WO1996039395A1 - (mercapto-triazolylmethyl)-butanols a proprietes microbicides - Google Patents

(mercapto-triazolylmethyl)-butanols a proprietes microbicides Download PDF

Info

Publication number
WO1996039395A1
WO1996039395A1 PCT/EP1996/002404 EP9602404W WO9639395A1 WO 1996039395 A1 WO1996039395 A1 WO 1996039395A1 EP 9602404 W EP9602404 W EP 9602404W WO 9639395 A1 WO9639395 A1 WO 9639395A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
mercapto
triazolyl
butanols
Prior art date
Application number
PCT/EP1996/002404
Other languages
German (de)
English (en)
Inventor
Manfred Jautelat
Ralf Tiemann
Stefan Dutzmann
Klaus Stenzel
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU60046/96A priority Critical patent/AU6004696A/en
Publication of WO1996039395A1 publication Critical patent/WO1996039395A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms

Definitions

  • the present invention relates to new mercapto-triazolyl-butanols, a process for their preparation and their use as microbicides.
  • R 1 represents hydrogen, alkyl or optionally substituted cycloalkyl
  • R 2 represents hydrogen or alkyl having 1 to 4 carbon atoms
  • X represents halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 5 halogen atoms, haloalkoxy having 1 to 4 carbon atoms and 1 to 5 halogen atoms, haloalkyl thio having 1 to 4 carbon atoms and 1 to 5 halogen atoms, phenyl optionally substituted by halogen and / or alkyl having 1 to 4 carbon atoms or phenoxy optionally substituted by halogen and / or alkyl having 1 to 4 carbon atoms,
  • n represents the numbers 0, 1, 2 or 3 and Y represents an oxygen atom, a CH 2 group or a direct bond,
  • the substances according to the invention contain at least two asymmetrically substituted carbon atoms. They can therefore be obtained in the form of diastereomers or enantiomers.
  • the present invention relates both to the individual isomers and to their mixtures.
  • R 1 , X, Y and m have the meanings given above,
  • R 1 , X, Y and m have the meanings given above,
  • R 3 represents alkyl having 1 to 4 carbon atoms
  • the substances according to the invention have a better microbicidal activity than the structurally most similar, known compounds of the same action.
  • the substances according to the invention thus exceed the 2,2-
  • the mercapto-triazolyl-butanols according to the invention are generally defined by the formula (I).
  • R 1 preferably stands for hydrogen, straight-chain or branched alkyl having 1 to 12 carbon atoms or for optionally cycloalkyl having 3 to 7 carbon atoms which is monosubstituted to triple, identical or different, substituted by halogen and / or alkyl having 1 to 4 carbon atoms.
  • R 2 preferably represents hydrogen, methyl or ethyl.
  • X preferably represents fluorine, chlorine, bromine, methyl, ethyl, methoxy,
  • n also preferably represents the numbers 0, 1, 2 or 3, where X represents the same or different radicals if m represents 2 or 3.
  • Y also preferably represents an oxygen atom, a CH 2 group or a direct bond.
  • R 1 particularly preferably represents hydrogen, straight-chain or branched
  • R 2 also particularly preferably represents hydrogen, methyl or ethyl.
  • X particularly preferably represents fluorine, chlorine, bromine, methyl, methoxy, methylthio, trichloromethyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, trifluoromethylthio, phenyl or phenoxy.
  • n also particularly preferably represents the numbers 0, 1, 2 or 3, where X represents the same or different radicals if m represents 2 or 3.
  • Y also particularly preferably represents an oxygen atom, a CH 2 group or a direct bond.
  • Preferred substances according to the invention are also addition products of acids and those mercapto-triazolylbutanols of the formula (I) in which R 1 , R 2 , X, Y and m have those meanings which have been mentioned as preferred for these substituents and this index.
  • the acids which can be added preferably include hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, furthermore phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as acetic acid, Maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid and lactic acid, as well as sulfonic acids, such as p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid, or camphorsulfonic acid, saccharin and thiosaccharine.
  • hydrohalic acids such as, for example, hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, furthermore phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, such as acetic acid, Maleic acid, succinic acid, fumaric
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main group and of I. and II. And IV. To VIII. Subgroup of the periodic table of the elements and those mercapto-triazolyl-butanols of the formula (I), in to which R 1 , R 2 , X, Y and m have the meanings which have been mentioned as preferred for these substituents and this index.
  • Salts of copper, zinc, manganese, magnesium, tin, iron and nickel are particularly preferred.
  • Anions of these salts are those which are derived from acids which lead to physiologically tolerable addition products.
  • Particularly preferred such acids in this connection are the hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, also phosphoric acid, nitric acid and sulfuric acid.
  • Formula (II) provides a general definition of the triazolylbutanols required as starting materials when carrying out the process according to the invention.
  • R 1 , X, Y and m preferably have those meanings which have already been mentioned as preferred for these radicals and this index in connection with the description of the substances of the formula (I) according to the invention.
  • the triazolylbutanols of the formula (II) are known or can be prepared by known processes (cf. EP-A 0 055 833 and EP-A 0 301 393).
  • Suitable bases for carrying out the first stage of the process according to the invention are all strong alkali metal bases which are customary for such reactions.
  • inert organic solvents customary for such reactions can be considered as diluents.
  • Ethers such as tetrahydrofuran, dioxane, diethyl ether and 1,2-dimethoxyethane, preferably liquid ammonia or strongly polar solvents such as dimethyl sulfoxide are preferably usable.
  • Sulfur is preferably used in the form of powder.
  • water is used when carrying out the first stage of the process according to the invention, if appropriate in the presence of an acid. All inorganic or organic acids customary for such reactions can be considered. Acetic acid, dilute sulfuric acid and dilute hydrochloric acid are preferably usable. However, it is also possible to carry out the hydrolysis with an aqueous ammonium chloride solution.
  • reaction temperatures can be varied within a certain range when carrying out the first stage of the process according to the invention. In general, temperatures between -70 ° C and + 20 ° C, preferably between -70 ° C and 0 ° C.
  • the procedure is generally carried out under normal pressure.
  • 2 to 3 equivalents, preferably 2.0 to 2.5 equivalents, of strong base and then an equivalent amount are generally employed per mole of triazolylbutanol of the formula (II) or an excess of sulfur.
  • the reaction can be carried out under a protective gas atmosphere, for example under nitrogen or argon.
  • the processing takes place according to usual methods.
  • the procedure is that the reaction mixture is extracted with an organic solvent which is sparingly soluble in water, the combined organic phases are dried and concentrated, and the remaining residue is optionally purified by recrystallization and / or chromatography.
  • the compounds of the formula (Ia) required as starting substances when carrying out the second stage of the process according to the invention are substances according to the invention.
  • halogen compounds required as reaction components in carrying out the process according to the invention in the second stage are generally defined by the formula (III).
  • R ⁇ is preferably methyl or ethyl.
  • Shark also preferably represents chlorine, bromine or iodine.
  • Suitable acid binders for carrying out the second stage of the process according to the invention are all customary inorganic or organic bases.
  • Alkaline earth metal or alkali metal hydroxides such as sodium hydroxide, calcium hydroxide, potassium hydroxide, or also ammonium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, alkali metal or alkaline earth metal acetates such as
  • Sodium acetate, potassium acetate, calcium acetate and tertiary amines such as trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, pyridine, N-methylpiperidine, N, N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclonones (DBN) or diazabicycloundecene (DBU).
  • Suitable diluents for carrying out the second stage of the process according to the invention are all inert organic solvents which are customary for such reactions.
  • Ethers such as diethyl ether, methyl tert-butyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and dioxane, furthermore nitriles such as acetonitrile and also strongly polar are preferably usable
  • Solvents such as dimethyl sulfoxide or dimethylformamide.
  • reaction temperatures can be varied within a substantial range when carrying out the second stage of the process according to the invention. In general, temperatures between 0 ° C and 120 ° C, preferably between 20 ° C and 100 ° C.
  • halogen compound of the formula (III) and an equivalent amount or also an excess of acid binder are generally employed per mol of mercapto-triazolylbutanol of the formula (Ia) on.
  • the processing takes place according to usual methods.
  • the general procedure is to add aqueous base and a water-immiscible organic solvent to the reaction mixture, and to separate, dry and concentrate the organic phase.
  • the product obtained can optionally be processed by conventional methods, e.g. by recrystallization, from any impurities still present.
  • the mercapto-triazolylbutanols of the formula (I) obtainable by the process according to the invention can be converted into acid addition salts or metal salt complexes.
  • the acid addition salts of the compounds of the formula (I) can be obtained in a simple manner by customary salt formation methods, for example by dissolving a compound of the formula (I) in a suitable inert solvent and adding the acid, for example hydrochloric acid, and in a known manner, for example by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • a suitable inert solvent for example by dissolving a compound of the formula (I) in a suitable inert solvent and adding the acid, for example hydrochloric acid, and in a known manner, for example by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • Metal salt complexes can be prepared in a known manner, e.g. by filtering, isolating and, if necessary, cleaning by recrystallization.
  • the active compounds according to the invention have a strong microbicidal action and can be used to combat unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides are used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
  • Xanthomonas species such as Xanthomonas oryzae
  • Pseudomonas species such as Pseudomonas lachrymans
  • Erwinia species such as Erwinia amylovora
  • Pythium species such as Pythium ultimum
  • Phytophthora species such as Phytophthora infestans
  • Pseudoperonospora species such as Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • Plasmopara species such as Plasmopara viticola
  • Peronospora species such as Peronospora pisi or P. brassicae;
  • Erysiphe species such as Erysiphe graminis
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Podosphaera species such as Podosphaera leucotricha
  • Venturia species such as Venturia inaequalis
  • Pyrenophora species such as Pyrenophora teres or P. graminea; (Coni form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as Uromyces appendiculatus
  • Puccinia species such as Puccinia recondita
  • Tilletia species such as Tilletia caries
  • Ustilago species such as Ustilago nuda or Ustilago avenae
  • Pellicularia species such as Pellicularia sasakii
  • Pyricularia species such as Pyricularia oryzae
  • Fusarium species such as Fusarium culmorum
  • Botrytis species such as Botrytis cinerea
  • Septoria species such as Septoria nodorum
  • Leptosphaeria species such as Leptosphaeria nodorum
  • Cercospora species such as Cercospora canescens; Alternaria species, such as Alternaria brassicae;
  • Pseudocercosporella species such as Pseudocercosporella herpotrichoides.
  • the active compounds according to the invention are particularly suitable for combating
  • the substances according to the invention can be used very well against Venturia and Sphae rotheca. They also have a very good in vitro effect.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention adhesives, glues, paper and cardboard, textiles, leather, wood, Paints and plastic articles, cooling lubricants and other materials that can be attacked or decomposed by microorganisms.
  • parts of production plants for example cooling water circuits, which may be impaired by the multiplication of microorganisms, may also be mentioned.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma such as Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active compounds can be converted into customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules,
  • Aerosols very fine encapsulations in polymeric substances and in coating compositions for seeds, as well as ULV cold and warm mist formulations.
  • These formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents Means.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents Means.
  • organic solvents such as alcohols can also be used as auxiliary solvents.
  • liquid solvents aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, alcohols, such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water;
