WO1996039394A1 - Mercapto-bis-triazoles - Google Patents

Mercapto-bis-triazoles Download PDF

Info

Publication number
WO1996039394A1
WO1996039394A1 PCT/EP1996/002403 EP9602403W WO9639394A1 WO 1996039394 A1 WO1996039394 A1 WO 1996039394A1 EP 9602403 W EP9602403 W EP 9602403W WO 9639394 A1 WO9639394 A1 WO 9639394A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
bis
mercapto
alkyl
Prior art date
Application number
PCT/EP1996/002403
Other languages
German (de)
English (en)
Inventor
Manfred Jautelat
Ralf Tiemann
Stefan Dutzmann
Klaus Stenzel
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU61245/96A priority Critical patent/AU6124596A/en
Publication of WO1996039394A1 publication Critical patent/WO1996039394A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to new mercapto-bis-triazoles, a process for their preparation and their use as microbicides.
  • R 1 for alkyl with 1 to 6 carbon atoms, haloalkyl with 1 to 6 carbon atoms and 1 to 5 halogen atoms, cycloalkyl with 3 to 6 carbon atoms optionally substituted by halogen and / or alkyl with 1 to 4 carbon atoms, optionally substituted aryl or for optionally substituted substituted aralkyl and
  • R 2 represents hydrogen or alkyl having 1 to 4 carbon atoms
  • the substances according to the invention contain at least one asymmetrically substituted carbon atom. They can therefore be in the form of optical isomers attack.
  • the present invention relates both to the individual isomers and to their mixtures.
  • R 1 has the meaning given above
  • R 3 represents alkyl having 1 to 4 carbon atoms
  • the substances according to the invention have a better microbicidal activity than the structurally most similar, known compounds of the same activity.
  • the substances according to the invention outperform 2- (2,4-difluorophenyl) -1,3-bis- (1,2,4-triazol-l-yl) propan-2-ol in terms of their fungicidal properties.
  • the mercapto-bis-triazoles according to the invention are generally defined by the formula (I).
  • R 1 preferably represents straight-chain or branched alkyl having 1 to 4 carbon atoms, straight-chain or branched haloalkyl having 1 to
  • halogen atoms 1 to 5 halogen atoms, haloalkoxy having 1 to 4 carbon atoms and 1 to 5 halogen atoms, haloalkylthio having 1 to 4 carbon atoms and 1 to 5 halogen atoms, phenyl optionally substituted by halogen and / or alkyl having 1 to 4 carbon atoms or phenoxy optionally substituted by halogen and / or alkyl having 1 to 4 carbon atoms.
  • R 2 preferably represents hydrogen, methyl or ethyl.
  • R 1 particularly preferably represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, haloalkyl with 1 to 4 carbon atoms and 1 to 3 fluorine and chlorine - and / or bromine atoms, optionally one to three times, identical or different by fluorine, chlorine, bromine,
  • R ⁇ also particularly preferably represents hydrogen, methyl or ethyl.
  • Preferred substances according to the invention are also addition products of acids and those mercapto-bis-triazoles of the formula (I) in which R 1 and R 2 have those meanings which have been mentioned as preferred for these substituents.
  • the acids that can be added preferably include hydrohalic acids, such as e.g. the hydrochloric acid and the hydrobromic acid, in particular the hydrochloric acid, furthermore phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid,
  • hydrohalic acids such as e.g. the hydrochloric acid and the hydrobromic acid, in particular the hydrochloric acid, furthermore phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid,
  • Citric acid Citric acid, salicylic acid, sorbic acid and lactic acid, as well as sulfonic acids, e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid or camphorsulfonic acid, saccharin or thiosaccharin.
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main and of the I. and II. And IV
  • Salts of copper, zinc, manganese, magnesium, tin, iron and nickel are particularly preferred.
  • Anions of these salts are those which are derived from acids which are too physiologically compatible
  • hydrohalic acids e.g. the hydrochloric acid and the hydrobromic acid, also phosphoric acid, nitric acid and sulfuric acid.
  • Hydrogen can be in the "mercapto" form of the formula
  • Formula (II) provides a general definition of the bis-triazole derivatives required as starting materials when carrying out the process according to the invention.
  • R 1 preferably has those meanings which have already been mentioned as preferred for this radical in connection with the description of the substances of the formula (I) according to the invention.
  • the bis-triazole derivatives of the formula (II) are known or can be prepared by known processes (cf. EP-A 0 044 605 and EP-A 0 069 442).
  • Sulfur is preferably used in the form of powder.
  • water is used when carrying out the first stage of the process according to the invention, if appropriate in the presence of an acid. All inorganic or organic acids customary for such reactions can be considered. Acetic acid, dilute sulfuric acid and dilute hydrochloric acid are preferably usable. However, it is also possible to carry out the hydrolysis with an aqueous ammonium chloride solution.
  • reaction temperatures can be varied within a certain range when carrying out the first stage of the process according to the invention. In general, temperatures between -70 ° C and + 20 ° C, preferably between -70 ° C and 0 ° C.
  • the procedure is generally under normal pressure.
