WO1996041797A1 - Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas - Google Patents

Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas Download PDF

Info

Publication number
WO1996041797A1
WO1996041797A1 PCT/ES1996/000129 ES9600129W WO9641797A1 WO 1996041797 A1 WO1996041797 A1 WO 1996041797A1 ES 9600129 W ES9600129 W ES 9600129W WO 9641797 A1 WO9641797 A1 WO 9641797A1
Authority
WO
WIPO (PCT)
Prior art keywords
azol
complexones
synthesis
biological applications
nature
Prior art date
Application number
PCT/ES1996/000129
Other languages
English (en)
French (fr)
Inventor
Paloma Ballesteros Garcia
Pilar Lopez Larrubia
Sebastian Cerdan Garcia-Esteller
Original Assignee
Universidad Nacional De Educacion A Distancia
Consejo Superior De Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Educacion A Distancia, Consejo Superior De Investigaciones Cientificas filed Critical Universidad Nacional De Educacion A Distancia
Priority to EP96916180A priority Critical patent/EP0790241A1/en
Publication of WO1996041797A1 publication Critical patent/WO1996041797A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles

Definitions

  • NMR Nuclear Magnetic Resonance
  • pCa ⁇ or its alterations play a fundamental role in a wide variety of biological processes, such as: muscle contraction, 5 transduction of the hormonal message, 6 platelet aggregation and coagulation, 7 exocytosis of neurotransmitters, 8 protein phosphorylation, 9 glycogen metabolism 10 and phototransduction and adaptation of photoreceptors.
  • the concentration of Ca 2+ in the extracellular medium is 10 5 times higher than its intracellular concentration and small changes in membrane permeability cause drastic changes in the intracellular concentration of Ca 2+ . This fact causes many hormonal signals to use variations in the concentration of intracellular Ca 2+ as mechanisms of transduction of the message through the membrane. 6 - 12
  • Ca 2+ chelating agents in biological systems consist of molecules called complexones that contain units of iminodiacetic acid (N-carboxymethylglycine). 15 There are other types of molecules such as corona ethers, for example, capable of complexing with calcium, but which, due to their ionophore or toxicity, cannot be used as indicators in cellular systems.
  • corona ethers for example, capable of complexing with calcium, but which, due to their ionophore or toxicity, cannot be used as indicators in cellular systems.
  • EDTA ethylenediaminetetraacetic acid
  • the method is based on the exchange rates between the free Ca 2+ and EDTA-Ca 2+ complex are less than 360 s * 1, being thus in the slow exchange on the time scale of 1 H NMR
  • FR free EDTA
  • BD chelated forms with metals
  • EDTA has the disadvantage that the resonances in which the effect of chelation is detected appear in the region of 2.6-3.6 ppm, one of the most complex areas of the 1 H NMR spectrum of the biological systems
  • extrinsic indicators of pCa for 1 H NMR the following aspects must be taken into account: i) The 1 H NMR spectra of the cell extracts present their greatest complexity in the area of 1-5 ppm, region where most cellular metabolites resonate. 19 (i) It is therefore essential that the extrinsic indicators contain in their structure groups that are sensitive to the variations produced by the chelation of the metal and that also resonate at fields lower than 5 ppm. In this sense, heterocyclic rings are very suitable and especially azoles. These heterocyclic nuclei originate well resolved and easily identifiable signals in the region of 6 to 8 ppm.
  • the anchoring of the iminodiacetic acid to the azol can be carried out in various ways. In this work we have chosen to do it through an alkyl chain of two atoms of carbon attached to the nitrogen atom N-
  • the following scheme illustrates the case of pyrazole-derived complexone.
  • the present invention covers the following objectives: 1: Synthesize complexones with an iminodiacetic acid unit attached through an alkyl chain of two carbon atoms to the nitrogen atom Ni (or N 2 ) of an azolic ring; 2: Study for 1 H NMR the behavior of the azolic protons of these molecules against the variations of pH and 3: Study for 1 H NMR the behavior of the azolic protons of these molecules against the addition of excess Ca 2+ , to verify its viability as potential probes of pCa ⁇ , and against the addition of excess Mg + , to determine the extent to which this cation present in the cells, can interfere with calcium measurements.
  • bromoetilderivados 1-4 was carried out starting from the corresponding azole and 1, 2-dibromoethane using the technique of phase transfer catalysis (CTF) liquid-liquid 22 to 23 using
  • CTF phase transfer catalysis
  • the 1 - (2-bromoethyl) pyrazole 1 had been previously synthesized using tetrabutylammonium sulfate as a catalyst and maintaining the reaction for 1 hour at intense reflux. 24 In this work, these and other conditions with different starting azoles have been tested to focus the most optimal way of preparing the 2-bromo-construction of each of them.
  • the ammonium salt 15 can be recovered and basified again with K 2 C 3.
  • the synthesis of derived azolylethyliminodiacetates has been verified for all bromoethylazoles by maintaining the reaction at 10 ° C for a period of 2.5 h at 4.5 h, according to 1 (2) - (2-bromoethyl) azol of starting, obtaining similar yields in all cases, between 55% and 65%.
  • the complete purification of these products has been achieved by means of column chromatography of the reaction crude, followed by vacuum distillation. In this way they are completely separated from the methyl iminodiacetate, whose presence greatly interferes with the next step.
  • Free complexones have been obtained by hydrolysis of the ester groups to obtain the free carboxylates that are the true ion chelating agents.
  • This reaction can be carried out in acidic medium (excess heating of 2N HCI) or basic medium (with an equimolecular amount of 0.6% NaOH and at rt).
  • acidic medium excess heating of 2N HCI
  • basic medium with an equimolecular amount of 0.6% NaOH and at rt.
  • the termination of the reaction is easily checked by 1 H NMR by the non-appearance of the most intense singlet in the spectrum corresponding to the 6 isochronous protons of the two -O-CH3 groups.
  • the proton that most modifies its chemical displacement with the variation of pH is the H4 of N-2- (3,5-dimethylpyrazol-1-yl) ethyl ethyliminodiacetate, compound 11, and the least, the proton H3 of N - (2-indazol-2-yl) sodium ethyliminodiacetate, compound 13 that does not vary its resonance frequency at all with the pH of the medium.
  • Table 8 shows the increases produced in the chemical displacement of the protons of the studied compounds, by adding the cations to the medium at a pH value close to the physiological one.
  • Table 9 shows the data obtained for the basic pH value.
  • the chemical displacement of the different azolic protons is similar in the two pH values studied. However, greater modifications in the chemical shift ( ⁇ ) of the protons that are have studied the most basic pH value.
  • the value of the chemical displacement of the protons H3, H4 and H5 has varied between 0.02 and 0.08 ppm after the addition to the metal ion medium, both for Ca 2+ as for Mg 2+ , H3 being somewhat more sensitive to chelation of magnesium than calcium, and H4 and H5 to calcium.
  • the H3 azolic proton of compound 1 2, N-2- (indazol-1-l) ethyl ethyliminodiacetate detects chelation with cations at pH-7, although the change in its chemical shift is very small: 0.04 ppm for both Ca 2+ and Mg 2+ .
  • the sensitivity of this proton is considerably higher.
  • Something similar occurs with the rest of the azolic protons of this compound. It should be noted in this complexone, that the proton H7 of the same is the only one of all studied in this work, which moves to a lower field along the pH titration, although this screening is very small.
  • ⁇ in protons H4, H5, H6 and H7 in the presence of Ca 2+ and Mg 2+ ranges from 0.02 ppm to 0.10 ppm, except for H7 at basic pH which is screened at 0.2 ppm.
  • H7 at physiological pH one of the protons is quite sensitive to the presence of calcium and less to that of magnesium, H3, and another proton in which just the opposite occurs, H7. This represents a great advantage because it is desirable that protons of different sensitivity against bivalent cations exist in the same molecule.
  • the azoles used as starting products, as well as the dibromoethane used, were commercial, being used without further purification.
  • bromoethylazole and methyl iminodiacetate are introduced in a molar ratio (1: 2).
  • the mixture is heated in an oil bath at a temperature of 110 ° C for a period of time from 2.30 to 4.30 hours.
  • the reaction mixture is cooled and extracted with methylene chloride, concentrated and purified by distillation and / or column chromatography (silica gel and the appropriate solvent (s)).
  • GENERAL METHOD (For 3.32 mmol of 2- (2-bromoethyl) indazole) .- Oven temperature: 250 ° C (0.01 mm Hg). In a ball oven. Rto. (%): 60. IR (film): 3120, 3060, 3000, 2960, 1735, 1620, 1505, 1430, 1375, 1355, 1200, 1180, 1160, 1055, 1010, 980, 905, 785, 760, 745 ci ⁇ r 1 .
  • ester and 2N HCI are introduced in a molar ratio (1:18).
  • the mixture is heated in an oil bath at a temperature of 100 ° C for 4 hours.
  • the corresponding acid hydrochloride is concentrated and purified by recrystallization (using the appropriate solvent (s)).
  • GENERAL METHOD B (From 4 to 40 mmol of ester). Rto. (%): - 100.
  • GENERAL METHOD B (For 0.492 mmoles of ester) .- Rto. (%): ⁇ 100.
  • GENERAL METHOD B (For 0.492 mmol of ester). Rto. (%): - 100.
  • the previously synthesized probes were used as acid hydrochlorides or as disodium salts.
  • NaOH solutions were made using D 2 0 99.98% from the commercial reagent without further purification.
  • Those of DCI were made from commercial concentrated DCI and also using D2O.
  • the previously synthesized probes were used as disodium salts.
  • the NaOH solutions, as well as those of all the ions used, were made using D 2 0 99.98% in all cases from commercial reagents without further purification.
  • Those of DCI were made from commercial DCI and also using D 2 0.
  • the solutions of Ca 2+ and Mg 2+ were prepared from CaCl22.H20 98% and MgCl2-6H20 99.995% respectively, and D2O as solvent .
  • Two 25 mM solutions of each of the probes, 10-13, in D 2 0 99.98% are prepared at two different pH values: one between 11 and 12 (closest to 11), and the other between 9 and 10 (closest to 9).
  • the pH is adjusted analogously to the previous section. 50 mL of 1M solutions of CaCI 2 or MgCl 2 are added .
  • the final pH of the samples in one case should be close to 9, and in the other close to the physiological pH ( ⁇ 7), adjusting if necessary.
  • the final volume should be 1 mL.
  • the 1 H NMR spectrum of each sample is performed. The chemical shift of all protons of the probes at the two pHs analyzed, and for all added ions is noted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Complexonas de naturaleza de ácidos N-2-(azol-1(2)-il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, caracterizadas por su capacidad complejante frente a iones Ca?2+, Mg2+¿ y otros cationes divalentes, lantánidos y metales de transición. Los compuestos, de estructura general (I) Azo1N-CH¿2?CH2-N (CH2CO2R)2, formula en la cual Azol = pirazol; 3,5-dimetilpirazol; indazol; etc. R = Alquilo ó H ó Na, se obtienen por reacción de alquilación de iminodiacetato de metilo con N-bromoetilazoles y posterior hidrólisis en medio ácido o básico. El procedimiento puede ser modificado por rutas sintéticas alternativas que impliquen N-aminoetilazoles como productos de partida o la utilización de procesos de ciclación en la preparación del azol N-sustituido. Se pueden aplicar en espectroscopía e imagen de Resonancia Magnética Nuclear (RMN) de hidrógeno u otros núcleos como sondas extrínsecas de Ca?2+, Mg2+¿ u otros iones metálicos y como agentes de contraste, en soluciones, extractos biológicos, tejidos, animales enteros y seres humanos.

Description

Título: COMPLEXONAS DE NATURALEZA DE ÁCIDOS N-2-(AZOL-
1(2)-IL)ETILIMINODIACÉTICOS, SÍNTESIS, ESTUDIO ANALÍTICO
Y APLICACIONES BIOLÓGICAS.
Introducción: Las aplicaciones Biomédicas de la Resonancia Magnética Nuclear (RMN) han experimentado, en la última decada, un desarrollo muy importante.1 Tanto la espectroscopia (MRS) como la imagen (MRI) se han empleado para estudiar, no invasivamente, una multitud de procesos fisiológicos y patológicos en animales y seres humanos.2 Más recientemente ha sido posible extender las aplicaciones de la RMN al estudio de la fisiología y patología de células y cultivos celulares eucarióticos.3 Estos avances han permitido comenzar a estudiar por RMN aspectos fundamentales de la Biología y la Medicina como son la proliferación, la diferenciación y el desarrollo celular. En todos estos procesos se producen cambios significativos en la concentración intracelular de calcio (pCa¡).4 De hecho, el pCa¡ o sus alteraciones juegan un papel primordial en una gran variedad de procesos biológicos, como son: la contracción muscular,5 la transducción del mensaje hormonal,6 la agregación plaquetaria y coagulación,7 la exocitosis de neurotransmisores,8 la fosforilación de proteínas,9 el metabolismo del glucógeno10 y la fototransducción y adaptación de fotorreceptores.1 1
La concentración de Ca2+ en el medio extracelular es 105 veces superior a su concentración intracelular y cambios pequeños en la permeabilidad de la membrana provocan cambios drásticos en la concentración intracelular de Ca2+. Este hecho hace que muchas señales hormonales, utilicen variaciones en la concentración de Ca2+ intracelular como mecanismos de transducción del mensaje a través de la membrana.6-12
Dado que las concentraciones intracelulares de Ca2+ no son directamente observables por RMN, ha sido necesario utilizar una serie de indicadores (o sondas) que, debido a su capacidad quelante, permiten determinar indirectamente el pCa¡ utilizando Resonancia Magnética. Hasta ahora, la mayor parte de las medidas de pCa¡ llevadas a cabo por RMN han utilizado casi siempre 19F RMN, empleando análogos fluorados del BAPTA (ácido bis(o-aminofenoxi)etano-N,N,N',N'-tetraacético) como sondas extrínsecas.13 14 La 1 H RMN, a pesar de ser ia más sensible y convencional de las espectroscopias de RMN, permanece aún escasamente utilizada para cualquiera de estos propósitos. En este sentido nos hemos propuesto desarrollar una nueva serie de sondas extrínsecas para la determinación pCa¡ por 1H RMN.
Estado de la Técnica: Los agentes quelantes de Ca2+ más utilizados en sistemas biológicos están constituidos por moléculas denominadas complexonas que contienen unidades de ácido iminodiacético (N- carboximetilglicina).15 Existe otro tipo de moléculas como los éteres corona, por ejemplo, capaces de complejarse con el calcio, pero que debido a su carácter ionóforo o tóxico no pueden ser utilizados como indicadores en sistemas celulares. Entre la gran variedad de complexonas descritas en la literatura sólo el ácido etilendiaminotetra-acético (EDTA) ha sido utilizado previamente como sonda extrínseca de pCa por 1 H RMN en granulos cromafines.16 El método se basa en que las velocidades de intercambio entre el Ca2 + libre y el complejo EDTA-Ca2+ son inferiores a 360 s* 1 , encontrándose por tanto en la zona de intercambio lento en la escala de tiempo de 1 H RMN. Esto hace que en los espectrómetros de alta resolución se puedan observar, simultáneamente, resonancias del EDTA libre (FR) y de sus formas queladas con metales (BD) (Figura 1). Debe resaltarse que las formas queladas con Ca2+ y Mg2+ dan resonancias con desplazamiento químico diferente, por lo que es posible distinguir entre los complejos EDTA- Ca2+ y EDTA-Mg2+.
(HOOCCH2)2NCH2-CH2N(CH2C02H)2 EDTA FR
BD
LJLJL
3.5 '3,0 PPM
Figura 1: 1H RMN de 50 mM Na2EDTA más 30 mM Ca(N03)2, pH = 7,13 en D20; FR = libre; BD = ligado a Ca.16
Sin embargo, el EDTA presenta el inconveniente de que las resonancias en las cuales se detecta el efecto de la quelación aparecen en la región de 2,6-3,6 ppm, una de las zonas más complejas del espectro de 1H RMN de los sistemas biológicos.
Por otro lado, la quelación de Ca2+ con BAPTA y EGTA (ácido etilenglicol bis(b-aminoetil ete -N.N.N'N'-tetraacético), agentes comúnmente utilizados en poten-ciometría o fluorescencia, transcurre en la región de intercambio rápido (en la escala de RMN) y, por tanto, no es posible distinguir las formas libres y ligadas, ni el tipo de catión unido a la complexona. Por ello, estos compuestos no se han podido utilizar directamente como sondas extrínsecas para pCa por H RMN.17
(HOOCCH2)JJ N(CH2COOH)2
EGTA
Figure imgf000005_0001
Por este motivo se han desarrollado previamente derivados fluorados del BAPTA para su utilización con 19F RMN18 o también como sondas fluorescentes.13
Figure imgf000006_0001
F-BAPTA
Descripción: Considerando estos antecedentes, en el diseño de indicadores extrínsecos de pCa para 1H RMN se deben tener en cuenta los siguientes aspectos: i) Los espectros de 1H RMN de los extractos celulares presentan su mayor complejidad en la zona de 1-5 ppm, región en la que resuenan la mayoría de los metabolitos celulares.19 ¡i) Resulta por tanto imprescindible que los indicadores extrínsecos contengan en su estructura grupos que sean sensibles a las variaciones producidas por la quelación del metal y que además resuenen a campos más bajos de 5 ppm. En este sentido, los anillos heterocíclicos resultan muy adecuados y en especial los azoles. Estos núcleos heterocíclicos originan señales bien resueltas y fácilmente identificables en la región de 6 a 8 ppm. iii) Ahora bien, para poder ser utilizados como sonda extrínseca que acuse exclusivamente cambios debidos a la quelación de metales, pero no a variaciones de pH, el pKa del anillo heterocíclico debe estar alejado del pH fisiológico. Descartado el imidazol (pKa = 6,9-7,0), el pirazol (pKa = 2,5), el 3,5-dimetilpirazol pKa = 4,2), el 1,2,4-triazol (pKa = 2,2) y el indazol (pKa = 1 ,3) son candidatos adecuados. Por tanto las complexonas ideales para determinar pCa por 1 H RMN deberían combinar unidades de ácido iminodiacético capaces de quelar Ca2+ (pCa) y anillos heterocíclicos según la estructura general:
AzolN(H) * N *N(CH2CO_H)2
Desde el punto de vista de diseño de la sonda, el anclaje del ácido iminodiacético al azol puede realizarse de diversas maneras. En este trabajo hemos optado por hacerlo a través de una cadena alquílica de dos átomos de carbono unida al átomo de nitrógeno N-|. El siguiente esquema ilustra el caso de la complexona derivada del pirazol.
Figure imgf000007_0001
La presente invención cubre los siguientes objetivos: 1 : Sintetizar complexonas con una unidad de ácido iminodiacético unido a través de una cadena alquílica de dos átomos de carbono al átomo de nitrógeno Ni (ó N2) de un anillo azólico; 2: Estudiar por 1 H RMN el comportamiento de los protones azólicos de estas moléculas frente a las variaciones de pH y 3: Estudiar por 1H RMN el comportamiento de los protones azólicos de dichas moléculas frente a la adición de exceso de Ca2+, para comprobar su viabilidad como potenciales sondas de pCa¡, y frente a la adición de exceso de Mg +, para determinar la medida en que este catión presente en las células, puede interferir en las medidas de calcio.
A continuación se presentan los productos sintetizados durante este trabajo:
1 (2)-(2-Bromoetil)azoles
Figure imgf000007_0002
CH2CH2 Br
Figure imgf000007_0003
N-2-(Azol-1 (2)-il)etiliminodiacetatos de metilo ó N- (metoxicarbonilmetil)-N-(2-azol-1 (2)-iletil)glicinatos de metilo
Figure imgf000008_0001
— CH CH„
Figure imgf000008_0003
Figure imgf000008_0002
Hidrocloruro del ácido N-2-(p¡razol-1 -il)etiliminodiacético ó hidrocloruro de la N-(carboximetil)-N-(2-pirazol-1-iletil)glic¡na
Figure imgf000008_0004
N-2-(Azol-1(2)-il)etiliminodiacetatos sódicos ó sales disódicas de
N-(carboximetil)-N-(2-azol-1 (2)-iletil)-glicinatos de metilo
Figure imgf000009_0001
10 11
Figure imgf000009_0002
12 13
La síntesis de las citadas complexonas se ha realizado según el siguiente esquema retrosintético:
Figure imgf000009_0003
La obtención de los bromoetilderivados 1-4 se ha llevado a cabo partiendo del azol correspondiente y el 1 ,2-dibromoetano utilizando la técnica de catálisis por transferencia de fase (CTF) líquido-líquido22-23 empleando
NaOH al 40%, bromuro de tetrabutilamonio (BTBA) como catalizador y el exceso de 1 ,2-dibromoetano como disolvente.
El 1 -(2-bromoetil)pirazol 1 , había sido sintetizado previamente empleando como catalizador el sulfato de tetrabutilamonio y manteniendo la reacción 1 hora a reflujo intenso.24 En este trabajo se han probado estas y otras condiciones con distintos azoles de partida para centrar así la forma más óptima de preparación del 2-bromoetilderivado de cada uno de ellos.
De la reacción del azol con el 1 ,2-dibromoetano se pueden obtener en principio tres productos diferentes: el 2-bromoetilazol buscado; el N,N'- bis(azolil)etano resultante de la doble alquilación con 1 ,2-dibromoetano y el vinilazol como producto de eliminación. La proporción en que se forma cada uno de ellos depende de la estequiometría de la reacción. La utilización de un exceso de 1 ,2- dibromoetano potencialmente conducirá a un aumento de 2-bromoetilazol que se obtendrá como producto mayoritario. Por otra parte el control de la temperatura y del tiempo de reacción, contribuirán a disminuir tanto la formación del producto de eliminación, como la del bis-derivado.
Así, siguiendo este esquema sintético y empleando el reactivo 1 ,2- dibromoetano como disolvente en un exceso de 8 a 10 veces respecto al heterociclo correspondiente, se ha conseguido optimizar la obtención de los distintos bromoetilazoles. Los correspondientes vinil y bis-derivados se identificaron, en los espectros de 1 H RMN de los crudos de reacción, por sus resonancias características, que coinciden con los datos descritos en la literatura para dichos compuestos.25
Estos productos se han purificado por cromatografía en columna, seguida en algunos casos de destilación a vacío. Aunque el vinilazol no se consigue separar por completo del bromoetil derivado formado en cada caso, no representa un problema para la síntesis de la complexona final, pues no interfiere en manera alguna en el paso siguiente tras el cual ya resulta fácilmente separable del resto de los productos.
La alquilación del iminodiacetato de metilo27 con los 2-bromoetilazoles 1-4, requería una especie básica que neutralizara el HBr liberado. No se pudo utilizar la técnica de CTF porque el medio básico produjo una hidrólisis de los grupos éster. Había que emplear por esta razón una amina con la que se formara el hidrobromuro derivado de la misma. Se ha utilizado el propio iminodiacetato de metilo basándonos en un antecedente previo en la bibliografía en el que se anclaba el cloroacetonitrilo al iminodiacetato.28
De esta manera se ha realizado la síntesis de los distintos azoliletiliminodiacetatos de metilo por reacción directa de dos equivalentes de iminodiacetato, compuesto 14, por cada uno de 2-bromoetiiazol, uno de los cuales produce la sustitución nucleófila y el otro neutraliza el HBr formando el hidrobromuro.
Figure imgf000011_0001
15
Finalizada la reacción, se puede recuperar la sal de amonio 15 y basificarla nuevamente con K2Cθ3. La síntesis de los azoliletiliminodiacetatos derivados se ha verificado para todos los bromoetilazoles manteniendo la reacción a 1 10 °C durante un espacio de tiempo de 2,5 h a 4,5 h, según el 1 (2)-(2-bromoetil)azol de partida, obteniéndose rendimientos análogos en todos los casos, entre 55% y 65%. La purificación completa de estos productos se ha conseguido por medio de una cromatografía en columna del crudo de reacción, seguida de una destilación a vacío. De esta manera se separan totalmente del iminodiacetato de metilo, cuya presencia interfiere en gran medida en el paso siguiente.
Las complexonas libres se han obtenido por hidrólisis de los grupos esteres para obtener los carboxilatos libres que son los verdaderos agentes quelantes de iones. Esta reacción se puede llevar a cabo en medio ácido (calentamiento en exceso de HCI 2N) o medio básico (con una cantidad equimolecular de NaOH al 0,6 % y a t.a.). Tanto en un caso como en el otro, se comprueba fácilmente por 1H RMN la terminación de la reacción por la no aparición del singlete más intenso del espectro correspondiente a los 6 protones isócronos de los dos grupos -O-CH3.
Con el N-(2-pirazol-1-il)etiliminodiacetato de metilo 5 se han llevado a cabo las dos posibilidades. Como producto de la hidrólisis acida se ha obtenido el hidrocloruro derivado 9, de fuerte carácter higroscópico y muy difícil de recristalizar. La hidrólisis básica ha proporcionado la sal disódica 10 altamente estable y de pureza suficiente que no requiere una recristalización posterior. Con los demás esteres derivados sólo se ha realizado la hidrólisis básica como vía de obtención de las complexonas. Manteniendo la reacción 24 h a t.a. se han obtenido los azoliletiliminodiacetatos sódicos, compuestos 10-13, con un rendimiento de -100 %.
El objetivo final de la síntesis de las complexonas 9-13, es el de utilizarlas como indicadores de 1H RMN para la determinación de pCa y pMg, o egentes de contraste para MRI en sistemas celulares. Para llegar a este punto, es preciso realizar previamente una serie de ensayos analíticos que son los que se presentan a continuación.
Las determinaciones se han realizado empleando 1 H RMN, comenzando por la titulación de pH para comprobar las variaciones que experimentan en su desplazamiento químico el protón/es azólico/s, que se quiere/n utilizar para detectar las modificaciones en la concentración de iones metálicos. Es necesario que dichos protones mantengan un d prácticamente constante en el rango de pH, para que cualquier variación que se produzca en este en presencia de cationes, se deba exclusivamente a la concentración de los mismos en el medio.
Partiendo de soluciones 25 mM de los compuestos 9 y 11-13 en D20 y modificando el pH de alícuotas diferentes, se ha determinado el desplazamiento químico de cada uno de los protones, tanto azólicos como alifáticos, para los diferente valores de pH en el rango de 1 a 12. Los espectros se han obtenido a 360,13 MHz.
Las complexonas utilizadas para estas determinaciones han sido en todos los casos los N-2-(azol-1(2)-il)etiliminodiacetatos sódicos, salvo para la derivada del núcleo de pirazol, en el que se ha utilizado el hidrocloruro del ácido N-(2-pirazol-1-il)etiliminodiacético, compuesto 9. Los valores de d de cada protón se indican en las Tablas 1-4.
TABLA 1: Desplazamientos químicos (ppm) de los protones del compuesto 9 a distintos valores de pH.
Figure imgf000013_0001
aSeñal ensanchada.
TABLA 2: Desplazamientos químicos (ppm) de los protones del compuesto 11 a distintos valores de pH.
Figure imgf000014_0001
aSeñal o señales ensanchadas. TABLA 3: Desplazamiento químico (ppm) de los protones aromáticos del compuesto 12 a distintos valores de pH.
PH H3 H4 H7 H6 H5
2,00 8,22 7,91 7,63 7,57 7,30
2,73 8,22 7,90 7,63 7,56 7,30
3,91 8,22 7,89 7,62 7,55 7,30
4,75 8,22 7,89 7,63 7,56 7.30
6,26 8.22 7,90 7,63 7,56 7,30
6,94 8,21 7,89 7,63 7,55 7,30
8,40 8,17 7,87 7,65 7,54 7,27
8,91 8,14 7,86 7,68 7,53 7,26
9,84 8,12 7.85 7,66 7,52 7.25
10,92 8,11 7,85 7.67 7,52 7,25
12,09 8,11 7,85 7,67 7,52 7.25 TABLA 4: Desplazamiento químico (ppm) de los protones aromáticos del compuresto 13 a distintos valores de pH.
pH H3 H4 H7 H6 H5
1,97 8,37 7,83 7,71 7,45 7,22
2,85 8,37 7,83 7,72 7,45 7,22
4,05 8,37 7,83 7,72 7,45 7,22
5,43 8,37 7,83 7.72 7,45 7,22
6,56 8,37 7,83 7,72 7,45 7.22
7,12 8,37 7,83 7,72 7,45 7.21
7,98 8,37 7,82 7,70 7,44 7.20
8,72 8,37 7,82 7,68 7,42 7,19
9,95 8,37 7,82 7,67 7,42 7,19
11,70 8,37 7,82 7,67 7,42 7,18
12,40 8,37 7,82 7,67 7.42 7,17 Se ha observado que los desplazamientos químicos de todos los protones se mueven ligeramente hacia más bajo campo conforme desciende el valor de pH, con la excepción del protón azólico H7 del N-2-(indazol-1- il)etiliminodiacetato sódico 12 que lo hace a la inversa. Igualmente, se ha comprobado en todas las complexonas que los protones de los metilenos unidos directamente al nitrógeno que titula, varían su d de manera apreciable en torno al valor de su pKa (pH entre 7 y 8). Sin embargo, los protones azólicos apenas experimentan modificación en todo el rango de pH.
La variación que se ha producido en el d de los distintos protones azólicos de las complexonas entre los dos extremos de pH (1 a 12), se refleja en la Tabla 5.
TABLA 5: Δδ (ppm) en los protones azólicos de los compuestos 9 y 11-13 en el intervalo de pH estudiado.
Figure imgf000017_0001
El protón que más modifica su desplazamiento químico con la variación de pH es el H4 del N-2-(3,5-dimetilpirazol-1 -il)etiliminodiacetato sódico, compuesto 11 , y el que menos lo hace, el protón H3 del N-(2-indazol-2- il)etiliminodiacetato sódico, compuesto 13 que no varía en absoluto su frecuencia de resonancia con el pH del medio.
Asimismo, se han estudiado por 1H RMN las variaciones producidas en el desplazamiento químico de los protones azólicos de los compuestos 10- 13 (25 mM) como consecuencia de la adición de un exceso de iones: Ca2+ y Mg2+ (en relación molar 2:1 / ión:complexona). Este ensayo se ha realizado a dos valores distintos de pH final, tras la adición del ion, en cada caso: uno próximo al pH fisiológico y otro ligeramente alcalino. Hay que tener en cuenta que la formación del quelato entre la complexona y el catión va acompañada de un descenso de pH con respecto al de la disolución sin dicho ion metálico.15 Los valores de δ obtenidos para los protones azólicos para cada una de las moléculas 10-13, a los dos valores de pH y en presencia de los cationes Ca2+ y Mg2+, se encuentran recogidos en las Tablas 6 y 7.
En la Tabla 8 se muestran los incrementos producidos en el desplazamiento químico de los protones de los compuestos estudiados, al añadir los cationes al medio que se encuentra a un valor de pH próximo al fisiológico. En la Tabla 9 aparecen los datos obtenidos para el valor de pH básico.
TABLA 6: δ de los protones azólicos de las complexonas 10 a 13 en presencia de exceso de Ca2+ y de los CH1 3 azólicos de 11 , a dos valores de pH.
Compuesto 10.
PH H 3 H 4 H 5
8 ,87 7,67 6,37 7,67
7 ,01 7,67 6,39 7,69
Compuesto 11.
PH H 4 CH3 (3) CH3 (5)
9 ,52 5,97 2,25 2,17
7 , 36 5,97 2,26 2,17 Compuesto 12.
pH H3 H4 H7 H6 H5
8,69 8,20 7,87 7,63 7,54 7.27
7,07 8,22 7,89 7,64 7,55 7,28
Compuesto 13.
PH H3 H4 H7 H6 H5
9,19 8,28 7,79 7,72 7,42 7,19
7,32 8,28 7,79 7,71 7,42 7,18
TABLA 7: δ de los protones azólicos de las complexonas 10 a 13 en presencia de exceso de Mg2+ y de los CH1 3 azólicos de 11, a dos valores de pH.
Compuesto 10.
pH H3 H4 H5
8,98 7,71 6,41 7,71
7,09 7,71 6,42 7,71 Compuesto 11.
Figure imgf000020_0001
Compuesto 12.
PH H3 H4 H7 H6 H5
8,40 8,23 7,88 7,65 | 7,56 7,28
6,78 8,23 7,89 7,63 7,56 | 7,29
Compuesto 13.
pH H3 H4 H7 H6 H5
9,66 8-33 | 7,79 7,72 7,42 7,19
7,32 8,33 7,81 7,81 | 7,46 7,22 TABLA 8: Δδ (ppm) que se produce en los protones estudiados al añadir exceso de Ca2+ y Mg2+ a un pH próximo al fisológico (~7).
Compuesto Protones Con Ca2 + Con Mg2 +
H3 +0,02 +0,06
1 0 H4 -0.04 -0,02
H5 -0,08 -0,06
H4 +0,02 +0,06
1 1 CH3 (3) +0,02 +0,04
CH3 (5) +0,02 +0,08
H3 +0,04 +0,04
H4 +0,02 +0,02
1 2 H5 -0,02 -0,04
H6 +0,02 +0,02
H7 +0,02 +0,02
H3 -0,10 -0,04
H4 -0,07 -0,02
1 3 H5 -0,04 +0,02
H6 -0,02 +0,02
H7 -0,02 +0,10 TABLA 9: Δδ (ppm) que se produce en los protones estudiados al añadir exceso de Ca2+ y Mg2+ a pH básico (-9).
Figure imgf000022_0001
Se ha observado en todas las complexonas que al añadir Ca2+ o bien
Mg +, el desplazamiento químico de los distintos protones azólicos es similar en los dos valores de pH estudiados. Sin embargo, se poducen mayores modificaciones en el desplazamiento químico (Δδ) de los protones que se han estudiado al valor de pH más básico. En el N-2-(pirazol-1- il)etiliminodiacetato sódico 10 el valor del desplazamiento químico de los protones H3, H4 y H5, ha variado entre 0,02 y 0.08 ppm tras la adición al medio de iones metálicos, tanto para el Ca2+ como para el Mg2+, siendo el H3 algo más sensible a la quelación del magnesio que a la del calcio, y el H4 y el H5 a la de calcio.
En cuanto al N-2-(3,5-dimetilpirazol-1-il)etiliminodiacetato sódico, 11 , el protón azólico H4 ha visto modificado su valor de d de manera bastante más apreciable al pH básico que al neutro. Un incremento menor en el valor de desplazamiento químico, se produce en los grupos metilos CH3 (3) y CH3 (5). Tanto estos protones como el anterior, son ligeramente más sensibles al Mg2+ que al Ca2+ .
El protón azólico H3 del compuesto 1 2 , N-2-(indazol- 1 - ¡l)etiliminodiacetato sódico, detecta la quelación con los cationes al pH - 7, aunque el cambio de su desplazamiento químico es muy pequeño: 0,04 ppm tanto para el Ca2+ como para el Mg2+. Sin embargo, al pH más básico la sensibilidad de este protón es considerablemente mayor. Algo similar ocurre con el resto de los protones azólicos de este compuesto. Cabe reseñar en esta complexona, que el protón H7 de la misma es el único de todos los estudiados en este trabajo, que se desplaza a más bajo campo a lo largo de la titulación de pH, aunque ese desapantallamiento es muy pequeño. Este mismo comportamiento se observa en los protones H5, H6 y H7 de esta molécula al añadir el calcio, donde también se desplazan a más bajo campo conforme disminuye la concentración de protones del medio. Por último, teniendo en cuenta que en el compuesto 13, N-2-(indazol-2- il)etiliminodiacetato sódico, el protón azólico H3 no modifica su desplazamiento químico en todo el rango de pH, las variaciones producidas en la resonancia del mismo tras añadir los cationes al medio, se deben única y exclusivamente a la quelación de los mismos con la complexona. Esta variación es fija a cualquier valor de pH: 0,1 ppm para la quelación con el calcio, y 0,04 ppm para el magnesio. El valor del Δδ en los protones H4, H5, H6 y H7 en presencia Ca2+ y Mg2+, oscila entre 0,02 ppm y 0,10 ppm, salvo para el H7 a pH básico que se desapantalla en 0,2 ppm. En esta complexona cabe destacar que a pH fisiológico uno de los protones es bastante sensible a la presencia de calcio y menos a la del magnesio, H3, y otro protón en el que ocurre justamente lo contrario, H7. Esto representa una gran ventaja pues es deseable que en una misma molécula existan protones de distinta sensibilidad frente a los cationes bivalentes.
Finalmente, los resultados obtenidos en este estudio sugieren que la presencia de sólo un grupo iminodiacético no produce, tras la quelación del mismo con iones metálicos, grandes efectos en las resonancias de los protones azólicos. Sin embargo, estos efectos, aunque pequeños, pueden ser útiles desde el punto de vista biológico, sobre todo en el compuesto 13. En este caso la posibilidad de disponer, en una misma molécula, de indicadores selectivos para Ca2+ y Mg2+ merece especial atención.
Síntesis de 1(2)-(2-bromoetil)azoles
Los azoles utilizados como productos de partida, así como el dibromoetano empleado, fueron comerciales, usándose sin purificación adicional.
MÉTODO GENERAL A
En un matraz de fondo redondo equipado con refrigerante de reflujo, se introduce el hidróxido sódico al 40%, el azol, el catalizador, bromuro de tetrabutilamonio (BTBA), y el dibromoetano, en una relación molar (3:1:1/40:8 ó 10). La mezcla se mantiene con agitación a temperatura ambiente durante 24 horas. Se decanta la fase orgánica, se concentra y se purifica por cromatografía en columna (sílica gel y el/los disolvente/s adecuado/s), o por destilación a vacío. MÉTODO GENERAL B
En un matraz de fondo redondo eequipado con refrigerante de reflujo, se introduce el hidróxido sódico al 40%, el azol, el catalizador, bromuro de tetrabutil amonio (BTBA), y el 1 ,2-dibromoetano en una relación molar (3:1:1/40:10). La mezcla se calienta en un baño de aceite a una temperatura de 120-130°C durante una hora. Se decanta la fase orgánica, se concentra y se purifica por cromatografía en columna (sílica gel y el /los disolvente/s adecuado/s).
1-(2-Bromoetil)pirazol (1)24
MÉTODO GENERAL A (Desde 29,4 hasta 117,6 mmoles de azol). Punto de ebullición: 38-40 °C (0,01 mm Hg). Rto.(%) = 71. I.R. (film): 3110, 3020, 2970, 2920, 1510, 1445, 1410, 1395, 1290, 1260, 1215, 1125, 1090, 1050, 965, 915, 880, 755 cnrr1. Masas: m/z 176 (M+1 , 11%), 174 (M-1 , 11%), 95 (31%), 81 (41%), 69 (8%), 68 (100%), 54 (15%), 53 (17%), 52 (8%). H RMN (CDCI3): 7,56 (d, 1 H, 3J34 = 1 ,6 Hz, H3), 7,46 (d, 1 H, 3J45 = 2,1 Hz, H5), 6,26 (triplete aparente, 1 H, H4), 4,51 (t, 2 H, 3J = 6,4 Hz, Ctí2-N), 3,72 (t, 2 H, 3J = 6,4 Hz, CH2-Br). 13C RMN (CDCI3): 139,8 (d, 1JC3H3 = 185,2Hz, C3), 129,7 (d, 1JC5H5 = 186,4 Hz, C5), 105,1 (d, 1Jc4H4 = 177 Hz, C4), 52,9 (t, 1J = 141 ,6 Hz, CH2-N), 30,2 (t, 1J = 153,6 Hz, CH2-Br).
1-(2-Bromoetil)-3,5-dimetilpirazol (2)26
MÉTODO GENERAL B (Para 14,0 mmoles de azol). Punto de ebullición: 89- 90 °C (4 mmHg). Eluyente cromatográfico: Acetato de etilo. Rto. (%): 42. 1.R. (film): 3130, 3030, 2960, 2920, 2870, 1550, 1455, 1420, 1385, 1300, 1260, 1215,1145, 1030, 975, 880, 780 cτr1. Masas: m/z: 204 (M+1 , 11%), 203 (M, 1%), 202 (M-1, 11%), 123 (4%), 109 (43%), 97 (6%), 96 (100%), 95 (35%), 82 (6%), 81 (6%), 68 (11%), 55 (6%). 1H RMN (CDCI3): 5,79 (s, 1 H, H4), 4,31 (t, 2 H, 3J = 6,7 Hz, CÜ2-N). 3,68 (t, 2 H, 3J= 6,7 Hz, CiÍ2-Br), 2,27 (s, 3 H, CÜ3-5- ), 2,21 (s, 2 H, CH3-3-). 13C RMN (CDCI3): 148,0 (s, C3), 139,2 (s, C5), 104,9 (d, 1Jc4H4 = 172,6 Hz, C4), 49,3 (t, 1J = 140,7 Hz, CÜ2-N), 30,2 (t, 1J = 153,4 Hz, CH2-Br), 13,3 (c, 1J = 126,9 Hz, CH3-3-), 10,8 (c, 1J = 128,5 Hz, CH3-5-).
1-(2-Bromoetil)indazol (3)
MÉTODO GENERAL A (Desde 4,24 hasta 17,0 mmoles de azol). Eluyente cromatográfico: Hexano-Acetato de etilo / 6:4. Rto. (%): 44. I.R. (film): 3080, 3060, 2980, 2940, 1645, 1615, 1500, 1465, 1435, 1420, 1315, 1300, 1275, 1230,1210, 1160, 1010, 910, 850, 835, 755, 745 crrr1. Masas: m/z: 226 (M+1 , 17%), 225 (M, 1%), 224 (M-1 , 17%), 132 (9%), 131 (100%), 118 (16%), 104 (11%), 103 (15%), 89 (8%), 77 (21%), 63 (17%), 51 (9%). 1H RMN (CDCI3): 8,04 (d, 1 H, 5J37 = 0,8 Hz, H3), 7,78 (ddd, 1 H, 3J45 = 8,0 Hz, 4J46 = 0,9 Hz, 5J47 = 0,9 Hz, H4), -7,45 (m, 2 H, H6 y H7), 7,20 (ddd, 1 H, 3J45 = 8,0 Hz, 3J56 = 6,2 Hz, 4J57 = 1 ,8 Hz, H5), 4,76 (t, 2 H, 3J = 6,8 Hz, CH2-N), 3,79 (t, 2 H, 3J = 6,8 Hz, CÜ2-Br). 13C RMN (CDCI3): 139,5 (s, C7a), 133,7 (d, 1Jc3H3 = 189,9 Hz, C3), 126,3 (d, 1JC6H6 = 165,7 Hz, C6), 123,6 (s, C3a), 120,9 (d, 1JC5H5 = 154,9 Hz, C5), 120,6 (d, 1ÜC4H4 = 165,4 Hz, C4), 49,7 (t, 1J = 141 ,4 Hz, £H2- N), 29,4 (t, 1J = 153,5 Hz, CH2-Br).
MÉTODO GENERAL B. (Desde 4,24 hasta 17,0 mmoles de azol). Eluyente cromatográfico: Hexano-Acetato de etilo / 6:4._Rto. (%): 46.
2-(2-Bromoetil)indazol (4)
MÉTODO GENERAL A (Desde 4,24 hasta 17,0 mmoles de azol). Eluyente cromatográfico: Hexano-Acetato de etilo / 6:4. Rto. (%): 20. I.R. (film): 3120, 3060, 2970, 2920, 1625, 1510, 1470, 1425, 1380, 1350, 1310, 1265, 1160, 1140, 785, 760 cnrr1. Masas: m/z: 226 (M+1 , 11%), 225 (M, 1%), 224 (M-1, 11%), 119 (9%), 118 (100%), 103 (4%), 91 (9%), 89 (9%), 77 (10%), 63 (16%), 51 (5%). 1H RMN (CDCI3): 8,00 (d, 1 H, 5J37 = 0,8 Hz, H3), 7,70 (dddd, 1 H, 3J67 = 7,3 Hz, 4j57 = 0,9 Hz, 5J 7 = 1.0 Hz, 5J37 = 0,8 Hz, H7), 7,66 (ddd, 1 H, 3J45 = 7,3 Hz, 4J46 = 1,0 Hz, 5J47 = 1.0 Hz; H4), 7,30 (ddd, 1 H, 3J67 = 7,3 Hz, 3J56= 6,7 Hz, 4j46 = 1,0 Hz, H6), 7,10 (ddd, 1 H, SJ^ = 7,3 Hz, 3J56 = 6,7 Hz, J57 = 0,9 Hz, H5), 4,76 (t, 2 H, 3J = 6,3 Hz, CÜ2-N), 3,79 (t, 2 H, 3J = 6,3 Hz, C±b-Br). C RMN (CDCI3): 149,0 (s, C7a), 126,1 (d, 1ÜC6H6 = 160,6 Hz, C6), 123,6 (d, 1JC3H3 = 189,9 Hz, C3), 121 ,6 (d, 1JC5H5 = 159,7 Hz, C5), 121 ,2 (s, C3a), 120,1 (d, 1JC4H4 = 156,4 Hz, C4), 117,0 (d, 1Jc7H7 = 167,0 Hz, C7), 54,5 (t, 1J = 142,6 Hz, CH2-N), 29,4 (t, 1J = 155,6 Hz, C_H2-Br). MÉTODO GENERAL B (Desde 4,24 hasta 17,0 mmoles de azol). Eluyente cromatográfico: Hexano-Acetato de etilo / 6:4. Rto. (%): 14.
Síntesis de N-2-(azol-1(2)-il)etil¡minodiacetatos de metilo ó N- (metoxi-carbon¡lmetil)-N-(2-azol-1 (2)-iletil)glicinatos de metilo
Se emplearon los bromoetilazoles sintetizados previamente y purificados. El iminodiacetato de metilo utilizado, se obtuvo a partir del iminodiacetonitrilo comercial según el método descrito en la literatura.27
MÉTODO GENERAL
En un matraz de fondo redondo equipado con refrigerante de reflujo y tubo de cloruro calcico, se introduce el bromoetilazol y el iminodiacetato de metilo en una relación molar (1 :2). La mezcla se calienta en un baño de aceite a una temperatura de 110°C durante un espacio de tiempo de 2,30 a 4,30 horas. La mezcla de reacción se enfría y se extrae con cloruro de metileno, se concentra y se purifica por destilación y/o cromatografía en columna (sílica gel y el /los disolvente/s adecuado/s).
N-(2-pirazol-1 -il)etil i mi nodiacetato de meti lo ó N- (metoxicarbonilmetil)-N-(2-pirazol-1-iletil)glicinato de metilo (5) MÉTODO GENERAL. (Desde 2,24 hasta 6,7 mmoles de 1 -(2- bromoetil)pirazol). Tiempo de reacción: 2,5 h. Eluyente cromatográfico Hexano-Etanol / 8:2. Punto de ebullición: 128-130 °C (0,05-0,01 mm Hg). Rto. (%): 55. I.R. (film): 3140, 3120, 3000, 2960, 2840, 1740, 1510, 1435, 1395, 1365, 1280, 1205, 1 180, 1 145,1090, 1060, 1040, 1010, 880, 760 crτr1. Masas: m/z: 256 (M+1 , 4%), 255 (M, 13%), 196 (28%), 188 (6%), 187 (50%), 174 (55%), 146 (40%), 128 (70%), 1 16 (27%), 100 (17%), 95 (17%), 94 (14%), 81 (18%), 69 (14%), 68 (37%), 59 (18%), 56 (25%), 54 (18%), 45 (100%). 1H RMN (CDCI3): 7,53 (d, 1 H, 3J34 = 1.8 Hz, H3), 7,50 (d, 1 H, 3J 5 = 2,0 Hz, H5), 6,22 (triplete aparente, 1 H, H4), 4,24 (t, 2 H, 3J = 6,2 Hz, CÜ2- Azol), 3,19 (t, 2 H, 3J = 6,2 Hz, CH2-N-). 13C RMN (CDCI3): 171 ,6 (s, 2 C, C_0), 139,3 (d, 1Jc3H3 = 186,9 Hz, C3), 130,0 (d, 1ÜC5H5 = 190,9 Hz, C5), 105,1 (d, 1ÜC4H4 = 176,3 Hz, C4), 55,3 (t, 2 C, 1J = 136,5 Hz, C_H2-CO-), 54,7 (t, J = 135,8 Hz, C_H2-N-), 51,5 (c, 2 C, 1J = 147,2 Hz, C_H3), 51 ,2 (t, 1J = 139,6 Hz, C_H2-Azol). Picrato: Punto de fusión: 91 -93 °C. Análisis elemental de C 17H 20N6O 11 : Calculado: %C = 42,34, %H = 4,07, %N = 17,08. Encontrado: %C = 42,31 , %H = 4,10, %N = 17,1 1.
N-2-(3,5-dimetilp¡razol-1 -il)etiliminodiacetato de metilo ó N- (metoxi-carbonilmet¡l)-N-[2-(3,5-dimetilpirazol-1 -il)etil]glicinato de metilo (6)
MÉTODO GENERAL. (Desde 2,46 hasta 5,55 mmoles de 1-(2-bromoetil)-3,5- dimetil pirazol).- Tiempo de reacción: 3,5 h. Punto de ebullición: 140-142°C (0,05-0,01 mm Hg). Rto. (%):65. I.R.: 3130, 3000, 2960, 2930, 2870, 2220, 1740, 1550, 1435, 1385, 1260, 1200, 1 180, 1170, 1120, 1050, 1020. 915, 775, 730 cm-1. Masas: m/z: 283 (M, 5%), 224 (13%), 187 (28%), 174 (27%), 146 (35%), 128 (55%), 124 (7%), 116 (19%), 1 14 (6%), 109 (7%), 100 (9%), 97 (19%), 96 (16%), 82 (14%), 68 (6%), 59 (9%), 56 (12%), 54 (7%), 45 (100%). 1H RMN (CDCI3): 5,74 (s, 1 H, H4), 4,07 (t, 2 H, 3J = 6,8 Hz, CH2- Azol), 3,67 (s, 6 H, CH3), 3,47 (s, 4 H, CÜ2-CO-), 3,09 (t, 2 H, 3J = 6,8 Hz, CM2- N-), 2,24 (s, 3 H, CH3-5-). 2.18 (s, 3 H, CH3-3). 13C RMN (CDCI3): 171,2 (s, 2 C, CO), 147,0 (s, C3), 139,1 (s, C5), 104,4 (d, 1JC4H4 = 172,1 Hz, C4), 55,1 (t, 2 C, 1J = 136,4 z, C_H2-CO-), 54,2 (t,1J = 136,6 Hz, C_H2-N-), 51 ,1 (c, 2 C, 1J = 142,1 Hz, CJ-I3), 47,5 (t, 1J = 138,8 Hz, C_H2-Azol), 13,0 (c, J = 123,4 Hz, CH3- 3-), 10,5 (c, 1J = 127,9 Hz, CH3-5-). Picrato: Punto de fusión: 83-85 °C. Análisis elemental de C19H24N6O11: Calculado: %C = 44,53, %H = 4,69, %N = 16,41. Encontrado: %C = 44,58, %H = 4,64, %N = 16,54.-
N-2-(indazol-1 -¡l)etili mi nodiacetato de meti lo ó N- (metoxicarbonilmetil)-N-(2-indazol-1-iletil)glicinato de metilo (7)
MÉTODO GENERAL. (Para 6 mmoies de 1-(2-bromoetil)indazol). Tiempo de reacción: 4,5 h. Punto de ebullición: 160-162 °C (0,01 mm Hg). Rto. (%): 56. I.R. (film) : 3060, 3000, 2950, 2850, 1740, 1610, 1505, 1470, 1435, 1315, 1200, 1180, 1 160, 1120, 1085, 1010, 910, 830, 755, 740 cnr1. Masas: m/z: 305 (M, 6%), 246 (11%), 187 (23%), 175 (6%), 174 (72%), 146 (39%), 131 (6%), 128 (17%), 118 (11%), 116 (20%), 115 (6%), 94 (10%), 91 (5%), 77 (14%), 56 (8%), 51 (5%), 45 (100%). 1H RMN (CDCI3): 7,99 (d, 1 H, 5j37 = 0,8 Hz, H3), 7,71 (ddd, 1 H, 3J45 = 8,1 Hz, 4J46 = 1.0 Hz, 5j47 = 1 ,0 Hz, H4), 7,50 (dddd, 1 H, 3J67 = 8,1 Hz, 4J57 = 0,8 Hz, 5j47 = 1 ,o Hz, 5j37 = 0,8 Hz, H7), 7,37 (ddd, 1 H, 3J67 = 8,1 Hz, 3J56 = 6,8 Hz, 4J46 = 1 ,0 Hz, H6), 7,13 (ddd, 1 H, 3J 5 = 8,1 Hz, 3J56 = 6,8 Hz, 4J57 = 0,8 Hz, H5) 4,54 (t, 2 H, 3J = 6,8 Hz, CÜ2- Azol), 3,65 (s, 6 H, CH3), 3,49 (s, 4 H, CO-CH2-N), 3,26 (t, 2 H, 3J = 6,8 Hz, CH2-N-). 1 C RMN (CDCI3): 171 ,1 (s, 2 C, C_0), 139,4 (s, C7a). 132,7 (d, 1JC3H3 = 189,3 Hz, C3), 125,8 (d, 1Jc6H6 = 160,7 Hz, C6), 123,6 (s, C3a), 120,5 (d, 1JC5H5 = 161 ,3 Hz, C5), 120,1 (d, 1JC4H4 = 160,9 Hz, C4), 108,9 (d, 1JC7H7 = 163,6 Hz, C7), 55,1 (t, 2 C, J = 137,8 Hz, C_H2-CO-), 53,5 (t,1J = 135,8 Hz, CΗ2-N-), 51,1 (c, 2 C, 1J = 147,0 Hz, C_H3), 47,7 (t, 1J = 139,2 Hz, C_H2-Azol). Picrato: Punto de fusión: 105,5-107,5 °C. Análisis elemental de C21 H22 6O 11 : Calculado: %C = 47,19, %H = 4,20, %N = 15,73. Encontrado: %C = 46,80, %H = 4,07, %N = 15,31.
N-2-(indazol-2-il)etiliminodiacetato de metilo ó N- (metoxicarbonilmetil)-N-(2-indazol-2-iletil)glicinato de metilo (8)
MÉTODO GENERAL (Para 3,32 mmoles de 2-(2-bromoetil)indazol).- Temperatura del horno: 250 °C (0,01 mm Hg). En horno de bolas. Rto. (%): 60. I.R. (film): 3120, 3060, 3000, 2960, 1735, 1620, 1505, 1430, 1375, 1355, 1200, 1180, 1160, 1055, 1010, 980, 905, 785, 760, 745 ciτr1. Masas: m/z: 305 (M, 10%), 246 (11%), 187 (31%), 174 (26%), 146 (28%), 128 (57%), 119 (8%), 118 (36%), 116 (13%), 114 (10%), 100 (9%), 94 (6%), 91 (6%), 89 (6%), 77 (9%), 59 (10%), 56 (7%), 54 (5%), 45 (100%). 1H RMN (CDCI3): 8,11 (d, 1 H, 5J37 = 0,9 Hz, H3), 7,69 (dddd, 1 H, 3J67 = 7,7 Hz, J57 = 1.0 Hz, 5J47 = 1.2 Hz, 5J37 = 0,9 Hz, H7), 7,65 (ddd, 1 H, 3J 5 = 6,3 Hz, J46 = 1 ,2 Hz, 5J47 = 1 ,2 Hz, H4) 7,27 (ddd, 1 H, 3J56 = 8,3 Hz; 3J67 = 7,7 Hz, J46 = 1,2 Hz, H6), 7,06 (ddd, 1 H, 3J56 = 8,3 Hz, 3J45 = 6.3 Hz, 4J57 = 1.0 Hz, H5), 4,52 (t, 2 H, 3J = 6,1 Hz, CÜ2-AZ0I), 3,65 (s, 6 H, CH3), 3,46 (s, 4 H, CJ±J-CO-), 3,35 (t, 2 H, 3J = 6,1 Hz, CJÜ2-N-). 13C RMN (CDCI3): 171 ,5 (s, 2 C, £0), 148,7 (s, C7a). 125,7 (d, 1JC6H6 = 165,2 Hz, C6), 124,0 (d, 1JC3H3 = 190.3 Hz, C3), 121 ,5 (s, C3a), 121,2 (d, 1JC4H4 = 159,4 Hz, C4), 120,1 (d, 1JC5H5 = 165,2 Hz, C5), 117,0 (d, 1jC7H7 = 160 Hz, C7), 55,5 (t, 2 C, 1J = 137,6 Hz, C_H2-CO-), 55,0 (t,1J = 136,5 Hz, C_H2-N-), 52,7 (t, 1J = 141 ,2 Hz, C_H2-Azol), 51 ,4 (c, 2 C, 1J = 147,2 Hz, Q 3). Picrato: Punto de fusión: 140,6-142,4 °C._Análisis elemental de C21 H22N6O 11 : Calculado: %C = 47,19, %H = 4,20, %N = 15,73. Encontrado:%C = 47,40, %H = 4,62, %N = 15,61.
Hidrólisis de N-2-(azol-1(2)-iletiliminodiacetatos de metilo ó N- (metoxicarbonil-metil)-N-(2-azol-1 (2)-iletil)glicinatos de metilo Se emplearon los esteres anteriormente sintetizados y purificados. El HCI y el NaOH utilizados fueron comerciales, usándose sin purificación adicional.
MÉTODO GENERAL A: HIDRÓLISIS ACIDA
En un matraz de fondo redondo equipado con refrigerante de reflujo se introduce el ester y el HCI 2 N en una relación molar (1 :18). La mezcla se calienta en un baño de aceite a una temperatura de 100°C durante 4 horas. Se concentra y se purifica el hidrocloruro de ácido correspondiente por recristalización (empleando el/los disolvente/s adecuado/s).
MÉTODO GENERAL B: HIDRÓLISIS BÁSICA
En un matraz de fondo redondo eequipado con refrigerante de reflujo, se introduce el éster y NaOH al 0,6% en una relación molar (1 :2). La mezcla se mantiene con agitación a temperatura ambiente durante al menos 24 horas. Se concentra y se obtiene la sal disódica.
Hidrocloruro del ácido N-(2-pirazol-1 -il)etiliminodiacético ó hidrocloruro de la N-(carboximetil)-N-(2-p¡razol-1-iletil)glicina (9)
MÉTODO GENERAL A (Para 0,7 mmoles de éster). Punto de fusión: 142,5- 144,5 °C. Disolvente para la recristalización: EtOH / Et20. Rto. (%): -100. 1H RMN (D20): 7,70 (d, 1 H, 3J45 = 2,4 Hz, H5), 7,61 (d, 1 H, 3J34 = 2,2 Hz, H3), 6,31 (triplete aparente, 1 H, H4), 4,53 (t, 2 H, 3J = 6,0 Hz, Ch^-Azol), 3,70 (t, 2 H, 3J = 6,0 Hz, CÜ2-N-). Análisis elemental de C9H13N3O4.HCI: Calculado: %C = 40,98, %H = 5,35, %N = 15,93. Encontrado: %C = 41 ,07, %H = 5,28, %N = 15,50. N-(2-pirazol-1-il)etiliminodiacetato sódico ó sal disódica de N-
(carboximetil)-N-(2-pirazol-1-iletil)glicina (10)
MÉTODO GENERAL B (Desde 4 hasta 40 mmoles de éster). Rto. (%):-100. I.R. (KBr): 3130, 3100, 2960, 2940, 2870, 2840, 1730, 1600, 1505, 1425, 1395, 1345, 1300, 1205, 1180, 1140, 1115, 1090, 1055, 1030, 905, 870, 775, 740 cm-1. 1H RMN (D20): 7,63 (dd, 1 H, 3J45 = 1 ,8 Hz, J 35 = 0,6 Hz, H5), 7,49 (dd, 1 H, 3J3 = 1.5 Hz, 4J35 = 0,6 Hz, H3), 6,26 (triplete aparente, 1 H, H4), 4,21 (t, 2 H, 3J = 6,7 Hz, C b-Azol), 3,09 (s, 4 H, Cj±rCO-), 2,98 (t, 2 H, 3J = 6,7 Hz, CÜ2-N-).
N-2-(3,5-dimetilp¡razol-1 -¡l)etiliminodiacetato sódico ó sal disódica de N-(carboximeti l)-N-[2-(3,5-dimet¡l pirazol-1 - il)etil]glicina (11)
MÉTODO GENERAL B. (Desde 0,353 hasta 0,706 mmoies de éster). Rto.
(%):-100. I.R. (KBr): 2980, 2950, 2920, 2880, 2830, 1600, 1550, 1420, 1350,
1300, 1260, 1230, 1200, 1140, 1095, 1040, 1010, 1000, 920, 940, 900, 825,
770 cm-1. 1H RMN (D20): 5,85 (s, 1 H, H4), 4,04 (t, 2 H, 3J = 7,5 Hz, CÜ2- Azol), 3,16 (s, 4 H, CM2-CO-), 2,90 (t, 2 H, 3J = 7,5 Hz, CHj>-N-), 2,17 (s, 3 H,
CH3-5-), 2,07 (s, 3 H CH3-3-).
N-[2-(indazol-1-il)etil]iminodiacetato sódico ó sal disódica de N-
(carboximetil)-N-(2-indazol-1-iletil)glicina (12)
MÉTODO GENERAL B (Para 0,492 mmoles de ester).- Rto. (%):~100. I.R. (KBr): 3090, 3050, 2940, 2920, 2870, 2830, 1600, 1460, 1430, 1350, 1330, 1315, 1300, 1250, 1210, 1180, 1140, 1070, 1005, 940, 905, 880, 830, 795, 740 cm-1. 1H RMN (D20): 8,02 (d, 1 H, 5J37 = 1.0 Hz, H3), 7,75 (ddd, 1 H, 3J 5 = 8,1 Hz, 4J46 = 1,1 Hz, 5J47 = 1,0 Hz, H4), 7,57 (dddd, 1 H, 3J67 = 7,8 Hz, 4J57 = 0,9 Hz, 5J47 = 1 ,0 Hz, 5j37 = 1 ,0 Hz, H7), 7,43 (ddd, 1 H, 3J67 = 7,8 Hz; 3J56 = 6,8 Hz, J46 = 1 ,1 Hz, H6), 7,14 (ddd, 1 H, 3J45 = 8,1 Hz; 3J56 = 6,8 Hz, 4J57 = 0,9 Hz, H5) 4,46 (t, 2 H, 3J = 7,0 Hz, CH2-AZ0I), 3,14 (s, 4 H, CH2- CO-), 3,04 (t, 2 H, 3J = 7,0 Hz, CH2-N-).
N-2-(indazol-2-il)etiliminodiacetato sódico ó sal disódica de N- (carboximetil)-N-(2-indazol-2-iletil)glicina (13)
MÉTODO GENERAL B (Para 0,492 mmoles de éster). Rto. (%):-100. I.R. (KBr): 3110, 3070, 2950, 2920, 2870, 2830, 1600, 1510, 1430, 1350, 1300, 1225, 1160, 1140, 1045, 1005. 980, 940, 905, 840, 775, 755 crrr1. ""H RMN (D20): 8,29 (d, 1 H, 5J37 = 0,9 Hz, H3), 7,71 (ddd, 1 H, 3J45 = 8,4 Hz, 4J46 = 1 ,1 Hz, 5J47 = 1 ,0 Hz, H4), 7,57 (dddd, 1 H, 3J67 = 8,7Hz, 4J57 = 1.0Hz, 5J47 = 1.0, 5Ü37 = 0,9 Hz, H7), 7,31 (ddd, 1 H, 3J67 = 8,7 Hz, 3j56 = 6,6 Hz, 4J46 = 1 ,1 Hz, H6), 7,08 (ddd, 1 H, 3J 5 = 8,4 Hz, 3j56 = 6,6 Hz, 4J57 = 1.0 Hz, H5), 4,74 (t, 2 H, 3J = 6,8 Hz, Cj±>-Azol), 4,51 (t, 3J = 6,8 Hz, CH2-N).
Titulación de pH de las sondas. (Hidrocloruros o sales disódicas)
Se emplearon las sondas sintetizadas previamente como hidrocloruros de ácidos o como sales disódicas. Las disoluciones de NaOH se realizaron utilizando D20 99,98 % a partir del reactivo comercial sin purificación adicional. Las de DCI se realizaron a partir de DCI concentrado comercial y empleando así mismo D2O.
MÉTODO GENERAL
Se preparan doce disoluciones 25 mM de cada una de las sondas, 10- 13, en D 0 al 99% (tantas como puntos de pH se quieran analizar). Se utiliza DC1 1 M para alcanzar valores de pH ácidos, y NaOD 1 M para los valores de pH básicos. El volumen final de las muestras debe ser de 1 mL En cada una de ellas se fija el valor de pH que se precise procurando abarcar el rango de 1 a 12 y que exista una diferencia de una unidad entre una muestra y la siguiente. Se realiza el espectro de 1H RMN de las muestras a los distintos valores de pH. Para todos los protones de cada una de las sondas, se representa su desplazamiento químico frente al pH para obtener la curva de titulación.
Medidas de quelación con CaCI2 y MgCI2. (Sales disódicas)
Se emplearon las sondas sintetizadas previamente como sales disódicas. Las disoluciones de NaOH así como las de todos los iones empleados, se realizaron utilizando D20 99,98 % en todos los casos a partir de reactivos comerciales sin purificación adicional. Las de DCI se realizaron a partir de DCI comercial y empleando así mismo D20. Las disoluciones de Ca2+ y Mg2+ se prepararon a partir de CaCl22.H20 98 % y MgCl2-6H20 99,995 % respectivamente, y D2O como disolvente.
MÉTODO GENERAL
Se preparan dos disoluciones 25 mM de cada una de las sondas, 10- 13, en D20 99,98 % a dos valores distintos de pH: uno situado entre 11 y 12 (lo más próximo a 11), y el otro entre 9 y 10 (lo más próximo a 9). El pH se ajusta de manera análoga al apartado anterior. Se añaden 50 mL de disoluciones 1M de CaCI2 ó MgCI2. El pH final de las muestras, en un caso debe ser próximo a 9, y en el otro próximo al pH fisiológico (~7), ajustándose si es preciso. El volumen final debe ser de 1 mL. Se realiza el espectro de 1H RMN de cada muestra. Se anota el desplazamiento químico de todos los protones de las sondas a los dos pH analizados, y para todos los iones añadidos. Referencias Bibliográficas
I. Andrew, E. R.; Byder, G.; Griffith, J.; lies, R.: Styles, P.; Clinical Magnetic Resonance Imaging and Spectroscopy. John Wiley and Sons. N. Y., 1990. 2. Cerdán, S.; Seelig, J.; Ann. Rev. Biophys. Chem., 1990, 19, 43.
3. a) Szwergold, B.; Ann. Rev. Physiol., 1992, 54, 775; b) Gil, M. S.; Zaderenko, P.; Cruz, F.; Cerdán, S.; Ballesteros, P.; Bioorg. Med. Chem., 1994, 2, 305.
4. a) Carafoli, E.; Methods in Enzymol., 1988, 57, 3; b) Dentón, R. M.; McCormack, J. G.; Ann. Rev. Physiol., 1990, 52, 451.
5. Vergara, J.; Tzien, R. Y.; Delay, M.; Proc. Nati. Acad. Sci. U.S.A., 1985, 82, 6352.
6. Berridge, M. J.; Ann. Rev. Biochem., 1987, 56, 159.
7. Watson, S. P.; Ruggiero, M.; Abrahamns, S. L.; Lapetina, E. G.; J. Biol. Chem., 1986, 261, 5368.
8. Brass, L F.; Joseph, S. K.; J. Biol. Chem., 1985, 260, 15172.
9. Lapetina, E. G.; Watson, S. P.; Cuatrecasa, P.; Proc. Nati. Acad. Sci. U.S.A., 1984, 81, 7531.
10. Carafoli, E.; Caroni. P.; Chiesi, M.; Famulski, K.; Metabolic Compartmentation. H. Sies, Ed., Academic Press, 1982, pag. 521.
I I . Wilson, D. B.; Connolley, T. M.; Bross, T. E.; Majerus, P. N.; Sherman, W. R.; J. Biol. Chem., 1985, 260, 13946.
12. a) Carafoli, E.; Ann. Rev. Biochem., 1987, 56, 395; b) Meldolesi, J.; Pozzan, T.; Exp. Cell. Res., 1987, 777, 271. 13. Tsien, R. Y.; Methods in Cell Biology, 1989, 30, 127.
14. McCormack, J. G.; Cobbold, P. H.; Cellular Calciυm: A Practical Approach. IRL Press. Oxford University Press. Oxford. 1991.
15. Anderegg, G.; Complexones en Comprehensive Coordination Chemistry, Wilkinson, G.; Gillard, R. D.; McCIeverty, J. A. Editores. Vol 2. Pergamon Press, N. Y., 1987, pag. 777.
16. Yoon, P. S.; Sharp, R. R.; Biochemistry, 1985, 24, 7269. 17. Tsien, R. Y.; Biochemistry, 1980, 19, 2396.
18. Smith, G. A.; Hesketh, R. T.; Metcalfe, J. C; Feeney, J.; Morris, P. G.; Proc. Nati. Acad. Sci. U.S.A., 1983, 80, 7178.
19. Rabenstein, D. L; Millis. K. K.; Strauss, E. J.; Anal. Chem., 1988, 60, 1380A.
22. Dehmlow, E. V.; Dehmlow, S. S. Phase Trasfer Catalysis. VCH. 1993.
23. Elguero, J.; Claramunt, R. M.; Garcerán, R.; Heterocycles, 1985, 24, 2233.
24. Canty, A. J.; Honeymnan, R. T. J. Organomet. Chem., 1990. 387, 247. 25. Torres, J.; Lavandera, J. L.; Cabildo, P.; Claramunt, R. M.; Elguero, J.; J.
Heterocycl. Chem., 1988, 25, 771.
26. Ochi, H.; Miyasaka, T.; Arakawa, K. Yakugaku Zasshi, 1978, 98 (2), 165. Chem. Abst., 1978, 89 24213k
27. Koelsch, O F.; Robinson, F. M. J. Org. Chem., 1956, 21, 1211. 28. Schwarzenbach, G.; Anderegg, G.; Schneider, W.; Senn, H.; Helv. Chim. Acta, 1955, 38, 1147.

Claims

REIVINDICACIONES
1. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiiiminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas consistentes en N-(2-pirazol-1-il)etiliminod¡acetato de metilo (5); N-2-(3,5- dimetilpirazol-1 -il)etiliminodiacetato de metilo (6); N-2-(indazol-1 -il)etil- iminodiacetato de metilo (7); N-2-(indazol-2-il)etil¡minodiacetato de metilo (8); hidrocloruro del ácido N-(2-pirazol-1-il)etiliminodiacético (9); N-(2- pirazol-1 -il)etiliminodiacetato sódico (10); N-2-(3,5-dimetilpirazol-1 - il)etiliminodiacetato sódico (11); N-2-(indazol-1-il)etiliminodiacetato sódico (12); N-2-(indazol-2-il)etiliminodiacetato sódico (13), caracterizadas por la presencia de una unidad de ácido ó ester iminodiacético unido al nitrógeno azólico a través de una cadena de dos átomos de carbono.
2. Complexonas de naturaleza de ácidos N-2-(azol- 1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, según la reivindicación 1 caracterizadas por su capacidad complejante frente a iones Ca2+, Mg2+ y otros cationes divalentes.
3. Complexonas de naturaleza de ácidos N-2-(azol- 1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, según la reivindicación 1 caracterizadas por su capacidad complejante frente a lantánidos y metales de transición.
4. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, cuya obtención se puede realizar mediante la reacción de alquilación de iminodiacetato de metilo con N-bromoetilazoles y posterior hidrólisis en medio ácido ó básico.
5. Complexonas de naturaleza de ácidos N-2-(azol- 1 (2)- il)etíliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, según reivindicación 4, caracterizado porque el procedimiento puede ser modificado por rutas sintéticas alternativas que impliquen la utilización de N- aminoeti lazóles como productos de partida.
6. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, según reivindicación 4, caracterizado porque el procedimiento puede ser modificado por rutas sintéticas alternativas que impliquen la utilización de procesos de ciclación en la preparación del azol N-sustituido.
7. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, para su aplicación en espectroscopia e imagen de Resonancia Magnética Nuclear (RMN) de hidrógeno ú otros núcleos como sondas extrínsecas y agentes de contraste caracterizadas porque pueden utilizarse de manera no invasiva y no destructiva tanto en análisis químico como en diagnóstico clínico.
8. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, para su aplicación según la reivindicación 6 como sondas extrínsecas caracterizadas por su capacidad para determinar por espectroscopia de 1 H RMN la concentración de Ca2+, Mg2+ u otros iones metálicos en soluciones, extractos biológicos, biopsias de tejidos, células aisladas ó cultivadas, órganos perfundidos, tejidos "in vivo", animales enteros y seres humanos.
9. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- il)etiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, para su aplicación como sondas extrínsecas según la reivindicación 6 caracterizadas por su capacidad para determinar la concentración de Ca2+, Mg2+ u otros iones metálicos en extractos biológicos, biopsias de tejidos, células aisladas ó cultivadas, órganos perfundidos, tejidos "¡n vivo", animales enteros y seres humanos utilizando tecnologías de imagen por 1 H RMN, incluyendo imaginería de voxel simple, de multivoxel e imagen espectroscópica del desplazamiento químico.
10. Complexonas de naturaleza de ácidos N-2-(azol-1 (2)- iQetiliminodiacéticos, síntesis, estudio analítico y aplicaciones biológicas, para su aplicación según reivindicación 6 caracterizadas por su capacidad para originar complejos paramagnéticos con lantánidos que resulten de utilidad como agentes de contraste en imágenes obtenidas mediante cualquiera de las tecnologías de Resonancia Magnética.
PCT/ES1996/000129 1995-06-13 1996-06-11 Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas WO1996041797A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96916180A EP0790241A1 (en) 1995-06-13 1996-06-11 Complexones with the structure of n-2-(azol-1(2)-yl)ethyliminodiacetic acids, synthesis, analytical study and biological applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9501185 1995-06-13
ES9501185A ES2094101B1 (es) 1995-06-13 1995-06-13 Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas.

Publications (1)

Publication Number Publication Date
WO1996041797A1 true WO1996041797A1 (es) 1996-12-27

Family

ID=8290732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1996/000129 WO1996041797A1 (es) 1995-06-13 1996-06-11 Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas

Country Status (4)

Country Link
EP (1) EP0790241A1 (es)
CA (1) CA2197297A1 (es)
ES (1) ES2094101B1 (es)
WO (1) WO1996041797A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059097A1 (es) * 2001-01-25 2002-08-01 Laboratorios Farmaceuticos Rovi, S.A. NUEVOS LIGANDOS DE Gd(III) CON ESTRUCTURA BI-Y BIS-AZOLICA
RU2598346C1 (ru) * 2015-04-13 2016-09-20 Федеральное бюджетное учреждение науки "Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения" (ФБУН "ФНЦ медико-профилактических технологий управления рисками здоровью населения") Способ лечения и профилактики дисметаболической нефропатии у детей, ассоциированной с токсическим действием кадмия, свинца, хрома и фенола техногенного происхождения

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2253114B1 (es) * 2004-11-08 2007-07-01 Universidad Nacional De Educacion A Distancia Ligandos heterociclicos y sus complejos de gadolinio (iii) con aplicaciones biomedicas.
WO2006051142A1 (es) * 2004-11-08 2006-05-18 Universidad Nacional De Educación A Distancia (U.N.E.D.) Ácidos 1-pirazoliletil-1,4,7,10-tetraazaciclododecano-4,7,10-triacéticos. aplicación de sus complejos de gadolinio (iii) en el diagnóstico clínico
ES2277760B1 (es) * 2005-10-10 2008-06-16 Universidad Nacional De Educacion A Distancia Agentes complejantes derivados de acidos pirazoliletildietilentriaminotetraaceticos. complejos de gadolinio (iii) con aplicaciones en el diagnostico clinico por resonancia magnetica.
EP3015855A1 (en) * 2014-10-27 2016-05-04 Klinikum rechts der Isar der Technischen Universität München Metal biosensors based on compounds with metal-sensitive chemical shifts for magnetic resonance spectroscopy and imaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003698A1 (en) * 1984-02-24 1985-08-29 The Dow Chemical Company Bis(aminoalkyl)piperazine derivatives and their use as metal ion control agents and cement set retarding agents
WO1992008725A1 (en) * 1984-10-18 1992-05-29 Board Of Regents, The University Of Texas System Polyazamacrocyclic compounds for complexation of metal ions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003698A1 (en) * 1984-02-24 1985-08-29 The Dow Chemical Company Bis(aminoalkyl)piperazine derivatives and their use as metal ion control agents and cement set retarding agents
WO1992008725A1 (en) * 1984-10-18 1992-05-29 Board Of Regents, The University Of Texas System Polyazamacrocyclic compounds for complexation of metal ions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P.M. VAN BERKEL ET AL.: "Metal Uptake by didentate and tridentate pyrazole containing ligands immobilized onto poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)", EUROPEAN POLYMER JOURNAL, vol. 28, no. 7, 1992, OXFORD GB, pages 747 - 754, XP002011755 *
VELI-MATTI MUKKALA ET AL.: "New 2,2'-Bipyridine Derivatives and Their Luminescence Properties with Europium(III) and Terbium(III) Ions", HELVETICA CHIMICA ACTA, vol. 75, 1992, BASEL CH, pages 1578 - 1592, XP002011756 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059097A1 (es) * 2001-01-25 2002-08-01 Laboratorios Farmaceuticos Rovi, S.A. NUEVOS LIGANDOS DE Gd(III) CON ESTRUCTURA BI-Y BIS-AZOLICA
ES2172461A1 (es) * 2001-01-25 2002-09-16 Rovi Lab Farmaceut Sa Nuevos ligandos de gd (iii) con estructuras bi-y bis-azolica.
RU2598346C1 (ru) * 2015-04-13 2016-09-20 Федеральное бюджетное учреждение науки "Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения" (ФБУН "ФНЦ медико-профилактических технологий управления рисками здоровью населения") Способ лечения и профилактики дисметаболической нефропатии у детей, ассоциированной с токсическим действием кадмия, свинца, хрома и фенола техногенного происхождения

Also Published As

Publication number Publication date
ES2094101B1 (es) 1997-08-01
ES2094101A1 (es) 1997-01-01
CA2197297A1 (en) 1996-12-27
EP0790241A1 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
ES2841070T3 (es) Agentes de contraste basados en PCTA que comprenden gadolinio
ES2552684T3 (es) Nuevos compuestos de imidazolidina como moduladores del receptor de andrógenos
Huskens et al. Synthesis and characterization of 1, 4, 7-triazacyclononane derivatives with methylphosphinate and acetate side chains for monitoring free MgII by 31P and 1H NMR spectroscopy
Woods et al. Towards the rational design of MRI contrast agents: a practical approach to the synthesis of gadolinium complexes that exhibit optimal water exchange
EA027012B1 (ru) Ингибиторы cdc7
ES2558087T3 (es) Procesos para la preparación de moduladores del receptor S1P1 y formas cristalinas de los mismos
CA2764366C (en) Imaging of myelin basic protein
CA3044877A1 (en) High relaxivity gadolinium chelate compounds for use in magnetic resonance imaging
KR20190018710A (ko) 킬레이트 화합물
WO1996041797A1 (es) Complexonas de naturaleza de acidos n-2-(azol-1(2)-il)etiliminodiaceticos, sintesis, estudio analitico y aplicaciones biologicas
Nurchi et al. New strong extrafunctionalizable tris (3, 4-HP) and bis (3, 4-HP) metal sequestering agents: Synthesis, solution and in vivo metal chelation
Krchová et al. Eu (III) Complex with DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for Magnetic Resonance Spectroscopy (MRS)
Burgart et al. New one-pot synthesis of 4-hydroxyimino-5-polyfluoroalkylpyrazol-3-ones, their structure and biological activity
AU647188B2 (en) Magnetic resonance imaging agent
WO2012155085A1 (en) Fe(ii) sequestering agents and uses thereof
US5210290A (en) Fluorobenzenesulfonamides
Gil et al. Imidazol-1-ylalkanoate esters and their corresponding acids. A novel series of extrinsic 1H NMR probes for intracellular pH
CN109134380A (zh) 氯代氨基咪唑类化合物及其制备方法、用途和检测方法
US11998619B2 (en) Compound, antiinflammatory drug comprising the compound and cyclooxygenase-2 inhibitor comprising the compound
CN115197167A (zh) 1,2,4-噻二唑烷-3,5-二酮化合物及其制备方法和应用
US20110021765A1 (en) Fluorinated lanthanide probes for 19f magnetic resonance applications
JP7332600B2 (ja) アニオン性キレート化合物
Dyadyuchenko et al. Synthesis, structure, and biological activity of 2, 6-diazido-4-methylnicotinonitrile derivatives
WO2006051142A1 (es) Ácidos 1-pirazoliletil-1,4,7,10-tetraazaciclododecano-4,7,10-triacéticos. aplicación de sus complejos de gadolinio (iii) en el diagnóstico clínico
US6746662B1 (en) pH sensitive MRI contrast agents

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2197297

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996916180

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996916180

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996916180

Country of ref document: EP