WO1996039204A1 - Lubricious coatings - Google Patents

Lubricious coatings Download PDF

Info

Publication number
WO1996039204A1
WO1996039204A1 PCT/GB1996/001314 GB9601314W WO9639204A1 WO 1996039204 A1 WO1996039204 A1 WO 1996039204A1 GB 9601314 W GB9601314 W GB 9601314W WO 9639204 A1 WO9639204 A1 WO 9639204A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
coating
lubricious coating
preparing
polymer
Prior art date
Application number
PCT/GB1996/001314
Other languages
English (en)
French (fr)
Inventor
Jeremy Watson
Original Assignee
Jeremy Watson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeremy Watson filed Critical Jeremy Watson
Priority to DK96919959T priority Critical patent/DK0830150T3/da
Priority to DE69617231T priority patent/DE69617231T2/de
Priority to US08/973,250 priority patent/US6020071A/en
Priority to JP9500216A priority patent/JPH11506375A/ja
Priority to EP96919959A priority patent/EP0830150B1/de
Publication of WO1996039204A1 publication Critical patent/WO1996039204A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention concerns improvements in or relating to lubricious coatings and to methods of preparation thereof and application to the surface of a substrate. More particularly, the present invention relates to a hydrophilic lubricious coating which binds to the surface of, for example, medical instruments, such as, catheters, probes or feeding tubes, which instruments, in use, are inserted into a human or animal body cavity. Such hydrophilic lubricious coating aids passage of said medical instruments into such body cavity.
  • jelly-like preparations have been smeared onto the surface of medical instruments before insertion into cavities of the body.
  • a major disadvantage exhibited by such jelly-like preparations was that, on removal of such medical instruments from said body cavity, such jelly-like preparations were easily dislodged from the surface of said medical instruments and, consequently, resulted in a substantial degree of discomfort being experienced by the user.
  • residual jelly may remain within said body cavity which can produce a focus for subsequent infection.
  • hydrophilic lubricious coatings can be applied during manufacture of such medical instruments.
  • the major disadvantage exhibited by such hydrophilic lubricious coatings is that the processes developed for applying such coatings to such medical instruments comprise numerous steps, which are time consuming and as a result thereof, large scale production is less financially beneficial.
  • Further disadvantages of such coatings are that a high proportion of soluble material used washes off in use and therefore, the effective life span of said medical instruments is substantially reduced.
  • some hydrophilic lubricious coatings exhibit roughness in their dry state and consequently, such roughness may be off- putting to the user.
  • One such method of making such a hydrophilic lubricious coating comprises dipping the medical instrument, such as a catheter, to be coated into diphenylmethane di-isocyanate (MDI) and allowing same to dry.
  • MDI diphenylmethane di-isocyanate
  • Such medical instrument, with a dry coating of MDI is then dipped into a hydrophilic agent, such as polyethylene oxide, which is also allowed to dry.
  • a hydrophilic agent such as polyethylene oxide
  • both the MDI and the hydrophilic agent are heated in order that they may react resulting in the formation of the desirable hydrophilic coating.
  • the major disadvantage of such a process is that on adding the MDI first, an excess of the hydrophilic agent must also be added in order to ensure that the coating is not over cross-linked, since this would prevent the coating being hydrophilic.
  • too much hydrophilic agent may wash off in use and consequently, be left behind in the bladder which is undesirable.
  • the surface of said medical instrument is rough prior
  • the hydrophilic lubricious coating of the present invention can be applied in a single step to the surface of such medical instrument.
  • the composition of the present invention can be formulated to reduce the proportion of soluble material which may wash off in use and, consequently, the effective life span of such hydrophilic lubricious coating is substantially increased.
  • the coating of the present invention exhibits smoothness in both the dry and wet states which may be preferable to the user.
  • a hydrophilic lubricious coating particularly suitable for coating the surface of medical instruments, such as catheters, tubes or probes; wherein said hydrophilic lubricious coating comprises a non-toxic, cross-linked hydrophilic polyurethane which is insoluble in water.
  • Polyurethane is generally formed from a polyether, for example, polytetramethylene glycol which may have a molecular weight of 2000. Said glycol reacts with an isocyanate, for example, diphenylmethane di-isocyanate to form a pre-polymer comprising blocks of polyether or polyester capped with diphenylmethane di-isocyanate. Other di-isocyanates may be used. Said pre-polymer is then reacted with either a diamine, such as ethylene diamine or with a diol, such as 1:4 butanediol to extend the chain length of said pre-polymer.
  • a diamine such as ethylene diamine
  • a diol such as 1:4 butanediol
  • the polytetramethylene glycol can be substituted by polyethylene oxide or polyethylene glycol. This is usually incorporated into the pre-polymer, wherein the length of the polyethylene glycol is restricted in order to prevent the final polymer becoming soluble.
  • the diol which is substituted by a hydrophilic diol having a very large molecular weight, for example, polyethylene glycol or polypropylene glycol.
  • the ratio of pre- polymer to glycol is chosen such that in the reacting solution cross-linking occurs producing a hydrophilic polymer which is not soluble.
  • a method for preparing a hydrophilic lubricious coating comprising adding a non-aqueous solution of a pre-polymer, said pre-polymer being formed from a polyether or polyester and an isocyanate, to a non-aqueous solution of a hydrophilic diol, having a high molecular weight, wherein the ratio of pre-polymer to hydrophilic diol is such that when the two solutions react, cross- linking occurs to produce a hydrophilic polyurethane which is insoluble in water.
  • the hydrophilic diol is polyethylene glycol, although polypropylene glycol can also be utilised, if desired.
  • the molecular weight of the hydrophilic diol is generally in the range of 5000 to 30,000, with polyethylene glycol having a molecular weight of approximately 20,000 being particularly desired.
  • the ratio of pre-polymer to hydrophilic diol, weight for weight is selected depending upon the nature of the substrate to which the lubricious coating is to be applied. Additionally, the selected ratio preferably ensures that there is excess pre-polymer present within the lubricious coating. Such excess pre-polymer forms further chemical cross-links with the substrate, thereby assisting in the formation of a relatively tough coating which has a longer life span. Accordingly, each particular lubricious coating is substrate specific and, depending upon the nature of the substrate to be coated, the ratio, weight for weight, of pre-polymer to hydrophilic diol utilised to form the hydrophilic cross-linked polyurethane may range from 1:1 to 1:8, preferably 1:2 .
  • the pre-polymer is preferably used as a 2 to 20%, further preferably 10%, solution in a non-aqueous solvent such as tetrahydrofuran, methyl pyrrolidone or methylene chloride.
  • a non-aqueous solvent such as tetrahydrofuran, methyl pyrrolidone or methylene chloride.
  • the hydrophilic diol is preferably used as a 2 to 20%, further preferably 10%, solution in a non-aqueous solvent such as dimethylformamide, dimethyl sulphoxide, dichloromethane or methyl pyrrolidone.
  • a non-aqueous solvent such as dimethylformamide, dimethyl sulphoxide, dichloromethane or methyl pyrrolidone.
  • a low molecular weight diol into the coating composition of the present invention, the addition of such material generally assisting in causing the high molecular weight hydrophilic diol to dissolve in its organic solvent.
  • the lubricious hydrophilic coating of the present invention may also containing additional additives such as anti ⁇ microbial agents, for example, iodine or silver.
  • a method of coating the surface of an article comprising applying the lubricious coating of the present invention to the article, suitably by spraying or dip-coating and drying and curing the sprayed or coated article.
  • the sprayed or coated article is suitably dried and cured at a temperature of from 60 to 100°C, preferably 80°C, for a period of approximately 10 to 30 minutes, usually 20 minutes.
  • the coated article is then allowed to cool and the coating can then be handled and, if desired, the article can be packed and, if necessary, sterilised utilising an appropriate sterilising agent such as ethylene oxide or by irradiation.
  • an appropriate sterilising agent such as ethylene oxide or by irradiation.
  • such medical instruments will comprise a suitable substrate to which the hydrophilic lubricious coating of the present invention will bind, such as PVC, polyurethane, nylon or latex.
  • the mixture is then applied to a substrate made of for example, polyurethane or PVC, by spraying or dip-coating.
  • the coating is then dried and cured in an oven at a temperature of 80°C for 20 minutes. After cooling, the coating can be handled and the device packed and sterilised.
  • pre-polymers which may be used are A7554 and A7153, both available from Apollo Chemicals Limited.
  • the molecular weight of the polyethylene glycol may vary from 5000 to 30,000 and it is also possible to use polypropylene glycol, polyethylene oxide and polypropylene oxide.
  • hydrophilic lubricious coating Whilst the present invention has been generally described in relation to a hydrophilic lubricious coating for use on medical instruments, it is to be understood that such hydrophilic lubricious coating is also applicable in the case of any other implements which are desired to exhibit the same lubricious qualities of the hydrophilic coating of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Medical Uses (AREA)
PCT/GB1996/001314 1995-06-03 1996-06-03 Lubricious coatings WO1996039204A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK96919959T DK0830150T3 (da) 1995-06-03 1996-06-03 Smørende belægninger
DE69617231T DE69617231T2 (de) 1995-06-03 1996-06-03 Gleitfähige beschichtungen
US08/973,250 US6020071A (en) 1995-06-03 1996-06-03 Lubricious coatings
JP9500216A JPH11506375A (ja) 1995-06-03 1996-06-03 潤滑性コーティング
EP96919959A EP0830150B1 (de) 1995-06-03 1996-06-03 Gleitfähige beschichtungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9511233.0 1995-06-03
GBGB9511233.0A GB9511233D0 (en) 1995-06-03 1995-06-03 Lubricious coatings

Publications (1)

Publication Number Publication Date
WO1996039204A1 true WO1996039204A1 (en) 1996-12-12

Family

ID=10775446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1996/001314 WO1996039204A1 (en) 1995-06-03 1996-06-03 Lubricious coatings

Country Status (7)

Country Link
US (1) US6020071A (de)
EP (1) EP0830150B1 (de)
JP (1) JPH11506375A (de)
DE (1) DE69617231T2 (de)
DK (1) DK0830150T3 (de)
GB (2) GB9511233D0 (de)
WO (1) WO1996039204A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019004A2 (en) * 1997-10-15 1999-04-22 Tyco Group S.A.R.L. Lubricious coating
DE29908768U1 (de) 1999-05-19 1999-08-12 Starck, Bernd, Dipl.-Ing., 75443 Ötisheim Hochflexibler Überzug für Stents und/oder Stent-Crafts und/oder Stent-Gefäß-Prothesen
WO2004060427A1 (en) * 2002-12-19 2004-07-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7220491B2 (en) 2002-12-19 2007-05-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US8545951B2 (en) 2012-02-29 2013-10-01 Kimberly-Clark Worldwide, Inc. Endotracheal tubes and other polymer substrates including an anti-fouling treatment
US8647718B2 (en) 2005-03-11 2014-02-11 Kaneka Corporation Wet lubricant surface coating having excellent durability, method for surface coating, and a medical device having the surface coating
US10413701B2 (en) 2012-01-26 2019-09-17 Kaneka Corporation Medical tube

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596402B2 (en) 2000-12-29 2003-07-22 Kimberly-Clark Worldwide, Inc. Absorbent, lubricious coating and articles coated therewith
US6923787B2 (en) 2001-12-20 2005-08-02 Scimed Life Systems, Inc. Catheter having an improved balloon-to-catheter bond
US7914486B2 (en) * 2001-12-20 2011-03-29 Boston Scientific Scimed, Inc. Catheter having an improved balloon-to-catheter bond
US6967261B1 (en) 2001-12-28 2005-11-22 Kimberly-Clark Worldwide Bandage, methods of producing and using same
CN1329581C (zh) * 2002-02-14 2007-08-01 Lg电子株式会社 洗衣机门盖及其制造方法
US6808801B2 (en) * 2002-07-26 2004-10-26 Kimberly-Clark Worldwide, Inc. Absorbent article with self-forming absorbent binder layer
US7205259B2 (en) * 2002-07-26 2007-04-17 Kimberly-Clark Worldwide, Inc. Absorbent binder desiccant composition and articles incorporating it
US6822135B2 (en) * 2002-07-26 2004-11-23 Kimberly-Clark Worldwide, Inc. Fluid storage material including particles secured with a crosslinkable binder composition and method of making same
US7115321B2 (en) * 2002-07-26 2006-10-03 Kimberly-Clark Worldwide, Inc. Absorbent binder coating
US6770729B2 (en) * 2002-09-30 2004-08-03 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
US20090165784A1 (en) * 2007-12-28 2009-07-02 Tyco Healthcare Group Lp Lubricious intubation device
US7378566B2 (en) * 2002-12-13 2008-05-27 Kimberly-Clark Worldwide, Inc. Absorbent core including folded substrate
US7294591B2 (en) * 2002-12-13 2007-11-13 Kimberly-Clark Worldwide, Inc. Absorbent composite including a folded substrate and an absorbent adhesive composition
US6994770B2 (en) * 2002-12-20 2006-02-07 Kimberly-Clark Worldwide, Inc. Strength additives for tissue products
US7147751B2 (en) * 2002-12-20 2006-12-12 Kimberly-Clark Worldwide, Inc. Wiping products having a low coefficient of friction in the wet state and process for producing same
US20040220534A1 (en) * 2003-04-29 2004-11-04 Martens Paul W. Medical device with antimicrobial layer
US20050186427A1 (en) * 2004-02-19 2005-08-25 The Procter & Gamble Company Lubricious coated applicator
US20060068661A1 (en) * 2004-09-29 2006-03-30 Kimberly-Clark Worldwide, Inc. Wiping products having a high equilibrium moisture and a low coefficient of friction
US20070083175A1 (en) * 2005-10-11 2007-04-12 Kimberly-Clark Worldwide, Inc. Transparent/translucent absorbent composites and articles
US7335713B2 (en) 2005-12-02 2008-02-26 Stockhausen, Inc. Method for preparing a flexible superabsorbent binder polymer composition
US20070129697A1 (en) * 2005-12-02 2007-06-07 Soerens Dave A Articles comprising flexible superabsorbent binder polymer composition
US7619131B2 (en) * 2005-12-02 2009-11-17 Kimberly-Clark Worldwide, Inc. Articles comprising transparent/translucent polymer composition
US7312286B2 (en) * 2005-12-02 2007-12-25 Stockhausen, Inc. Flexible superabsorbent binder polymer composition
EP2172232B1 (de) 2007-06-21 2019-11-27 Kaneka Corporation Zusammensetzung zur oberflächenbeschichtung mit hervorragender haltbarkeit, die im nassen zustand gleitfähig ist, beschichtungsflüssigkeit, oberflächenbeschichtungsfilm, oberflächenbeschichtungsverfahren und medizinprodukt mit dem oberflächenbeschichtungsfilm
US20090157047A1 (en) * 2007-12-13 2009-06-18 Boston Scientific Scimed, Inc. Medical device coatings and methods of forming such coatings
US20100048758A1 (en) * 2008-08-22 2010-02-25 Boston Scientific Scimed, Inc. Lubricious coating composition for devices
US8940799B2 (en) * 2010-03-25 2015-01-27 Medtronic Xomed, Inc. Adjusting drug loading in polymeric materials
US10251981B2 (en) 2013-10-02 2019-04-09 Kaneka Corporation Coating layer, coating solution, method for forming coating layer, and method for producing medical tool
JP6754362B2 (ja) 2015-08-04 2020-09-09 Jsr株式会社 重合体組成物、物品、メディカルデバイス、物品の製造方法および細胞塊の製造方法
WO2018085066A1 (en) 2016-11-03 2018-05-11 3M Innovative Properties Company Silicone copolymers, methods of making, and articles
CA3062314C (en) 2017-05-04 2023-10-10 Hollister Incorporated Lubricious hydrophilic coatings and methods of forming the same
EP4025664A4 (de) * 2019-06-03 2023-06-21 Dow Global Technologies LLC Verfahren zum reduzieren des reibungskoeffizienten eines laminats, das einen polyurethanklebstoff umfasst
CN116392645A (zh) * 2023-05-24 2023-07-07 惠州市顺美医疗科技有限公司 亲水润滑涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989005319A1 (en) * 1987-12-02 1989-06-15 Tyndale Plains-Hunter, Ltd. Hydrophilic polyurethanes of improved strength
EP0454293A2 (de) * 1990-04-23 1991-10-30 C.R. Bard, Inc. Biegsame schmierende organische Beschichtungen
WO1994021308A1 (en) * 1993-03-18 1994-09-29 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
WO1994023771A1 (en) * 1993-04-09 1994-10-27 W.R. Grace & Co.-Conn. Water-based coating process for isocyanate-based polyurea-urethane polymers
WO1995006670A1 (en) * 1993-08-30 1995-03-09 Nepera, Inc. Low friction, hydrophilic, biocompatible compositions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100309A (en) * 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4835003A (en) * 1985-04-17 1989-05-30 Baxter International Inc. Medical tubing with water-activated lubricating coating
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US4743673A (en) * 1986-12-19 1988-05-10 Tyndale Plains-Hunter, Ltd. Hydrophilic carboxy polyurethanes
US4789720A (en) * 1988-03-09 1988-12-06 Tyndale Plains-Hunter, Ltd. Hydrophilic polyurethanes prepared from mixed oxyalkylene glycols
US5091205A (en) * 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5688855A (en) * 1995-05-01 1997-11-18 S.K.Y. Polymers, Inc. Thin film hydrophilic coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989005319A1 (en) * 1987-12-02 1989-06-15 Tyndale Plains-Hunter, Ltd. Hydrophilic polyurethanes of improved strength
EP0454293A2 (de) * 1990-04-23 1991-10-30 C.R. Bard, Inc. Biegsame schmierende organische Beschichtungen
WO1994021308A1 (en) * 1993-03-18 1994-09-29 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
WO1994023771A1 (en) * 1993-04-09 1994-10-27 W.R. Grace & Co.-Conn. Water-based coating process for isocyanate-based polyurea-urethane polymers
WO1995006670A1 (en) * 1993-08-30 1995-03-09 Nepera, Inc. Low friction, hydrophilic, biocompatible compositions

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019004A2 (en) * 1997-10-15 1999-04-22 Tyco Group S.A.R.L. Lubricious coating
WO1999019004A3 (en) * 1997-10-15 1999-06-24 Tyco Group Sarl Lubricious coating
JP2001519466A (ja) * 1997-10-15 2001-10-23 タイコ・グループ・ソシエタ・ア・レスポンサビリタ・リミテ 潤滑性コーティング
AU743618B2 (en) * 1997-10-15 2002-01-31 Covidien Ag Lubricious coating
JP4690544B2 (ja) * 1997-10-15 2011-06-01 コヴィディエン・アクチェンゲゼルシャフト 潤滑性コーティング
DE29908768U1 (de) 1999-05-19 1999-08-12 Starck, Bernd, Dipl.-Ing., 75443 Ötisheim Hochflexibler Überzug für Stents und/oder Stent-Crafts und/oder Stent-Gefäß-Prothesen
WO2004060427A1 (en) * 2002-12-19 2004-07-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7220491B2 (en) 2002-12-19 2007-05-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7264859B2 (en) 2002-12-19 2007-09-04 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US8647718B2 (en) 2005-03-11 2014-02-11 Kaneka Corporation Wet lubricant surface coating having excellent durability, method for surface coating, and a medical device having the surface coating
US10413701B2 (en) 2012-01-26 2019-09-17 Kaneka Corporation Medical tube
US8545951B2 (en) 2012-02-29 2013-10-01 Kimberly-Clark Worldwide, Inc. Endotracheal tubes and other polymer substrates including an anti-fouling treatment

Also Published As

Publication number Publication date
GB9611528D0 (en) 1996-08-07
DE69617231T2 (de) 2002-07-25
US6020071A (en) 2000-02-01
GB2301596A (en) 1996-12-11
GB2301596B (en) 1997-04-30
JPH11506375A (ja) 1999-06-08
DK0830150T3 (da) 2002-05-21
EP0830150A1 (de) 1998-03-25
EP0830150B1 (de) 2001-11-21
GB9511233D0 (en) 1995-07-26
DE69617231D1 (de) 2002-01-03

Similar Documents

Publication Publication Date Title
US6020071A (en) Lubricious coatings
EP0093094B1 (de) Verfahren zur Herstellung einer hydrophilischen Beschichtung
EP0093093B1 (de) Herstellung einer hydrophilischen Beschichtung
US5558900A (en) One-step thromboresistant, lubricious coating
US4487808A (en) Medical article having a hydrophilic coating
EP0907384B1 (de) Medizinische vorrichtung
JP3148275B2 (ja) 滑らかなヒドロゲル被覆
US5032666A (en) Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface
JPH0790040B2 (ja) 改良された親水性滑性被膜
EP0217771A1 (de) Verfahren zur Herstellung eines hydrofilen Überzugs auf einer polymeren Oberfläche
GB1600963A (en) Article having a low coefficient of friction hydrophilic coating and a method of providing the coating
JPS60156456A (ja) ポリウレタンコンド−ムの製法
WO1992019289A1 (en) Treatment of polyurethane surfaces
JPH1024100A (ja) 医用物品の製造方法
CA2068168A1 (en) Process for antimicrobial treatment of polyurethane
CA2258077C (en) Hydrophilic interpenetrating polymer network coating for medical devices
KR100458734B1 (ko) 의료기구
AU710718C (en) Medical device
JPH105325A (ja) 湿潤時に易滑性化表面を持つ医療用具とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996919959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08973250

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 500216

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996919959

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996919959

Country of ref document: EP