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide;
  • solid carriers for example natural rock powder, such as
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal lphthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 0.1
  • active ingredient 95 percent by weight of active ingredient, preferably between 0.5 and 90%.
  • the active compounds according to the invention can be used in the formulations in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to to broaden the spectrum of effects or to prevent the development of resistance. In some cases, synergistic effects also occur.
  • Fenpropimorph Fentinacetate, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, folpet, fosetyl aluminum, fthalides, fuberidazole, furalaxyl,
  • copper preparations such as: copper hydroxide, copper naphthenate,
  • Mancopper Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
  • Probenazole prochloraz, procymidone, propamocarb, propiconazole, propineb, pyrazophos, pyrifenox, pyrimethanil, pyroquilone,
  • Tebuconazole Tebuconazole, tecloftalam, tecnazen, tetraconazole, thiabendazole, thicyofen,
  • Cadusafos Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 4 19, CGA 1 84699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos,
  • Chlorfluazuron Chlormephos, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophhion, Pyrachlophhion, Pyrachlophhion, Pyrachlophhion, Pyrachlophhion, Pyrachlophion, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophin, Pyrachlophion Pyridaben, pyrimidifen, pyriproxifen,
  • Tebufenozid Tebufenpyrad
  • Tebupirimiphos Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb,
  • active ingredients as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions,
  • Spray powder, pastes, soluble powders, dusts and granules can be used. They are used in the usual way, e.g. by pouring, spraying, spraying, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the active compound concentrations in the use forms can be varied within a substantial range: they are generally between 1 and 0.0001% by weight, preferably between 0.5 and 0.001% by weight.
  • amounts of active ingredient of 0.001 to 50 g per kilogram of seed, preferably 0.01 to 10 g, are generally required.
  • active ingredient concentrations of 0.00001 to 0.1% by weight, preferably 0.0001 to 0.02% by weight, are required at the place of action.
  • the agents used to protect industrial materials generally contain the active ingredients in an amount of 1 to 95%, preferably 10 to 75%.
  • the application concentrations of the active compounds according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected. The optimal amount of use can be determined by test series. In general, the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • the effectiveness and the spectrum of activity of the active substances to be used according to the invention in the protection of materials or of the agents, concentrates or very generally formulations which can be produced therefrom can be increased if further antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or others are used Active substances to enlarge the spectrum of activity or to achieve special effects such as additional protection against insects are added. These mixtures can have a broader spectrum of activity than the compounds according to the invention.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the plants remain in an incubation cabin at 20 ° C. and 100% relative atmospheric humidity for 48 hours.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80%.
  • Emulsifier 0.6 part by weight of alkylaryl polyglycol ether
  • the plants are placed in a greenhouse at a temperature of approx. 10 ° C and a relative humidity of approx. 80%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne de nouveaux (mercapto-triazolylméthyl)-butanols de formule (I), dans laquelle R1, R2 X, Y et m ont les significations données dans la description, ainsi que leurs sels d'addition acide et leurs complexes de sels métalliques, un procédé de fabrication de ces produits et leur utilisation comme microbicides pour la protection des végétaux et des matériaux.
PCT/EP1996/002404 1995-06-06 1996-06-03 (mercapto-triazolylmethyl)-butanols a proprietes microbicides WO1996039395A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU60046/96A AU6004696A (en) 1995-06-06 1996-06-03 Microbicidal (mercapto-triazolylmethyl)-butanols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520593.6 1995-06-06
DE19520593A DE19520593A1 (de) 1995-06-06 1995-06-06 Mercapto-triazolyl-butanole

Publications (1)

Publication Number Publication Date
WO1996039395A1 true WO1996039395A1 (fr) 1996-12-12

Family

ID=7763718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002404 WO1996039395A1 (fr) 1995-06-06 1996-06-03 (mercapto-triazolylmethyl)-butanols a proprietes microbicides

Country Status (4)

Country Link
AU (1) AU6004696A (fr)
DE (1) DE19520593A1 (fr)
WO (1) WO1996039395A1 (fr)
ZA (1) ZA964651B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041107A1 (fr) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl-mercaptides et leur utilisation comme microbicides
WO1997042178A1 (fr) * 1996-05-02 1997-11-13 Bayer Aktiengesellschaft Derives d'acylmercapto-triazolyle et leur utilisation comme microbicides
WO1997044331A1 (fr) * 1996-05-21 1997-11-27 Bayer Aktiengesellschaft Derives de thiocyano-triazolyle et leur utilisation comme microbicides
WO2010040718A1 (fr) * 2008-10-07 2010-04-15 Basf Se Composés triazole et imidazole, leur utilisation et agents les contenant
WO2010040717A1 (fr) * 2008-10-07 2010-04-15 Basf Se Composés triazole et imidazole, leur utilisation et agents les contenant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732033A1 (de) 1997-07-25 1999-01-28 Bayer Ag Triazolinthion-phosphorsäure-Derivate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251086A2 (fr) * 1986-06-23 1988-01-07 The Du Pont Merck Pharmaceutical Company Carbinols fongicides
EP0301393A1 (fr) * 1987-07-31 1989-02-01 Bayer Ag Dérivés de 1-azolyl-3,3-dyméthylbutane 1,4-disubstitués
DE19528046A1 (de) * 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251086A2 (fr) * 1986-06-23 1988-01-07 The Du Pont Merck Pharmaceutical Company Carbinols fongicides
EP0301393A1 (fr) * 1987-07-31 1989-02-01 Bayer Ag Dérivés de 1-azolyl-3,3-dyméthylbutane 1,4-disubstitués
DE19528046A1 (de) * 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041107A1 (fr) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl-mercaptides et leur utilisation comme microbicides
US6057353A (en) * 1996-04-30 2000-05-02 Bayer Aktiengesellschaft Triazolyl-mercaptides and their use as microbicides
WO1997042178A1 (fr) * 1996-05-02 1997-11-13 Bayer Aktiengesellschaft Derives d'acylmercapto-triazolyle et leur utilisation comme microbicides
US6051592A (en) * 1996-05-02 2000-04-18 Bayer Aktiengesellschaft Acyl-mercapto-triazolyl derivatives and the use thereof as microbicides
US6274610B1 (en) 1996-05-02 2001-08-14 Bayer Aktiengesellschaft Acyl mercapto-triazolyl derivatives and the use thereof as microbicides
WO1997044331A1 (fr) * 1996-05-21 1997-11-27 Bayer Aktiengesellschaft Derives de thiocyano-triazolyle et leur utilisation comme microbicides
US6166059A (en) * 1996-05-21 2000-12-26 Bayer Aktiengesellschaft Thiocyano- triazolyl derivatives and their use as microbicides
WO2010040718A1 (fr) * 2008-10-07 2010-04-15 Basf Se Composés triazole et imidazole, leur utilisation et agents les contenant
WO2010040717A1 (fr) * 2008-10-07 2010-04-15 Basf Se Composés triazole et imidazole, leur utilisation et agents les contenant

Also Published As

Publication number Publication date
AU6004696A (en) 1996-12-24
DE19520593A1 (de) 1996-12-12
ZA964651B (en) 1997-01-07

Similar Documents

Publication Publication Date Title
EP0832083B1 (fr) (mercapto-triazolylmethyl)-dioxacycloalcanes microbicides
EP0793657B1 (fr) Derives triazolyle microbicides
EP0906292B1 (fr) Triazolyl-mercaptides et leur utilisation comme microbicides
EP0828719B1 (fr) (mercapto-triazolylmethyle)-cyclopentanols utilises comme microbicides
EP0828734B1 (fr) Triazolylmethyl-oxirannes
EP0901478A1 (fr) Derives de thiocyano-triazolyle et leur utilisation comme microbicides
WO1997005119A1 (fr) 2-phenylethylmercaptotriazoles microbicides
EP0843668A1 (fr) Mercapto-triazolyl-cetones microbicides
WO1996038424A1 (fr) Cycloalcane-benzylides utilises comme microbicides
EP0843669A1 (fr) Mercaptotrizolylnitriles microbicides
EP0901472B1 (fr) Derives de mercapto-imidazolyle et leur utilisation comme microbicides
WO1996039395A1 (fr) (mercapto-triazolylmethyl)-butanols a proprietes microbicides
DE19520095A1 (de) Mercapto-triazolyl-silane
WO1996041798A1 (fr) (mercapto-triazolylmethyl)-ethanols microbicides
WO1996039394A1 (fr) Mercapto-bis-triazoles
WO1996036634A1 (fr) Oxyranyle-hydroyethyle-atriazoles
DE19517719A1 (de) Phenyl-cyclopropyl-carboxy-azole
DE4412358A1 (de) Cyclopropyl-ethyl-azole
DE19622354A1 (de) Halogenthiophen-Derivate
WO1996036635A1 (fr) Oxyranyl-triazoles
DE19517720A1 (de) Benzyl-cyclopropyl-carboxy-azole
DE4412332A1 (de) Silyloxy-cyclopropyl-azolyl-Derivate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ HU IL JP KR KZ LK MX NO NZ PL RO RU SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA