WO1996020039A1 - Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues - Google Patents

Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues Download PDF

Info

Publication number
WO1996020039A1
WO1996020039A1 PCT/FR1995/001692 FR9501692W WO9620039A1 WO 1996020039 A1 WO1996020039 A1 WO 1996020039A1 FR 9501692 W FR9501692 W FR 9501692W WO 9620039 A1 WO9620039 A1 WO 9620039A1
Authority
WO
WIPO (PCT)
Prior art keywords
crown
cage
effluents
zone
catalytic
Prior art date
Application number
PCT/FR1995/001692
Other languages
English (en)
Inventor
Jacques Bourcier
Jean Morlec
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Priority to CA002183683A priority Critical patent/CA2183683C/fr
Priority to BR9506888A priority patent/BR9506888A/pt
Priority to MX9603048A priority patent/MX9603048A/es
Priority to AU43939/96A priority patent/AU703970B2/en
Priority to EP95942765A priority patent/EP0757585B1/fr
Priority to JP8520246A priority patent/JPH09511950A/ja
Priority to US08/700,511 priority patent/US5820836A/en
Priority to DE69531045T priority patent/DE69531045T2/de
Publication of WO1996020039A1 publication Critical patent/WO1996020039A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the invention relates to an improved rotary transfer device for gaseous effluents, suitable for operating as a heat exchanger and as a purifier with a thermal and / or catalytic effect.
  • the invention finds applications in particular in heat exchange systems or adapted to purify air loaded with substances such as volatile organic compounds (C.O.V), which can be oxidized and eliminated by thermal or catalytic incineration.
  • substances such as volatile organic compounds (C.O.V)
  • C.O.V volatile organic compounds
  • a device for heat exchange and purification by thermal and / or catalytic effect of polluted gases such as VOCs ⁇ comprises an envelope or cage, a crown containing a charge of particulate solid materials chosen because they have a large surface for thermal exchange (silica, granite or lighter materials such as metallic or other cellular structures, or even cryogenic nodules for negative temperatures, etc.) which is arranged at the inside the cage in all its depth.
  • the crown is divided into several parts by an internal partitioning or else, as the case may be, it supports a certain number of baskets.
  • Motor means are used to animate the crown and the cage in a rotational movement relative to each other about a vertical axis (either that the crown rotates, the cage being fixed, or that the crown on the contrary is fixed and the cage rotates around it).
  • the prior device comprises a conduit for the introduction of effluents into the cage and a conduit for the evacuation of effluents out of the cage.
  • the crown has a first sector for communicating at any time the introduction conduit with the central part of the cage, where a first heat transfer takes place between the effluents and the charge in the crown.
  • a second sector of the crown where a second heat transfer takes place between effluents and the charge in the crown, the central part of the cage communicates at all times with the evacuation duct.
  • This prior device can be used only as a simple heat exchanger or for a mixed use of heat exchanger and incinerator for polluted effluents. In this case, the introduction conduit receives effluents containing polluting substances.
  • the first sector and the second sector communicate directly with each other via the central part of the cage.
  • a thermal reactor optionally provided with a catalytic bed chosen to cause an exothermic reaction in the presence of polluting substances, is arranged in this central part to burn the polluting substances in the effluents channeled by the first angular zone.
  • the crown rotates between two fixed parts: the central reactor and the casing.
  • the central reactor To prevent leakage by bypassing the reactor in the central zone, it is necessary to provide a double annular seal. This is achieved by imposing tight tolerances on form and concentricity both at the manufacturing stage and at the assembly stage.
  • the rotary catalytic purification device for polluted gaseous effluents comprises an envelope or cage, a crown disposed inside the cage, and motor means for animating the crown with a relatively continuous rotational movement.
  • the crown comprising at least a first sector for communicate at all times the introduction conduit with the central part of the cage, and at least one second sector of the crown to communicate at all times the central part of the cage with the evacuation circuits and a reactor catalytic purification to burn polluting substances mixed with effluents channeled through the first angular zone.
  • the device is characterized in that it comprises in combination at least one annular catalytic bed disposed in the inner part of the crown around its entire periphery and a charge of a material having a large heat exchange surface disposed in the crown externally to the catalytic bed.
  • the polluted effluents after having warmed up in contact with the thermal mass in the external part of the first angular sector of the crown, are purified by crossing for the first time the annular catalytic bed lining the inner wall of the crown. They cross the bed a second time on the other side of the central part, before yielding part of the heat acquired by catalytic incineration, to the thermal mass in the second angular sector of the crown before their evacuation.
  • This arrangement of the mass with a large heat exchange surface and of the catalyst in the rotating part of the device makes it possible to reduce the mass and the volume of the crown, which simplifies the design; it also facilitates assembly and lowers manufacturing and maintenance costs.
  • the crown being inside the cage, two bearings are enough to maintain its axis and absorb the forces.
  • external drive means which are far enough away from the hottest areas, and install them on top of the device, which makes it possible to reduce its overall height.
  • the thickness of the catalytic bed is chosen to be sufficient for the polluted gases to be purified after their two successive passages through the catalytic bed, on either side of the central part.
  • the thermal reactor preferably comprises heating means communicating with the central zone of the crown, such as a burner disposed in a fresh effluent supply duct opening into the central zone of the crown or else a burner arranged externally to the crown above its central zone and associated in this case, preferably, with injection means in an intermediate zone between the zones for introducing and discharging a flow of fresh gas for regulating temperature.
  • heating means communicating with the central zone of the crown, such as a burner disposed in a fresh effluent supply duct opening into the central zone of the crown or else a burner arranged externally to the crown above its central zone and associated in this case, preferably, with injection means in an intermediate zone between the zones for introducing and discharging a flow of fresh gas for regulating temperature.
  • the incineration temperature can easily be regulated when it varies due to the variation in the rate of pollutants in the effluents.
  • the crown is eccentric inside the cage, the latter delimiting around the crown two peripheral zones of variable sections, and two intermediate zones with high pressure drop so as to prevent parasitic flows from bypassing the thermal reactor, and it is possible to have isolation joints between the cage and the crown.
  • the crown is divided into several angular zones by an internal partitioning (8), each of these zones being filled, outside the catalytic bed, with a bulk charge of a material with a large exchange surface. thermal.
  • the crown may also include a plurality of parallelepipedal chambers to contain the charge with a large heat exchange surface.
  • This charge with a large heat exchange surface consists, for example, of knitted, woven or needled metal mattresses, blocks of stones, a honeycomb structure or from turnings or machining chips.
  • the crown and the cage each comprise an upper terminal wall and a lower end wall, and preferably sealing elements arranged between the corresponding walls, such as brushes or flaps.
  • the high and low tightness is easy to ensure because the temperature there is relatively low.
  • the device can also include means for injecting into an intermediate zone between the zones for introducing and discharging a flow of purge gas.
  • the continuous purification process according to the invention is characterized in that it comprises the establishment of a permanent circulation of effluents to be purified on the one hand between supply conduits and on the other hand evacuation through a rotating crown provided with an internal partitioning and containing at least one annular catalytic bed disposed against its inner wall and a charge of a material having a large heat exchange surface disposed in the crown outside the bed catalytic, so that the effluents cross the rotating charge and heat up in contact with it in a first heat exchange zone and, after a double crossing of the rotating catalytic bed and incineration, they heat up the thermal mass in a second zone d 'heat exchange.
  • it is possible to incinerate polluting substances at a temperature of the order of only 400 to 500 ° C., which simplifies the design and reduces the technical constraints as well as the manufacturing cost.
  • FIG.1 which shows schematically in section an embodiment of the device, in a mixed use of incinerator of polluting substances in effluents, and heat exchanger;
  • the device comprises (Fig.l) a drum consisting of a crown 1 with a vertical axis arranged inside a metal outer casing or cage 2, of cylindrical shape for example.
  • the diameter of the cage or envelope 2 is greater than that of the crown 1.
  • the latter is offset relative to the cage 2.
  • the cage 2 On either side of the diametrical plane containing the vertical axis 3 of the crown, and following a limited angular sector, the cage 2 comprises a side wall portion 4 substantially tangent to the side wall of the crown 5.
  • the interior space of the cage around the crown, 1 on either side of the wall portion 4 thus comprises two rounded zones of variable section Za and Zb. They communicate respectively with a conduit 6 for supplying the gaseous effluents to be purified, and a conduit 7 for discharging these same effluents after purification.
  • the crown 1 is provided with an internal partition consisting of straight radial plates 8 regularly distributed.
  • a second angular sector Z2 communicates the central zone 1 1 of the crown with the divergent zone Zb and with the discharge duct 7 (flow Fs).
  • the inner wall of the crown is lined all around an annular catalytic bed 9 which the effluents must pass through to reach the central reactive zone 11.
  • This catalytic bed 9 consists either of a particle bed, or preferably of a honeycomb catalyst, which allows, all other things being equal, to reduce its thickness and volume, and above all to reduce the pressure drop it generates.
  • an active mass M is made up of a material with a large heat exchange surface.
  • They can be ceramic or metallic balls, turnings or machining chips, loose or structured packing, a honeycomb structure with regular or irregular honeycombs such as honeycombs, metallic or ceramic mattresses knitted woven or needled etc.
  • a honeycomb structure such as that described in patent FR 2,564,037 of the applicant is used.
  • This mass large heat exchange surface can also consist of pebbles.
  • the crown can also be arranged to serve as a support for a number of parallelepiped baskets 10 separated from each other, as shown in FIG. 1.
  • the crown and the cage are closed at their lower and upper parts by flat plates 13. Between the corresponding plates of the crown and the cage, several brushes (not shown) in simultaneous support, prevent parasitic flows of bypass between the zones Za and Zb.
  • Motor means (not shown) arranged above the cage for example, are coupled with the axis 3 of the crown, to drive it in rotation relative to the cage 2.
  • the intermediate angular sector delimited by the wall portion 4 of the cage preferably comprises a duct 14 for an injection of fresh air intended to purge the polluted effluents through the thermal mass and the catalyst in the few angular sectors of the ring passing in front of it, before each reversal of the direction of flow.
  • the mass of purge air after crossing the purged sectors is found in the central zone 11 where it is entrained with the main flow towards the zone Zb through the crown 1.
  • the cage In the angular sector opposite the duct 14, the cage includes another duct 15 (FIG. 1) for injecting fresh air intended to possibly regulate the temperature of the catalytic reaction if it rises too high.
  • the reaction which takes place in the central zone, is exothermic and is regulated so as to release enough energy to substantially compensate for the heat dissipation.
  • a proportion of 0.4 g of VOC per m3 of effluent is sufficient for autothermal operation.
  • the temperature control in the catalytic reactor is ensured separately by a burner B aud above the crown and by a radial duct 15 bringing fresh effluents.
  • the burner B instead of being located directly above the central zone 11, can be arranged in a duct 16 opening into this zone.
  • the pipe 16 can be connected as a branch to the pipe 6 for supplying the effluents to be treated.
  • the flow diverted through this conduit 16 is controlled by an NI valve.
  • the burner B is supplied with fuel via a control valve V2.
  • V2 By varying the flow rate of effluents derived from line 16 and its temperature by means of burner B, the exothermic reaction in the reactor can be controlled. If the concentration of pollutants exceeds the autothermicity limit, cold effluents are injected. If on the contrary, this concentration remains below this limit and also during the start-up period of the installation, the burner is supplied.
  • VOCs polluting compounds
  • the high temperature gases from the reactive zone pass through the part of the charge M located in the angular zone z2 of the ring and give it a good part of their calories.
  • the rotation of the crown 1 relative to the cage 2 gradually brings the heated elements towards the angular zone Zl where they can in turn yield to the incoming gases via the supply duct 6, part of the accumulated heat energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Incineration Of Waste (AREA)

Abstract

Le dispositif comporte essentiellement une couronne (1) d'axe vertical entraînée en rotation à l'intérieur d'une cage (2) qui est agencée pour délimiter autour de la couronne deux zones de section variable (Za, Zb) respectivement d'introduction des effluents pollués et d'évacuation des effluents épurés. L'épuration se fait par passage d'une zone à l'autre au travers de la couronne qui comporte un lit de catalyseur annulaire (9) tapissant sa paroi intérieure et de préférence une charge annulaire (M) extérieure au lit catalytique, d'un matériau présentant une grande surface d'échange thermique. Des moyens sont utilisés pour créer des pertes de charge importantes évitant les fuites par contournement de la couronne. Un brûleur peut être adjoint si nécessaire dans la zone de réaction. Cet agencement permet de réduire considérablement l'encombrement et le poids du dispositif ainsi que son coût de fabrication et de maintenance. Application à l'épuration des gaz chargés par exemple de composés organiques volatils.

Description

DISPOSITIF ROTATIF PERFECTIONNE D EPURATION CATALYTIQUE D'EFFLUENTS POLLUÉS
L'invention concerne un dispositif rotatif perfectionné de transfert pour des effluents gazeux, adapté à fonctionner comme échangeur de chaleur et comme épurateur à effet thermique et/ou catalytique.
L'invention trouve des applications notamment dans les systèmes d'échange de chaleur ou adaptés à purifier de l'air chargé de substances telles que des composés organiques volatils (C.O.V), qui pouvent être oxydées et éliminées par incinération thermique ou catalytique.
Par la demande de brevet 94/06.282 du demandeur, on connait un dispositif d'échange thermique et d'épuration par effet thermique et/ou catalytique de gaz pollués tels que des C.O.V Η comporte une enveloppe ou cage, une couronne contenant une charge de matériaux solides particulaires choisis du fait qu'ils présentent une grande surface d'échange theπnique (silice, granit ou matériaux plus légers tels que structures alvéolaires métalliques ou autres, ou encore nodules cryogéniques pour les températures négatives, etc) qui est disposée à l'intérieur de la cage dans toute sa profondeur. La couronne est divisée en plusieurs parties par un cloisonnement intérieur ou bien selon les cas, elle sert de support à un certain nombre de paniers. Des moyens moteurs sont utilisés pour animer la couronne et la cage d'un mouvement de rotation l'une relativement à l'autre autour d'un axe vertical (soit que la couronne tourne, la cage étant fixe, soit que la couronne au contraire est fixe et la cage tourne autour d'elle).
Le dispositif antérieur comporte un conduit pour l'introduction d'effluents dans la cage et un conduit pour l'évacuation d'effluents hors de la cage. La couronne comporte un premier secteur pour faire communiquer à tout instant le conduit d'introduction avec la partie centrale de la cage, où s'effectue un premier transfert de chaleur entre les effluents et la charge dans la couronne. Par un deuxième secteur de la couronne, où s'effectue une deuxième transfert de chaleur entre des effluents et la charge dans la couronne, la partie centrale de la cage communique à tout instant avec le conduit d'évacuation. Ce dispositif antérieur peut être utilisé seulement comme échangeur de chaleur simple ou pour un emploi mixte d'échangeur de chaleur et d'incinérateur pour effluents pollués. Dans ce cas, le conduit d'introduction reçoit des effluents contenant des substances polluantes. Le premier secteur et le deuxième secteur communiquent directement l'un avec l'autre par l'intermédiaire de la partie centrale de la cage. Un réacteur thermique pourvu éventuellement d'un lit catalytique choisi pour provoquer une réaction exothermique en présence des substances polluantes, est disposé dans cette partie centrale pour brûler les substances polluantes dans les effluents canalisés par la première zone angulaire.
Avec cet agencement, la couronne tourne entre deux parties fixes: le réacteur central et l'enveloppe. Pour empêcher les fuites par contoumement du réacteur de la zone centrale, il est nécessaire de prévoir une double étanchéité annulaire. On l'obtient en imposant des tolérances serrées de forme et de concentricité ttant au stade de la fabrication qu'à celui du montage.
Le dispositif rotatif d'épuration catalytique d'effluents gazeux pollués selon l'invention, comporte une enveloppe ou cage, une couronne disposée à l'intérieur de la cage, et des moyens moteurs pour animer la couronne d'un mouvement de rotation continu relativement à la cage autour d'un axe vertical, au moins un conduit pour l'introduction d'effluents dans la cage et au moins un conduit pour l'évacuation d'effluents hors de la cage, la couronne comportant au moins une premier secteur pour faire communiquer à tout instant le conduit d'introduction avec la partie centrale de la cage, et au moins un deuxième secteur de la couronne pour faire communiquer à tout instant la partie centrale de la cage avec les circuits d'évacuation et un réacteur d'épuration catalytique pour brûler les substances polluantes mêlées aux effluents canalisés par la première zone angulaire.
Le dispositif est caractérisé en ce qu'il comporte en combinaison au moins un lit catalytique annulaire disposé dans la partie intérieure de la couronne sur tout son pourtour et une charge d'un matériau présentant une grande surface d'échange thermique disposée dans la couronne extérieurement au lit catalytique.
Avec cet agencement, les effluents pollués (éventuellement préchauffés dans un échangeur extérieur) après s'être réchauffés au contact de la masse thermique dans la partie extérieure du premier secteur angulaire de la couronne, sont épurés en traversant une première fois le lit catalytique annulaire tapissant la paroi intérieure de la couronne. Ils traversent une deuxième fois le lit de l'autre côté de la partie centrale, avant de céder une partie de la chaleur acquise par l'incinération catalytique, à la masse thermique dans le deuxième secteur angulaire de la couronne avant leur évacuation.
Cette disposition de la masse à grande surface d'échange thermique et du catalyseur dans la partie tournante du dispositif permet de diminuer la masse et le volume de la couronne ce qui simplifier la conception; elle facilite aussi le montage et abaisse les coûts de fabrication et de maintenance.
La couronne étant à l'intérieur de la cage, deux paliers suffisent pour maintenir son axe et encaisser les efforts. Pour l'entraîner en rotation, on peut utiliser des moyens moteurs extérieurs suffisamment éloignés des zones les plus chaudes, et les installer sur le dessus du dispositif, ce qui permet de diminuer son encombrement en hauteur.
L'épaisseur du lit catalytique est choisie suffisante pour que les gaz pollués soient épurés après leurs deux passages successifs au travers du lit catalytique, de part et d'autre de la partie centrale.
Le réacteur thermique comporte de préférence des moyens de chauffage communiquant avec la zone centrale de la couronne, tels qu'un brûleur disposé dans un conduit d'amenée d'effluents frais débouchant dans la zone centrale de la couronne ou bien d'un brûleur disposé extérieurement à la couronne au-dessus de sa zone centrale et associé dans ce cas, de préférence, à des moyens d'injection dans une zone intermédiaire entre les zones d'introduction et d'évacuation d'un flux de gaz frais de régulation de température.
Avec cette combinaison de moyens de refroidissement et de réchauffage des effluents, on peut facilement réguler la température d'incinération quand elle varie en raison de la variation du taux de substances polluantes dans les effluents.
Cette adjonction d'un brûleur est le plus souvent nécessaire au démarrage si les gaz pollués introduits ne sont pas assez chauds ou si le taux de C.O.V dans les gaz n'est pas suffisant à l'auto-entretien de la réaction exothermique dans le réacteur. Suivant un mode de réalisation, la couronne est excentrée à l'intérieur de la cage, celle-ci délimitant autour de la couronne deux zones périphériques de sections variables, et deux zone intermédiaires à perte de charge élevée de façon à empêcher les flux parasites de contoumement du réacteur thermique, et l'on peut disposer des joints d'isolement entre la cage et la couronne.
Suivant un mode de réalisation, la couronne est divisée en plusieurs zones angulaires par un cloisonnement intérieur (8), chacune de ces zones étant garnie, extérieurement au lit catalytique, d'une charge en vrac d'un matériau à grande surface d'échange thermique. La couronne peut comporter aussi une pluralité de chambres parallélépipédiques pour contenir la charge à grande surface d'échange thermique.
Cette charge à grande surface d'échange thermique est constituée par exemple de matelas métalliques tricotés, tissés ou aiguilletés, de blocs de cailloux, d'une structure alvéolaire ou à partir de tournures ou copeaux d'usinage.
La couronne et la cage comportent chacune une paroi teπninale supérieure et une paroi terminale inférieure, et de préférence des éléments d'étanchéité disposés entre les parois correspondantes, tels que des balais ou bavettes. L'étanchéité haute et basse est facile à assurer du fait que la température y est relativement basse.
Le dispositif peut aussi comporter des moyens d'injection dans une zone intermédiaire entre les zones d'introduction et d'évacuation d'un flux de gaz de purge.
Le procédé d'épuration en continu selon l'invention est caractérisé en ce qu'il comporte l'établissement d'une circulation permanente d'effluents à épurer d'une part entre des conduits d'amenée et d'autre part des conduits d'évacuation au travers d'une couronne tournante pourvue d'un cloisonnement intérieur et contenant au moins un lit catalytique annulaire disposé contre sa paroi intérieure et une charge d'un matériau présentant une grande surface d'échange thermique disposée dans la couronne extérieurement au lit catalytique, de façon que les effluents traversent la charge tournante et se réchauffent à son contact dans une première zone d'échange thermique et, après une double traversée du lit catalytique tournant et incinération, qu'ils réchauffent la masse thermique dans une deuxième zone d'échange thermique. Avec le procédé selon l'invention on parvient à incinérer les substances polluantes à une température de l'ordre de 400 à 500°C seulement, ce qui simplifie la conception et diminue les contraintes techniques ainsi que le coût de fabrication.
D'autres caractéristiques et avantages du dispositif perfectionné selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisation, en se référant à :
- la Fig.1 qui montre schématiquement en coupe un mode de réalisation du dispositif, dans un usage mixte d'incinérateur de substances polluantes dans des effluents, et d'échangeur de chaleur; et
- la Fig.2 qui montre une variante de réalisation des moyens de régulation de la température du réacteur catalytique.
Le dispositif comporte (Fig.l) un tambour constitué d'une couronne 1 à axe vertical disposée à l'intérieur d'une enveloppe ou cage extérieure métallique 2, de forme cylindrique par exemple. Le diamètre de la cage ou enveloppe 2 est supérieur à celui de la couronne 1. Celle-ci est décentrée par rapport à la cage 2. De part et d'autre du plan diamétral contenant l'axe vertical 3 de la couronne, et suivant un secteur angulaire limité, la cage 2 comporte une portion de paroi latérale 4 sensiblement tangente à la paroi latérale de la couronne 5. L'espace intérieur de la cage autour de la couronne, 1 de part et d'autre de la portion de paroi 4 comporte ainsi deux zones arrondies de section variable Za et Zb. Elles communiquent respectivement avec un conduit 6 d'amenée des effluents gazeux à épurer, et un conduit 7 d'évacuation de ces mêmes effluents après épuration.
La couronne 1 est pourvue d'un cloisonnement intérieur constitué de plaques radiales droites 8 régulièrement réparties. Un premier secteur angulaire Zl délimité par une ou plusieurs de ces plaques radiales 8, canalise les effluents à épurer introduits dans la zone convergente Za vers la zone centrale 1 1 de la couronne (flux Fe). Un deuxième secteur angulaire Z2 fait communiquer la zone centrale 1 1 de la couronne avec la zone divergente Zb et avec le conduit d'évacuation 7 (flux Fs).
La paroi intérieure de la couronne est tapissée tout autour d'un lit catalytique annulaire 9 que les effluents doivent traverser pour gagner la zone centrale réactive 11.
Ce lit catalytique 9 est constitué soit d'un lit de particules, soit de préférence d'un catalyseur en nid d'abeille, ce qui permet, toutes choses égales par ailleurs, d'en diminuer l'épaisseur et le volume, et surtout de diminuer la perte de charge qu'il engendre.
Dans la partie de la couronne restante, extérieurement à ce lit catalytique, entre les plaques de cloisonnement 8, est répartie une masse active M constituée d'un matériau à grande surface d'échange thermique. Il peut s'agir de billes en céramique ou métalliques, de tournures ou copeaux d'usinage, de garnissage en vrac ou structuré, d'une structure alvéolaire à alvéoles régulières ou irrégulières telles que des nids d'abeille, de matelas métalliques ou céramiques tricotés tissés ou aiguilletés etc. On utilise avantageusement une structure alvéolaire telle que celle décrite dans le brevet FR 2 564 037 du demandeur. Cette masse grande surface d'échange thermique peut aussi être constituée de cailloux.
Pour faciliter la construction et le chargement, la couronne peut être agencée aussi pour servir de support à un certain nombre de paniers parallélépipédiques 10 séparés les uns des autres, comme représenté sur la Fig.1.
Dans le plan diamétral contenant l'axe 3 de la couronne 1, l'étroitesse de l'espace restant entre elle et la cage 2 du fait de son excentrement et de l'avancée de paroi 4, crée un perte de charge suffisante pour empêcher les communications périphériques directes entre les deux espaces en amont et en aval Za et Zb, autrement qu'au travers de la zone centrale 11. Des joints ou bavettes 12 peuvent être éventuellement placés à la périphérie de la couronne où la température est relativement basse, pour parfaire l'étanchéité.
La couronne et la cage sont fermées à leurs parties inférieures et supérieures par des plaques planes 13. Entre les plaques correspondantes de la couronne et de la cage, plusieurs balais (non représentés) en appui simultané, empêchent les flux parasites de contoumement entre les zones Za et Zb.
Des moyens moteurs (non représentés) disposés au-dessus de la cage par exemple, sont couplés avec l'axe 3 de la couronne, pour l'entraîner en rotation par rapport à la cage 2.
Le secteur angulaire intermédiaire délimité par la portion de paroi 4 de la cage, comporte de préférence un conduit 14 pour une injection d'air frais destinée à purger les effluents viciés au travers de la masse thermique et le catalyseur dans les quelques secteurs angulaires de la couronne passant devant elle, avant chaque inversion du sens du flux. La masse d'air de purge après traversée des secteurs purgés, se retrouve dans la zone centrale 11 où elle est entraînée avec le flux principal vers la zone Zb au travers de la couronne 1.
Dans le secteur angulaire opposé au conduit 14, la cage comporte un autre conduit 15 (Fig. 1) pour une injection d'air frais destiné à réguler éventuellement la température de la réaction catalytique si elle s'élève trop.
La réaction qui a lieu dans la zone centrale, est exothermique et elle est réglée de façon à dégager suffisamment d'énergie pour compenser sensiblement la dissipation calorifique. Une proportion de 0,4 g de COV par m3 d'effluents suffit pour un fonctionnement autothermique.
Un brûleur (B) alimenté en gaz naturel ou en GPL, est disposé au-dessus de la zone centrale 11 par exemple, sa flamme pénétrant directement dans la zone centrale. On l'utilise pour chauffer au démarrage si nécessaire les effluents entrants, de façon à atteindre un point de fonctionnement auto-thermique, ou éventuellement pour faire un appoint thermique dans le cas où la teneur en composés polluants COV est insuffisante pour obtenir un fonctionnement autothermique.
Suivant le mode de réalisation de la Fig. 1, le contrôle de la température dans le réacteur catalytique est assuré séparément par un brûleur B aud-dessus de la couronne et par un conduit radial 15 amenant des effluents frais.
Suivant le mode de réalisation de la Fig. 2, le brûleur B au lieu de se trouver directement au-dessus de la zone centrale 11, peut être disposé dans un conduit 16 débouchant dans cette zone. Le conduit 16 peut être branché en dérivation sur le conduit 6 d'amenée des effluents à traiter. Le débit dérivé par ce conduit 16 est contrôlé par une vanne NI. Le brûleur B est alimenté en combustible par l'intermédiaire d'une vanne de contrôle V2. En faisant varier le débit d'effluents dérivés par le conduit 16 et sa température au moyen du brûleur B, on peut contrôler la réaction exothermique dans le réacteur. Si la concentration en substances polluantes dépasse la limite d'autotherrnicité, on injecte des effluents froids. Si au contraire, cette concentration reste en deçà de cette limite et aussi en période de démarrage de l'installation, on alimente le brûleur.
Après leur double passage au travers du lit catalytique, de part et d'autre de la zone centrale 11, les composés polluants (COV) se trouvent transformés par la réaction en produits de combustion divers : CO2, H2O, N2 principalement, SOx et NOx à l'état de traces.
Les gaz à température élevée issus de la zone réactive traversent la partie de la charge M située dans la zone angulaire z2 de la couronne et lui cèdent une bonne partie de leurs calories. La rotation de la couronne 1 relativement à la cage 2, amène progressivement les éléments chauffés vers la zone angulaire Zl où ils peuvent céder à leur tour aux gaz entrants par le conduit d'amenée 6, une partie de l'énergie calorifique accumulée.
L'agencement du mode de réalisation qui vient d'être décrit, avec sa couronne tournante à lit catalytique et charge thermique disposée concentriquement permet, par rapport aux modes de réalisation antérieurs, une diminution du volume global entre
8% et 27% et du poids de matière entre 6% et 32%, selon le débit horaire d'effluents traités (entre 3000 m3 et 130.000 m3). De même, toujours selon le débit horaire, le volume de catalyseur qu'il est possible de charger peut augmenter de 20 à 60%. Ces variations ont une influence considérable sur les coûts.
Des essais menés pour une installation pilote capable de traiter 3000 m3/h d'air pollué par du xylène, ont conduit aux résultats suivants :
- efficacité mermique 95%
- taux limite permettant une autothermicité de
l'oxydation catalytique 0,6 g/Nra3
- efficacité d'épuration 99,2 %

Claims

REVENDICAπONS
1) Dispositif rotatif d'épuration catalytique d'effluents gazeux pollués, comportant une enveloppe ou cage (2), une couronne (1) disposée à l'intérieur de la cage, contenant une masse, et des moyens moteurs pour animer la couronne d'un mouvement de rotation relativement à la cage autour d'un axe vertical (3), au moins un conduit (6) pour l'introduction d'effluents dans la cage (2) et au moins un conduit (7) pour l'évacuation d'effluents hors de la cage, la couronne (1) comportant au moins une premier secteur (Zl) pour faire communiquer à tout instant le conduit d'introduction (6) avec la partie centrale (11) de la cage (2), et au moins un deuxième secteur (Z2) de la couronne pour faire communiquer à tout instant la partie centrale (11) de la cage avec les circuits d'évacuation, et un réacteur d'épuration catalytique (R) pour brûler les substances polluantes mêlées aux effluents canalisés par la première zone angulaire, caractérisé en ce que le réacteur catalytique comporte au moins un lit catalytique (9) disposé contre la paroi intérieure de la couronne (1) sur tout son pourtour, et tournant avec elle.
2) Dispositif selon la revendication 1, caractérisé en ce que la couronne (1) est excentrée à l'intérieur de la cage (2), celle-ci délimitant autour de la couronne deux zones périphériques (Za, Zb) de sections variables, et deux zone intermédiaires à perte de charge élevée de façon à empêcher les flux parasites de contoumement du réacteur theπnique (R).
3) Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comporte des joints d'isolement (12) disposés entre la cage (2) et la couronne (1).
4) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une charge (M) d'un matériau présentant une grande surface d'échange thermique disposée dans la couronne extérieurement au lit catalytique (9).
5) Dispositif selon l'une des revendications précédentes, caractérisé en ce que le réacteur thermique (R) comporte des moyens de chauffage communiquant avec la zone centrale de la couronne.
6) Dispositif selon la revendication précédente, caractérisé en ce que les moyens pour élever la température comportent un brûleur extérieur disposé au-dessus de la zone centrale (11) de la couronne (1).
7) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne est divisée en plusieurs zones angulaires par un cloisonnement intérieur
(8), chacune de ces zones étant garnie, extérieurement au lit catalytique, d'une charge en vrac d'un matériau à grande surface d'échange thermique.
8) Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que la couronne comporte une pluralité de chambres parallélépipédiques (10) pour contenir la charge à grande surface d'échange thermique (M).
9) Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne et la cage comportent chacune une paroi terminale supérieure et une paroi terminale inférieure, et des éléments d'étanchéité disposés entre les parois correspondantes.
10) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens d'injection dans une zone intermédiaire entre les zones d'introduction et d'évacuation (Za, Zb) d'un flux de gaz de purge.
1 1) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens d'injection dans une zone intermédiaire entre les zones d'introduction et d'évacuation (Za, Zb) d'un flux de gaz frais de régulation de température.
12) Procédé d'épuration en continu d'effluents gazeux chargés de substances polluantes par incinération catalytique, caractérisé en ce qu'il comporte: l'établissement d'une circulation permanente d'effluents à épurer d'une part entre des conduits (6) d'amenée et d'autre part des conduits (7) d'évacuation au travers d'une couronne tournante (1) pourvue d'un cloisonnement intérieur (8) et contenant au moins un lit catalytique annulaire disposé contre sa paroi intérieure de façon que les effluents traversent deux fois le lit catalytique tournant, de part et d'autre de la zone centrale de la couronne. 13) Procédé selon la revendication 12, caractérisé en ce que, la couronne ( 1) contenant une masse (M) d'un matériau possédant une grande surface d'échange thermique, un réchauffement des effluents par la masse (M) avant leur double traversée du lit catalytique, dans une première zone d'échange thermique (Za) et un réchauffement de la masse thermique dans une deuxième zone d'échange thermique au contact des effluents incinérés après leur double traversée du lit catalytique tournant (9).
PCT/FR1995/001692 1994-12-26 1995-12-18 Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues WO1996020039A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002183683A CA2183683C (fr) 1994-12-26 1995-12-18 Dispositif rotatif perfectionne d'epuration catalytique d'effluents pollues
BR9506888A BR9506888A (pt) 1994-12-26 1995-12-18 Dispositivo rotativo aperfeiçoado de purificaçao catalitica de efluentes poluídos
MX9603048A MX9603048A (es) 1994-12-26 1995-12-18 Dispositivo rotatorio perfeccionado para la depuracion catalitica de efluentes contaminados.
AU43939/96A AU703970B2 (en) 1994-12-26 1995-12-18 Improved rotating catalytic cleaning device for polluted effluents
EP95942765A EP0757585B1 (fr) 1994-12-26 1995-12-18 Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues
JP8520246A JPH09511950A (ja) 1994-12-26 1995-12-18 汚染廃ガス用の改良された回転式接触清浄化装置
US08/700,511 US5820836A (en) 1994-12-26 1995-12-18 Rotating catalytic cleaning device for polluted effluents
DE69531045T DE69531045T2 (de) 1994-12-26 1995-12-18 Drehbare vorrichtung zur katalytischen reinigung von verunreinigten abgasen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/15740 1994-12-26
FR9415740A FR2728483B1 (fr) 1994-12-26 1994-12-26 Dispositif rotatif perfectionne d'epuration catalytique d'effluents pollues

Publications (1)

Publication Number Publication Date
WO1996020039A1 true WO1996020039A1 (fr) 1996-07-04

Family

ID=9470307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001692 WO1996020039A1 (fr) 1994-12-26 1995-12-18 Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues

Country Status (14)

Country Link
US (1) US5820836A (fr)
EP (1) EP0757585B1 (fr)
JP (1) JPH09511950A (fr)
KR (1) KR100388340B1 (fr)
AR (1) AR000533A1 (fr)
AU (1) AU703970B2 (fr)
BR (1) BR9506888A (fr)
CA (1) CA2183683C (fr)
DE (1) DE69531045T2 (fr)
ES (1) ES2201130T3 (fr)
FR (1) FR2728483B1 (fr)
MX (1) MX9603048A (fr)
WO (1) WO1996020039A1 (fr)
ZA (1) ZA9510735B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846492A1 (fr) * 1996-12-05 1998-06-10 Institut Francais Du Petrole Dispositif rotatif perfectionné d'épuration catalytique d'effluents gazeux
US5871347A (en) * 1997-04-01 1999-02-16 Engelhard Corporation Rotary regenerative oxidizer
US5967771A (en) * 1997-04-01 1999-10-19 Engelhard Corporation Rotary regenerative oxidizer
US6193504B1 (en) 1997-04-01 2001-02-27 Engelhard Corporation Portable rotary catalytic oxidizer systems
US6235249B1 (en) 1997-04-01 2001-05-22 Engelhard Corporation Rotary oxidizer systems for control of restaurant emissions
CN103945933A (zh) * 2011-11-18 2014-07-23 罗地亚经营管理公司 用于在固体产品上处理上游流的装置以及相关的处理方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466862B2 (ja) * 1997-03-28 2003-11-17 日本碍子株式会社 セラミックハニカム構造体
WO1998056491A1 (fr) * 1997-06-13 1998-12-17 Engelhard Corporation Systeme combine de concentration/oxydation pour la lutte contre les rejets de composes organiques volatils
FR2786551B1 (fr) 1998-11-26 2000-12-29 Inst Francais Du Petrole Dispositif de raccordement tournant etanche autorisant des debattements importants
JP3258646B2 (ja) 1999-12-17 2002-02-18 三菱重工業株式会社 排ガス中の微粒子除去装置及び方法
US20020065442A1 (en) * 2000-11-30 2002-05-30 Sud-Chemie Inc. Radial reactor loading
RU2186616C1 (ru) * 2001-03-26 2002-08-10 Институт катализа им. Г.К.Борескова СО РАН Установка и способ термоударной обработки сыпучих материалов
US8597524B2 (en) * 2004-09-13 2013-12-03 Donnelly Labs Llc Enclosed rotor-based cavitational and catalytic flow-through reaction chamber
US9587894B2 (en) * 2014-01-13 2017-03-07 General Electric Technology Gmbh Heat exchanger effluent collector
RU2682939C1 (ru) 2015-06-30 2019-03-22 Юоп Ллк Взаимосвязанная конфигурация реактора и нагревателя для способа дегидрирования парафинов
CN105854587B (zh) * 2016-03-31 2018-12-14 湖南安淳高新技术有限公司 一种具有长度补偿功能的换热管装置
CN112870970A (zh) * 2021-01-12 2021-06-01 陈蔚 一种环保型有害气体高效去除设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870474A (en) * 1972-11-13 1975-03-11 Reagan Houston Regenerative incinerator systems for waste gases
EP0365262A1 (fr) * 1988-10-17 1990-04-25 Haldor Topsoe A/S Procédé et appareil pour l'épuration continue d'un gaz contenant de l'oxygène de ses contaminants combustibles
WO1993011857A1 (fr) * 1991-12-19 1993-06-24 Modo-Chemetics Ab Appareil de purification
WO1994023246A1 (fr) * 1993-03-26 1994-10-13 Applied Regenerative Technologies Co., Inc. Traitement regenerateur de gaz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951279A1 (de) * 1979-12-20 1981-07-16 L. & C. Steinmüller GmbH, 5270 Gummersbach Regenerativer waermeaustauscher
DE8518384U1 (de) * 1985-06-25 1985-08-08 Kirchmeier, Hans, 5067 Kürten Rotierender Wärmeaustauscher
US5362449A (en) * 1991-02-26 1994-11-08 Applied Regenerative Tech. Co., Inc. Regenerative gas treatment
FR2720488B1 (fr) * 1994-05-24 1996-07-12 Inst Francais Du Petrole Dispositif rotatif de transfert de chaleur et d'épuration thermique appliqué à des effluents gazeux.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870474A (en) * 1972-11-13 1975-03-11 Reagan Houston Regenerative incinerator systems for waste gases
US3870474B1 (en) * 1972-11-13 1991-04-02 Regenerative incinerator systems for waste gases
EP0365262A1 (fr) * 1988-10-17 1990-04-25 Haldor Topsoe A/S Procédé et appareil pour l'épuration continue d'un gaz contenant de l'oxygène de ses contaminants combustibles
WO1993011857A1 (fr) * 1991-12-19 1993-06-24 Modo-Chemetics Ab Appareil de purification
WO1994023246A1 (fr) * 1993-03-26 1994-10-13 Applied Regenerative Technologies Co., Inc. Traitement regenerateur de gaz

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846492A1 (fr) * 1996-12-05 1998-06-10 Institut Francais Du Petrole Dispositif rotatif perfectionné d'épuration catalytique d'effluents gazeux
FR2756753A1 (fr) * 1996-12-05 1998-06-12 Inst Francais Du Petrole Dispositif rotatif perfectionne d'epuration catalytique d'effluents gazeux
US5965097A (en) * 1996-12-05 1999-10-12 Institut Francais Du Petrole Rotary device for catalytic cleaning of gaseous effluents
US5871347A (en) * 1997-04-01 1999-02-16 Engelhard Corporation Rotary regenerative oxidizer
US5967771A (en) * 1997-04-01 1999-10-19 Engelhard Corporation Rotary regenerative oxidizer
US6193504B1 (en) 1997-04-01 2001-02-27 Engelhard Corporation Portable rotary catalytic oxidizer systems
US6235249B1 (en) 1997-04-01 2001-05-22 Engelhard Corporation Rotary oxidizer systems for control of restaurant emissions
EP1136755A1 (fr) * 1997-04-01 2001-09-26 Engelhard Corporation Dispositif rotatif régénérable d'oxydation
CN103945933A (zh) * 2011-11-18 2014-07-23 罗地亚经营管理公司 用于在固体产品上处理上游流的装置以及相关的处理方法
US20140335000A1 (en) * 2011-11-18 2014-11-13 Rhodia Operations Device for Treating an Upstream Flow with a Solid Product and Associated Treatment Method
US9114361B2 (en) * 2011-11-18 2015-08-25 Rhodia Operations Device for treating an upstream flow with a solid product and associated treatment method
CN103945933B (zh) * 2011-11-18 2015-12-23 罗地亚经营管理公司 用于在固体产品上处理上游流的装置以及相关的处理方法

Also Published As

Publication number Publication date
MX9603048A (es) 1997-03-29
KR970701091A (ko) 1997-03-17
AR000533A1 (es) 1997-07-10
DE69531045T2 (de) 2003-12-18
BR9506888A (pt) 1997-08-19
FR2728483B1 (fr) 1997-01-24
AU4393996A (en) 1996-07-19
ZA9510735B (en) 1997-06-18
KR100388340B1 (ko) 2003-10-22
AU703970B2 (en) 1999-04-01
DE69531045D1 (de) 2003-07-17
EP0757585A1 (fr) 1997-02-12
EP0757585B1 (fr) 2003-06-11
CA2183683C (fr) 2007-02-06
CA2183683A1 (fr) 1996-07-04
JPH09511950A (ja) 1997-12-02
ES2201130T3 (es) 2004-03-16
FR2728483A1 (fr) 1996-06-28
US5820836A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
EP0757585B1 (fr) Dispositif rotatif d'epuration catalytique d'effluents gazeux pollues
CA1307166C (fr) Four de decomposition thermique
CA2150000C (fr) Dispositif rotatif de transfert de chaleur et d'epuration thermique applique a des effluents gazeux
KR100369574B1 (ko) 고수분 폐기물 및 연료의 건조, 건류, 오일화소각장치
JP3798360B2 (ja) 分離組立型の風向転換装置を有する四角形の蓄熱式燃焼装置、及びその風向転換方法
EP0846492B1 (fr) Procédé d'épuration catalytique d'effluents gazeux
EP2311547B1 (fr) Reacteur catalytique de denoxifictation de gaz
JP4529230B2 (ja) ロータリーキルン
EP2541142A1 (fr) Dispositif et procédé de gestion d'imbrûlés pour brûleurs régénératifs, brûleur comportant un tel dispositif
CN212644630U (zh) 一种小型生活垃圾焚烧炉
US20040020415A1 (en) Regenerative thermal waste incineration system
EP0990848B1 (fr) Procédé d'épuration thermique de gaz et incinérateur thermique régénératif
JP2004532965A (ja) 焼却装置
CN201621706U (zh) 三段回转式燃烧炉
FR2720294A1 (fr) Dispositif rotatif de concentration et d'épuration d'effluents gazeux contenant des composés organiques voltatils (COV).
EP4028692B1 (fr) Procédé et four d'incinération de matières organiques issues du traitement de déchets industriels ou agricoles ou des eaux usées, tel que des boues
FR2827609A1 (fr) Procede et installation de production de gaz combustibles a partir de gaz issus de la conversion thermique d'une charge solide
KR100376205B1 (ko) 연소 향상 방법 및 그 방법을 이용한 연소기
JP2006316188A (ja) 木炭窯
FR2776761A1 (fr) Four thermique equipe de chauffage electrique complementaire
BE430641A (fr)
BE428148A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995942765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019960704466

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2183683

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08700511

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995942765

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995942765

Country of ref document: EP