  • the compounds of the formula (Ia) required as starting substances when carrying out the second stage of the process according to the invention are substances according to the invention.
  • R preferably represents methyl or ethyl.
  • Shark also preferably represents chlorine, bromine or iodine.
  • Suitable acid binders for carrying out the second stage of the process according to the invention are all customary inorganic or organic bases.
  • Alkaline earth metal or alkali metal hydroxides such as sodium hydroxide, calcium hydroxide, potassium hydroxide, or also ammonium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, alkali metal or alkaline earth metal acetates such as
  • tertiary amines such as trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, pyridine, N-methylpiperidine, N, N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclonones (DBN) or diazabicycloundecene (DBU).
  • Suitable diluents for carrying out the second stage of the process according to the invention are all inert organic solvents which are customary for such reactions.
  • Ethers such as diethyl ether, methyl tert-butyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and dioxane, furthermore nitriles such as acetonitrile and also strongly polar solvents such as dimethyl sulfoxide or dimethylformamide can preferably be used.
  • the reaction temperatures can be varied within a substantial range when carrying out the second stage of the process according to the invention. In general, temperatures between 0 ° C and 120 ° C, preferably between 20 ° C and 100 ° C.
  • 1 to 2 mol of halogen compound of the formula (III) and an equivalent amount or also an excess of acid binder are generally employed per mol of mercapto-bis-triazole of the formula (Ia) on.
  • the processing takes place according to usual methods. In general, the procedure is such that aqueous base and a water-immiscible organic solvent are added to the reaction mixture, the organic phase is separated off, dried and concentrated.
  • the product obtained can, if appropriate, be freed from impurities which are still present by customary methods, for example by recrystallization.
  • the mercapto-bis-triazole derivatives of the formula (I) obtainable by the process according to the invention can be converted into acid addition salts or metal salt complexes.
  • the acid addition salts of the compounds of formula (I) can be easily prepared by conventional salt formation methods, e.g. by dissolving a compound of formula (I) in a suitable inert solvent and adding the acid, e.g. Hydrogen chloride acid can be obtained and in a known manner, e.g. by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • a suitable inert solvent e.g. Hydrogen chloride acid
  • metal salt complexes of the compounds of formula (I) preference is given to those salts of metals which have already been mentioned as preferred metal salts in connection with the description of the metal salt complexes according to the invention.
  • the metal salt complexes of the compounds of formula (I) can be obtained in a simple manner by conventional methods, e.g. by dissolving the metal salt in alcohol, e.g. Ethanol and adding to compounds of formula (I).
  • Metal salt complexes can be prepared in a known manner, e.g. by
  • the active compounds according to the invention have a strong microbicidal action and can be used to combat unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides are used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes,
  • Xanthomonas species such as Xanthomonas oryzae
  • Pseudomonas species such as Pseudomonas lachrymans; Erwinia species, such as Erwinia amylovora; Pythium species, such as Pythium ultimum; Phytophthora species, such as Phytophthora infestans; Pseudoperonospora species, such as Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • Plasmopara species such as Plasmopara viticola
  • Peronospora species such as Peronospora pisi or P. brassicae
  • Erysiphe species such as Erysiphe graminis
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Podosphaera species such as Podosphaera leucotricha
  • Venturia species such as Venturia inaequalis
  • Pyrenophora species such as Pyrenophora teres or P. graminea
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium); Cochliobolus species, such as Cochliobolus sativus;
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as Uromyces appendiculatus
  • Puccinia species such as Puccinia recondita
  • Tilletia species such as Tilletia caries
  • Ustilago species such as Ustilago nuda or Ustilago avenae
  • Pellicularia species such as Pellicularia sasakii
  • Pyricularia species such as Pyricularia oryzae
  • Fusarium species such as Fusarium culmorum
  • Botrytis species such as Botrytis cinerea; Septoria species, such as Septoria nodorum; Leptosphaeria species, such as Leptosphaeria nodorum; Cercospora species, such as Cercospora canescens; Alternaria species, such as Alternaria brassicae; Pseudocercosporella species, such as Pseudocercosporella herpotrichoides.
  • the active compounds according to the invention are particularly suitable for controlling Pyricularia oryzae and Pellicularia sasakii on rice and for controlling cereal diseases such as Pseudocercosporella, Erysiphe and Fusarium species.
  • the substances according to the invention can be used very well against Venturia and Sphaerotheca. They also have a very good in-vitro effect.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked or decomposed by microorganisms can be.
  • parts of production plants for example cooling water circuits, may also be mentioned which can be impaired by the multiplication of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, coolants, lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae are microorganisms which can cause degradation or a change in the technical materials and called mucus organisms.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma such as Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredients can be converted into customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV Cold and warm fog formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate with
  • organic solvents such as alcohols can also be used as auxiliary solvents.
  • liquid solvents aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, alcohols, how Butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water; Liquefied gaseous extenders or carriers mean liquid
  • nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylarylpolygylkol ether, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • suitable dispersants are: e.g. Lignin sulfite liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide,
  • Ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc are used.
  • the formulations In crop protection, the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can be used in the formulations in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, broaden the range of products or prevent the development of resistance. In some cases, synergistic effects also occur.
  • Fungicides 2-aminobutane; 2-anilino-4-methyl-6-cyclopropyl-pyrimidine; 2 ', 6'-dibromo-2-methyl-4'-trifluorome ⁇ oxy-4'-trifluoro-methyl-1, 3-thiazole-5-carboxanilide; 2,6-dichloro-N- (4-trifluoromethylbenzyl) benzamide; (E) -2-methoximino-N-methyl-2- (2-phenoxyphenyl) acetamide; 8-hydroxyquinoline sulfate; Methyl- (E) -2- ⁇ 2- [6- (2-cyanophenoxy) pyrimidin-4-yloxy] phenyl ⁇ -3-methoxyacrylate; Methyl (E) methoximino [alpha- (o-tolyloxy) -o-tolyl] acetate; 2-phenylphenol (OPP), aldimorph, ampropylfos, anila
  • Tebuconazole Tebuconazole, tecloftalam, tecnazene, tetraconazole, thiabendazole, Thicyofen, thiophanate-methyl, thiram, Tolclophos-methyl, tolylfluanid, triadimefon, triadimenol, triazoxide, Trichlamid, tricyclazole, tridemorph, triflumizole, triforine, triticonazole, validamycin A, Vinci Ozolin,
  • Cadusafos Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157
  • Ethoprophos Etrimphos, Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenothionx, Fhrionophon, Fufionophon, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fufion, Fuf
  • Imidacloprid Iprobefos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda-cyhalothrin, Lufenuron,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet,
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the customary manner, for example by pouring, spraying, spraying, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients by the ultra-low-volume method or to prepare the active ingredient or the like Inject active ingredient into the soil yourself.
  • the seeds of the plants can also be treated.
  • the active compound concentrations in the use forms can be varied within a substantial range: they are generally between 1 and 0.0001% by weight, preferably between 0.5 and 0.001% by weight.
  • amounts of active ingredient are generally from 0.001 to
  • active ingredient concentrations of 0.00001 to 0.1% by weight, preferably 0.0001 to 0.02% by weight, are required at the site of action.
  • the agents used to protect industrial materials generally contain the active ingredients in an amount of 1 to 95%, preferably 10 to 75%.
  • the application concentrations of the active compounds according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the optimal amount of use can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • the effectiveness and the spectrum of action of the active ingredients to be used according to the invention in the protection of materials or of the agents, concentrates or very generally formulations which can be produced therefrom can be increased if further antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or others are used Active ingredients to increase the spectrum of activity or to achieve special effects such as added protection against insects. These mixtures can have a broader spectrum of activity than the compounds according to the invention.
  • Emulsifier 0.3 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at 23 ° C. and a relative atmospheric humidity of approx. 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne de nouveaux mercapto-bis-triazoles de formule (I), dans laquelle R1 désigne un alkyle avec 1 à 6 atomes de carbone, un halogénure d'alkyle avec 1 à 6 atomes de carbone et avec 1 à 5 atomes d'halogène, un cycloalkyle avec 3 à 6 atomes de carbone, éventuellement substitué par un halogène et/ou un alkyle avec 1 à 4 atomes de carbone, un aryle éventuellement substitué ou un aralkyle éventuellement substitué, et R2 désigne hydrogène ou un alkyle avec 1 à 4 atomes de carbone, ainsi que leurs sels d'addition acide et leurs complexes de sels métalliques, un procédé de fabrication de ces produits et leur utilisation comme microbicides pour la protection des végétaux et des matériaux.
PCT/EP1996/002403 1995-06-06 1996-06-03 Mercapto-bis-triazoles WO1996039394A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61245/96A AU6124596A (en) 1995-06-06 1996-06-03 Mercapto-bis-triazoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520597A DE19520597A1 (de) 1995-06-06 1995-06-06 Mercapto-bis-triazole
DE19520597.9 1995-06-06

Publications (1)

Publication Number Publication Date
WO1996039394A1 true WO1996039394A1 (fr) 1996-12-12

Family

ID=7763721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002403 WO1996039394A1 (fr) 1995-06-06 1996-06-03 Mercapto-bis-triazoles

Country Status (4)

Country Link
AU (1) AU6124596A (fr)
DE (1) DE19520597A1 (fr)
WO (1) WO1996039394A1 (fr)
ZA (1) ZA964650B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018486A1 (fr) * 2002-08-26 2004-03-04 Ranbaxy Laboratories Limited Derives d'azole utilises comme agents antifongiques

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732033A1 (de) 1997-07-25 1999-01-28 Bayer Ag Triazolinthion-phosphorsäure-Derivate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174769A1 (fr) * 1984-09-05 1986-03-19 Imperial Chemical Industries Plc Composés azoliques antifongiques
EP0352675A2 (fr) * 1988-07-28 1990-01-31 BASF Aktiengesellschaft Imidazolylméthyloxiranes substitués et imidazolylpropènes substitués, leur préparation et fongicides les contenant
EP0567982A1 (fr) * 1992-04-28 1993-11-03 Takeda Chemical Industries, Ltd. Dérivés d'azole, leurs préparation et application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174769A1 (fr) * 1984-09-05 1986-03-19 Imperial Chemical Industries Plc Composés azoliques antifongiques
EP0352675A2 (fr) * 1988-07-28 1990-01-31 BASF Aktiengesellschaft Imidazolylméthyloxiranes substitués et imidazolylpropènes substitués, leur préparation et fongicides les contenant
EP0567982A1 (fr) * 1992-04-28 1993-11-03 Takeda Chemical Industries, Ltd. Dérivés d'azole, leurs préparation et application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018486A1 (fr) * 2002-08-26 2004-03-04 Ranbaxy Laboratories Limited Derives d'azole utilises comme agents antifongiques
WO2004018485A1 (fr) * 2002-08-26 2004-03-04 Ranbaxy Laboratories Limited Dérivés d'azole utilisés comme agents antifongiques

Also Published As

Publication number Publication date
AU6124596A (en) 1996-12-24
ZA964650B (en) 1997-01-07
DE19520597A1 (de) 1996-12-12

Similar Documents

Publication Publication Date Title
EP0793657B1 (fr) Derives triazolyle microbicides
EP0832083B1 (fr) (mercapto-triazolylmethyl)-dioxacycloalcanes microbicides
EP0906292B1 (fr) Triazolyl-mercaptides et leur utilisation comme microbicides
EP0828719B1 (fr) (mercapto-triazolylmethyle)-cyclopentanols utilises comme microbicides
EP0828734B1 (fr) Triazolylmethyl-oxirannes
WO1997044331A1 (fr) Derives de thiocyano-triazolyle et leur utilisation comme microbicides
EP0842158A1 (fr) 2-phenylethylmercaptotriazoles microbicides
WO1997006151A1 (fr) Mercapto-triazolyl-cetones microbicides
WO1996038424A1 (fr) Cycloalcane-benzylides utilises comme microbicides
WO1997006152A1 (fr) Mercaptotrizolylnitriles microbicides
EP0901472B1 (fr) Derives de mercapto-imidazolyle et leur utilisation comme microbicides
WO1996039395A1 (fr) (mercapto-triazolylmethyl)-butanols a proprietes microbicides
DE19520095A1 (de) Mercapto-triazolyl-silane
WO1996041798A1 (fr) (mercapto-triazolylmethyl)-ethanols microbicides
WO1996039394A1 (fr) Mercapto-bis-triazoles
WO1996036634A1 (fr) Oxyranyle-hydroyethyle-atriazoles
DE19517719A1 (de) Phenyl-cyclopropyl-carboxy-azole
DE4412358A1 (de) Cyclopropyl-ethyl-azole
WO1996036635A1 (fr) Oxyranyl-triazoles
DE19517720A1 (de) Benzyl-cyclopropyl-carboxy-azole
DE4412331A1 (de) Cyclopropyl-halogenethyl-azole

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ HU IL JP KR KZ LK MX NO NZ PL RO RU SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA