WO1996018859A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO1996018859A1
WO1996018859A1 PCT/JP1994/002090 JP9402090W WO9618859A1 WO 1996018859 A1 WO1996018859 A1 WO 1996018859A1 JP 9402090 W JP9402090 W JP 9402090W WO 9618859 A1 WO9618859 A1 WO 9618859A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fluid
pipe
heat
flow path
Prior art date
Application number
PCT/JP1994/002090
Other languages
English (en)
French (fr)
Inventor
Shuzo Nomura
Original Assignee
Shuzo Nomura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuzo Nomura filed Critical Shuzo Nomura
Priority to DE69432529T priority Critical patent/DE69432529T2/de
Priority to AU12002/95A priority patent/AU705772B2/en
Priority to BR9408636A priority patent/BR9408636A/pt
Priority to EP95902945A priority patent/EP0800048B1/en
Priority to PCT/JP1994/002090 priority patent/WO1996018859A1/ja
Priority to US08/849,845 priority patent/US5832994A/en
Priority to KR1019970703965A priority patent/KR100345384B1/ko
Priority to CA002206847A priority patent/CA2206847C/en
Priority claimed from BR9408636A external-priority patent/BR9408636A/pt
Publication of WO1996018859A1 publication Critical patent/WO1996018859A1/ja
Priority to HK98109582A priority patent/HK1008793A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/005Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having bent portions or being assembled from bent tubes or being tubes having a toroidal configuration

Definitions

  • the present invention relates to an improvement in a heat exchange device.
  • nitrogen, oxygen, argon, and other gases are stored in a liquefied state in an ultra-low temperature storage tank, and when used, the stored liquefied gas is guided to an evaporator and evaporated at ambient temperature or hot water. Gasification.
  • the technical means of the present invention for achieving the above object includes a heat exchange container to which a heat transfer medium is supplied and discharged, and a plurality of heat exchange containers which are arranged in parallel in the heat exchange container and communicate with each other in a circumferential direction.
  • a heat exchange flow path having a communication flow path that communicates a plurality of locations between these circumferential flow paths so that the positions of the inlet and the outlet in each circumferential flow path are shifted in the circumferential direction; It is provided with a supply path and a discharge path of a fluid inserted into the container and communicated with the heat exchange flow path.
  • the passage means an object such as a pipe through which a fluid flows.
  • the heat exchange flow path has tanks on the supply port side and the discharge port side, and the supply path and the discharge path are connected to each evening tank.
  • the fluid By causing the fluid to flow in a turbulent state while repeatedly colliding with the wall surface of the heat exchange channel, the fluid is greatly affected by the temperature of the wall surface, and furthermore, the fluid flows from each communication channel in each circumferential channel. Since the sent fluid is dispersed under the same conditions, a large amount of fluid can be exchanged efficiently without narrowing down the fluid. Further, since the heat exchange channel can be configured by connecting the channels, the configuration can be simplified.
  • the dry air cooled by the heat exchange flows out of the tank 21 to the tank 15 by the discharge pipe 12, and can be distributed to a desired use site by the plurality of supply pipes 16.
  • the temperature can be adjusted to an appropriate temperature by mixing with room temperature air before use.
  • the liquefied nitrogen deprived of the cold heat by the above heat exchange is led to the evaporator 6 by the pipe 8, and is evaporated at atmospheric temperature or hot water to become nitrogen gas.
  • the nitrogen gas thus obtained can be supplied to a desired use site through the supply pipe 9.
  • liquefied nitrogen is directly supplied to the evaporator 6 as in the prior art, if the liquefied nitrogen is supplied to the evaporator 6 after being used for heat exchange by the heat exchange device 2 of the embodiment of the present invention, liquefied nitrogen can be obtained. Since the temperature of the evaporator 6 has risen, the efficiency of the evaporator 6 can be improved.
  • the entire vessel made of SUS was placed on a weighing scale, and the scale was measured. The decrease value was measured every 30 seconds, and the average value per minute at the same flow rate was calculated.
  • the dry air cooled by the heat exchanger was put into a gas holder with a 1-inch 2-inch simplex tube, and the temperature change was measured with a digital thermometer attached to the holder.
  • FIG. 5 is a graph showing the temperature of the cooling dry air discharged from the heat exchanger with respect to the elapsed time from the start of the supply of the dry air when a five-stage ring type heat exchanger is used.
  • circular tubes 18, 19, 11, and 12 having a circular cross section are used for the circumferential flow path, the communication flow path, the supply path, the discharge path, and the like. You may use something.
  • the circumferential flow path is not limited to an annular shape, and may be rectangular or elliptical, and the communication pipes 19 need not be arranged at equal intervals.
  • the diameter of each annular tube may be different.
  • the communicating pipes may be connected to, for example, every other annular pipe instead of adjacent annular pipes.
  • refrigerants such as liquefied oxygen, liquefied argon, LNG, etc. can be used.
  • the fluid to be used can be not only dry air but also gases such as nitrogen, oxygen, hydrogen, argon, natural gas, etc., as well as a mixed gas of liquid and gas.
  • annular pipes 18 which are the circumferential flow paths may be arranged in a plurality of rows in a side-by-side state around the horizontal axis.
  • present invention can be variously modified within a range without departing from the basic technical concept.
  • the heat exchange container when the heat exchange container is filled with the heat transfer medium and the fluid for heat exchange is supplied to the heat exchange channel from the supply channel, the supplied fluid is supplied to the heat exchange channel.
  • the fluid Flows in a circumferential flow path arranged in parallel with a plurality of flow paths, and a communication flow path connecting them, but since the positions of the inlet and the outlet in the circumferential flow path are shifted in the circumferential direction, the fluid The fluid flows in a turbulent manner while repeatedly colliding with the wall surface of the heat exchange flow path.
  • the heat of the heat transfer medium can be removed or the heat transfer medium can be removed, and the fluid after the heat exchange is discharged.
  • the heat can be discharged to the outside of the heat exchange container by a passage.
  • the heat exchange flow path has tanks on the supply port side and the discharge port side, and by connecting the supply path and the discharge path to each tank, the fluid is temporarily stored from the supply path to the tank on the supply port side and the fluid is temporarily stored.
  • the heat exchange device according to the present invention is useful as a heat exchange device for air cooling and as a heat exchange device for air conditioning having a large capacity. It is suitable for use in heat exchangers where low temperatures are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

明 細 書 熱交換装置 技術分野
本発明は、 熱交換装置の改良に関する。 背景技術
従来、 窒素、 酸素、 アルゴン、 その他のガスは液化した状態で超低温貯槽に貯 蔵しておき、 利用に際し、 貯蔵している液化ガスを蒸発器に導き、 大気温度、 若 しくは温水で蒸発させてガス化させている。
しかしながら、 従来においては、 液化ガスの冷熱を有効利用することなく、 無 駄にしている。 この冷熱を有効利用して空気、 窒素、 酸素、 アルゴン、 水素等の ガス、 または液とガスの混合ガス等の流体を冷却するには、 超低温貯槽と蒸発器 との間に熱交換器を介在させることが考えられる。
そして、 従来の熱交換器としては、 コイル式、 二重管式、 注水式、 套管式、 フ ィン付多管式等、 種々の構成が知られている。
しかしながら、 上記のような従来の熱交換器では、 冷却すべき流体が管内を規 則正しく流れ、 管の壁面から受ける温度の影礬が少ないため、 冷却効果に劣る。 そこで、 冷却効果を高めるため、 下流側で膨張弁のように絞ると、 大量の流体を 冷却処理することができない。 したがって、 従来の熱交換器では、 大量で一定温 度の流体を確保することが要求される場合には、 利用することができないという 問題があった。
本発明は、 上記のような従来の問題を解決するものであり、 流体を絞り込むこ となく、 大量の流体を効率良く熱交換することができ、 したがって、 大量で一定 圧力、 一定温度の熱交換流体を得ることができて利用の便を図ることができ、 ま た、 構成の簡素化を図ることができ、 したがって、 故障をなくすことができると ともに、 コストの低下を図ることができるようにした熱交換装置を提供すること を目的とするものである。 発明の開示
上記目的を達成するための本発明の技術的手段は、 伝熱媒体が供給、 排出され る熱交換容器と、 この熱交換容器内に複数並列状態で配置され、 周方向に連通し た周方向流路、 これらの周方向流路間の複数箇所を各周方向流路における流入口 と流出口の位置が周方向にずれるように連通した連通流路を有する熱交換流路と 、 上記熱交換容器に挿通され、 上記熱交換流路に連通された流体の供給路および 排出路とを備えたものである。 なお、 ここで流路というのは、 流体の流れる管等 の物を意味する。 以下、 請求の範囲を含めて同じ意味に用いる。
そして、 上記技術的手段において、 熱交換流路が供給口側と排出口側とにタン クを有し、 各夕ンクに供給路と排出路を連通するのが好ましし、。
上記のように構成された本発明によれば、 熱交換容器を伝熱媒体で満たし、 供 給路から熱交換するための流体を熱交換流路へ供給すると、 熱交換流路では、 供 給された流体が複数並列状態で配置された周方向流路と、 これらを連通する連通 流路とを流れるが、 周方向流路における流入口と流出口の位置が周方向にずらさ れているので、 流体は熱交換流路の壁面に繰り返して衝突しながら乱流となって 流れ、 この間、 伝熱媒体の熱を奪い、 又は伝熱媒体から熱を奪われることができ 、 熱交換後の流体は排出路により熱交換容器外へ排出することができる。 このよ うに流体を熱交換流路の壁面に繰り返して衝突させながら、 乱流状態で流すこと により、 流体が壁面の温度の影響を多く受け、 しかも、 各周方向流路で各連通流 路から送られてきた流体を同一条件にして分散するようにしているので、 流体を 絞り込むことなく、 大量の流体を効率よく熱交換することができる。 また、 熱交 換流路は流路の接続により構成することができるので、 構成の簡素化を図ること ができる。 図面の簡単な説明
第 1図は、 本発明の一実施例における熱交換装置を示す要部の斜視図である。 第 2図は、 同熱交換装置を液化窒素の超低温貯槽と蒸発器との間に組み込んだ 使用例を示す概略系統図である。 第 3図は、 本発明の一実施例の熱交換装置を用いたドライ空気の冷却実験に 用いた装置のシステム構成図である。
第 4図は、 本発明の一実施例の熱交換装置 (2段リング型) を用いたドライ空 気の冷却実験結果を示すグラフである (横軸:経過時間、 縦軸:排出されるドラ ィエアーの温度) 。
第 5図は、 本発明の一実施例の熱交換装置 (5段リング型) を用いたドライ空 気の冷却実験結果を示すグラフである (横軸:経過時間、 縦軸:排出されるドラ ィエアーの温度) 。
第 6図は、 第 5図のグラフのドライエアーの各流量毎の数値を表示した表で あ^? 図で使用している符号の説明は次のとおりである。
2 熱交換装置
3 熱交換容器
1 0 熱交換流路
1 1 供給管
1 2 排出管
1 8 環状管 (周方向流路)
1 9 連通管
2 0 供給口側のタンク
2 1 排出口側のタンク
1 0 0 コンプレッサー
1 0 1 流量計
1 0 2 重量計
1 0 3 シンフレックスチューブ ( 1 / 2インチ)
1 0 4 液体窒素(一 1 9 6て)
1 0 5 熱交換器
1 0 6 デジタル圧力計
1 0 7 デジタル温度計 1 0 8 ガスホルダー
1 0 9 冷却ドライエアー 発明を実施するための最良の形態
以下、 本発明の一実施例について図面を参照しながら説明する。
第 1図は本発明の一実施例における熱交換装置を示す要部の斜視図、 第 2図は 同熱交換装置を液化窒素の超低温貯槽と蒸発器との間に組み込んだ使用例を示す 概略系統図である。
第 2図に示すように、 超低温貯槽 1は液化窒素を一 1 9 6 で貯蔵することが でき、 この超低温貯槽 1の底部は本発明の熱交換装置 2の熱交換容器 3の底部に 管 4により連通され、 管 4の途中にバルブ 5が設けられている。 熱交換容器 3の 上部は蒸発器 6の入口に管 8により連通され、 蒸発器 6の出口に供給管 9が連通 されている。 熱交換装置 2の熱交換容器 3内には後述するように熱交換流路 1 0 が配置され、 この熱交換流路 1 0には熱交換容器 3に挿通されたドライ空気の供 給管 1 1と排出管 1 2とが連通されている。 供給管 1 1と排出管 1 2の途中には バルブ 1 3と 1 4が設けられ、 排出管 1 2はタンク 1 5に連通されている。 タン ク 1 5には複数本の供給管 1 6が連通され、 各供袷管 1 6の途中にはバルブ 1 7 が設けられている。
上記熱交換流路 1 0は、 第 1図に示すように、 周方向流路である円周方向に連 通した環状管 1 8、 連通通路である連通管 1 9、 供給口側のタンク 2 0、 排出口 側のタンク 2 1等から構成される。 環状管 1 8は垂直軸の回りで上下方向に所望 の間隔を有するように並列状態で複数列 (図示例では 5列) に配置され、 隣り合 う環状管 1 8同士が複数箇所で垂直方向の連通管 1 9により連通されている。 上 下の各列の連通管 1 9同士は、 互いに周方向に交互にずらされてほぼ等間隔に配 置され、 これにより各列の環状管 1 8における流入口と流出口の位置が周方向に 交互にずらされ、 これら流入口と流出口が直線上で対向しないように設定されて いる。 複数列の環状管 1 8の下部内側と上部内側とに供給口側のタンク 2 0と排 出口側のタンク 2 1とが配置され、 供給口側のタンク 2 0はその中間部が最下位 の環状管 1 8と放射状に配置された連通管 2 2により連通され、 排出口側のタン ク 2 1はその上端部が最上位の環状管 1 8と放射状に配置された連通管 2 3によ り連通されている。 そして、 上記供給管 1 1力、'供給口側のタンク 2 0の底部に連 通され、 上記排出管 1 2が排出口側のタンク 2 1の底部に連通されている。
熱交換容器 3、 上記熱交換流路 1 0を構成する環状管 1 8、 連通管 1 9、 タン ク 2 0 , 2 1、 連通管 2 2 , 2 3および供給管 1 1、 排出管 1 2は、 低温に耐え る材料、 例えば、 ステンレス、 銅により形成されている。
以上の構成において、 以下、 その動作について説明する。
超低温貯槽 1から管 4により伝熱媒体である液化窒素を熱交換装置 2の熱交換 容器 3内に供給して満たす。 容器 3は氷結防止の為、 断熱材 7力、'施こされている 。 この状態で供給管 1 1から熱交換により冷却するためのドライ空気を液化窒素 に浸された熱交換流路 1 0の供給口側タンク 2 0へ供給する。 タンク 2 0内へ供 給されたドライ空気は、 連通管 2 2を通って最下位の環状管 1 8に流入し、 最下 位の環状管 1 8から連通管 1 9を通ってその上部の環状管 1 8に流入する。 ドラ ィ空気は、 以下、 順次、 連通管 1 9を通って上位の環状管 1 8に流入し、 最上位 の環状管 1 8から連通管 2 3を通って排出口側のタンク 2 1に流入する。 このよ うにしてドライ空気が流れる間に、 各管 1 8 , 1 9, 2 2 , 2 3およびタンク 2 0 , 2 1において、 それらの壁面から冷媒である液化窒素の冷熱を奪い(すなわ ちドライ空気が熱を奪われ)、 冷却される。 このとき、 ドライ空気が連通管 2 2 から最下位の環状管 1 8に流入した際、 環状管 1 8の壁面に衝突し、 また、 上記 のように各列の環状管 1 8における流入口の位置が周方向に交互にずらされ、 流 入口と流出口が直線上で対向しないように設定されているので、 ドライ空気が連 通管 1 9から環状管 1 8へ流入した際、 環状管 1 8の壁面に衝突して左右に分か れ、 更に、 同様に隣の連通管 1 9から流入して環状管 1 8の壁面に衝突して分か れたドライ空気と衝突し、 乱流となって順次最上位の環状管 1 8へ流れていく。 このようにドライ空気が繰り返して壁面に衝突し、 壁面の温度の影響を多く受け る乱流状態で流れ、 しかも、 各環状管 1 8で各ラインの連通管 1 9から送られて きたドライ空気を同一条件にして一定のラインのみドライ空気が流れず、 分散す るようにしているので、 液化窒素から効率良く冷熱を奪う(すなわちドライ空気 が熱を奪われる)ことができる。 供給管 1 1と排出管 1 2の役割を入れ換えて、 供袷管 1 1が排出管の逆作用 に、 又、 排出管 1 2が供給管の逆作用となっても
同様である。
上記熱交換により冷却されたドライ空気はタンク 2 1から排出管 1 2によりタ ンク 1 5に流出し、 ここで、 複数本の供給管 1 6により所望の使用現場へ分配す ることができる。 各使用現場においては、 常温の空気と混合するなどにより適当 な温度に調整して使用することができる。 一方、 上記熱交換により冷熱を奪われ た液化窒素は管 8により蒸発器 6へ導かれ、 大気温度、 若しくは温水で蒸発し、 窒素ガスとなる。 このようにして得られた窒素ガスを供給管 9により所望の使用 現場へ供給することができる。
従来のように液化窒素を直接、 蒸発器 6へ供給するのに対し、 本発明実施例の 熱交換装置 2により熱交換に利用した後、 蒸発器 6へ供給するようにすれば、 液 化窒素の温度が上昇しているので、 蒸発器 6による蒸発効率を向上させることが できる。
次に本発明の実施例によるドライ空気の冷却効率に関する実験結果を示す。 こ の実験は次の条件で行つたものである。
測定ガス ドライエアー 圧力 6 . 8 Ig/cm
露点 一 8 0て以下
温度 9て
冷媒ガス 液体窒素 温度 一 1 9 6て
蒸発温度 — 1 8 8て
自然蒸発量 0 . 0 5 Kg/min
実験に用いた装置のシステム図を第 3図に示す。
本実験の方法の概要は次のようなものである。
1 . 測定用のドライエア一は、 工場の取出弁より 1 Z 2インチのチューブにて 取り出して供給した。
2 . 流量と圧力の関係を求めるため、 熱交換器の入口側にフロート式の流量計 を取り付け、 入口側と出口側にデジタル式の圧力計を取り付けた。
3 . 熱交換器はすべて S U S製で製作した。 4 . 熱交換器は簡易断熱を施した S U S製容器の中に納められ、 容器の内側に エルフから液体窒素を満たした。 容器は蓋をしただけの開放型である。
5 . 蒸発した液体窒素の重量を測定するため、 S U S製の容器全体を重量計の 上に載せて、 目盛の変化により測定した。 減少値は 3 0秒ごとに測定し、 同一流 量 1分当たりの平均値を求めた。
6 . 熱交換器により冷却されたドライエアーは、 1ノ2インチのシンフレック スチューブによりガスホルダーの中に入れ、 ホルダーに取り付けられたデジタル 式の温度計にて温度変化を測定した。
実験結果は第 4図及び第 5図に示すようなものであつた。
第 4図は、 2段リング型の熱交換器(第 1図で、 環状管 1 8を最上段及び最下 段の 2本とし、 これらの間を連通管 1 9で接続したもの) を用いた場合のドライ エア一供給開始からの経過時間に対する熱交換器から排出される冷却ドライエア 一の温度を表示したグラフである。
この実験結果をまとめると以下のようになる。
1 . ドライエアーの流量が多くなればなるほど冷却のための熱交換効率が高ま つた。
2 . ドライエアーの流量が一定条件では入口圧力に対し出口圧力はほぼ一定の 圧力を保ち、 圧力変動はほとんどなかった。
3 . 排出されるドライエアーの最低温度は— 1 6 2 にまで達し、 一定流量に 対し一定温度の冷却ガスを発生し、 温度変動はなかった。
4 . 2段リングでは冷却ガスのみ排出され、 液化現象は見られなかった。
5 . ドライエアーの供給後 2— 3分で、 ほぼ一 1 6 0ての温度に達した。
第 5図は、 5段リング型の熱交換機を用いた場合のドライエアー供給開始から の経過時間に対する熱交換器から排出される冷却ドライエアーの温度を表示した グラフである。
このように上記実施例によれば、 ドライ空気を絞り込むことなく、 大量のドラ ィ空気を効率良く熱交換することができるので、 一定温度に冷却された大量のド ライ空気を得ることができる。 また、 ドライ空気を供給管 1 1から供給口側の夕 ンク 2 0へ一旦溜めるので、 ドライ空気を各ラインの連通管 1 9へ一定圧力、一 定流量で供給することができる。 また、 各ラインの連通管 1 9から一定の温度に 冷却された後のドライ空気を排出口側のタンク 2 1へ一旦溜めるので、 冷却後の ドライ空気を一定圧力、 一定流量で使用現場へ供給することができる。 そして、 環状管 1 8、 連通管 1 9等の径、 面積、 長さ、 タンク 2 0、 2 1の体積を大きく することにより冷却するドライ空気を簡単に増量することができる。
なお、 上記実施例では、 周方向流路、 連通流路、 供給路、 排出路等に断面円形 の管 1 8、 1 9、 1 1、 1 2を用いているが、 断面角形や楕円形のものを用いて もよい。
また、 周方向流路は環状に限らず、 角形や楕円形でもよく、 連通管 1 9も等間 隔に配置しなくてもよい。 各環状管の径はそれぞれ異なってもよい。 連通管は隣 接する環状管同士でなく、 例えば一つおきの環状管を接続するようにしてもよい 。 また、 伝熱媒体としては液化窒素のほかに、 液化酸素、 液化アルゴン、 L N G 等の冷媒を用いることができることは勿論のこと、 温度を上げる目的の場合は熱 媒を用いることもでき、 熱交換すべき流体もドライ空気のほかに、 窒素、 酸素、 水素、 アルゴン、 天然ガス等のガスは勿論のこと、 液とガスの混合ガス等を用い ることができる。 更に、 周方向流路である環状管 1 8が水平軸の回りで横方向に 並列状態で複数列に配置するようにしてもよい。 このほか、 本発明は、 その基本 的技術思想を逸脱しな t、範囲で種々設計変更することができる。
以上説明したように本発明によれば、 熱交換容器を伝熱媒体で満たし、 供給路 から熱交換するための流体を熱交換流路へ供給すると、 熱交換流路では、 供給さ れた流体が複数並列状態で配置された周方向流路と、 これらを連通する連通流路 とを流れるが、 周方向流路における流入口と流出口の位置が周方向にずらされて いるので、 流体は熱交換流路の壁面に繰り返して衝突しながら乱流となつて流れ 、 この間、 伝熱媒体の熱を奪、 又は伝熱媒体から熱を奪われることができ、 熱交 換後の流体は排出路により熱交換容器外へ排出することができる。 このように流 体を熱交換流路の壁面に繰り返して衝突させながら、 乱流状態で流すことにより 、 流体が壁面の温度の影響を多く受け、 また流体の乱流膨張によって温度が低下 し、 しかも、 各周方向流路で各連通流路から送られてきた流体を同一条件にし流 体が特定の連通流路を流れることなくて分散するようにしているので、 流体を絞 り込むことなく、 大量の流体を効率良く熱交換することができる ό したがって、 大量で一定温度の熱交換流体を得ることができて利用の便を図ることができる。 また、 熱交換流路は流路の接続により構成することができるので、 構成の簡素化 を図ることができる。 したがって、故障をなくすことができるとともに、 コスト の低下を図ることができる。
また、 熱交換流路が供給口側と排出口側とにタンクを有し、 各タンクに供給路 と排出路を連通することにより、 流体を供給路から供給口側のタンクへ一旦溜め て流体を各ラインの連通流路へ一定圧力、 一定流量で供給することができ、 また 、 各ラインの連通流路から一定温度に熱交換された後の流体を排気口側のタンク に一旦溜めて一定圧力、 一定流量で使用現場へ供給することができるので、 更に 一層安定的に利用することができる。 産業上の利用可能性
以上のように、 本発明にかかる熱交換装置は、 空冷用の熱交換装置として、 ま た、 容量の大きい空調用の熱交換装置等として有用であり、 特に冷凍倉庫等の規 模が大きくかつ低温を必要とする場合の熱交換装置に用いるのに適している。

Claims

請 求 の 範 囲
1 . 複数並列状態で配置され周方向に連通した周方向流路、 各周方向流路におけ る流入口と流出口の位置が周方向にずれるように周方向流路に設けられた流入口 および流出口、 周方向流路間の流入口と流出口とを連通した連通流路とからなる 熱交換装置用の熱交換流路。
2 . 伝熱媒体が供給、 排出される熱交換容器と、 この熱交換容器内に設けられた 請求の範囲第 1項記載の熱交換流路と、 上記熱交換流路に連通された流体の供給 路および排出路とを備えた熱交換装置。
3 . 熱交換流路が供給口側と排出口側とにタンクを有し、 各タンクに供給路と排 出路が連通された請求の範囲第 2項記載の熱交換装置。
PCT/JP1994/002090 1994-12-14 1994-12-14 Heat exchanger WO1996018859A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE69432529T DE69432529T2 (de) 1994-12-14 1994-12-14 Wärmetauscher
AU12002/95A AU705772B2 (en) 1994-12-14 1994-12-14 Heat exchanging apparatus
BR9408636A BR9408636A (pt) 1994-12-14 1994-12-14 Passagem de fluxo de troca de calor para aparelho de troca de calor e aparelho de troca de calor
EP95902945A EP0800048B1 (en) 1994-12-14 1994-12-14 Heat exchanger
PCT/JP1994/002090 WO1996018859A1 (en) 1994-12-14 1994-12-14 Heat exchanger
US08/849,845 US5832994A (en) 1994-12-14 1994-12-14 Heat exchanging apparatus
KR1019970703965A KR100345384B1 (ko) 1994-12-14 1994-12-14 열교환장치
CA002206847A CA2206847C (en) 1994-12-14 1994-12-14 Heat exchanging apparatus
HK98109582A HK1008793A1 (en) 1994-12-14 1998-07-31 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR9408636A BR9408636A (pt) 1994-12-14 1994-12-14 Passagem de fluxo de troca de calor para aparelho de troca de calor e aparelho de troca de calor
PCT/JP1994/002090 WO1996018859A1 (en) 1994-12-14 1994-12-14 Heat exchanger

Publications (1)

Publication Number Publication Date
WO1996018859A1 true WO1996018859A1 (en) 1996-06-20

Family

ID=14098866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002090 WO1996018859A1 (en) 1994-12-14 1994-12-14 Heat exchanger

Country Status (6)

Country Link
US (1) US5832994A (ja)
KR (1) KR100345384B1 (ja)
CA (1) CA2206847C (ja)
DE (1) DE69432529T2 (ja)
HK (1) HK1008793A1 (ja)
WO (1) WO1996018859A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419009B1 (en) * 1997-08-11 2002-07-16 Christian Thomas Gregory Radial flow heat exchanger
US7128136B2 (en) * 1998-08-10 2006-10-31 Gregory Christian T Radial flow heat exchanger
WO2003093748A1 (en) * 2002-05-01 2003-11-13 Gregory Christian T Radial flow heat exchanger
US6802364B1 (en) 1999-02-19 2004-10-12 Iowa State University Research Foundation, Inc. Method and means for miniaturization of binary-fluid heat and mass exchangers
US7066241B2 (en) * 1999-02-19 2006-06-27 Iowa State Research Foundation Method and means for miniaturization of binary-fluid heat and mass exchangers
KR100571667B1 (ko) 2004-05-31 2006-04-18 현대자동차주식회사 차량용 윈드 실드 와셔 노즐
BRPI0419046A (pt) * 2004-09-15 2007-12-11 Nomura Reinetsu Yugengaisha aparelho trocador de calor, e, aparelho gerador de corrente superaquecida
DE102006029854A1 (de) * 2006-06-27 2008-01-03 Mhg Heiztechnik Gmbh Wärmetauscher mit ringförmig ausgebildeten Strömungskanälen
US8178075B2 (en) * 2008-08-13 2012-05-15 Air Products And Chemicals, Inc. Tubular reactor with jet impingement heat transfer
US20130269919A1 (en) * 2012-04-16 2013-10-17 Technip France Temperature moderated supports for flow tubes
US20140130521A1 (en) * 2012-11-12 2014-05-15 Fluor Technologies Corporation Configurations and Methods for Ambient Air Vaporizers and Cold Utilization
JP5932757B2 (ja) * 2013-11-15 2016-06-08 株式会社フィルテック 流体熱交換装置
US10955194B2 (en) * 2018-12-11 2021-03-23 Ford Global Technologies, Llc Engine cooling system
WO2020123050A1 (en) * 2018-12-13 2020-06-18 Applied Materials, Inc. Heat exchanger with multi stag ed cooling
EP3719433A1 (de) * 2019-04-02 2020-10-07 Linde GmbH Regelbarer flüssigkeitsverteiler eines gewickelten wärmeübertragers zur realisierung unterschiedlicher flüssigkeitsbelastungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161566U (ja) * 1987-10-05 1989-04-19

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE655275C (de) * 1938-01-12 Babcock & Wilcox Dampfkessel W Speisewasservorwaermer mit in Schlangenform angeordneten Rohren
AT95096B (de) * 1920-10-02 1923-11-26 Maschf Augsburg Nuernberg Ag Doppelrohrverdampfer für Kältemaschinen.
US2237617A (en) * 1938-03-30 1941-04-08 Trede Hans Header connection
US2566976A (en) * 1949-11-09 1951-09-04 Clarence R Bernstrom Water heater
US2973944A (en) * 1955-02-10 1961-03-07 Frick Co Heat transfer apparatus
FR1194319A (ja) * 1958-04-09 1959-11-09
US3854530A (en) * 1969-12-29 1974-12-17 E Jouet Heat exchanger
JPS5116668B1 (ja) * 1970-04-16 1976-05-26
US4143816A (en) * 1976-05-17 1979-03-13 Skadeland David A Fireplace heating system
US4287724A (en) * 1979-12-17 1981-09-08 Morehouse Industries, Inc. Air chiller/drier
US4516630A (en) * 1982-07-27 1985-05-14 Honda Giken Kogyo Kabushiki Kaisha Motorcycle radiator
US5099915A (en) * 1990-04-17 1992-03-31 Sundstrand Corporation Helical jet impingement evaporator
CA2038520C (en) * 1991-03-18 2002-01-22 Louis Cloutier Heat exchanger with fluid injectors
KR950009356Y1 (ko) * 1991-04-17 1995-10-25 삼성전자 주식회사 냉장고의 냉수 저장탱크
US5205347A (en) * 1992-03-31 1993-04-27 Modine Manufacturing Co. High efficiency evaporator
US5437844A (en) * 1993-10-25 1995-08-01 Pillar Technologies, Inc. Corona treater electrode cooling system
US5423378A (en) * 1994-03-07 1995-06-13 Dunham-Bush Heat exchanger element and heat exchanger using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161566U (ja) * 1987-10-05 1989-04-19

Also Published As

Publication number Publication date
US5832994A (en) 1998-11-10
DE69432529T2 (de) 2004-02-26
CA2206847C (en) 2005-06-28
DE69432529D1 (de) 2003-05-22
HK1008793A1 (en) 1999-07-16
CA2206847A1 (en) 1996-06-20
KR100345384B1 (ko) 2002-09-18

Similar Documents

Publication Publication Date Title
WO1996018859A1 (en) Heat exchanger
US5090207A (en) Ice building, chilled water system and method
WO2008075509A1 (ja) 熱交換器
AU599558B2 (en) Thermal storage unit with coil extension during melt
KR102302059B1 (ko) 액화수소 저장용기에 충진되는 실시간 액화수소량 측정 장치 및 방법
US20100044020A1 (en) Hydrogen gas-cooling device
US20140284032A1 (en) Core-in-shell exchanger refrigerant inlet flow distributor
US6298676B1 (en) Ice thermal storage control
JP3218451B2 (ja) 熱交換流路及び熱交換装置
GB2517725A (en) Heater
JP2001116478A (ja) 蓄熱コイル装置
EP0800048B1 (en) Heat exchanger
JP2866939B1 (ja) 液化天然ガス気化器およびこれを用いる冷熱システム
KR102066478B1 (ko) 유체 냉각장치 및 이의 제조방법
US20040261395A1 (en) Reliable LNG vaporizer
JPH072764U (ja) 熱交換装置
CN215447100U (zh) 一种低温水箱
RU2289752C2 (ru) Газификационная установка
CN109764696A (zh) 一种换热器和冷箱设备
CN103791744A (zh) 双相变潜热换热器
CN212741503U (zh) 一种可以高效冷却的节能氮化炉
CN218895545U (zh) 一种船用空调冷凝器
CN115371356B (zh) 一种采用斯特林低温冷机的火星表面氧气液化系统及方法
CN212778751U (zh) 能源回收装置
US3820356A (en) Absorption refrigeration plant with auxiliary gas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94195214.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR NO NZ RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995902945

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2206847

Country of ref document: CA

Ref document number: 2206847

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 08849845

Country of ref document: US

Ref document number: 1019970703965

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995902945

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703965

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970703965

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995902945

Country of ref document: EP