013-07-12 2017-08-31 Армен Оганесович Тер-Исаакян Оппозитный двигатель внутреннего сгорания
CN203868143U (zh) 2013-12-12 2014-10-08 北京中清能发动机技术有限公司 一种轴承座、机体以及应用所述轴承座的往复式柱塞泵
JP6366959B2 (ja) * 2014-02-28 2018-08-01 株式会社エアーサーフ販売 流体回転機
CN104675517B (zh) * 2015-02-13 2017-04-12 李晓可 系列化模块化水平正对置h型四联发动机
US11028923B2 (en) * 2015-06-11 2021-06-08 Hamilton Sundstrand Corporation High vibration pneumatic piston assembly made from additive manufacturing
CN105387160B (zh) * 2015-08-19 2017-11-07 王全忠 一种异形圆滑块组合体运动机械机构
US9964030B1 (en) * 2016-09-09 2018-05-08 Nolton C. Johnson, Jr. Tethered piston engine
RU197302U1 (ru) * 2019-07-24 2020-04-20 Николай Иванович Павлов Бесшатунный поршневой двигатель внутреннего сгорания с соединенными в блок цилиндрами
CN113280090A (zh) * 2021-03-31 2021-08-20 合肥通用机械研究院有限公司 一种曲柄圆形偏心块传动结构以及压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258992A (en) * 1963-02-15 1966-07-05 John L Hittell Reciprocating piston engines
US3311095A (en) * 1963-02-15 1967-03-28 John L Hittell Reciprocating piston engines
CN85100358A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式内燃机
CN86210915U (zh) * 1986-12-30 1987-10-31 吉林工业大学 偏心圆滑块往复活塞式内燃机
CN2076608U (zh) * 1990-08-09 1991-05-08 王兴国 矩形活塞往复双向作用曲柄圆滑块式内燃机
US5067456A (en) * 1990-11-16 1991-11-26 Beachley Norman H Hypocycloid engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR423729A (fr) * 1909-12-09 1911-04-25 Christopher Henry Ellis Moteur à explosions pour l'automobile, l'aérostation, etc.
DE1451923A1 (de) * 1963-07-16 1969-02-06 Juergen Bohne Schieberkolbenmaschine
US4078439A (en) * 1974-10-15 1978-03-14 Iturriaga Notario Luis Alternative reciprocating compressor
US4173151A (en) * 1977-06-30 1979-11-06 Grundy Reed H Motion translating mechanism
US4485768A (en) * 1983-09-09 1984-12-04 Heniges William B Scotch yoke engine with variable stroke and compression ratio
DE3802114A1 (de) * 1987-10-27 1988-09-08 Udo Hennig Tandemkolbenverdichter
US5375566A (en) * 1993-11-08 1994-12-27 Brackett; Douglas C. Internal combustion engine with improved cycle dynamics
US5503038A (en) * 1994-04-01 1996-04-02 Aquino; Giovanni Free floating multiple eccentric device
DE69604783T2 (de) * 1995-01-31 2000-04-27 Graham William Osborne Nockengetriebe zur umwandlung einer drehenden in eine hin- und hergehende bewegung
US5782213A (en) * 1997-04-07 1998-07-21 Pedersen; Laust Internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258992A (en) * 1963-02-15 1966-07-05 John L Hittell Reciprocating piston engines
US3311095A (en) * 1963-02-15 1967-03-28 John L Hittell Reciprocating piston engines
CN85100358A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式内燃机
CN86210915U (zh) * 1986-12-30 1987-10-31 吉林工业大学 偏心圆滑块往复活塞式内燃机
CN2076608U (zh) * 1990-08-09 1991-05-08 王兴国 矩形活塞往复双向作用曲柄圆滑块式内燃机
US5067456A (en) * 1990-11-16 1991-11-26 Beachley Norman H Hypocycloid engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE INTERNAL COMBUSTION ENGINE, no. 8, 1981, JAPANESE INSTITUTE OF TECHNOLOGY

Also Published As

Publication number Publication date
US5934229A (en) 1999-08-10
EP0846849A4 (en) 1999-08-18
AU5995596A (en) 1997-01-09
CN1144879A (zh) 1997-03-12
CN1067741C (zh) 2001-06-27
DE69637547D1 (de) 2008-07-10
EP0846849B1 (en) 2008-05-28
EP0846849A1 (en) 1998-06-10
RU2154178C2 (ru) 2000-08-10

Similar Documents

Publication Publication Date Title
WO1996041937A1 (en) Double circular slider crank reciprocating piston internal combustion engine
CN107143484B (zh) 一种活塞式空压机及车用空压机
WO1996041936A1 (en) Multiple circular slider crank reciprocating piston internal combustion engine
US5873339A (en) Bidirectionally reciprocating piston engine
JP2019011761A (ja) 内燃機関
US4574749A (en) Counterbalanced piston rotary machine
JP2011017329A (ja) 遊星歯車複偏心盤を用いた2気筒1クランクピン型多気筒サイクロイド往復動機関
CN100540876C (zh) 一种八缸热气机传动系统
US4407169A (en) Counterweight system for positive displacement piston type device
US5452689A (en) Rotary valve cam engine
CN86210915U (zh) 偏心圆滑块往复活塞式内燃机
US2091547A (en) Internal combustion engine with fuel injection
EP0441834A1 (en) Connecting rod bearing for star engine.
Hall MORE POWER from LESS ENGINE (How to develop 5000 hp from 3000 lb with 7 sq ft frontal area)
US20220389953A1 (en) Cylinder unit for eliminating secondary forces in inline internal combustion engines
CN2704713Y (zh) 瞬态变径内燃机曲轴总成
RU2066384C1 (ru) Двигатель внутреннего сгорания
CN2743556Y (zh) 一种全平衡内燃机
CN100351532C (zh) 瞬态变径内燃机曲轴总成
CA2250831C (en) Crankshaft and piston arrangement
WO2003095813A1 (en) Axially aligned opposed piston engine
CN116335817A (zh) 一种星形对置活塞发动机
RU2153076C1 (ru) Инерционно-уравновешенный кривошипно-шатунный механизм
JPS6138333B2 (zh)
JP2010196691A (ja) つりあい錘のないハイポサイクロイド遊星歯車機構を用いた直列多気筒往復動機関

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996917324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08983011

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996917324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1996917324

Country of ref document: EP