WO1996027877A1 - Support d'enregistrement magnetique et son procede de fabrication - Google Patents

Support d'enregistrement magnetique et son procede de fabrication Download PDF

Info

Publication number
WO1996027877A1
WO1996027877A1 PCT/JP1995/000380 JP9500380W WO9627877A1 WO 1996027877 A1 WO1996027877 A1 WO 1996027877A1 JP 9500380 W JP9500380 W JP 9500380W WO 9627877 A1 WO9627877 A1 WO 9627877A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal layer
ferromagnetic metal
recording medium
magnetic recording
Prior art date
Application number
PCT/JP1995/000380
Other languages
English (en)
French (fr)
Inventor
Migaku Takahashi
Original Assignee
Migaku Takahashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Migaku Takahashi filed Critical Migaku Takahashi
Priority to US08/894,999 priority Critical patent/US6153297A/en
Priority to KR1019970706035A priority patent/KR19980702630A/ko
Priority to PCT/JP1995/000380 priority patent/WO1996027877A1/ja
Priority to EP95910770A priority patent/EP0817174A1/en
Publication of WO1996027877A1 publication Critical patent/WO1996027877A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a magnetic recording medium and a method for manufacturing the same. More specifically, the present invention relates to a high-density magnetic recording medium having a high coercive force and a normalized coercive force and an excellent S / N ratio, and a method for manufacturing the same.
  • the magnetic recording medium of the present invention is suitably applied to hard disks, floppy disks, magnetic tapes and the like. Background art
  • FIG. 10 is a schematic diagram illustrating a hard disk as an example of a magnetic recording medium.
  • FIG. 10 (a) is a perspective view of the entire magnetic recording medium
  • FIG. 10 (b) is a cross-sectional view taken along the line AA ′ of FIG. 10 (a).
  • a substrate in which a nonmagnetic (N i _P) layer 3 is provided on the surface of an A 1 substrate 2 is used.
  • a Cr underlayer 4, a ferromagnetic metal layer 5, and a protective layer 6 are laminated.
  • the non-magnetic (N i — P) layer 3 is formed by plating or spacking the A 1 substrate 2 which is 89 mm (3.5 inch) in diameter and 1.27 mm (50 mi 1) in thickness. It is formed on the surface and forms the substrate 1.
  • the surface of the nonmagnetic (Ni-P) layer 3 is provided with concentric scratches (hereinafter referred to as textures) by mechanical polishing.
  • the surface roughness of the nonmagnetic (N i — P) layer 3, that is, the average center line roughness Ra measured in the radial direction, is 5 ⁇ ! ⁇ 15 nm.
  • the Cr underlayer 4 and the ferromagnetic metal layer 5 are formed on the surface of the substrate 1 by sputtering, and finally the ferromagnetic metal layer 5 is formed.
  • a protective layer made of carbon or the like is provided to protect the surface of the steel sheet by using the silicon method.
  • the typical thickness of each layer is 5 im to 15 ⁇ m for the nonmagnetic (N i — P) layer 3, 50 nm to 150 nm for the Cr underlayer, and 30 for the ferromagnetic metal layer 5. nm ⁇ 100 nm, the protective layer 6 has a thickness of 20 nm to 50 nm.
  • the back pressure of the film forming chamber before sputter film formation is on the order of 10— 'Tun-, and the impurity concentration of the Ar gas used for film formation is 1 ppm or more. It was produced under the condition of.
  • the crystal forming the ferromagnetic metal layer in the magnetic recording medium obtained by the above-described manufacturing method, particularly, in the case of the ferromagnetic metal layer 5 containing the Ta element (for example, a CoCrTa alloy magnetic film), the crystal forming the ferromagnetic metal layer.
  • the existence of a grain boundary layer with an amorphous structure between the particles, and the fact that this grain boundary layer is composed of a nonmagnetic alloy has been reported by U. Nakai, E. Kusumoto, M. Kuwabara, T. Miyamoto, MR Visokay, K.
  • the normalized coercive force of the magnetic recording medium (> H e H k grain > has a large value of 0.3 or more, whereas T such include a element [, c also been described to take a smaller value than 0.3 in the case, the international application PCTZ JP 94/01 1 84 No., the use of costly ferromagnetic metal layers Instead, an inexpensive high-density recording medium with an increased coercive force and a method of manufacturing the same are used in a magnetic recording medium in which a ferromagnetic metal layer is formed on the surface of a base via a metal underlayer to utilize magnetization reversal.
  • a technique is disclosed in which the impurity concentration of an Ar gas used for film formation is set to 10 ppb or less, so that the oxygen concentration of the metal underlayer and / or the ferromagnetic metal layer is set to 100 wtpm or less.
  • the substrate Before forming the metal base layer, the substrate is formed using an A 1-gas having an impurity concentration of 10 ppb or less. It has also been reported that the coercive force is further increased by cleaning the surface of the substrate by a high frequency sputtering method and removing the surface of the substrate from 0.2 nm to 1 nm. There is a correlation between the normalized coercive force of the medium and the noise of the medium.To obtain a low-noise medium, the normalized coercive force should be 0.3 or more and 0.5 or less. It states that it should be satisfied.
  • the normalized coercive force of the ferromagnetic metal layer (Hc / Hk g r ain) , the coercive force H c, and divided by the anisotropy field H k grain of the crystal grains, the magnetic isolation of the crystal grains Indicates the degree of increase. That is, the high normalized coercive force of the ferromagnetic metal layer means that the magnetic interaction of the individual crystal grains constituting the ferromagnetic metal layer is reduced, and a high coercive force can be realized.
  • the transition region of magnetization reversal becomes a noise source for a recording signal.
  • the noise tends to be high, and the recording / reproducing characteristics are good, resulting in a magnetic recording medium.
  • low noise media can be easily obtained when the ferromagnetic metal layer is a C0CrTa alloy magnetic film, and when the ferromagnetic metal layer is a CoNiCr or CoCrPt alloy magnetic film. Tended to have higher noise.
  • a magnetic recording medium having a ferromagnetic metal layer made of a CoCrTa alloy magnetic film is easily affected by the film formation atmosphere, so that it was difficult to stably produce a medium having a high coercive force during mass production.
  • the CoNiCr or CoCrPt alloy magnetic film has an advantage that the coercive force during mass production can be obtained relatively stably.
  • the SZN ratio (recording Signal S, medium noise N) It has been desired to realize a magnetic recording medium having a feature of being powerful and a method of manufacturing the same.
  • the present invention relates to a magnetic recording medium having a ferromagnetic metal layer composed of a CoNiCr or CoCrPt alloy magnetic film, wherein the S / N ratio (recording signal S, medium noise N) of the electromagnetic conversion characteristics is improved. It is a first object of the present invention to provide a magnetic recording medium which is high and has a stable coercive force during mass production.
  • the present invention provides a method of manufacturing a magnetic recording medium capable of easily forming a medium having a high coercive force even when the substrate surface temperature during film formation is low and no electrical or dielectric force is applied to the substrate.
  • the second purpose is to provide. Disclosure of the invention
  • a ferromagnetic metal layer made of at least Co NiCr is formed on the surface of the base via a metal underlayer, and the ferromagnetic metal layer has an oxygen concentration of 100 wtppm.
  • crystal grains forming the ferromagnetic metal layer include a grain boundary layer having an amorphous structure between at least the crystal grains.
  • a ferromagnetic metal layer made of at least CoCrPt is formed on the surface of the base via a metal underlayer, and the ferromagnetic metal layer has an oxygen concentration of 1%.
  • the crystal grains forming the ferromagnetic metal layer have a grain boundary layer having an amorphous (amorphous) structure between at least the crystal grains. It is characterized by the following.
  • the grain boundary layer is non-magnetic, and the ferromagnetic metal contains Ta as a fourth element.
  • the metal underlayer is Cr, and in addition, the thickness of the metal underlayer is 5 nm to 30 nm.
  • the magnetic recording medium of the present invention is characterized in that a ferromagnetic metal layer is formed on the surface of a base without a metal underlayer.
  • the method for manufacturing a magnetic recording medium wherein the method for forming the metal base layer and the ferromagnetic metal layer is a spec film formation method,
  • the surface temperature of the substrate when forming the ferromagnetic metal layer is from 60 ° C. to 150 ° C.
  • an amorphous material is formed between crystal grains forming the ferromagnetic metal layer. High coercive force and normalized coercive force due to the structure of the grain boundary layer And good S / N characteristics can be realized.
  • an in-plane magnetic recording medium having a ferromagnetic metal layer made of CoCrPt, between the crystal grains forming the ferromagnetic metal layer Since there is a grain boundary layer consisting of a structure, high t, coercive force and normalized coercive force, and good S / N characteristics can be realized.
  • the grain boundary layer is non-magnetic, it is possible to prevent a region between the crystal grains, which are small magnets, from being magnetically disturbed. As a result, it is possible to reduce a transition region that becomes a noise source when performing magnetic recording by reversing the magnetization.
  • the ferromagnetic metal layer contains Ta as the fourth element, a larger grain boundary layer region can be formed.
  • the formation of the grain boundary layer is promoted by using Cr as the metal underlayer.
  • the crystal grains of the ferromagnetic metal layer can be made smaller. As a result, the medium noise during recording and reproduction can be further reduced.
  • a magnetic recording medium having excellent SZN characteristics corresponding to perpendicular magnetic recording can be obtained.
  • the film formation of the magnetic recording medium can be performed at a low temperature, the amount of gas generated in the film formation chamber can be reduced, and a plastic or the like that is weak to high-temperature heating can be used as a base material. Become.
  • the ninth aspect of the present invention since no electrical bias is applied to the substrate other than the self-bias due to plasma, the amount of gas generated in the substrate atmosphere during film formation can be reduced. In addition, film peeling from a jig for holding the base can be reduced.
  • Examples of the substrate in the present invention include aluminum, titanium and alloys thereof, silicon, glass, carbon, ceramics, plastics, resins and composites thereof, and non-magnetic films of different materials formed on the surfaces thereof. Surface-treated by a coating method, a vapor deposition method, a plating method, or the like.
  • the nonmagnetic film provided on the surface of the substrate preferably does not magnetize at a high temperature, has conductivity, and has a moderate surface hardness, though it is difficult to machine.
  • a (Ni-P) film formed by a sputtering method is particularly preferable.
  • a donut disk shape is used as the shape of the substrate.
  • a substrate provided with a magnetic layer or the like to be described later that is, a magnetic recording medium, is used by rotating at the speed of, for example, 360 rpm around the center of the disk during magnetic recording and reproduction.
  • the magnetic head flies above the magnetic recording medium at a height of about 0.1 m. Therefore, it is necessary for the substrate to appropriately control the flatness of the surface, the parallelism of the front and back surfaces, the undulation in the circumferential direction of the substrate, and the surface roughness.
  • Examples of the metal underlayer in the present invention include Cr, Ti, W and alloys thereof.
  • alloys for example, combinations with V, Nb, Ta, etc. have been proposed.
  • Cr is preferable because it causes a segregation effect on a ferromagnetic metal layer described later.
  • a sputtering method, an evaporation method, or the like is used as a film forming method.
  • this metal underlayer is such that when a ferromagnetic metal layer composed of a Co group is provided thereon, the axis of easy magnetization of the ferromagnetic metal layer is oriented in the in-plane of the substrate, that is, in the direction of the in-plane of the substrate. To promote the crystal growth of the ferromagnetic metal layer so that the magnetic force is increased.
  • the crystallinity of the substrate is controlled by a film formation factor such as surface shape, surface state or surface temperature of a substrate, and gas deposition during film formation. Pressure, a bias applied to the substrate, a film thickness to be formed, and the like.
  • a Cr film thickness in the range of 50 nm to 150 nm was used.
  • the conventional film formation conditions film formation conditions of the present invention
  • the back pressure of the film forming chamber 1 0- 7 (1 0- 9) Torr base, and impurities A r gas used for film formation It means that the concentration is 1 ppm or more (less than 100 ppt, preferably less than 100 ppb).
  • the dopant used when forming the metal underlayer has an impurity concentration of 150 ppm or less.
  • the ferromagnetic metal layer in the present invention includes the following two types.
  • the first type is applicable to a case where the magnetic recording layer is provided on the surface of a substrate via a metal underlayer (that is, a magnetic film for in-plane recording).
  • a metal underlayer that is, a magnetic film for in-plane recording.
  • Co NiCr Co NiCr
  • Co N i C r and C o C r P t which are material systems having no amorphous layer having an amorphous structure between crystal grains, are used. It is preferably used. However, if the film forming conditions of the present invention are used, other material systems having some grain boundary layer (for example, CoCrTa system and CoNiPt system) even under the conventional film forming conditions. Also confirmed that the Rakai layer could be controlled more.
  • the conventional film forming condition means the back pressure of the film forming chamber or 10 ⁇
  • the impurity concentration of Ar gas used for film formation is 1 ppm or more (100 ppt or less, preferably 10 ppb or less).
  • the target used for forming the ferromagnetic metal layer preferably has an impurity concentration of 30 ppm or less.
  • Co NiCr is inexpensive and hardly affected by the film formation atmosphere. Is preferably used for realizing a coercive force of 1800e or more, which is difficult to produce with CoNiCr or CoCrTa.
  • the problem with the first type is to develop a material and a manufacturing method that can realize low recording material cost, low media noise, and high coercive force in order to improve recording density and reduce manufacturing cost. is there.
  • the second type is suitable for a case where the magnetic recording layer is provided directly on the surface of the substrate without a metal underlayer (that is, a magnetic film for perpendicular recording).
  • a metal underlayer that is, a magnetic film for perpendicular recording.
  • a soft magnetic metal layer is provided below these ferromagnetic metal layers as a backing layer.
  • the problem of the second type is to develop a material and a manufacturing method capable of maintaining a high coercive force in the direction perpendicular to the film surface even when the thickness of the ferromagnetic metal layer is reduced.
  • the “magnetic recording medium utilizing magnetization reversal” in the present invention includes a medium (in-plane magnetic recording medium) that forms recording magnetization parallel to the above-described film surface of the ferromagnetic metal layer, and a recording magnetization perpendicular to the film surface.
  • Media perpendicular magnetic recording media. In both media, it is necessary to further reduce the recording magnetization in order to increase the recording density. This miniaturization reduces the readout signal output from the magnetic head in order to reduce the leakage flux of each recording magnetization. Therefore, it is desired to further reduce the noise of the medium which is considered to be affected by the adjacent recording magnetization.
  • the “oxygen concentration of the ferromagnetic metal layer” in the present invention is, for example, 250 wtppm or more in the case of a CoNiCr film formed by a conventional sputtering method.
  • the effect of the oxygen concentration in the ferromagnetic metal layer, that is, the coercive force of the medium and the medium noise It was desired to investigate the impact on the market.
  • the ultimate vacuum of the film forming chamber for forming the ferromagnetic metal layer is in the order of 10 to 7 Torr, and the impurity concentration of the Ar gas used for forming the ferromagnetic metal layer is 1 Refers to film formation under the condition of ppm or more.
  • the “oxygen concentration of the metal underlayer” in the present invention is, for example, 250 wtppm or more in the case of a Cr film produced by a conventional sputtering method.
  • the effect of the oxygen concentration in the metal underlayer that is, the effect on the crystal growth process depending on the thickness of the metal underlayer, and the effect on the ferromagnetic metal layer formed on the metal underlayer. was desired.
  • the "normalized coercive force of the ferromagnetic metal layer" in the present invention is a value obtained by dividing the coercive force He by the anisotropic magnetic field Hkgfain of the crystal grains, and the degree to which the magnetic isolation of the crystal grains is enhanced.
  • the normalized coercive force of the ferromagnetic metal layer produced by the conventional sputtering method was smaller than 0.3 as long as the ferromagnetic metal layer or the Co group was used. Stoner-Wohlfarth theory shows that 0.5 is taken when crystal grains are completely magnetically isolated, and this value is the upper limit of the normalized coercive force.
  • the coercive force H c is the coercive force of the medium obtained from the magnetization curve measured using a vibrating sample magnetometer (called Variable Sample Magnetometer, SM).
  • the anisotropic magnetic field of crystal grains, H k gradient is the applied magnetic field that completely eliminates the rotational hysteresis loss measured using a high-sensitivity torque magnetometer.
  • both the coercive force and the anisotropic magnetic field are values measured in the thin film plane.
  • the value is measured in a direction perpendicular to the plane of the thin film.
  • Examples of the aluminum alloy in the present invention include an alloy composed of aluminum and magnesium. At present, for hard disk (HD) applications, those based on aluminum alloys are the most commonly used. Since the purpose of use is for magnetic recording, it is preferable that the content of the metal oxide is small.
  • HD hard disk
  • a nonmagnetic (N i — P) film is often provided on the surface of the aluminum alloy by a plating method or a sputtering method. Its purpose is to improve corrosion resistance and increase the surface hardness of the substrate. On the surface of the (Ni-P) film, small concentric scratches (textures) are provided to reduce the frictional force when the magnetic head slides on the medium surface.
  • the current c is the reduction of the surface roughness of the substrate, the former 0. 5 mm force ⁇ the latter 0. About 5 nm is a limit ing.
  • Examples of the glass according to the present invention include, for example, those obtained by subjecting the glass surface to ion doping or the like and strengthening the glass, and those having a structure in which the glass itself is microcrystallized. It is a device that eliminates the disadvantages of glass. Since glass has a higher surface hardness than aluminum alloys, it is excellent in that it is not necessary to provide a (Ni-P) film. It is also advantageous in terms of thinning of the substrate, smoothness of the substrate surface, and high temperature resistance of the substrate.
  • a non-magnetic layer may be provided to prevent harmful elements from entering the magnetic film from the glass.
  • a non-magnetic layer having fine irregularities may be arranged on the surface of the glass in order to reduce the frictional force when the magnetic head slides on the medium surface.
  • the problem when glass is used as the substrate is to achieve both the thinning of the substrate and the technology for preventing the substrate from cracking.
  • silicon in the present invention for example, a silicon wafer having a track record in the semiconductor field and having a disk shape can be mentioned.
  • Silicon, like glass, is superior to aluminum alloys in that surface hardness is high, the substrate can be made thinner, the surface of the substrate has high smoothness, and the substrate has good high-temperature resistance.
  • substrate are possible bias indicia pressurized to a substrate for a conductive, it is advantageous from the viewpoint of good Ri cleaner film formation area for the gas discharge is small, such as H 2 0 from inner substrate can also be achieved.
  • the problem when silicon is used as the substrate is, as with glass, the compatibility between thinning of the substrate and technology for preventing the substrate from cracking.
  • Examples of the sputtering method according to the present invention include a transfer type in which a thin film is formed while a substrate moves in front of a target, and a stationary type in which a thin film is formed by fixing a substrate in front of a target.
  • Can be The former is useful for the production of low-cost media due to its high mass productivity. In the latter case, the angle of incidence of sputtered particles on the substrate is stable, so that it is possible to manufacture a medium having excellent recording and reproducing characteristics.
  • the term “sequential formation of a metal underlayer and a ferromagnetic metal layer” in the present invention means “on the surface of the substrate (after the metal underlayer is formed and before the ferromagnetic metal layer is formed on the surface). In the meantime, it will not be exposed to an atmosphere at a pressure higher than the gas pressure during film formation. ”After exposing the surface of the metal underlayer to the atmosphere, a ferromagnetic metal layer is When formed, it is known that the coercive force of the medium is significantly reduced (eg, no exposure: 1500 e ⁇ exposed: 500 e or less).
  • the “impurity of Ar gas used for film formation” in the present invention is, for example, H. 0, 0 2, C 0 o , H 2, N 2, C x H v, H, C, ⁇ , CO and the like.
  • impurities that affect the amount of oxygen taken into the film is estimated to H 2 0, 0 2, C 0 2, 0, CO. Therefore, the impurity concentration of the present invention, O contained in A r gas used for film formation, to be represented by the sum of ⁇ 2, C 0, 0, C 0.
  • the cleaning process by the high frequency sputtering method for example, an AC voltage is applied from a RF (radio frequency, 13.56 MHz) power source to a substrate placed in a dischargeable gas pressure space.
  • RF radio frequency, 13.56 MHz
  • the feature of this method is that it can be applied even when the substrate is not conductive.
  • the effect of the cleaning treatment is to improve the adhesion of the thin film to the substrate.
  • impurity of Cr target used when forming metal underlayer and its concentration examples include Fe, Si, A1, C, 0, N, H, and the like.
  • the impurity affecting the amount of oxygen taken into the film is estimated to be zero. Therefore, the impurity concentration of the present invention indicates the oxygen contained in the Cr target used for forming the metal base layer.
  • the impurities of the C0-based target used when forming the ferromagnetic metal layer include, for example, , Fe, Si, Al, C, 0, N and the like.
  • impurities affecting the amount of oxygen taken into the film are estimated to be zero. Therefore, the impurity concentration of the present invention indicates the oxygen contained in the target used for forming the ferromagnetic metal layer.
  • “application of a negative bias to the substrate” refers to applying a DC bias voltage to the substrate when forming a Cr underlayer or a magnetic film as a magnetic recording medium. It has been found that applying an appropriate bias voltage increases the coercivity of the medium. It is known that the effect of the above-described bias application is greater when two layers are applied than when only one of the films is manufactured.
  • the above-described bias application often acts on an object near the base, that is, the base support member / the base holder.
  • gas and dust are generated in the space near the substrate, are taken in by the thin film being formed, and various kinds of film characteristics become unstable.
  • applying a bias to the substrate also has the following problems.
  • the ultimate vacuum degree of the film forming chamber for forming the metal underlayer and / or ferromagnetic metal layer is: Depending on the material of the ferromagnetic metal layer, it is one of the film formation factors that influence the value of the coercive force. In particular, conventionally, in the case of a Co-based material containing Ta in a ferromagnetic metal layer, when the ultimate vacuum degree described above is low (for example, 5>: 10—. Torr or higher), shadowing occurs. It has been thought that it has a great impact.
  • “surface temperature of the substrate when forming a metal underlayer and / or a ferromagnetic metal layer” refers to a ferromagnetic metal. This is one of the film formation factors that determines the value of coercivity regardless of the material of the layer. As long as the substrate is not damaged, higher coercive force can be realized by forming the film at a high surface temperature.
  • Substrate damage refers to external changes such as warpage, swelling, and cracking, and internal changes such as the occurrence of magnetization and an increase in gas generation.
  • the high substrate surface temperature has the following problems.
  • a 1 substrate is magnetized.
  • Examples of the surface roughness of the substrate in the present invention include an average center line roughness Ra when the surface of the substrate having a disk shape is measured in a radial direction.
  • TALYSTEP manufactured by RANKTAYL0RH0BS0N was used as a measuring device.
  • Ra is large in order to suppress magnetic head adsorption and increase in friction coefficient.
  • the base reaches the maximum number of revolutions, it is necessary to secure the distance between the magnetic recording medium and the magnetic head, that is, the flying height of the magnetic head. Is desirable.
  • the surface roughness of the substrate and the maximum and minimum values of Ra are appropriately determined based on the above-described reasons and the required specifications for the magnetic recording medium.
  • the flying height of the magnetic head (the distance at which the magnetic head is separated from the surface of the magnetic recording medium during the recording / reproducing operation) must be increased. Need to be smaller. To meet this demand, it is important to make the surface of the magnetic recording medium flatter. For this reason, the surface roughness of the substrate is preferably smaller.
  • Examples of the texture treatment in the present invention include a method using mechanical polishing, a method using chemical etching, and a method using a physical uneven film.
  • a mechanical polishing method is employed in the case of an aluminum alloy substrate, which is most widely used as a substrate of a magnetic recording medium.
  • the tape is concentrically lightened.
  • the grinding particles may be separated from the tape and used.
  • Examples of the composite electrolytic polishing treatment in the present invention include a treatment of providing an oxidation passivation film using chromium oxide as a product on the inner wall of a vacuum chamber used for forming a magnetic film or the like.
  • a treatment of providing an oxidation passivation film using chromium oxide as a product on the inner wall of a vacuum chamber used for forming a magnetic film or the like for example, SUS316L is preferable.
  • the magnetron sputter device (model number ILC 301: load lock type stationary facing type) manufactured by ANELVA was used in the present invention. The above process is performed on the inner wall of the room. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a transmission electron microscope (T E M) photograph of Sample 1 according to Example 1.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of Sample 2 according to Example 1.
  • FIG. 3 is a graph showing the results of a composition analysis using EDS between the crystals of Sample 1 according to Example 1.
  • FIG. 4 is a schematic cross-sectional view illustrating a magnetic pole structure of a read-integrated thin film head used for evaluating the electromagnetic conversion characteristics of the magnetic recording medium according to the first embodiment.
  • FIG. 5 is a graph showing the relationship between the film thickness of the metal underlayer made of Cr according to Example 4 and the coercive force of the manufactured medium.
  • FIG. 6 shows the thickness of the metal underlayer made of Cr according to Example 4 and the thickness of the produced medium. 5 is a graph showing the relationship with the size.
  • FIG. 7 is a graph showing the relationship between the surface temperature of the base when forming the metal underlayer and the ferromagnetic metal layer according to Example 5, and the coercive force of the manufactured medium.
  • FIG. 8 is a graph showing the relationship between the surface temperature of the substrate when forming the metal underlayer and the ferromagnetic metal layer according to Example 5, and the surface roughness Ra of the manufactured medium.
  • FIG. 9 is a graph showing the relationship between the negative bias value applied to the substrate according to Example 6 and the coercive force of the manufactured medium.
  • FIG. 10 is a schematic diagram illustrating a magnetic recording medium. (Explanation of Shingo)
  • Non-magnetic (N i — P) layer
  • Example 1 In this example, the effect that the crystal grains forming the ferromagnetic metal layer have a grain boundary having an amorphous structure at least between the crystal grains will be described.
  • Ultimate vacuum deposition chamber for forming the metal base layer was 2 kinds of 1 0- 9 Torr boards and 1 0 ⁇ orr stand.
  • the impurity concentration 1 O ppb contained in A r gas when forming the ferromagnetic metal layer and the metal base layer the ultimate vacuum of the film forming chamber for forming the ferromagnetic metal layer is 1 0- 9 Torr It was fixed to the table.
  • the sputtering apparatus used for producing the medium was a magnetron sputtering apparatus manufactured by ANELPA '(model number : ILC 301 : load lock type 7, stationary facing type).
  • Table 1 shows the film forming conditions for producing the magnetic recording medium of this example.
  • Item i1 Base material A 1 — Mg alloy (Film thickness 10 / z m
  • a disk-shaped aluminum alloy substrate having an inner / outer diameter of 2 ⁇ / ⁇ 9 mm and a thickness of 1.27 mm was used as a substrate.
  • a 10 / m-thick (Ni-P) film was formed on the surface of the aluminum alloy substrate by plating.
  • the surface of the (Ni-P) film has small concentric scratches (texture) formed by a mechanical method.
  • the surface roughness of the substrate when scanned in the disk radial direction is the average center line. The one having a roughness Ra smaller than 1 nm was used.
  • the substrate after the drying treatment was set in a substrate holder made of aluminum and placed in a preparation chamber of a sputtering apparatus.
  • the substrate holder was moved from the preparation chamber to the film formation chamber 1 for producing a Cr film. After moving, the substrate was heated and held at 250 ° C. by an infrared lamp. However, the film forming chamber 1 was used previously ultimate vacuum of 1 X 1 0- 7 ⁇ ⁇ , or 3> and evacuated to 1 0- 9 Torr. After the movement of the substrate holder, the door pulp between the charging chamber and the film forming chamber 1 was closed.
  • the impurity concentration of the Cr target used was 120 ppm.c
  • Ar gas was introduced into the film forming chamber 1, and the gas pressure in the film forming chamber 1 was set to 2 mTorr.
  • the impurity concentration in the Ar gas used was fixed at 1 O ppb.
  • the substrate holder was moved from the film forming chamber 1 to the film forming chamber 2 for producing a CoNiCr film. After moving, the substrate was heated and held at 250 ° C. by an infrared lamp. However, the ultimate vacuum degree in the film formation chamber 2 was changed under different conditions. Of its set condition, 3>: a case that is evacuated to 1 0- 9 Torr, 1: 'to 1 0- 7 Torr is two conditions when are evacuated. After the movement of the substrate holder, the door pulp between the film forming chamber 1 and the film forming chamber 2 was closed.
  • the target composition used was 62. ⁇ a ⁇ 9o Co, 30 at 9o Ni, 7.5 at% Cr, and the impurity concentration in the evening target was 20 ppm.
  • the substrate holder 1 After forming the CoXiCr layer, the substrate holder 1 was moved from the film forming chamber 2 to the film forming chamber 3 for forming a C film. After the transfer, the substrate was heated and held at 250 mm by an infrared lamp. However, the film forming chamber 3 was evacuated to a final vacuum degree of 3 ⁇ 10 -9 Torr beforehand, and after the substrate holder was moved, the door between the film forming chamber 2 and the film forming chamber 3 was moved. The valve closed.
  • the impurities in the target for Cr formation are Fe: 88Si: 34, Al: 10C: 60O: 120, N: 60, and H: 1.1 (wtp pm).
  • the evening composition for forming the ferromagnetic metal layer is Ni: 29.2 at%, Cr: 7.3 at%, Co: ba 1, and the impurity is Fe: 27 S i 10 , Al 10 C: 30, 0: 20, N 10 (wtp pm).
  • Figures 1 and 2 are TEM (transmission electron microscope) photographs of the ferromagnetic metal layer of the prepared medium.
  • Figures 1 and 2 show a case where the ultimate vacuum before film formation in the film forming chamber 2 are different, 1 3 X 10- 9 For Torr (Sample 1), 2 1>: 10 This is the case of 17 Torr (Sample 2).
  • Ar ion beam 4.5 kV>: 5 mA, angle of incidence 15 degrees, i
  • the oxygen concentration in the ferromagnetic metal layers of the above two samples was 100 wtppm or less in both cases.
  • the measurement of the oxygen concentration was performed by a secondary ion mass spectrometer (SIMS: Secondary Ion Mass spectrometer).
  • Fig. 3 shows the results of a composition analysis between two crystal grains in sample 1 (Fig. 1>) using an energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the electromagnetic conversion characteristics are shown in Fig. 4 using the integrated write / read thin-film head (write is performed using an inductive head and read is performed using the MR head (magnetic resistance head)). The measurement was performed under the measurement conditions of 4.
  • N e (f) electrical circuit noise spectrum
  • Table 5 shown below are magnetic characteristics and the results of the electromagnetic characteristics of the magnetic recording medium prepared under the conditions 1 and 2 are obtained c
  • Sample name Sample 1 Sample 2 Achieved when forming underlayer 1 1 0-9 units 1 1 0 'units
  • This embodiment is different from the first embodiment in that CoCrPt is used instead of C0NiCr as the ferromagnetic metal layer.
  • CoCrPt is used instead of C0NiCr as the ferromagnetic metal layer.
  • a target composition for forming a CoCrPt film Cu 7 --Ci- 13 -Pt 19 (at ° o) was used.
  • the present embodiment is different from the first embodiment in that CoNiCrTa and CoCrPtTa are used instead of CoNiCr as the ferromagnetic metal layer.
  • Target Bok composition used in order to form each ferromagnetic metal layer Co Q Ri-Ni. R -Cr 7 Ta Cu 7 r -Cr in --Ta 1 -... B D b / D 4 / 3. ⁇ 1U.3 4
  • the material of either ferromagnetic metal layer does not depend on the ultimate vacuum before film formation in the film formation chamber 1 where the metal underlayer is formed (10— (Torr case) and for 1 0 _9 T orr table), the grain boundary layer has been confirmed. However, if this ultimate vacuum Kayori lower, larger or the area of the grain boundary layer (Table 7). [Table 7]
  • the electromagnetic conversion characteristics were also excellent. Therefore, even when the Ta element is included in the alloy composition of the ferromagnetic metal layer, the amorphous (amorphous) having a larger area between the crystal grains forming the ferromagnetic metal layer. It was judged that the magnetic recording medium had a grain boundary layer consisting of a structure, or that it could cope with higher recording density. (Example ⁇ l »
  • This embodiment is different from the first embodiment in that the film is formed by changing the thickness of the metal underlayer in the range of 0 to 100 nm.
  • the film formation chamber 1 metal base layer formation
  • ultimate vacuum before film formation definitive in the deposition chamber 2 are both 1 0-9 For Torr board (Conditions a) And the case of 10'Torr level (condition b).
  • FIG. 5 shows the relationship between the thickness of the metal underlayer made of Cr and the coercive force of the manufactured medium.
  • the vertical axis represents the value of the coercive force in the circumferential direction of the disk-shaped substrate, and the condition a was indicated by a mark and the condition b was indicated by a mark.
  • the coercive force of the medium under condition a had a value greater than or equal to the maximum value of the medium under condition b when the thickness of the Cr metal underlayer was 2.5 nm or more. Further, when the thickness of the Cr metal underlayer is 5 nm or more, it is more preferable because a high coercive force of 20000 e or more can be realized.
  • FIG. 6 shows the relationship between the thickness of the metal underlayer made of Cr and the noise of the manufactured medium.
  • the condition a is indicated by a triangle and the minimum value of the condition b is indicated by a reference mark.
  • the measurement method of the medium noise in this example was the same as that in Example 1. Only the thickness of the Cr layer was variable from 1 nm to 100 nm, and the other conditions were fixed.
  • the medium noise under the condition a had a value lower than the minimum value of the medium under the condition b when the thickness of the Cr metal underlayer was 100 nm or less. Further, when the thickness of the Cr metal underlayer is 30 nm or less, it is more preferable because the medium noise can be reduced by 10% or more.
  • the thickness of the metal underlayer made of Cr 2. In the range of 5 nm to 100 nm, higher coercive force or lower medium noise compared to condition b can be obtained. Further, when the thickness of the metal underlayer made of Cr is limited to the range of 5 nm to 30 nm, more excellent coercive force and medium noise can be obtained as compared with the condition b. (Example 5)
  • the present embodiment is different from the first embodiment in that the film is formed by changing the surface temperature of the substrate when forming the metal base layer and the ferromagnetic metal layer in the range of 25 to 250 ° C.
  • FIG. 7 shows the relationship between the surface temperature of the substrate when forming the metal underlayer and the ferromagnetic metal layer and the coercive force of the manufactured medium.
  • the vertical axis indicates the value of the coercive force in the circumferential direction of the disk-shaped substrate.
  • Condition c is indicated by a triangle, and condition d is indicated by a mark.
  • FIG. 8 shows the relationship between the surface temperature of the substrate when forming the metal underlayer and the ferromagnetic metal layer under the condition c, and the surface roughness Ra of the manufactured medium.
  • a substrate that cannot be used because a gas is generated from the substrate by heating for example, a ceramic, a plastic, a resin, or the like. use well as possible and the summer was c
  • the Ni-PZA1 substrate was used as the substrate.
  • a nonmagnetic layer was provided on the surface of the substrate, for example, Ni-P, Ti, C, etc. were formed on the surface. It was separately confirmed that the method was effective even when a glass substrate or the like was used. (Example 6)
  • the present embodiment differs from the first embodiment in that when forming the metal underlayer and the ferromagnetic metal layer, the film was formed by changing the negative bias value applied to the substrate in the range of 0 to 150 V. different.
  • the film formation chamber 1 metal base layer formation
  • ultimate vacuum before film formation definitive in the deposition chamber 2 (ferromagnetic metal layer formation) are both 1 0-9 For Torr board (Condition e) It was studied for the case when the 1 0- 7 Torr board (conditions ⁇ ).
  • Fig. 9 shows the relationship between the negative bias value applied to the substrate and the coercive force of the manufactured medium.
  • the vertical axis is the value of the coercive force in the circumferential direction of the disk-shaped substrate, and the condition e is indicated by a triangle and the condition f is indicated by a climbing mark.
  • This embodiment is different from the first embodiment in that a ferromagnetic metal layer is formed on the surface of the base without using a metal base layer.
  • a ferromagnetic metal layer had use of C o 85 C r ⁇ (at .
  • the present invention provides an in-plane magnetic recording medium having a ferromagnetic metal layer composed of a Co NiCr alloy magnetic film or a CoCrPt alloy magnetic film excellent in mass production stability, and has a high coercive force, It is possible to provide a magnetic recording medium having a good SZN ratio (recording signal S, medium noise N) of force, electromagnetic conversion characteristics.
  • the present invention can provide a magnetic recording medium having a high coercive force even in a perpendicular magnetic recording medium having a ferromagnetic metal layer made of a CoCr alloy magnetic film.
  • the present invention can easily provide a magnetic recording medium having a high coercive force and an excellent SZN ratio even when the substrate surface temperature during film formation is low or no electric bias is applied to the substrate.
  • a manufacturing method that can be formed can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

明細書 磁気記録媒体及びその製造方法 技術分野
本発明は、 磁気記録媒体及びその製造方法に係る。 より詳細には、 保磁力及び 規格化保磁力が高く、 かつ、 S/N比の優れた高密度磁気記録媒体及びその製造 方法に関する。 本発明の磁気記録媒体は、 ハー ドディスク、 フロッ ピーデイ ス ク、 磁気テープ等に好適に適用される。 背景技術
従来の磁気記録媒体及びその製造方法としては、 次の技術が知られている。 図 1 0は、 磁気記録媒体の一例として、 ハードディスクを説明する概略図であ る。 図 1 0において、 図 1 0 ( a ) は磁気記録媒体全体の斜視図、 図 1 0 ( b ) は図 1 0 ( a ) の A— A' 部分の断面図である。
基体 1としては、 A 1基板 2の表面上に、 非磁性 (N i _P) 層 3が設けてあ るものを用いている。 そして、 この基体 1の上には、 C r下地層 4、 強磁性金属 層 5、 保護層 6が積層されている。
非磁性 (N i — P ) 層 3は、 めっき法もしくはスパック法によって、 直径 89 mm ( 3. 5 i n c h ) Z厚さ 1. 27 mm ( 50 m i 1 ) のディスク形状 をした A 1基板 2の表面上に形成され、 基体 1をなしている。 また、 非磁性 (N i - P ) 層 3の表面には、 機械的な研磨処理にて同心円状のキズ (以後、 テ クスチヤ一と呼ぶ) が設けてある。 一般的に、 非磁性 (N i — P ) 層 3の表面粗 さ、 すなわち半径方向に測定したときの平均中心線粗さ R aは、 5 ηπ!〜 1 5 nmである。 また、 C r下地層 4と強磁性金属層 5 (—般には C o合金系磁 性膜) は、 スパッタ法によって上記の基体 1の表面上に形成し、 最後に強磁性金 属層 5の表面を保護するために炭素などからなる保護層 6力 ス'ミッ夕法によつ て設けられる。 典型的な各層の厚さは、 非磁性 (N i — P) 層 3が 5 im〜 1 5 ^m、 C r下地層 4力 50 nm〜 1 5 0 nm、 強磁性金属層 5が 3 0 nm〜 1 00 nm、 保護層 6が 20 nm〜50 nmである。
上記層構成を有する従来の磁気記録媒体は、 スパッタ成膜前の成膜室の背圧が 1 0—' Tun-台であり、 かつ、 成膜に用いる A rガスの不純物濃度が 1 p p m以上 という条件下で作製されていた。
上述した製法で得られた磁気記録媒体において、 特に、 T a元素を含む強磁性 金属層 5 (例えば、 C o C r T a合金磁性膜) の場合には、 強磁性金属層を形成 する結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層が存在するこ と、 及び、 この粒界層が非磁性合金組成からなること、 力沖井らによって報告さ れている U. Nakai, E. Kusumoto, M. Kuwabara, T. Miyamoto, M. R. Visokay, K. Yoshikawa and . Itayama, "Relation Between Microstructure of Grain Boundary and the 1 ntergranular Exchange in CoCrTa Thin Film for Longitudinal Recording Media", IEEE Trans. Magn. , vol.30, No.6, pp.3969, 1994. ) 。
しかし、 T a元素を含まない強磁性金属層 (例えば、 C o N i C r又は C o C r P t合金磁性膜) の場合には上記粒界層は確認されなかった。
また、 強磁性金属層が T a元素を含む場合には、 磁気記録媒体の規格化保磁力 (H e H kgrainと表記する > は 0. 3以上の大きな値をもつのに対して、 T a元素を含まな〔、場合には 0. 3より小さな値をとることが記載されている c また、 国際出願 PCTZ J P 94 /01 1 84号公報には、 高価な強磁性金属 層を使用せずに、 保磁力を増大した安価な高密度記錄媒体とその製造方法とし て、 基体の表面上に金属下地層を介して強磁性金属層が形成され、 磁化反転を利 用した磁気記録媒体において、 成膜に用いる A rガスの不純物濃度を 1 0 p p b 以下とすることによって、 金属下地層又は/及び強磁性金属層の酸素濃度を 1 00 w t pm以下とする技術が開示されている。 また、 前記金属下地層を形 成する前に、 不純物濃度が 1 0 p p b以下である A 1-ガスを用いて、 前記基体の 表面を高周波スパッタ法によるクリーニング処理をおこない、 前記基体の表面を 0. 2 nm〜 1 n m除去することによって、 保磁力がさらに増大することも報告 されている。 さらに、 この報告では、 磁気記録媒体の規格化保磁力と媒体ノィズ とは相関があり、 低ノイズ媒体をえるには、 規格化保磁力を 0. 3以上 0. 5未 満とすべきであることが記述されている。
強磁性金属層の規格化保磁力 (Hc/Hk grain) とは、 保磁力 H cを、 結晶 粒の異方性磁界 H kgrainで割った値であり、 結晶粒の磁気的孤立性が高まる度 合いを表している。 すなわち、 強磁性金属層の規格化保磁力が高いということ は、 強磁性金属層を構成する個々の結晶粒の磁気的な相互作用が低下し、 高い保 磁力が実現できることを意味する。
また、 高記録密度化を図るため、 より高周波記録を行う場合、 磁化反転の遷移 領域が記録信号に対するノイズ源となることが知られている。 すなわち、 この遷 移領域の乱れか大きい場合又は広範囲の場合には、 ノイズが高くなる傾向が強 く、 記録再生特性が芳しくな t、磁気記録媒体となってしまう。
現状の磁気記録媒体では、 確かに、 強磁性金属層が C 0 C r T a合金磁性膜の 場合に低ノィズ媒体が得られやすく、 C oN i C rや CoC r P t合金磁性膜の 場合にはノィズが高い傾向であった。
一方、 C o C r T a合金磁性膜からなる強磁性金属層を有する磁気記録媒体 は、 成膜雰囲気の影響を受け易いため、 量産時に安定して高保磁力の媒体を作製 することが難しかった。 これに対して、 C oN i C rや C o C r P t合金磁性膜 の場合には、 量産時の保磁力は比較的安定して得られるという利点があった。 従って、 量産時の保磁力が比較的安定に得られる C oN i C rや C o C r P t 合金磁性膜からなる強磁性金属層を有する磁気記録媒体において、 電磁変換特性 の SZN比 (記録信号 S、 媒体ノイズ N) 力く高いという特長をもった磁気記録媒 体及びその製造方法の実現が望まれていた。
本発明は、 C oN i C rや C oC r P t合金磁性膜からなる強磁性金属層を有 する磁気記録媒体において、 電磁変換特性の S / N比 (記録信号 S、 媒体ノイズ N) が高く、 かつ、 量産時に保磁力が安定して得られる磁気記録媒体を提供する ことを第 1の目的とする。
また、 本発明は、 成膜中の基体表面温度が低温でも、 又基体に対する電気的'、' ィァス印加がなくても、 高い保磁力の媒体が容易に形成できる磁気記録媒体の製 造方法を提供することを第 2の目的とする。 発明の開示
本発明の磁気記録媒体は、 基体の表面上に金属下地層を介して少なく とも C o N i C rからなる強磁性金属層が形成され、 前記強磁性金属層の酸素濃度が 1 0 0 w t p p m以下である磁化反転を利用した磁気記録媒体において、 前記強 磁性金属層を形成する結晶粒子は、 少なくとも前記結晶粒子間に、 非晶質 (ァモ ルファス) 構造からなる粒界層を有することを特徴とする。
また、 本発明の磁気記録媒体は、 基体の表面上に金属下地層を介して少なくと も C o C r P tからなる強磁性金属層が形成され、 前記強磁性金属層の酸素濃度 が 1 0 0 w t p p m以下である磁化反転を利用した磁気記録媒体において、 前記 強磁性金属層を形成する結晶粒子は、 少なくとも前記結晶粒子間に、 非晶質 (ァ モルファス) 構造からなる粒界層を有することを特徴とする。
さらに、 前記粒界層が非磁性であること、 又前記強磁性金属雇が第 4元素とし て T aを含有することを特徴とする。
またさらに、 金属下地層を C rとしたこと、 加えて、 金属下地層の膜厚を 5 n m〜3 0 n mとすることも特徴とする。
上述した磁気記録媒体とは別に、 本発明の磁気記録媒体は、 金属下地層を介さ ず、 基体の表面上に強磁性金属層が形成されたことを特徴とする。
本発明における磁気記録媒体の製造方法は、 前記金属下地層及びノまたは前記 強磁性金属層の形成方法が、 スペック成膜法である磁気記録媒体の製造方法にお いて、 前記金属下地層及び/または前記強磁性金属層を形成する際の基体の表面 温度が、 6 0 °C〜 1 5 0 °Cであることを特徴とする。
また、 前記金属下地層及び または前記強磁性金属層を形成する際に、 前記基 体に対して、 ァラズマによる自己バイアス以外に、 電気的バイアスを印加しない ことも特徴とする。 作用
請求項 1に係る発明によれば、 C o N i C rからなる強磁性金属層を有する面 内磁気記錄媒体において、 前記強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層があるため、 高い保磁力及び規格化保磁力 と、 良好な Sノ N特性が実現できる。
請求項 2に係る発明によれば、 C o C r P tからなる強磁性金属層を有する面 内磁気記録媒体において、 前記強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層があるため、 高 t、保磁力及び規格化保磁力 と、 良好な S / N特性が実現できる。
請求項 3に係る発明によれば、 粒界層が非磁性であることから、 小さな磁石で ある各結晶粒子の間の領域が、 磁気的に乱れた状態となることを防止できる。 そ の結果、 磁化反転して磁気記録を行う際に、 ノイズ源となる遷移領域を低減する ことができる。
請求項 4に係る発明によれば、 強磁性金属層が第 4元素として T aを含有する ため、 より大きな粒界層領域を形成することができる。
請求項 5に係る発明によれば、 金属下地層を C rとしたことにより、 前記粒界 層の形成が促進される。
請求項 6に係る発明によれば、 金属下地層の膜厚を 5 n m〜3 0 n mとするこ とにより、 強磁性金属層の結晶粒子をより小さくできる。 その結果、 さらに記録 再生時の媒体ノィズを小さくできる。
請求項 7に係る発明によれば、 垂直磁気記録に対応した、 良好な S Z N特性を 有する磁気記録媒体が得られる。
請求項 8に係る発明によれば、 磁気記録媒体の成膜が低温で可能なため、 成膜 室内の発ガス量が低減でき、 かつ高温加熱に弱いプラスチックなども基体材料と して使用可能となる。
請求項 9に係る発明によれば、 基体に対してプラズマによる自己ハイアス以外 に電気的バイアスを印加しないため、 成膜時の基体雰囲気における発ガス量を減 らすことができる。 また、 基体を保持する治具などからの膜ハガレ 低減でき る。 実施態様例
以下に本発明の実施態様例を説明する。 (基体)
本発明における基体としては、 例えば、 アルミニウム、 チタン及びその合金、 シ リ コン、 ガラス、 カーボン、 セラ ミ ック、 プラスチック、 樹脂及びその複合 体、 及びそれらの表面に異種材質の非磁性膜をスパック法、 蒸着法、 めっき法等 により表面コーティ ング処理を行ったものがあげられる。 この基体表面に設けた 非磁性膜は、 高温で磁化せず、 導電性を有し、 機械加工などがしゃすい反面、 適 度な表面硬度をもっていることが好ましい。 このような条件を満たす非磁性膜と しては、 特にスパッ夕法により作製された (N i — P ) 膜が好ましい。
基体の形状としては、 ディスク用途の場合、 ドーナツ円盤状のものが使われ る。 後述する磁性層等を設けた基体、 即ち磁気記録媒体は、 磁気記録および再生 時、 円盤の中心を軸として、 例えば 3 6 0 0 r p mの速度で回転させて使用す る。 この時、 磁気記録媒体の上空を磁気ヘッ ドが 0 . 1 m程度の高さを飛行す る。 従って、 基体としては、 表面の平坦性、 表裏両面の平行性、 基体円周方向の うねり、 および表面の粗さが適切に制御される必要がある。
また、 基体が回転 Z停止する場合には、 磁気記録媒体と磁気へッ ドの表面同士 が接触及び摺動する (Contact Start Stop, CSSと呼ぶ) 。 この対策として、 基 体の表面には、 同心円状の軽微なキズ (テクスチャー) を設ける場合もある。
(金属下地層)
本発明における金属下地層としては、 例えば、 C r、 T i、 W及びその合金が 挙げられる。 合金とする場合は、 例えば、 V、 N b、 T a等との組み合わせが提 案されている。 特に、 C rは、 後述する強磁性金属層に対して偏析作用を起こす ことから好ましい。 また、 量産的にも多用されており、 成膜方法としては、 スパ ッ夕法、 蒸着法等が用いられる。
この金属下地層の役割は、 その上に C o基からなる強磁性金属層を設けたと き、 強磁性金属層の磁化容易軸が基体面内方向を取るように、 すなわち基体面內 方向の保磁力が高くなるように、 強磁性金属層の結晶成長を促すことである。
C rからなる金属下地層をスパッタ法で作製する場合、 その結晶性を制御する 成膜因子としては、 基体の表面形状、 表面状態、 若しくは表面温度、 成膜時のガ ス圧、 基体に印加するバイアス、 及び形成する膜厚等が挙げられる。 特に、 強磁 性金属層の保磁力は、 C r膜厚に比例して高くなる傾向があるため、 従来は、 例 えば C r膜厚としては 5 0 n m〜 1 5 0 nmの範囲で用いられる。
ここで、 従来の成膜条件 (本発明の成膜条件) とは、 成膜室の背圧が 1 0— 7 ( 1 0— 9) Torr台、 及び、 成膜に用いる A rガスの不純物濃度が 1 p p m以上 ( 1 0 0 p p t以下、 好適には 1 0 p p b以下) を意味する。 また、 金属下地層 を形成する際に用いる夕ーゲッ トは、 不純物濃度が 1 5 0 p pm以下のものが好 ましい。
記録密度を向上するためには、 磁気へッ ドの媒体表面からの浮上量を小さくす る必要がある。 一方、 上記 C r膜厚が大きいと、 媒体の表面粗さも大きくなる傾 向がある。 従って、 薄い C r膜厚で、 高い保磁力を実現することが望まれてい る。
(強磁性金属層)
本発明における強磁性金属層としては、 以下の 2種類が挙げられる。
第 1の種類としては、 金属下地層を介して基体の表面上に設ける場合 (すなわ ち面内記録用の磁性膜の場合) に適応するものであり、 例えば、 C o N i C r ,
C o C r T a , C o C r P t , C o N i P t , C o N i C r T a ,
C o C r P t T a等があげられる。
本発明においては、 従来の成膜条件では結晶粒子間に非晶質 (アモルファス) 構造からなる拉界層をもたない材料系である、 C o N i C rと C o C r P tが好 適に用いられる。 ただし、 本発明の成膜条件を用いれば、 従来の成膜条件下でも 幾らか粒界層を有する他の材料系 (例えば、 C o C r T a系や C o N i P t系) においても、 より拉界層を制御できることが確認された。
ここで、 従来の成膜条件 (本発明の成膜条件) とは、 成膜室の背圧か 1 0—
1 ( I 0 J ) Torr台、 及び、 成膜に用いる A rガスの不純物濃度が 1 p p m以上 ( 1 0 0 p p t以下、 好適には 1 0 p p b以下) を意味する。 また、 強磁性金属 層を形成する際に用いるタ一ゲッ トは、 不純物濃度が 3 0 p pm以下のものが好 ましい。 上記第 1の種類に属するもののうち、 C o N i C rは、 安価で、 成膜雰囲気の 影響を受けづらいため、 C o C r T aは、 媒体ノイズが低いため、 C o P t系 は、 C o N i C rや C o C r T aでは作製が難しい 1 8 0 0 0 e以上の保磁力を 実現するために好適に用いられている。
上記第 1の種類における課題は、 記録密度を向上し、 製造コス卜を下げるため に、 材料コス トが安価で、 媒体ノイズが低く、 高い保磁力が実現できる材料およ び製造方法の開発にある。
第 2の種類としては、 金属下地層を介さず基体の表面上に直接設ける場合 (す なわち垂直記録用の磁性膜の場合) に適応するものであり、 例えば、 C o C r , C o P t , C o C r T a等があげられる。 また、 裏打ち層として、 これら強磁性 金属層の下に、 軟磁性金属層が設けられる場合もある。
本発明の成膜条件を用いれば、 従来の成膜条件下でも幾らか粒界層を有するこ れらの材料系においても、 より粒界層を制御できることが確認された。
上記第 2の種類における課題は、 強磁性金属層の膜厚を薄く しても、 膜面に対 して垂直方向の保磁力を高く維持できる材料および製造方法の開発にある。
(磁化反転を利用した磁気記錄媒体)
本発明における 「磁化反転を利用した磁気記録媒体」 としては、 上述した強磁 性金属層の膜面に対し、 平行に記録磁化を形成する媒体 (面内磁気記録媒体) と、 垂直に記録磁化を形成する媒体 (垂直磁気記録媒体) との 2種類がある。 どちらの媒体においても、 記錄密度を向上するためには、 記録磁化のさらなる 小型化を図る必要がある。 この小型化は、 各記録磁化の漏れ磁束を減少させるた め、 磁気へッ ドにおける再生信号出力を小さくする。 従って、 隣接する記録磁化 の影響と考えられている媒体ノィズは、 さらに低減することが望まれている。
(強磁性金属層の酸素濃度)
本発明における Γ強磁性金属層の酸素濃度」 は、 例えは、 従来のスパッタ法に より作製した C o N i C r膜の場合には、 2 5 0 w t p p m以上であることが分 かっている。 強磁性金属層の酸素濃度の影響、 すなわち媒体の保磁力や媒体ノィ ズに対する影響について調査することが望まれていた。
上述した従来のスパッタ法とは、 強磁性金属層を形成する成膜室の到達真空度 が 1 0— 7 T o r r台、 強磁性金属層を形成するとき用いた A rガスの不純物濃度 が 1 p p m以上である条件下での成膜を指す。
(金属下地層の酸素濃度)
本発明における 「金属下地層の酸素濃度」 は、 例えば、 従来のスパッ夕法によ り作製した C r膜の場合には、 2 5 0 w t p p m以上であることが分かってい る。 金属下地層の酸素濃度の影響、 すなわち金属下地層の膜厚に依存した結晶成 長過程への影響、 金属下地層の上に形成される強磁性金属層への影饗などについ て調査することが望まれていた。
上述した従来のスパッタ法の意味は、 上記の 「強磁性金属層の酸素港度」 の項 における説明と同じである。 (強磁性金属層の規格化保磁力 (H c / H k g inと表記する) )
本発明における 「強磁性金属層の規格化保磁力」 とは、 保磁力 H eを、 結晶粒 の異方性磁界 H k gfainで割った値であり、 結晶粒の磁気的孤立性が高まる度合 いを表すことが、
Magnetization Reversal Mechanism Evaluated by Rotational Hysteresis Loss Analysis for the Thin Film Media" Migaku Takahashi, T. Shimatsu, M. Suekane, M. Miyamura, K. Yamaguchi and H. Yamasaki: IEEE TRANSACTIONS ON MAGUNETICS, V0し 28, 1992, pp. 3285 に示されている。
従来のスパッタ法で作製した強磁性金属層の規格化保磁力は、 強磁性金属層か C o基である限り、 0 . 3より小さな値であった。 Stoner-Wohlfarth 理論によ れは、 結晶粒が完全に磁気的に孤立した場合、 0 . 5をとることが示されてお り、 この値が規格化保磁力の上限値である。
また、 J. -G. Zhu and H. N. Bertram : Journal of Applied Physics, VOL 63, 1988, pp. 3248 には、 強磁性金属層の規格化保磁力が高いということは、 強磁性 金属層を構成する個々の結晶拉の磁気的な相互作用が低下し、 高い保磁力が実現 できることが記載されている。
こ こ で、 保磁力 H c とは、 振動試料型の磁力計 (Variable Sample Magnetometer, 、 S Mと呼ぶ) を用いて測定した磁化曲線から求めた媒体の抗磁 力である。 結晶粒の異方性磁界 H k grai nとは、 高感度トルク磁力計を用いて測 定した回転ヒステリ シス損失が完全に消失する印加磁界である。 保磁力および異 方性磁界とも、 基体の表面上に金属下地層を介して強磁性金属層が形成される磁 気記錄媒体の場合は、 薄膜面内で測定した値であり、 基体の表面上に強磁性金属 層が形成される磁気記録媒体の場合は、 薄膜面内とは垂直な方向で測定した値で ある。
(アルミニゥム合金)
本発明におけるアルミニゥ厶合金としては、 例えばアルミニウムとマグネシゥ ムから構成される合金があげられる。 現在、 H D (ハー ドディスク) 用途では、 アルミニゥム合金を基体としたものか最も使われている。 使用目的が磁気記錄用 途であることから、 金属酸化物の含有量は少ない方が好ましい。
さらに、 アルミニウム合金の表面上には、 非磁性である (N i — P ) 膜が、 め つき法またはスパッタ法で設けられる場合が多い。 その目的は、 耐食性の向上 と、 基体の表面硬度の増加である。 この (N i — P ) 膜の表面には、 磁気へッ ド が媒体表面を摺動する際の摩擦力を低減するため、 同心円状の軽微なキズ (テク スチヤ一) が設けられている。
アルミニウム合金を基体とした場合の課題は、 基体の薄板化と、 基体の表面粗 さの低減である c 現在、 前者は 0 . 5 m m力 <、 後者は 0 . 5 n m程度が限界とさ れている。
(ガラス)
本発明におけるガラスとしては、 例えは、 ガラス表面に対してイオン ドーピン グなどを行 t、強化処理したもの、 ガラス自体が微結晶化した構造からなるもの等 があげられる c 両者とも、 「割れ易い」 というガラスの短所を解消する工夫かな されている。 ガラスは、 アルミニウム合金に比べて表面硬度が高いため、 (N i — P ) 膜な どを設ける必要がない点が優れている。 また、 基体の薄板化、 基体表面の平滑 性、 基体の耐高温特性などの面からも有利である。
しかし、 保磁力の高い磁性膜を作製するためには、 成膜時の基体の表面温度を 高く、 かつ基体に対してバイアスを印加しながら成膜をした方が良いことから、 ガラスの表面上に非磁性層が設けられることがある。 また、 ガラスから磁性膜へ 有害な元素の侵入を防止するため、 非磁性層が配置される場合がある。 あるい は、 磁気へッ ドが媒体表面を摺動する際の摩擦力を低減するために、 ガラスの表 面上に微細な凹凸形状を有する非磁性層が配置される場合もある。
ガラスを基体とした場合の課題は、 基体の薄板化と基体の割れ防止技術との両 立にある。
(シリコン)
本発明におけるシリコンとしては、 例えば、 半導体分野で実績のあるシリコン ウェハーをディスク形状としたものがあげられる。
シリコンは、 ガラスと同様に、 表面硬度が高く、 基体の薄板化が可能で、 基体 表面の平滑性も高く、 基体の耐高温特性が良いという面で、 アルミニウム合金よ り優れている。 これらに加えて、 基体表面の結晶方位や格子定数が選択できるた め、 その上に形成する磁性膜の結晶成長の制御性が向上すると期待されている c また、 アルミニウム合金と同様に、 基体が導電性を有するため基体にバイアス印 加が可能であり、 基体内部から H 20などのガス放出が少ないため成膜空間のよ りクリーン化も達成できるという面からも有利である。
シリコンを基体とした場合の課題は、 ガラスと同様に、 基体の薄板化と基体の 割れ防止技術との両立にある。
(ス 0ッ夕法)
本発明におけるスパッタ法としては、 例えば、 基体がターゲッ 卜の前を移動し ながら薄膜が形成される搬送型と、 基体を夕一ゲッ 卜の前に固定して薄膜が形成 される静止型があげられる。 前者は量産性が高いため低コス卜な媒体の製造に有 利であり、 後者は基体に対するスパッタ粒子の入射角度が安定なため記録再生特 性に優れる媒体の製造が可能とされている。
(金属下地層と強磁性金属層とを順次形成)
本発明における 「金属下地層と強磁性金属層とを順次形成」 とは、 「基体の表 面上 (こ金属下地層が形成された後、 その表面に強磁性金属層が形成されるまでの 間には、 成膜時のガス圧以上に高い圧力雰囲気に曝されることはない」 ことを意 味する。 金属下地層の表面を大気中に曝した後、 その上に強磁性金属層を形成す ると、 媒体の保磁力は、 著しく低下してしま う (例えば、 暴露な し : 1 5 0 0 0 e→暴露あり : 5 0 0 0 e以下) ことは公知である。
(成膜に用いる A rガスの不純物およびその禳度)
本発明における 「成膜に用いる A rガスの不純物」 としては、 例えば、 H。0、 02、 C 0o、 H2、 N2、 C xHv, H, C , 〇, C O等があげられる。 特 に、 膜中に取り込まれる酸素量に影響する不純物は、 H20、 02、 C 02, 0 , C Oと推定される。 従って、 本発明の不純物濃度は、 成膜に用いる A rガス中に 含まれている O、 〇2、 C 0 , 0 , C 0の和で表すことにする。
(高周波スペッ ク法によるクリ一ニング処理)
本発明における 「高周波スパッ夕法によるクリーニング処理」 としては、 例え ば、 放電可能なガス圧空間内に置かれた基体に対して、 R F ( rad io frequency, 13. 56MHz ) 電源から交流電圧を印加する手法があげられる。 この手 法の特長は、 基体が導電性でない場合にも適用可能な点である。 一般に、 クリー ニング処理の効果としては、 基体への薄膜の密着性向上かあげられる。 しかし、 ク リ一二ング処理後、 基体の表面上に形成される薄膜自体の膜質に及ぼす影響に ついては不明な点が多い。
(金属下地層を形成する際に用いた C rターゲッ 卜の不純物およびその濃度) 本発明における 「金属下地層を形成する際に用いた C rターゲッ 卜の不純物 としては、 例えば、 F e、 S i, A 1、 C、 0、 N、 H等があげられる。 特に、 膜中に取り込まれる酸素量に影饗する不純物は、 0と推定される。 従って、 本発 明の不純物濃度とは、 金属下地曆を形成する際に用いた C rターゲッ ト中に含ま れている酸素を示す。
(強磁性金属層を形成する際に用いたターゲッ トの不純物およびその濃度) 本発明における 「強磁性金属層を形成する際に用いた C ο基タ一ゲッ 卜の不純 物」 としては、 例えば、 F e、 S i , A l、 C、 0、 N等があげられる。 特に、 膜中に取り込まれる酸素量に影響する不純物は、 0と推定される。 従って、 本発 明の不純物濃度とは、 強磁性金属層を形成する際に用いたターゲッ ト中に含まれ ている酸素を示す。
(基体に負のバイアス印加)
本発明における 「基体に負のバイアス印加」 とは、 磁気記録媒体として C r下 地膜や磁性膜を形成する際、 基体に対して直流のバイアス電圧を印加することを 指す。 適切なバイアス電圧を印加すると、 媒体の保磁力が増大することが分かつ ている。 上述したバイアス印加の効果は、 どちらか一方の膜を作製するときだけ 印加した場合よりも、 2層とも印加した場合のほうがより大きいことが公知であ る。
しかし、 上記バイアス印加は、 基体近傍の物体、 すなわち基体支持部材ゃ基体 ホルダーにも作用する場合が多い。 この結果、 基体近傍の空間中にガスやダス ト が発生し、 成膜中の薄膜に取り込まれ、 各種の膜特性が不安定になるという不都 合な状態が生じ易くなる。
また、 基体へのバイアス印加は、 以下の問題点もある。
①ガラスなどの非導電性基体には、 適用できない。
②成膜された磁性膜の飽和磁束密度 (M s ) が低下する。
③成膜室内に、 複雑な機構部を設ける必要がある。
5)基体へのノくィァス印加度合 t、の変化が生じやすく、 その結果磁気特性に ' ラ ツキが発生しやすい。 したがって、 上記バイアス印加を行わなくても、 目標とする各種の膜特性を得 られる作製方法が望まれている。
(金属下地層及び Zまたは強磁性金属層を形成する成膜室の到達真空度) 本発明における 「金属下地層及び/または強磁性金属層を形成する成膜室の到 達真空度」 は、 強磁性金属層の材料によっては、 保磁力の値を左右する成膜因子 の 1つである。 特に、 従来は、 強磁性金属層の中に T aを含む C o基の材料で は、 上記の到達真空度が低い場合 (例えば、 5 >: 1 0—。Torr以上の場合) には影 響か大きいと考えられてきた。 しかし、 本発明では、 T aを含まない C o基の材 料である C o N i C rや C o C r P Uこおいても、 結晶粒子間に非晶質 (ァモル ファス) 構造からなる粒界層を形成できるか否かという観点において、 成膜室の 到達真空度が効いて t、ることが分かつた。
(金属下地層及び/または強磁性金属層を形成する際の基体の表面温度) 本発明における 「金属下地層及びノまたは強磁性金属層を形成する際の基体の 表面温度」 は、 強磁性金属層の材料に依存せず、 保磁力の値を左右する成膜因子 の 1つである。 基体が損傷しない範囲であれば、 高い表面温度で成膜をした方が より高い保磁力を実現できる。 基体の損傷とは、 そり、 膨れ、 割れ等の外的変化 や、 磁化の発生、 発ガス量の増加等の内的変化を意味する。
しかし、 高い基体の表面温度を実現するためには、 一般的に何らかの加熱処理 を、 成膜室又はその前室で行う必要がある。 この加熱処理は、 基体近傍の空間中 にガスやダストが発生し、 成膜中の薄膜に取り込まれ、 各種の膜特性か不安定に なるという不都合な面をもっている。
また、 高い基体の表面温度は、 以下の問題点もある。
X X i P . A 1基体における非磁性 N i P層が磁化発生する。
②基体において歪が発生する。
③ガラスなどの熱伝導率が低い基体では、 基体温度を上げたり、 保持すること が難し 、c
したがって、 上記加熱処理を行わないか、 若しくは、 より低温加熱処理でも、 目標とする各種の膜特性を得られる作製方法が望まれている。
(基体の表面粗さ, R a )
本発明における基体の表面粗さとしては、 例えば、 ディスク形状からなる基体 表面を、 半径方向に測定した場合の、 平均中心線粗さ R aがあげられる。 測定器 としては、 RANKTAYL0RH0BS0N社製 TALYSTEP を用いた。
基体が停止状態から回転を開始した場合や、 その逆の場合には、 磁気記録媒体 と磁気へッ ドの表面同士が接触及び摺動する (Contact Start Stop, CSSと呼 ぶ) 。
この時、 磁気へッ ドの吸着や摩擦係数の上昇を抑えるため、 R aは大きい方が好 ましい。 一方、 基体が最大の回転数に達した場合には、 磁気記録媒体と磁気へッ ドとの間隔、 すなわち磁気へッ ドの浮上量を確保する'必要があるので、 R aは小 さい方が望ましい。
従って、 基体の表面粗さ, R aの最大値と最小値は、 上述した理由と、 磁気記 録媒体に対する要求スペックから適宜決定される。 例えば、 磁気へッ ドの浮上量 力く、 2 / i n c hの場合は、 R a = 6 n m〜8 n mである。
し力、し、 さらに高記録密度化を図るためには、 磁気へッ ドの浮上量 (記録再生 動作をする際、 磁気へッ ドが磁気記録媒体の表面上から離れている距離) をより 小さくする必要がある。 この要望に答えるためには、 磁気記録媒体の表面をより 平坦化することが大切となる。 この理由から、 基体の表面粗さは、 より小さなも のが望ましい。
したがって、 基体の表面粗さがより小さな場合でも、 目標とする各種の膜特性 を得られる作製方法が望まれている。 (テクスチャ処理)
本発明におけるテクスチャ処理としては、 例えば、 機械的な研磨による方法、 化学的なエツチングによる方法、 物理的な凹凸膜の付与による方法などがあげら れる。 特に、 磁気記錄媒体の基体として、 最も広く使われているアルミニウム合 金基体の場合は、 機械的な研磨による方法が採用されている。 例えば、 アルミ二 ゥム合金基体の表面に設けた (N i - P ) 膜に対して、 研肖 lj用の塗粒が表面に接 着してあるテープを、 回転する基体に押しつけることにより、 同心円状に軽微な キズを付与する方法がある。 この方法では、 研削用の塗粒を、 テープから遊離さ せて用いる場合もある。
しかし、 上記 「基体の表面粗さ」 の項で述べた理由から、 上記テクスチャ処理 を行わないか、 若しくは、 より軽微なテクスチャ形状でも、 目標とする各種の膜 特性を得られる作製方法が望まれて L、る。
(複合電解研磨処理)
本発明における複合電解研磨処理としては、 例えば、 磁性膜などを形成する際 に用いる真空チャンパ一の内壁に対して、 クロム酸化物を生成物とする酸化不動 態膜を設ける処理があげられる。 この場合、 真空チャンパ一の内壁をなす材料と しては、 例えば S U S 3 1 6 L等が好ましい。 この処理によって、 真空チヤ ン パーの内壁からの 02, H20の放出量を低減できるため、 作製した薄膜中への酸 素取り込み量をより一層低減することが可能である。
本発明で使用した、 ァネルバ'製のマグネ 卜ロ ン スパッ タ装置 (型番 I L C 3 0 1 3 : ロードロック式静止対向型) は、 全ての真空チャンパ一 (仕込 /取り出し室, 成膜室, クリーニング室) の内壁が上述の処理を行っている。 図面の簡単な説明
図 1は、 実施例 1に係る試料 1の透過型電子顕微鏡 (T E M ) 写真である。 図 2は実施例 1に係る試料 2の透過型電子顕微鏡 ( T E M ) 写真である。 図 3は、 実施例 1に係る試料 1の結晶拉子間を、 E D Sを用いて組成分析した 結果を示すグラフである。
図 4は、 実施例 1に係る磁気記録媒体の電磁変換特性を評価するために用いた 読み出し一体型の薄膜へッ ドの磁極構造を示す模式的断面図である。
図 5は、 実施例 4に係る C rからなる金属下地層の膜厚と、 作製した媒体の保 磁力との関係を示すグラフである。
図 6は、 実施例 4に係る C rからなる金属下地層の膜厚と、 作製した媒体のノ ィズとの関係を示すグラフである。
図 7は、 実施例 5に係る金属下地層及び強磁性金属層を形成する際の基体の表 面温度と、 作製した媒体の保磁力との関係を示すグラフである。
図 8は、 実施例 5に係る金属下地層及び強磁性金属層を形成する際の基体の表 面温度と、 作製した媒体の表面粗さ R aとの関係を示すグラフである。
図 9は、 実施例 6に係る基体に印加した負のバイアス値と、 作製した媒体の保 磁力との関係を示すグラフである。
図 1 0は、 磁気記録媒体を説明する概略図である。 (苻号の説明)
1 基体、
2 A 1基板、
3 非磁性 (N i — P ) 層、
4 C r下地層、
5 強磁性金属層、
6 保護膜、
4 1 上部磁極、
4 2 下部磁極、
4 3 書き込みコイル、
4 4 書き込みギャップ、
4 5 シールド、
4 6 M R構成部分、
4 7 読み込みギャップ。 発明を実施するための最良の形態
以下に実施例をあげて本発明をより詳細に説明するが、 本発明がこれら実施例 に限定されることはない。
(実施例 1 ) 本例では、 強磁性金属層を形成する結晶粒子が、 少なくとも前記結晶粒子間 に、 非晶質 (アモルファス) 構造からなる粒界雇をもつ効果について示す。
この効果を確認するため、 金属下地層を形成する成膜室の到達真空度を変化さ せた。 金属下地層を形成する成膜室の到達真空度は、 1 0— 9Torr台と 1 0 ^orr 台の 2通りとした。
この時、 強磁性金属層と金属下地層を形成する時の A rガスに含まれる不純物 濃度は 1 O ppbに、 強磁性金属層を形成する成膜室の到達真空度は 1 0— 9Torr台 に固定した。
本例で媒体作製に用いたスパッタ装置は、 ァネルパ'製のマグネ卜ロンスパッタ 装置 (型番 I L C 3 0 1 3 : ロードロック 7式静止対向型) であり、 全ての真空チ 設
ヤンパー (仕込/取り出し室 (兼ク リーニング室) , 成膜室 1 (金属下地層を形 成) , 成膜室 2 (強磁性金属層を形成) , 成膜室 3 (保護層を形成) ) の内壁 値
は、 複合電解研磨処理がしてある。 表 1は、 本例の磁気記録媒体を作製する時の 成膜条件である。
【表 1】
項 目 i①基体の材質 A 1 — M g合金 (膜厚 1 0 /z m
の (N i — P ) めっき膜付き)
②基体の直径および形状 8 9 m m , ディ スク形状
③基体の表面形状 テクスチャ付き、 R a \ 1 n m
④到達真空度 Torr; 1 0 '又は 1 0 。 (成膜室 1 )
5 >: 1 0 (成膜室 1以外)
⑤ A rガス中の不純物濃度 1 O pb (全室とも同じ)
⑥ A rガス圧 (mTorr ) 2 (全室とも同じ)
⑦基体表面の保持温度 (て) 2 3 0 (全室とも同じ) !⑧ターゲッ トの材米斗 (at¾) し1"' Co62.5Nl30Lr7.5'
i⑨ターゲッ 卜の直径 (inch) 6
1⑩ターゲッ 卜中の不純物濃度 120 (Cr) 20 (CoNiCr) I
(ppm)
ί⑪ターゲッ トと基体との間隔 35 (Cr, CoNiCr, C ) |
1 (mm)
⑫ターゲッ 卜への投入パワー 直流 200 (Cr, CoNiCr) I
! (W) r*r.¾ i n n
1 .0ΐΐ 4 U U (し) 1
i⑬成膜時に基体へ印加した 1 200 (Cr, CoNiCr) I
! 直流バイアス (-Volt) 10 (C) 1
1⑭作製した膜厚 (nm) 1 50 (Cr) , 15 (CoNiCr) , |
1 10 (C)
1 1 1
以下に、 本例の磁気記録媒体の作製方法について、 手順を追って説明する。 以 下の括弧付き番号は、 その手順を表す。
( 1 ) 基体としては、 内ノ外径が 2 δηιπι/δ 9mm、 厚さが 1. 27 mmのデ ィスク形状をしたアルミニゥム合金基板を用いた。 アルミニゥム合金基板の表面 上には、 めっき法により厚さ 10 /mの (N i— P) 膜を設けた。 (N i— P) 膜の表面には、 機械的な手法で同心円状の軽微なキズ (テクスチャー) が付いて おり、 ディ スク半径方向に走査したときの基体の表面粗さは、 平均中心線粗さ R aが 1 nmより小さなものを用いた。
( 2 ) 上記基体は、 後述する成膜の前に、 機械的および化学的な手法による洗浄 処理と、 熱風などによる乾燥処理がなされた。
(3 ) 上記の乾燥処理が済んだ基体を、 スパッタ装置の仕込室に配置された材質 がアルミからなる基体ホルダーにセッ 卜した。 仕込室の内部を、 真空排気装置に よって、 到達真空度が 3 X 10_9Torrまで排気した後、 基体に対して、 赤外線ラ ンァを用いて、 250°C 5分間の加熱処理をした。 ( 4 ) 仕込室から C r膜作製用の成膜室 1に、 前記の基体ホルダーを移動した。 移動した後も基体は、 赤外線ランプにて、 2 5 0 °Cに加熱保持した。 但し、 成膜 室 1 は、 事前に到達真空度を 1 X 1 0— 7Τϋη·、 又は 3 > 1 0— 9Torrまで排気して 用いた。 また、 前記の基体ホルダー移動後は、 仕込室と成膜室 1の間にある ドア パルプは閉じた。 使用した C r ターゲッ 卜の不純物濃度は 1 2 0 p p mであつ た c
( 5 ) 成膜室 1の中に A rガスを導入し、 成膜室 1のガス圧を 2 mTorrとした。 使用した A rガスに含まれる不純物濃度は、 1 O ppb に固定した。
( 6 ) C r ターゲッ 卜に直流電源から電圧 2 0 0 Wを印加してブラズマを発生さ せる。 その結果、 C r夕一ゲッ 卜はスパッ夕され、 ターゲッ トと平行して対向す る位置にある基体の表面上に、 膜厚 5 0 n mの C r層を形成した。
( 7 ) C r層を形成した後、 成膜室 1から C o N i C r膜作製用の成膜室 2に、 前記の基体ホルダーを移動した。 移動した後も基体は、 赤外線ランプにて、 2 5 0 °Cに加熱保持した。 但し、 成膜室 2の事前の到達真空度は、 条件を変更し て行った。 その設定条件とは、 3 >: 1 0—9Torrまで排気してある場合と、 1 :' 1 0— 7Torrまで排気してある場合の 2条件である。 また、 前記の基体ホルダ一移 動後は、 成膜室 1 と成膜室 2の間にある ドアパルプは閉じた。 使用したターゲッ 卜組成は、 6 2 . δ a ΐ 9o C o , 3 0 a t 9o N i , 7 . 5 a t % C rであり、 夕一ゲッ 卜の不純物濃度は 2 0 p p mであった。
( 8! 成膜室 2の中に A rガスを導入し、 成膜室 2のガス圧を 2 mTurrとした。 使用した A rガスに含まれる不純物濃度は、 1 O ppb に固定した。
( 9 ) C o N 1 C r ターゲッ トに直流電源から電圧 2 0 0 Wを印加してブラズマ を発生させる。 その結果、 C o N i C r ターゲッ トはスバッ夕され、 ターゲッ 卜 と平行して対向する位置にある C r層付き基体の表面上に、 膜厚 1 5 n mの C o X i C f 層を形成した。
( 10 ) C o X i C r層を形成した後、 成膜室 2から C膜作製用の成膜室 3に、 前 記の基体ホルダ一を移動した。 移動した後も基体は、 赤外線ランプにて、 2 5 0 てに加熱保持した。 但し、 成膜室 3は事前に到達真空度が 3 X 1 0 _9Torrまで排 気してあり、 前記の基体ホルダ一移動後は、 成膜室 2と成膜室 3の間にある ドア バルブは閉じた。
(11) 成膜室 3の中に A rガスを導入し、 成膜室 3のガス圧を 2mTorrとした。 使用した A rガスに含まれる不純物濃度は、 1 Oppb に固定した。
(12) Cタ一ゲッ 卜に直流電源から電圧 400Wを印加してプラズマを発生させ る。 その結果、 C夕一ゲッ トはスパックされ、 ターゲッ 卜と平行して対向する位 置にある C 0 N i C r層 ZC r層付き基体の表面上に、 膜厚 10 nmの C層を形 成した。
(13) C層を形成した後、 成膜室 3から取り出し室に、 前記の基体ホルダ一を移 動した。 その後、 取り出し室に N2ガスを導入して大気圧としてから基体を取り だした。 上記 ( 1 > (12) の工程により、 層構成が CZC o N i C r / C r / N i P/A 1である磁気記録媒体を作製した。
尚、 夕ーゲッ 卜には、 不純物を極力抑えたものを用いた。 C r形成用のターゲ ッ 卜の不純物は、 F e : 88 S i : 34, A l : 1 0 C : 6 0 O : 1 20, N: 60, H: 1. 1 (w t p pm) である。 また、 強磁性金属層形成 用の夕ーゲッ ト組成は、 N i : 29. 2 a t %, C r : 7. 3 a t %, C o : b a 1であり、 不純物は F e : 27 S i 10, A l 10 C : 30, 0 : 20, N 10 ( w t p pm) である。
図 1及び図 2は、 作製した媒体の強磁性金属層の T E M (透過電子顕微鏡) 写 真である。 図 1及び図 2は、 成膜室 2における成膜前の到達真空度が異なる場合 を示しており、 図 1は 3 X 10— 9Torrの場合 (試料 1 ) 、 図 2は 1 >: 10一7 Torr の場合 (試料 2 ) である。
ΤΕλΙの観察条件は、 以下の表 2に示した。
【表 2】
\試料の作製方法 I
①試料の非成膜面から機械的に研磨処理を行い、 試料厚みを I
1 0 m以下にした。
さらに、 試料の非成膜面からイオンミ リ ング処理を行 t ^ 試^厚みを 5 nm以下にした。 主な処理条件は、 !
A rイオンビーム、 4. 5 k V >: 5 m A、 入射角 1 5度、 i
である。 I
\ T EM観察の条件〉 !
;①使用した TEM: 日立製、 HF 2000 |
②加速電圧 : 200 k V !
上記 2 つ試料の強磁性金属層に含まれる酸素濃度は、 両方と も 1 00 w t p pm以下であることが確認された又 ^。 この酸素濃度の測定は、 二次ィ オン質量分析計 (S I MS : Secondary Ion Mass定 Spectrometer) によって行つ た。
しかし、 上記丁 EMの写真から、 試料 1と 2には結晶粒子間の様子が異なるこ とが分かった。 すなわち、 試料 1 (図 1 ) の場合は、 強磁性金属層を形成する結 晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層があるのに対して、 試 料 2 (図 2 ) の場合は、 試料 1に相当する粒界層が確認できなかった。
図 3は、 試料 1 (図 1 > における 2つの結晶粒子間を、 エネルギー分散型 X線 分光計 (EDS : Energy Dispersive X-ray Spectroscopy) を用いて組成分析し た結果である。 結晶粒子の中心付近 (領域 1と 3 > は、 ターゲッ ト組成に近い組 成であった。 しかし、 粒界層付近 (領域 2 ) は、 C r濃度か著しく高く、 合金組 成的に非磁性であることが分かった。
以下では、 磁気記録媒体の磁気特性と電磁変換特性の各測定条件につ(、て説明 する。 磁気測定は、 振動試料型磁力計 ( V S M ) と トルク磁力計により行った c 測定条件の詳細は表 3に示した。
【表 3】 1 -
、 V s M /
①試料の形状 8 mm c . ティ スク ii片 ffi卜 1
1に成膜したもの 1
②磁場印加方向 1膜面内、 かつ、 ディスク基体に 1
1 1 おけ *ン W厂 J /IS口 J!卞ノ J r ISKiJ [ 1
1③最大印加磁場 1 1 5 k 0 e 1
\ 卜ルク i \
! ①試料〖 の形状 I 8 mm ώ ティスク甚 ϋ片 ffi卜 1
1に成膜したもの 1
②磁場印加方向 1膜面 ( 0度) に対して 3 60度 1
1 1回転させて磁場印加
!③印加磁場 1 1 0 k 0 e 1
1 :
また、 電磁変換特性は、 図 4に示した書き込み、 読み出し一体型の薄膜へッ ド (書き込みはインダクティブへッ ド (Inductive Head) 、 読み出しは MRへッ ド (Magnetic Resistance Head) ) を用い、 表 4の測定条件で行った。
【表 4】
\電磁変換測定の評価条件〉
:媒体 :基体の直径および形状 = 89 m m、 ディ スク形状
基体材質 =N i PZA 1
層構成 = C aOnm) /CoNiCr (15nm) Cr (50nm) Z基体 残留磁束密度と磁性層膜厚との積 = 1 0 0 g a u s s ·
へッ ド:種類 =薄膜へッ ド
ィ ンダクティブへッ ド] 書き込みギヤップ長 = 0. Q 0 um
コア幅 = 6. 0 p. m
コイルの巻き数 = 1 4 t u r n s
[MRへッ ド]
5冗み出しキヤッフ長 = 0. 3 8 m
コア幅 = . 5 μ. m
センス電流 = 5〜 2 0 m A
(平価条件:測定器名称/ G u z i k社製 5 0 1
ディ スク回転時の周速度 = 1 5. 3 m s e c
浮上量 = 8 0〜 1 0 0 請
(保護膜の膜厚 ( 1 0 nm) を含む 重ね書き周波数 = 5. 2 5/ 2 1. OMH z
( 1 7. 4ノ 6 9. 7 K F C I ) 書き込み周波数 f = 2 1. OMH z
0
ノイズバンド幅 = 4 2. OMH z
分解能バンド幅 Δ f = 1 0 0 k H z
媒体ノィズ! \' (単位: /^ Vrms) は、 以下の式で定義した (
1 ,· fmax「
(Δ f J' [ ( N m ( f , f Q ) 2
一 (N e (f)) 2] d f
0
: Nm(f ) =媒体ノイズスぺク トル
: N e (f ) =電気回路ノイズスペク トル
以下に示した表 5は、 図 1と図 2が得られた条件で作製した磁気記録媒体の磁 気特性と電磁変換特性の結果である c
【表 5】
試料の名称 試料 1 試料 2 下地層成膜時の到達 1 1 0—9台 1 1 0 '台
真空度 ( T o 1- r ) 1 非晶質構造からなる ; あり 1 なし
粒思層の右 4ί 1
' h i
俘? ¾ ( Ω p ) 1 94 τ »J Π nリ 》J nリ
h f
H e z H k 0. 3 5 0 . 1 8
r f
SZN ( d B) ! 2 3. 6 1 4. 0
1
表 5の結果から、 試料 2に比べて試料 1の方が、 磁気特性に加えて電磁変換特 性も優れていることが分かった。 したがって、 強磁性金属層を形成する結晶粒子 間に、 非晶質 (アモルファス) 構造からなる粒界層がある方が、 より高記録密度 化に対応可能な磁気記録媒体であると判断した。
(実施例 2 )
本例では、 強磁性金属層として、 C 0 N i C rに代えて C o C r P tを用いた 点が実施例 1 と異なる。 C o C r P t成膜用のターゲッ ト組成は、 Cu7--Ci-13 - Pt19 (at°o) を用いた。
他の点は実施例 1と同様とした。
本例においても、 金属下地層を形成した成膜室 1における成膜前の到達真空度 に依存した結果 (表 6 ) が確認された。
【表 6】 試料の名称 試料 3 試料 4 1
下地層成膜時の背圧 1 1 0— 9Torr台 1 0 'Torr台
1 r
非晶質構造からなる 1 あり 1 なし i
粒界層の有無 i !
1
1 i
保磁力 (· 0 e > ! 34 00 1 5 0 0 !
■■ ' 1
H c ZH k ; 0. 3 7 0 . 20 ;
1 Γ
S, N ( d B) 1 2 5. 0 1 7. 0 !
1 1
表 6の結果から、 試料 4に比べて試料 3の方が、 磁気特性に加えて電磁変換特 性も優れていることが分かった。 したがって、 強磁性金属層が C o C r P tの場 合でも、 強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス) 構造か らなる粒界層がある方か、 より高記録密度化に対応可能な磁気記録媒体であると 判断した。 (実施例 3 )
本例では、 強磁性金属層として、 C o N i C rに代えて C o N i C r T aと C o C r P t T aを用いた点が実施例 1と異なる。 各強磁性金属層を形成するた めに用いたターゲッ 卜組成は、 CoQり .-Ni R-Cr7 Ta Cu7. r-Cri n --Ta1 - b . D b /. D 4 /3. Ό 1U.3 4
Ρΐ10 tat°o) であった。
他の点は実施例 1と同様とした。
本例の場合には、 どちらの強磁性金属層の材料においても、 金属下地層を形成 した成膜室 1における成膜前の到達真空度に依存せず ( 1 0— (T o r r台の場合 及び 1 0_9T o r r台の場合) 、 粒界層が確認された。 しかし、 この到達真空度 かより低い方か、 粒界層の面積か大きかった (表 7 ) 。 【表 7】
i
! 試料の名称 試料 5 1 試料 6 試料 7 試料 8
磁性層の材料 C o N i C r T a C o C r P t T a
,
:下地層成膜時の背圧 10 JTorr台 110一7 Torr台 10 9Torr台 10一' Torr台!
\ 1
:非晶質構造からなる あり ! あり あり あり 粒界層の有無 1
1
1非晶質構造からなる 大 1 小 大 小 ! I粒界層の面積 1
1
!保磁力 ( 0 e ) 2640 ! 1 270 3350 1 600 ;
• H c H k 0. 36 1 0. 22 0. 37 0. 26 :
1
SZN ( d B ) 25. 3 1 20. 3 26. 1 2 1. 5
1
表 7の結果から、 試料 6に比べて試料 5の方が、 試料 8に比べて試料 7の方 力、、
磁気特性に加えて電磁変換特性も優れていることが分かった。 したがって、 強磁 性金属層を構成する合金組成の中に、 T a元素が含まれている場合でも、 強磁性 金属層を形成する結晶粒子間に、 より大きな面積を有した非晶質 (ァモルファ フ、、 構造からなる粒界層がある方か、 より高記錄密度化に対応可能な磁気記録媒 体であると判断した。 (実施例 ~l »
本例では、 金属下地層の膜厚を 0〜 1 00 nmの範囲で変えて成膜を行った点 が実施例 1と異なる。
また、 成膜室 1 (金属下地層を形成) 及び成膜室 2 (強磁性金属層を形成) に おける成膜前の到達真空度が、 共に 1 0— 9Torr台の場合 (条件 a) と 1 0 'Torr 台 (条件 b ) の場合について検討した。
他の点は実施例 1と同様とした。
図 5に、 C rからなる金属下地層の膜厚と、 作製した媒体の保磁力との関係を 示した。 縦軸は、 ディスク状基体の円周方向の保磁力の値であり、 条件 aを ' 印 で、 条件 bをき印で示した。
図 5から、 条件 aの媒体の保磁力は、 C r金属下地層の膜厚が 2. 5 n m以上 のとき、 条件 bの媒体の最大値以上の値を有することが分かった。 また、 C r金 属下地層の膜厚が 5 nm以上では、 20000 e以上の高い保磁力が実現できる ことからさらに好ましい。
図 6は、 C rからなる金属下地層の膜厚と、 作製した媒体のノイズとの関係を 示した。 条件 aを〇印で、 条件 bの最小値を參印で示した。 本例にける媒体ノィ ズの測定方法は、 実施例 1 と同じ測定条件とした。 Cr層の膜厚のみ、 1 nm〜 l O O nmまで可変とし、 その他の条件は固定した。
図 6から、 条件 aの媒体ノイズは、 C r金属下地層の膜厚が 1 00 n m以下の とき、 条件 bの媒体の最小値より低い値をもつことが分かった。 また、 C r金属 下地層の膜厚か 30 n m以下では、 1 0 %以上低〔、媒体ノィズが実現できること からさらに好ましい。
したかって、 強磁性金属層を形成する結晶拉子間に、 非晶質 (アモルファス) 構造からなる粒界層を有する場合、 すなわち条件 aの場合は、 C rからなる金属 下地層の膜厚か 2. 5 nm〜 1 00 nmの範囲にて、 条件 bに比べて、 保磁力か 高いか、 あるいは媒体のノイズが低いものがえられる。 また、 C rからなる金属 下地層の膜厚を 5 nm〜 30 nmの範囲に限定すると、 条件 bと比べて、 保磁力 及び媒体のノイズともより優れたものが得られることからさらに好ましい。 (実施例 5 )
本例では、 金属下地層及び強磁性金属層を形成する際の基体の表面温度を 2 5 て〜 2 5 0 °Cの範囲で変えて成膜を行った点が実施例 1と異なる。
また、 成膜室 1 (金属下地層を形成) 及び成膜室 2 (強磁性金属層を形成) に おける成膜前の到達真空度が、 共に 1 0 _9Torr台の場合 (条件 c ) と 1 0— ' Torr 台 (条件 d ) の場合について検討した。
他の点は実施例 1と同様とした。
図 7に、 金属下地層及び強磁性金属層を形成する際の基体の表面温度と、 作製 した媒体の保磁力との関係を示した。 縦軸は、 ディスク状基体の円周方向の保磁 力の値であり、 条件 cを〇印で、 条件 dをき印で示した。
図 8は、 条件 cにおける、 金属下地層及び強磁性金属層を形成する際の基体の 表面温度と、 作製した媒体の表面粗さ R aとの関係を示した。
図 7から、 基体の表面温度が増加すると、 条件に依存せず、 保磁力が高くなる 傾向が読み取れた。 また、 図 7からは、 上記の表面温度を 6 0 °C以上とすると、 条件 cの方が条件 dより高い保磁力が得られることも分かった。
一方、 図 8が示すように、 1 5 0て以上では、 媒体の表面粗さ R aが急激に増 加した。 このような媒体に対して、 磁気へッ ドの浮上量を 1 5 n mとした磁気へ ッ ド浮上試験を行ったところ、 磁気へッ ドが媒体の表面と衝突する現象、 すなわ ちへッ ドクラッシュが多発した。
しかし、 金属下地層又は強磁性金属層を形成する際の基体の表面温度を 6 0 °C 〜 1 5 0 °Cとした場合には、 へッ ドクラッシュは発生しなかった。
したかって、 強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス > 構造からなる粒界層を持たない場合、 すなわち条件 dより高い保磁力と、 1 5 n m以下の低い磁気へッ ド浮上量とを同時に実現するためには、 金属下地層 及び, または強磁性金属層を形成する際の基体の表面温度を 6 0て〜 1 5 0 °Cと することが必要であることが分かった。
また、 従来では高い保磁力が得られない低温で媒体作製か可能なことから、 加 熱によつて基体からガスが発生する等の理由から利用できなかつた基体、 例えば セラミ ック、 プラスチック、 樹脂なども利用可能となつた c 以上の実施例では、 基体として N i - P Z A 1基板を用いたが、 基体の表面上 に非磁性層が設けてある場合、 例えば N i — P , T i , Cなどが表面に形成され たガラス基板などを用いた場合でも有効であることが別途確認された。 (実施例 6 )
本例では、 金属下地層及び強磁性金属層を形成する際に、 基体へ印加する負の パイァス値を 0〜一 5 0 0 Vの範囲で変えて成膜を行った点が実施例 1 と異な る。
また、 成膜室 1 (金属下地層を形成) 及び成膜室 2 (強磁性金属層を形成) に おける成膜前の到達真空度が、 共に 1 0— 9Torr台の場合 (条件 e ) と 1 0— 7Torr 台 (条件 ί ) の場合について検討した。
他の点は実施例 1と同様とした。
図 9に、 基体に印加した負のバイアス値と、 作製した媒体の保磁力との関係を 示した。 縱軸は、 ディスク状基体の円周方向の保磁力の値であり、 条件 eを〇印 で、 条件 f を攀印で示した。
図 9から、 基体への印加バイアスの値が増加すると、 条件に依存せず、 保磁力 が高くなる傾向が読み取れた。 また、 図 9からは、 条件 eにおける印加バイアス 値が零の場合の方か、 条件 Πこおいて最大保磁力が得られる場合 (印加バイアス =一 3 0 0 V ) より、 さらに大きな保磁力が確認された。
また、 金属下地層又は強磁性金属層を形成する際の基体への印加バイアスを変 えた場合にも、 同じ傾向であることが確認された。
したかって、 強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス > 構造からなる拉界層を有する場合、 すなわち条件 eの場合は、 金属下地層及び 又は強磁性金属層を形成する際に、 基体に対して、 プラズマによる自己 イアス 以外に、 電気的 イアスを印加しなくても、 条件 f より高い保磁力の磁気記録媒 体の形成か可能と判断した。
二の結果、 バイアス印加による不都合、 すなわち、 ①基体近傍 (物体基体支持 部材ゃ基体ホルダ一) からのガスやダス トの発生、 ②ガラスなどの非導電性基体 には、 適用できない、 ③成膜された磁性膜の飽和磁束密度 (M s ) か低下する、 ④成膜室内に、 複雑な機構部を設ける必要がある、 ⑤基体へのバイアス印加度合 いの変化が生じやすく、 その結果磁気特性にパラツキが発生しやすい、 などの問 題を回避することが可能となつた。 (実施例 7 )
本例では、 金属下地層を介さずに、 基体の表面上に強磁性金属層を形成した点 が実施例 1と異なる。 また、 強磁性金属層としては C o 85 C r Γ ( a t を用 いた。
他の点は実施例 1と同様とした。
磁気記録媒体の表面に対して垂直方向の保磁力を調べた。 その結果、 強磁性金 厲層を形成する成膜室の到達真空度が、 1 0— 7Torr台の場合に比べて、 1 0一 9Torr台の場合の方が、 より高い保磁力をもつことが確認された。 また、 強磁性 金属層を形成する結晶粒子間にある非晶質 (アモルファス) 構造からなる粒界層 の面積は、 1 0 ' Torr台の場合に比べて、 1 0 orr台の場合の方か、 より広く なっていることが分かった。 産業上の利用可能性
本発明は、 量産安定性に優れた C o N i C r合金磁性膜や C o C r P t合金磁 性膜からなる強磁性金属層を有する面内磁気記録媒体において、 保磁力が高く、 力、つ、 電磁変換特性の S Z N比 (記録信号 S、 媒体ノイズ N ) が良好な磁気記録 媒体を提供することができる。
また、 本発明は、 C o C r合金磁性膜からなる強磁性金属層を有する垂直磁気 記録媒体においても、 高保磁力の磁気記録媒体を提供することができる。
さらに、 本発明は、 成膜中の基体表面温度が低温でも、 又は、 基体に対する電 気的 イアス印加がなくても、 高い保磁力と優れた S ZN比を合わせもつ磁気記 録媒体が容易に形成できる製造方法を提供することができる。

Claims

請求の範囲
1 . 基体の表面上に金属下地層を介して少なくとも C o N i C rからなる強磁 性金属層が形成され、 前記強磁性金属層の酸素濃度が 1 0 0 w t p p m以下であ δ る磁化反転を利用した磁気記録媒体において、
前記強磁性金属層を形成する結晶粒子は、 少なくとも前記結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層を有することを特徴とする磁気記録媒体。
2 . 基体の表面上に金属下地層を介して少なくとも C o C r P tからなる強磁 性金属層か形成され、 前記強磁性金属層の酸素濃度が 1 0 O w t p p m以下であ0 る磁化反転を利用した磁気記録媒体において、
前記強磁性金属層を形成する結晶粒子は、 少なくとも前記結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層を有することを特徴とする磁気記録媒体。
3 . 前記粒界層か、 非磁性であることを特徴とする請求項 1又は 2に記載の磁 気記録媒体。
5 4 . 前記強磁性金属層が、 第 4元素として T aを含有することを特徴とする請 求項 1乃至 3のいずれか 1項に記載の磁気記録媒体。
5 . 前記金属下地層が C rであることを特徴とする請求項 1乃至 4のいずれか 1項に記載の磁気記録媒体。
6 . 前記金属下地層の膜厚が 5 n n!〜 3 0 n mであることを特徴とする請求項0 1乃至 5のいずれか 1項に記載の磁気記録媒体。
7 . 前記金属下地層を介さず、 前記基体の表面上に前記強磁性金属層が形成さ れたことを特徴とする請求項 1乃至 4のいずれか 1項に記載の磁気記錄媒体 c
8 . 前記金属下地層及び Z又は前記強磁性金属層の形成方法が、 スパ'ッタ成膜 法である磁気記録媒体の製造方法において、
5 前記金属下地層及び Z又は前記強磁性金属層を形成する際の基体の表面温度か、 6 0て〜 1 5 0 °Cであることを特徴とする請求項 1乃至 7のいずれか 1項に記載 の磁気記録媒体の製造方法。
9 . 前記金属下地層及びノ又は前記強磁性金属層を形成する際に、 前記基体に 対して、 フラズマによる自己バイアス以外に、 電気的バイアスを印加しないこと を特徴とする請求項 1乃 S 8のいずれか 1項に記載の磁気記録媒体の製造方法。
PCT/JP1995/000380 1995-03-08 1995-03-08 Support d'enregistrement magnetique et son procede de fabrication WO1996027877A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/894,999 US6153297A (en) 1995-03-08 1995-03-08 Magnetic recording medium and method of manufacturing the same
KR1019970706035A KR19980702630A (ko) 1995-03-08 1995-03-08 자기기록매체 및 그 제조방법
PCT/JP1995/000380 WO1996027877A1 (fr) 1995-03-08 1995-03-08 Support d'enregistrement magnetique et son procede de fabrication
EP95910770A EP0817174A1 (en) 1995-03-08 1995-03-08 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000380 WO1996027877A1 (fr) 1995-03-08 1995-03-08 Support d'enregistrement magnetique et son procede de fabrication

Publications (1)

Publication Number Publication Date
WO1996027877A1 true WO1996027877A1 (fr) 1996-09-12

Family

ID=14125708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000380 WO1996027877A1 (fr) 1995-03-08 1995-03-08 Support d'enregistrement magnetique et son procede de fabrication

Country Status (4)

Country Link
US (1) US6153297A (ja)
EP (1) EP0817174A1 (ja)
KR (1) KR19980702630A (ja)
WO (1) WO1996027877A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869479A4 (en) * 1995-11-16 1999-09-15 Migaku Takahashi MAGNETIC RECORDING MEDIUM AND ITS PRODUCTION METHOD
EP0971341A4 (en) * 1997-03-28 2000-03-22 Migaku Takahashi MAGNETIC RECORDING MEDIUM
JP2002150553A (ja) * 2000-11-09 2002-05-24 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
US6682833B1 (en) 1999-03-19 2004-01-27 Fujitsu Limited Magnetic recording medium and production process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968627A (en) * 1998-01-15 1999-10-19 Flextor, Inc. Metal foil disk for high areal density recording in environments of high mechanical shock
JP2001043530A (ja) * 1999-07-28 2001-02-16 Anelva Corp 情報記録ディスク用保護膜作成方法及び情報記録ディスク用薄膜作成装置
US6821653B2 (en) * 2000-09-12 2004-11-23 Showa Denko Kabushiki Kaisha Magnetic recording medium, process for producing the same, and magnetic recording and reproducing apparatus
JP2006127588A (ja) * 2004-10-27 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117143A (ja) * 1985-11-18 1987-05-28 Hitachi Metals Ltd 磁気記録媒体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316631A (en) * 1989-02-16 1994-05-31 Victor Company Of Japan, Ltd. Method for fabricating a magnetic recording medium
US5162158A (en) * 1989-07-24 1992-11-10 Magnetic Peripherals Inc. Low noise magnetic thin film longitudinal media
WO1991006948A1 (en) * 1989-10-27 1991-05-16 Kabushiki Kaisha Kobe Seiko Sho Method of producing magnetic recording medium
US5587235A (en) 1993-02-19 1996-12-24 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
JP2629583B2 (ja) 1993-05-13 1997-07-09 日本電気株式会社 磁気抵抗効果膜およびその製造方法
US5853847A (en) 1993-07-21 1998-12-29 Takahashi; Migaku Magnetic recording medium and its manufacture
US5678473A (en) 1996-01-16 1997-10-21 Hughes; Sean Three-stage barbecue cooker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117143A (ja) * 1985-11-18 1987-05-28 Hitachi Metals Ltd 磁気記録媒体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869479A4 (en) * 1995-11-16 1999-09-15 Migaku Takahashi MAGNETIC RECORDING MEDIUM AND ITS PRODUCTION METHOD
EP0971341A4 (en) * 1997-03-28 2000-03-22 Migaku Takahashi MAGNETIC RECORDING MEDIUM
US6682833B1 (en) 1999-03-19 2004-01-27 Fujitsu Limited Magnetic recording medium and production process thereof
JP2002150553A (ja) * 2000-11-09 2002-05-24 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法

Also Published As

Publication number Publication date
KR19980702630A (ko) 1998-08-05
US6153297A (en) 2000-11-28
EP0817174A4 (ja) 1998-01-28
EP0817174A1 (en) 1998-01-07

Similar Documents

Publication Publication Date Title
KR100418640B1 (ko) 자기기록매체및그의제조방법
JP3481252B2 (ja) 磁気記録媒体及びその製造方法
JP3423907B2 (ja) 磁気記録媒体及びその製造方法並びに磁気記録装置
WO1996027877A1 (fr) Support d&#39;enregistrement magnetique et son procede de fabrication
JP3666853B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
JP4123806B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
JP2004110941A (ja) 磁気記録媒体および磁気記憶装置
JP3724814B2 (ja) 磁気記録媒体
KR20050012227A (ko) 수직 자기 기록 매체와 그것을 갖춘 자기 기록 장치 및수직 자기 기록 매체의 제조방법 및 제조장치
JP4391010B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
JP3649416B2 (ja) 磁気記録媒体の製造方法
US6607612B1 (en) Magnetic alloy and magnetic recording medium and method for preparation thereof, and target for forming magnetic film and magnetic recording device
JP2806443B2 (ja) 磁気記録媒体及びその製造方法
WO1998044491A1 (fr) Support d&#39;enregistrement magnetique
US20020155322A1 (en) Magnetic recording medium
JPH03233909A (ja) 磁性薄膜、薄膜磁気ヘッド及び磁気記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95197757.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970706035

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995910770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08894999

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995910770

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706035

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1995910770

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970706035

Country of ref document: KR