WO1996010611A1 - Surface-treated filler and composition containing said filler - Google Patents

Surface-treated filler and composition containing said filler Download PDF

Info

Publication number
WO1996010611A1
WO1996010611A1 PCT/JP1995/001973 JP9501973W WO9610611A1 WO 1996010611 A1 WO1996010611 A1 WO 1996010611A1 JP 9501973 W JP9501973 W JP 9501973W WO 9610611 A1 WO9610611 A1 WO 9610611A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
inorganic filler
composition
resin
thermoplastic norbornene
Prior art date
Application number
PCT/JP1995/001973
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Koushima
Hajime Tanisho
Teiji Kohara
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Publication of WO1996010611A1 publication Critical patent/WO1996010611A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to an inorganic filler coated on the surface, and a thermoplastic norbornene-based resin composition containing the filler.More specifically, the surface is coated with a silane compound to improve wettability with the thermoplastic norbornene-based resin.
  • the present invention relates to an improved inorganic filler, and a thermoplastic norbornene-based resin composition having improved mechanical strength by containing the filler.
  • polyolefin-based resins such as polyethylene and polypropylene
  • the general inorganic filler and the polyolefin resin have poor wettability, so that cracks are easily generated from the interface between the filler and the resin, and the resin becomes brittle. Therefore, usually, an inorganic filler in which the surface of the filler is coated with a silane compound having a vinyl group-containing hydrocarbon group is dispersed in a resin to improve the mechanical strength.
  • thermoplastic norbornene resin one of the polyolefin resins
  • resin has become more resistant to heat, transparency, low moisture absorption, low water absorption, chemical resistance, moisture resistance, water resistance, transparency, and low birefringence. It is widely used as resin for optical materials, medical materials, electrical insulation materials, and automotive parts materials.
  • mechanical strength such as elastic modulus and dimensional stability were insufficient. Therefore, even in the case of thermoplastic norbornene-based resins, the modification of dispersing inorganic fillers in the resin has been carried out in order to improve the odor resistance, dimensional stability, flame retardancy, thermal conductivity, and abrasion resistance. There is a problem that it becomes brittle like the polyolefin-based resin.
  • the present inventors have studied the use of an inorganic filler coated with vinylsilane as in the case of other polyolefin-based resins in order to increase the modifying effect.c
  • the adhesion between the resin and the inorganic filler was considered. Not enough, dispersed inorganic filler Even thermoplastic norbornene resins are brittle, have low tensile elongation, and have a problem that the surface accuracy of the molded product is insufficient because the filler tends to agglomerate.
  • thermoplastic norbornene-based resin inorganic filler coated on the surface with a specific silane compound has improved wettability and adhesion with thermoplastic norbornene-based resin.
  • the thermoplastic norbornene resin in which the filler is dispersed has a small decrease in tensile elongation, improves impact resistance, disperses the filler without agglomeration, and has excellent surface precision of the molded product. And completed the present invention.
  • the inorganic filler used in the present invention is not particularly limited. Commonly used, e.g., silica, glass, clay, carion, wollastonite, tanolek, myriki, alumina, aluminum hydroxide, iron, iron oxide, titanium oxide, zinc oxide, magnesium hydroxide, calcium carbonate Inorganic fillers are exemplified. Among them, silica, glass, quartz, alumina and the like are preferable in terms of hardness and the like.
  • the shape and size of the inorganic filler are not particularly limited, and may be in the form of particles or fibers, depending on the purpose.Particles are preferred from the viewpoint of moldability and surface accuracy of the molded article, and the corners are preferably selected. Particles having no particles are more preferable, and true spherical particles are particularly preferable. The further away from the true sphere, the higher the melt viscosity, the worse the moldability, and the lower the surface accuracy of the molded product.
  • the true spherical particles preferably have an average particle diameter of at least 0.01 m, more preferably at least 0.05 ⁇ m, particularly preferably at least 0.1 m.
  • those having an average particle size of 50 / zm or less are preferable, those having an average particle size of 10 m or less are more preferable, and those having a mean particle size of 5 / m or less are particularly preferable. If the particle size of the filler is too small, the melt flowability of the composition will be poor, the fillers will easily aggregate, and the surface accuracy of the molded article will be reduced. If the particle size of the filler is too large, the dimensional accuracy with respect to the temperature change of the molded product is deteriorated, and the surface accuracy of the molded product is deteriorated.
  • the particle size distribution is small from the viewpoint of uniform surface accuracy and physical properties, and particles in the range of 1 to 10 times the average particle size should be 70% by weight or more of all particles. Is preferably 80% by weight or more, more preferably 90% by weight or more.
  • the silane compound used in the present invention has the general formula 1
  • R 6 of general formula 1-3 represents an alkyl group
  • X, to X 6 represents a hydrolyzable group
  • the silane compound of the general formula 1 is preferred from the viewpoint of excellent wettability and adhesion between the inorganic filler surface and the silane compound.
  • R, to R 6 are represented by the general formula 4 because of their good wettability and adhesion to the thermoplastic norbornene resin.
  • a, b, d, e, f, h, and i represent natural numbers, and are preferably selected from groups represented by (:, g represents 0 or a natural number.) More preferably, a to i are 3 to 5. Further, from the viewpoint of quickly adhering to the surface of the inorganic filler, X to X 6 are strong, and an alkoxy group such as a methoxy group or an ethoxyquin group: an acetoxy group; Halogens such as chlorine, bromine and iodine are preferred; alkoxy groups are more preferred; methoxy groups are particularly preferred.
  • silane compound used in the present invention examples include trimethoxy ⁇ -hexyl silane, trimethoxy ⁇ -propyl silane, trimethoxy ⁇ -propylphenyl silane, trimethoxy phenyl propyl silane, and trimethoxy silane.
  • examples thereof include monophenylsilane, trimethoxy-1- ⁇ -provylcyclohexylsilane, trimethoxy-cyclohexylpropylsilane, and trimethoxycyclohexylsilane.
  • the silane compound-coated inorganic filler of the present invention is obtained by coating the above-mentioned inorganic filler with the above-mentioned silane compound. From the viewpoint of good wettability with the thermoplastic norbornene-based resin, it is preferable that the entire surface of the inorganic filler is coated with the silane compound.
  • the coating method is not particularly limited, and may be a commonly used method such as an aqueous solution method, an organic solvent method, a spray method, or the like. It is preferable that the filler be immersed and taken out and dried to remove the solvent.
  • the thickness of the coating is not particularly limited.
  • thermoplastic norbornene-based resin used in the present invention is disclosed in JP-A-51-800, JP-A-S60-260, and JP-A-11-16887.
  • Specific examples thereof include a ring-opening polymer of a norbornene-based monomer, a hydrogenated product thereof, an addition polymer of a norbornene-based monomer, and a norbornene-based monomer.
  • addition-type copolymers of olefins are examples of olefins.
  • Norbornene-based monomers are also known monomers described in the above publications ⁇ Japanese Patent Application Laid-Open Nos. 2-222744 and 2-2-276842, for example, norbornene, Alkyl, alkylidene, aromatic substituted derivatives thereof and substituted or unsubstituted polar olefins such as halogens, hydroxyl groups, ester groups, alkoxy groups, cyano groups, amide groups, imide groups, and silyl groups;
  • the norbornene-based monomer may be polymerized by a known method, and if necessary, may be copolymerized with another copolymerizable monomer or may be hydrogenated to form a thermoplastic saturated norbornene-based resin. It can be a hydrogenated norbornene polymer. Further, the polymer or the polymer hydrogenated product can be obtained by a method known in, for example, JP-A-3-92553, such as —unsaturated carboxylic acid and / or its derivative, styrene-based hydrocarbon, and olefin-unsaturated. It may be modified with an organic gay compound having a bondable and hydrolyzable group or an unsaturated epoxy monomer. In order to obtain a material having excellent moisture resistance and chemical resistance, a thermoplastic norbornene resin containing no polar group is preferable.
  • the number-average molecular weight of the thermoplastic norbornene-based resin is 100,000 or more, preferably 15 to 15, in terms of polystyrene measured by GPC (gel 'permeation' chromatography) using a toluene solvent. , 0000 or more, more preferably 20 000 or more, 200 000 or less, preferably 100 000 or less, more preferably 50 000 or less. is there.
  • the thermoplastic norbornene-based resin has an unsaturated bond in the main chain structure, it can be converted into a thermoplastic saturated norbornene-based resin by hydrogenation.
  • the hydrogenation rate is 90% or more, preferably 95% or more, more preferably 99% or more from the viewpoint of heat deterioration resistance and light deterioration resistance. 11 7 P / JP95 / 01973
  • the transition metal derived from the polymerization catalyst When used for medical applications, it is preferable to prevent the transition metal derived from the polymerization catalyst from remaining in the resin to elute.
  • the polymer is hydrogenated using a heterogeneous catalyst carrying a catalytic metal, the resin solution is treated with such an adsorbent to adsorb metal atoms, and the resin solution is treated with acidic water and pure water.
  • thermoplastic norbornene-based resin used in the present invention preferably has a higher glass transition temperature, and when used in medical applications, it is preferably at least 105 ° C, more preferably at least 120 ° C, Particularly preferably, the temperature is 130 ° C. or higher.
  • Some sterilization methods do not require heating such as y-ray irradiation, but the simplest sterilization methods include methods that require heating, especially boiling methods and steam sterilization.
  • the glass transition temperature is 105 ° C or more, but for steam sterilization, the required heat resistance depends on the temperature setting during sterilization.
  • the most common method of steam sterilization is to use autoclave at 121 ° C. In this case, those having a glass transition temperature of 130 ° C. or more are preferable.
  • the more monomers having a large number of rings the higher the glass transition temperature of the resin.
  • a hydrogenated product of a ring-opened polymer consisting of only four or more monomers usually has a temperature of 130 ° C or more. Glass transition temperature.
  • the addition type polymer even the addition type polymer of norbornene has a glass transition temperature of 300 or more.
  • the glass transition temperature is too high, there are adverse effects such as difficulty in injection molding.Therefore, select a monomer, comonomer, polymerization method, etc. to obtain a thermoplastic norbornene resin having a glass transition temperature according to the purpose. It may be manufactured.
  • thermoplastic norbornene-based resin various additives may be added to the thermoplastic norbornene-based resin as long as the object of the present invention is not impaired.
  • an anti-aging agent such as a phenol X-based resin
  • a thermal degradation inhibitor such as a phenol X-based resin
  • an ultraviolet stabilizer such as a benzofudinone-based resin
  • Lubricants such as esters of aliphatic alcohols, partial esters of polyhydric alcohols and partial ethers; and other resins, rubbers, and the like. Can You. It may be added before the resin composition of the present invention is prepared, added at the time of preparation, or added after the preparation.
  • thermoplastic norbornene-based resin composition of the present invention is obtained by dispersing a silane compound-coated inorganic filler in a thermoplastic norbornene-based resin.
  • the amount ratio of both is 0.1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight, based on 100 parts by weight of the thermoplastic norbornene resin. Parts by weight, particularly preferably at least 10 parts by weight, at most 250 parts by weight, preferably at most 150 parts by weight, more preferably at most 100 parts by weight.
  • the thermoplastic norbornene-based resin composition is too brittle when the amount of the silane compound-coated inorganic filler is too small, so that the mechanical strength, for example, the elastic modulus, is not improved. In addition, the surface accuracy of the molded product deteriorates.
  • the method for mixing the two is not particularly limited, and a usual method such as a method using a twin-screw kneader may be used.
  • a composition having a high concentration of the silane compound-coated inorganic filler may be prepared in advance, and a thermoplastic norbornene-based resin and the composition may be mixed to prepare a composition having a predetermined concentration.
  • the method for molding the resin composition of the present invention is not particularly limited, and molding methods used for ordinary thermoplastic resins, for example, injection molding, extrusion molding, pressure molding, vacuum molding, hot press molding, and the like are used.
  • the molded article made of the resin composition of the present invention has a large tensile strength, a large tensile elongation, a high tensile elasticity, a high impact resistance, excellent dimensional stability, and a small decrease in the tensile elongation. Excellent surface accuracy.
  • tensile strength is preferably 5 2 0 kg / cm 2 or more, more preferably 5 3 0 kg / cm 2 or more, a tensile elongation of preferably 5%, more preferably at least 6% , tensile elastic modulus preferably 2 0 0 0 0 kg / cm 2 or more, more preferably 2 5 0 0 O k gZcm 2 or more, notched IZ 0 D ⁇ value of preferably 3 ⁇ 0 kg / cm 2 or more, More preferably 3.5 kg / cm 2 or more, and a coefficient of linear expansion is preferred. Properly it is 6. 0 X 1 0 "5 deg ' or less, more preferably 5. O xi 0" 5 deg ' is below.
  • the protrusions formed by the filler on the surface are preferably 10 Zcm 2 or less, more preferably 5 Zcm 2 or less.
  • the application of the resin composition of the present invention is not limited, and can be generally used for thermoplastic norbornene-based resins other than those requiring transparency.
  • Specific examples include precision molded products (information disk substrates, mirror substrates, , Coating materials (for electric wires, cables, etc.), consumer / industrial electronic equipment enclosures (copiers, computers, printers, televisions, VCRs, video cameras, etc.), structural members (parabolic antenna structural members) , Flat antenna structural members, radar dome structural members, etc .; electrical insulating materials; general circuit boards (hard printed boards, flexible printed boards, multilayer printed wiring boards, etc.), high-frequency circuit boards (circuit boards for satellite communication equipment, etc.) ) Etc.
  • Circuit board ; transparent conductive film (liquid crystal board, optical memory, surface heating element, etc.) Base materials; semiconductor encapsulation materials (transistor encapsulation materials, IC encapsulation materials, LSI encapsulation materials, etc.), electric and electronic parts encapsulation materials (motor encapsulation materials, capacitor encapsulation materials, switch encapsulation materials) , Sealing materials for sensors, etc.); interior materials for automobiles such as rearview mirrors and meter covers; exterior materials for automobiles such as door mirrors, fender mirrors, beam lenses, light covers, etc .;
  • the measurement was performed according to JIS K 7110.
  • Spherical silica beads (Admatech, Admafine S0-C2, average particle size 0 m, particle size 0 m) were added to a mixture of 5 g of trimethoxine chlorohexylsilane and 995 g of water with sufficient stirring. (0.2 to 2 m particles are 95% by weight or more), and stirred for 1 hour. Afterwards, the particles are filtered off and placed in a 130 ° C environment. After leaving it for a while to dry the water, an inorganic filler of the present invention coated with about 0.3 g of the silane compound per 1 cn of the surface area was obtained.
  • An inorganic filler coated with about 0.4 tz g of a silane compound per 1 cm 2 of surface area was obtained in the same manner as in Example 1 except that trimethoxyvinylsilane was used instead of trimethoxycyclohexane silane. This is not the silane compound-coated inorganic filler of the present invention.
  • Thermoplastic norbornene resin (ZEONEX 280, manufactured by Nippon Zeon Co., Ltd., hydrogenated norbornene monomer ring-opening polymer, molecular weight about 28,000, glass transition temperature 140 ° C, hydrogenation rate 9 9.7% or more)
  • ZEONEX 280 manufactured by Nippon Zeon Co., Ltd., hydrogenated norbornene monomer ring-opening polymer, molecular weight about 28,000, glass transition temperature 140 ° C, hydrogenation rate 9 9.7% or more
  • To 90 parts by weight 10 parts by weight of the silane compound-coated inorganic filler of the present invention obtained in Example 1 was added, and at a resin temperature of 250, a twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) And TEM35 B) to obtain a resin composition of the present invention.
  • the resin composition was pelletized by a pelletizer.
  • a dumbbell was prepared by injection molding using this pellet and its tensile properties were measured.
  • the tensile strength was 560 kg / cm 2
  • the tensile elongation was 7%
  • the yield point was recognized.
  • the tensile modulus was 2800 kg / cm 2 .
  • the linear expansion coefficient of 4. 0 X 1 0- 5 deg ' , I ZOD impact value Notched 3. 9 kg - was CmZcm.
  • the silane obtained in Example 2 was used in place of the silane compound-coated inorganic filler obtained in Example 1.
  • a resin composition of the present invention was obtained and pelletized in the same manner as in Example 3 except that an inorganic compound-coated inorganic filler was used, and a dumbbell was produced.
  • the tensile properties were measured, the tensile strength was 540 kg / cm 2 , the tensile elongation was 9%, the tensile elastic modulus was 270 kg / cm 2 , and the yield point was recognized. No gap was formed between the filler and the resin.
  • the linear expansion coefficient was 3.9 X 10 " 5 deg" 1.
  • the notched I ZOD impact value was 3.7 kg-cmZcm.
  • the surface of the molded product was smooth, and no protrusions with a height of 0.5 mm or more were observed.
  • a resin composition was obtained in the same manner as in Example 3 except that the silane compound-coated inorganic filler obtained in Comparative Example 1 was used instead of the silane compound-coated inorganic filler obtained in Example 1, and a dumbbell was prepared.
  • the tensile properties were measured, the tensile strength 5 2 0 k gZcm 2, a tensile elongation of 3%, the tensile modulus was 2 9 0 0 0 kg / cm 2. No yield point was observed. Further, the linear expansion coefficient of 4. 2 X 1 0- 5 deg ' , I ZOD impact value Notched 2. 5 k - was cm / cm. Gaps were observed between some silane compound-coated inorganic fillers and thermoplastic norbornene resin. In addition, about 7 protrusions with a height of 0.5 m or more are formed on the molded product surface.
  • a resin composition was obtained and pelletized in the same manner as in Example 3 except that an uncoated inorganic filler (Admafine S0-C2) was used instead of the silane compound-coated inorganic filler obtained in Example 1.
  • a dumbbell was made. When the tensile properties were measured, the tensile strength was 500 kg / cm 2 , the tensile elongation was 2%, and the tensile modulus was 2800 kgZ cm 2 . No yield point was observed. The coefficient of linear expansion was 3.9 X 1 (T 5 deg, notched I ZOD impact value was 1.6 kg ⁇ cmZ cm. The formation of a large number of gaps was observed more than in the sample No. 5. Further, about 15 protrusions having a height of 0. 0 or more were observed on the surface of the molded article at about Zcm 2 .
  • thermoplastic norbornene-based resin composition containing the silane compound-coated inorganic filler of the present invention is excellent in tensile properties and impact resistance, and has a small coefficient of linear expansion, so that it has excellent dimensional accuracy with respect to temperature change, moldability, and molding. Excellent surface accuracy of products.

Abstract

A composition comprising a thermoplastic norbornene resin and, dispersed therein, particles of an inorganic filler coated with a silane compound comprising a silicon atom and, bonded thereto, four groups consisting of one or more alkyl groups and one or more hydrolyzable groups, such as trimethoxy-p-propylphenylsilane. The composition is excellent in tensile properties and impact resistance, has such a low coefficient of linear expansion as to be excellent in dimensional accuracy resistant to temperatue changes, and is excellent in moldability to give moldings having excellent surface accuracy.

Description

{{
明 細 書 表面処理フィラー、 及び該フイラ一を含有する組成物 技術分野 TECHNICAL FIELD Surface treatment filler and composition containing the filler
本発明は、 表面を被覆した無機フィラー、 及び該フイラ一を含有する熱可塑性 ノルボルネン系榭脂組成物に関し、 さらに詳しくは、 シラン化合物によって表面 を被覆して熱可塑性ノルボルネン系樹脂との濡れ性を改良した無機フィラー、 及 び該フィラーを含有することにより機械的強度を改良した熱可塑性ノルボルネン 系樹脂組成物に関する。  The present invention relates to an inorganic filler coated on the surface, and a thermoplastic norbornene-based resin composition containing the filler.More specifically, the surface is coated with a silane compound to improve wettability with the thermoplastic norbornene-based resin. The present invention relates to an improved inorganic filler, and a thermoplastic norbornene-based resin composition having improved mechanical strength by containing the filler.
背景技術  Background art
ポリエチレンゃポリプロピレンなどのポリオレフィン系樹脂では、 機械的強度 が求められる用途において、 無機フィラーを分散させることによって、 榭脂の機 械的強度を改良することが広く行われている。 しかし、 一般の無機フィラーとポ リオレフイン系樹脂とでは濡れ性が悪いため、 フィラーと樹脂の界面部分から亀 裂を生じやすく、 脆くなるという問題があった。 そのため、 通常は、 フイラ一表 面をビニル基含有炭化水素基を有するシラン化合物で被覆した無機フィラーを榭 脂に分散させて機械的強度を改良していた。  For polyolefin-based resins such as polyethylene and polypropylene, it is widely used to improve the mechanical strength of resins by dispersing inorganic fillers in applications where mechanical strength is required. However, the general inorganic filler and the polyolefin resin have poor wettability, so that cracks are easily generated from the interface between the filler and the resin, and the resin becomes brittle. Therefore, usually, an inorganic filler in which the surface of the filler is coated with a silane compound having a vinyl group-containing hydrocarbon group is dispersed in a resin to improve the mechanical strength.
近時、 ポリオレフイン系樹脂の一つである熱可塑性ノルボルネン系樹脂が、 耐 熱性、 透明性、 低吸湿性、 低吸水性、 耐薬品性、 耐湿性、 耐水性、 透明性、 低複 屈折性の樹脂として光学材料、 医療材料、 電気絶縁材料、 自動車部品材料などと して広く用いられている。 しかし、 用途によっては、 弾性率などの機械的強度、 寸法安定性などが不十分となることがあった。 そこで、 熱可塑性ノルボルネン系 樹脂においても、 岡 «性、 寸法安定性、 難燃性、 熱伝導性、 耐摩耗性向上のために 無機フィラーを樹脂中に分散させる改質は行われている力 ほかのポリオレフィ ン系樹脂と同様に脆くなるという問題があつた。  Recently, a thermoplastic norbornene resin, one of the polyolefin resins, has become more resistant to heat, transparency, low moisture absorption, low water absorption, chemical resistance, moisture resistance, water resistance, transparency, and low birefringence. It is widely used as resin for optical materials, medical materials, electrical insulation materials, and automotive parts materials. However, depending on the application, mechanical strength such as elastic modulus and dimensional stability were insufficient. Therefore, even in the case of thermoplastic norbornene-based resins, the modification of dispersing inorganic fillers in the resin has been carried out in order to improve the odor resistance, dimensional stability, flame retardancy, thermal conductivity, and abrasion resistance. There is a problem that it becomes brittle like the polyolefin-based resin.
そこで、 本発明者らは、 改質効果を大きくするために、 ほかのポリオレフイン 系樹脂と同様に、 無機フィラーをビニルシランで被覆して用いることを検討した c しかし、 榭脂と無機フィラーの接着性が十分でなく、 無機フイラ一を分散させた 熱可塑性ノルボルネン系樹脂であっても脆く、 引っ張り伸びが低下し、 また、 フ ィラーが凝集しやすいため、 成形品の表面精度が不足するなどの問題があった。 Therefore, the present inventors have studied the use of an inorganic filler coated with vinylsilane as in the case of other polyolefin-based resins in order to increase the modifying effect.c However, the adhesion between the resin and the inorganic filler was considered. Not enough, dispersed inorganic filler Even thermoplastic norbornene resins are brittle, have low tensile elongation, and have a problem that the surface accuracy of the molded product is insufficient because the filler tends to agglomerate.
発明の開示  Disclosure of the invention
本発明者らは、 熱可塑性ノルボルネン系樹脂の機械的強度の改良を目的として、 鋭意研究の結果、 特定のシラン化合物で表面を被覆した無機フィラ一が熱可塑性 ノルボルネン系樹脂との濡れ性、 接着性に優れ、 該フイラ一を分散させた熱可塑 性ノルボルネン系樹脂は引っ張り伸びの低下が小さく、 耐衝撃性が向上し、 フィ ラーが凝集せずに分散され、 成形品の表面精度に優れていることを見い出し、 本 発明を完成させるに到った。  The present inventors have conducted intensive studies with the aim of improving the mechanical strength of thermoplastic norbornene-based resin, and as a result, the inorganic filler coated on the surface with a specific silane compound has improved wettability and adhesion with thermoplastic norbornene-based resin. The thermoplastic norbornene resin in which the filler is dispersed has a small decrease in tensile elongation, improves impact resistance, disperses the filler without agglomeration, and has excellent surface precision of the molded product. And completed the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
かく して、 本発明によれば、 一般式 1  Thus, according to the present invention, general formula 1
R I O 丄 X l X 2 3 \  R I O 丄 X l X 2 3 \
一般式 2 General formula 2
R 2 R 3 S i Χ Χ 5 および R 2 R 3 S i Χ Χ 5 and
一般式 3 General formula 3
4 5 6 1 6  4 5 6 1 6
(一般式 1 ~ 3中の R , 〜R 6 はアルキル基を表し、 X , 〜X 6 は加水分解可能 な基を表す) で表わされるすくなくとも一種のシラン化合物の層で表面を被覆し た無機フイラ一、 該無機フイラ一と熱可塑性ノルボルネン系樹脂からなる組成物 が提供される。 (Formula 1-3 in R, to R 6 represents an alkyl group, X, to X 6 represents a hydrolyzable group) were coated surface with a layer of at least one silane compound represented by inorganic And a composition comprising the inorganic filler and a thermoplastic norbornene-based resin.
(無機フイラ一)  (Inorganic filler)
本発明で用いられる無機フイラ一は、 特に限定されない。 例えば、 シリカ、 ガ ラス、 クレイ、 カリオン、 ウォラストナイ ト、 タノレク、 マイ力、 アルミナ、 水酸 化アルミニウム、 鉄、 酸化鉄、 酸化チタン、 酸化亜鉛、 水酸化マグネシウム、 炭 酸カルシウムなど、 一般的に使用される無機フィラーが例示される。 中でも、 シ リカ、 ガラス、 石英、 アルミナなどが硬さなどの点で好ましい。  The inorganic filler used in the present invention is not particularly limited. Commonly used, e.g., silica, glass, clay, carion, wollastonite, tanolek, myriki, alumina, aluminum hydroxide, iron, iron oxide, titanium oxide, zinc oxide, magnesium hydroxide, calcium carbonate Inorganic fillers are exemplified. Among them, silica, glass, quartz, alumina and the like are preferable in terms of hardness and the like.
無機フィラーの形状や大きさも特に限定されず、 目的に応じて、 粒子状でも、 繊維状でもよいが、 成形性、 成形品の表面精度の点からは粒子状のものが好まし く、 角を有しない粒子状のものがより好ましく、 真球状の粒子が特に好ましい。 真球から遠ざかるほど、 溶融粘度が高くなり、 成形性が悪くなり、 成形品の表面 精度が悪くなる。 真球状の粒子としては、 平均粒径が 0. 0 1 m以上のものが 好ましく、 0. 0 5〃m以上のものがより好ましく、 0. 1 m以上のものが特 に好ましい。 また、 平均粒径が 5 0 /zm以下のものが好ましく、 1 0 m以下の ものがより好ましく、 5 / m以下のものが特に好ましい。 フィラーの粒径が小さ すぎると、 組成物の溶融流れ性が悪くなり、 フィラー同士の凝集も生じやすくな り、 成形品の表面精度が低下する。 フィラーの粒径が大きすぎると成形品の温度 変化に対する寸法精度が悪くなり、 また、 成形品の表面精度が悪くなる。 さらに、 表面精度や物性が均一である点から、 粒径分布が小さいものが好ましく、 平均粒 径の 1 Z 1 0〜 1 0倍の範囲の粒子が全粒子の 7 0重量%以上であることが好ま しく、 8 0重量%以上であることがより好ましく、 9 0重量%以上であることが 特に好ましい。 The shape and size of the inorganic filler are not particularly limited, and may be in the form of particles or fibers, depending on the purpose.Particles are preferred from the viewpoint of moldability and surface accuracy of the molded article, and the corners are preferably selected. Particles having no particles are more preferable, and true spherical particles are particularly preferable. The further away from the true sphere, the higher the melt viscosity, the worse the moldability, and the lower the surface accuracy of the molded product. The true spherical particles preferably have an average particle diameter of at least 0.01 m, more preferably at least 0.05 μm, particularly preferably at least 0.1 m. Further, those having an average particle size of 50 / zm or less are preferable, those having an average particle size of 10 m or less are more preferable, and those having a mean particle size of 5 / m or less are particularly preferable. If the particle size of the filler is too small, the melt flowability of the composition will be poor, the fillers will easily aggregate, and the surface accuracy of the molded article will be reduced. If the particle size of the filler is too large, the dimensional accuracy with respect to the temperature change of the molded product is deteriorated, and the surface accuracy of the molded product is deteriorated. Further, it is preferable that the particle size distribution is small from the viewpoint of uniform surface accuracy and physical properties, and particles in the range of 1 to 10 times the average particle size should be 70% by weight or more of all particles. Is preferably 80% by weight or more, more preferably 90% by weight or more.
(シラン化合物)  (Silane compound)
本発明で用いられるシラン化合物は、 一般式 1  The silane compound used in the present invention has the general formula 1
1\. I S 1 Λ I A.2 A 3 、  1 \. I S 1 Λ I A.2 A 3,
一般式 2 General formula 2
R2 R3 S i X, X5 および R 2 R 3 S i X, X 5 and
一般式 3 General formula 3
R 4 R 5 R 6 S 1 X 6  R 4 R 5 R 6 S 1 X 6
(一般式 1〜3中の 〜R6 はアルキル基を表し、 X, 〜X6 は加水分解可能 な基を表す) から選ばれたものである。 無機フィラー表面とシラン化合物の濡れ 性、 密着性に優れる点から、 一般式 1のシラン化合物が好ましい。 また、 これら のシラン化合物としては、 熱可塑性ノルボルネン系樹脂との濡れ性、 密着性がよ い点から、 R, 〜R6 が一般式 4 C a H 2 a ^ (To R 6 of general formula 1-3 represents an alkyl group, X, to X 6 represents a hydrolyzable group) are those selected from. The silane compound of the general formula 1 is preferred from the viewpoint of excellent wettability and adhesion between the inorganic filler surface and the silane compound. Further, as these silane compounds, R, to R 6 are represented by the general formula 4 because of their good wettability and adhesion to the thermoplastic norbornene resin. C a H 2 a ^
-般式 5  -General formula 5
く。, - C b H2 b -、 Good. ,-C b H 2 b- ,
一般式 6  General formula 6
C c H2 c., - (〇〉 -、 C c H 2 c .,-(〇〉-,
—般式 7  —General formula 7
C d H 2 d + I ~く U〉— C e H 2 e  C d H 2 d + I ~ ku U〉 — C e H 2 e
一般式 8  General formula 8
H )- C , H H)-C, H
一般式 9  General formula 9
CK H2 g + I - (i) - および C K H 2 g + I- (i)-and
一般式 1 0
Figure imgf000006_0001
General formula 1 0
Figure imgf000006_0001
(一般式 4~1 0中の a、 b、 d、 e、 f、 h、 iは自然数を表し、 (:、 gは 0、 または自然数を表す) で表わされる基から選ばれたものが好ましく、 特に a〜 i が 3〜5のものがより好ましい。 また、 無機フイラ一表面とすばやく密着する点 から、 X 〜X6 力く、 メ トキシ基、 エトキン基などのアルコキシ基: ァセトキ シ基; 塩素、 臭素、 ヨウ素などのハロゲン; から選ばれたものが好ましく、 アルコキシ基がより好ましく、 メ トキシ基が特に好ましい。 (In general formulas 4 to 10, a, b, d, e, f, h, and i represent natural numbers, and are preferably selected from groups represented by (:, g represents 0 or a natural number.) More preferably, a to i are 3 to 5. Further, from the viewpoint of quickly adhering to the surface of the inorganic filler, X to X 6 are strong, and an alkoxy group such as a methoxy group or an ethoxyquin group: an acetoxy group; Halogens such as chlorine, bromine and iodine are preferred; alkoxy groups are more preferred; methoxy groups are particularly preferred.
本発明で用いるシラン化合物としては、 具体的には、 トリメ トキシー η—へキ シルシラン、 トリメ 卜キシ一η—プロビルシラン、 トリメ トキシ一 ρ—プロピル フエニルシラン、 トリメ トキシーフエニルプロビルシラン、 トリメ トキシ一フエ ニルシラン、 トリメ トキシ一 ρ—プロビルシクロへキシルンラン、 卜リメ トキシ —シクロへキシルプロビルシラン、 トリメ トキシーンクロへキシルシランなどが 例示される。  Specific examples of the silane compound used in the present invention include trimethoxy η-hexyl silane, trimethoxy η-propyl silane, trimethoxy ρ-propylphenyl silane, trimethoxy phenyl propyl silane, and trimethoxy silane. Examples thereof include monophenylsilane, trimethoxy-1-ρ-provylcyclohexylsilane, trimethoxy-cyclohexylpropylsilane, and trimethoxycyclohexylsilane.
(シラン化合物被覆無機フイラ一) 本発明のシラン化合物被覆無機フイラ一は、 前述の無機フィラーを前述のシラ ン化合物で被覆したものである。 熱可塑性ノルボルネン系樹脂との濡れ性がよい 点から、 無機フィラーの表面全体がシラン化合物で被覆されているものが好まし い。 被覆方法は特に限定されず、 水溶液法、 有機溶媒法、 スプレー法など、 通常 用いられている方法でよく、 ムラなく均一に被覆できる点で水溶液法、 有機溶媒 法など、 シラン化合物溶液中に無機フィラーを浸漬して取り出し、 乾燥させて溶 媒を除去する方法が好ましい。 被覆の厚さなども特に限定されない。 (Silane compound coated inorganic filler) The silane compound-coated inorganic filler of the present invention is obtained by coating the above-mentioned inorganic filler with the above-mentioned silane compound. From the viewpoint of good wettability with the thermoplastic norbornene-based resin, it is preferable that the entire surface of the inorganic filler is coated with the silane compound. The coating method is not particularly limited, and may be a commonly used method such as an aqueous solution method, an organic solvent method, a spray method, or the like. It is preferable that the filler be immersed and taken out and dried to remove the solvent. The thickness of the coating is not particularly limited.
(熱可塑性ノルボルネン系樹脂)  (Thermoplastic norbornene resin)
本発明で用いる熱可塑性ノルボルネン系樹脂は、 特開昭 5 1 — 8 0 4 0 0号公 報、 特開昭 6 0 - 2 6 0 2 4号公報、 特開平 1 一 1 6 8 7 2 5号公報、 特開平 1 - 1 9 0 7 2 6号公報、 特開平 3— 1 4 8 8 2号公報、 特開平 3 - 1 2 2 1 3 7 号公報、 特開平 4 一 6 3 8 0 7号公報などで公知の樹脂であり、 具体的には、 ノ ルボルネン系単量体の開環重合体、 その水素添加物、 ノルボルネン系単量体の付 加型重合体、 ノルボルネン系単量体とォレフィンの付加型共重合体などが挙げら れる。  The thermoplastic norbornene-based resin used in the present invention is disclosed in JP-A-51-800, JP-A-S60-260, and JP-A-11-16887. JP, JP-A-1-190772, JP-A-3-148882, JP-A-3-122, 739, JP-A-316380 And the like. Specific examples thereof include a ring-opening polymer of a norbornene-based monomer, a hydrogenated product thereof, an addition polymer of a norbornene-based monomer, and a norbornene-based monomer. And addition-type copolymers of olefins.
ノルボルネン系単量体も、 上記公報ゃ特開平 2— 2 2 7 4 2 4号公報、 特開平 2 - 2 7 6 8 4 2号公報などで公知の単量体であって、 例えば、 ノルボルネン、 そのアルキル、 アルキリデン、 芳香族置換誘導体およびこれら置換または非置換 のォレフイ ンのハロゲン、 水酸基、 エステル基、 アルコキシ基、 シァノ基、 アミ ド基、 ィミ ド基、 シリル基等の極性基置換体、 例えば、 2 —ノルボルネン、 5 - メチルー 2—ノルボルネン、 5 , 5—ジメチル一 2 —ノルボルネン、 5 _ェチル — 2—ノルボルネン、 5 —ブチル一 2—ノルボルネン、 5—ェチリデン一 2—ノ ルボルネン、 5—メ トキシカルボ二ルー 2—ノルボルネン、 5—シァノー 2—ノ ルボルネン、 5 —メチルー 5—メ トキシカルボ二ルー 2—ノルボルネン、 5—フ ヱニル— 2—ノルボルネン、 5—フエニル一 5 —メチルー 2—ノルボルネン、 5 一へキシル一 2—ノルボエルネン、 5—ォクチル一 2 —ノルボルネン、 5—ォク タデシル一 2—ノルボルネン等; ノルボルネンに一^ ^以上のシクロペンタジェ ンが付加した単量体、 その上記と同様の誘導体や置換体、 例えば、 し 4 : 5 , 8—ジメタノ一 1, 2, 3, 4 , 4 a , 5, 8 , 8 a - 2 , 3—シクロペンタジ エノォクタヒ ドロナフ夕レン、 6—メチル一 1 , 4 : 5, 8—ジメタノー 1 , 4, 4 a, 5, 6, 7, 8, 8 a—ォクタヒ ドロナフタレン、 1, 4 : 5, 1 0 : 6, 9一 トリメタノー 1 , 2, 3, 4, 4 a, 5, 5 a, 6, 9, 9 a, 1 0, 1 0 a— ドデカヒ ドロー 2, 3—シクロペンタジエノアントラセン等; シクロペン タジェンのディールス一アルダー反応により多量化した多環構造の単量体、 その 上記と同様の誘導体や置換体、 例えば、 ジシクロペンタジェン、 2, 3—ジヒド 口ジシクロペンタジェン等; シクロペンタジェンとテ卜ラヒ ドロインデン等と の付加物、 その上記と同様の誘導体や置換体、 例えば、 1, 4一メタノー 1 , 4, 4 a, 4 b, 5, 8, 8 a, 9 a—ォクタヒ ドロフルオレン、 5, 8—メタノー 1 , 2, 3, 4, 4 a, 5, 8, 8 a—ォクタヒドロ一 2, 3—シクロペンタジ エノナフタレン等; 等が挙げられる。 Norbornene-based monomers are also known monomers described in the above publications {Japanese Patent Application Laid-Open Nos. 2-222744 and 2-2-276842, for example, norbornene, Alkyl, alkylidene, aromatic substituted derivatives thereof and substituted or unsubstituted polar olefins such as halogens, hydroxyl groups, ester groups, alkoxy groups, cyano groups, amide groups, imide groups, and silyl groups; For example, 2-norbornene, 5-methyl-2-norbornene, 5,5-dimethyl-12-norbornene, 5_ethyl- 2-norbornene, 5-butyl-12-norbornene, 5-ethylidene-12-norbornene, 5- Methoxycarbonyl 2-norbornene, 5-cyano 2-norbornene, 5-methyl-5-methoxy-2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-1-5-methyl-2-norbornene, 5-hexyl-12-norboernene, 5-octyl-12-norbornene, 5-octadecyl-12-norbornene, etc .; more than 1 ^^ cyclopentagen in norbornene Is a monomer to which is added, or a derivative or a substitute thereof similar to the above, for example, dimethano-1,2,3,4,4a, 5,8,8a-2,3- Cyclopentadi Enoctahi dronaphlene, 6-methyl-1,4,5,8-dimethanone 1,4,4a, 5,6,7,8,8a-octahidronaphthalene, 1,4: 5,10: 6 1,9,1 Trimethanoe 1,2,3,4,4a, 5,5a, 6,9,9a, 10,10a—dodekahi draw 2,3-cyclopentadienoanthracene, etc .; Monomers having a polycyclic structure multiplied by the Diels-Alder reaction, derivatives and substituents similar to the above, for example, dicyclopentadiene, 2,3-dihydrofuran dicyclopentadiene, etc .; Adducts with trahydrodroindene and the like, and derivatives and substitutes thereof as described above, for example, 1,4-methanol 1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene; 5,8-methano 1,2,3,4,4a, 5,8,8a-octahydro-1,2,3-cyclopentadienonaphthalene, etc. Etc. The.
ノルボルネン系単量体の重合は公知の方法でよく、 必要に応じて、 他の共重合 可能な単量体と共重合したり、 水素添加することにより熱可塑性飽和ノルボルネ ン系樹脂である熱可塑性ノルボルネン系重合体水素添加物とすることができる。 また、 重合体や重合体水素添加物を特開平 3— 9 5 2 3 5号などで公知の方法に より、 —不飽和カルボン酸およびノまたはその誘導体、 スチレン系炭化水 素、 ォレフィン系不飽和結合および加水分解可能な基を持つ有機ゲイ素化合物、 不飽和エポキシ単量体を用いて変性させてもよい。 なお、 耐湿性、 耐薬品性に優 れたものを得るためには、 極性基を含有しない熱可塑性ノルボルネン系榭脂が好 ましい。  The norbornene-based monomer may be polymerized by a known method, and if necessary, may be copolymerized with another copolymerizable monomer or may be hydrogenated to form a thermoplastic saturated norbornene-based resin. It can be a hydrogenated norbornene polymer. Further, the polymer or the polymer hydrogenated product can be obtained by a method known in, for example, JP-A-3-92553, such as —unsaturated carboxylic acid and / or its derivative, styrene-based hydrocarbon, and olefin-unsaturated. It may be modified with an organic gay compound having a bondable and hydrolyzable group or an unsaturated epoxy monomer. In order to obtain a material having excellent moisture resistance and chemical resistance, a thermoplastic norbornene resin containing no polar group is preferable.
本発明においては、 熱可塑性ノルボルネン系樹脂の数平均分子量は、 トルエン 溶媒による G P C (ゲル'パーミエーシヨン ' クロマトグラフィ) 法で測定した ポリスチレン換算値で、 1 0, 0 0 0以上、 好ましくは 1 5, 0 0 0以上、 より 好ましくは 2 0, 0 0 0以上、 2 0 0, 0 0 0以下、 好ましくは 1 0 0, 0 0 0 以下、 より好ましくは 5 0, 0 0 0以下のものである。 また、 熱可塑性ノルボル ネン系樹脂が主鎖構造中に不飽和結合を有している場合は、 水素添加することに より、 熱可塑性飽和ノルボルネン系樹脂とすることができる。 水素添加する場合、 水素添加率は耐熱劣化性、 耐光劣化性などの観点から、 9 0 %以上、 好ましくは 9 5 %以上、 より好ましくは 9 9 %以上である。 11 7 P /JP95/01973 In the present invention, the number-average molecular weight of the thermoplastic norbornene-based resin is 100,000 or more, preferably 15 to 15, in terms of polystyrene measured by GPC (gel 'permeation' chromatography) using a toluene solvent. , 0000 or more, more preferably 20 000 or more, 200 000 or less, preferably 100 000 or less, more preferably 50 000 or less. is there. When the thermoplastic norbornene-based resin has an unsaturated bond in the main chain structure, it can be converted into a thermoplastic saturated norbornene-based resin by hydrogenation. In the case of hydrogenation, the hydrogenation rate is 90% or more, preferably 95% or more, more preferably 99% or more from the viewpoint of heat deterioration resistance and light deterioration resistance. 11 7 P / JP95 / 01973
医療用途に用いる場合等においては、 樹脂中に重合触媒由来の遷移金属が残留 して溶出したりしないようにすることが好ましい。 細孔容積 0 . 5 c m 3 以 上、 好ましくは 0 . 7 c m 3 / g以上、 好ましくは比表面積 2 5 0 c m 2 以 上の吸着剤、 例えばアルミナ等の吸着剤に、 ニッケル等の水素添加触媒金属を担 持させた不均一系触媒を用いて重合体を水素添加したり、 このような吸着剤で榭 脂溶液を処理して金属原子を吸着させたり、 樹脂溶液を酸性水と純水で繰り返し 洗浄したりすること等により、 樹脂中の重合触媒由来の遷移金属原子を 1 p p m 以下にすることが可能であり、 そのような樹脂は医療用途においても安全である。 また、 本発明で用いる熱可塑性ノルボルネン系樹脂はガラス転移温度が高いほ ど好ましく、 医療用途に用いる場合等は、 好ましくは 1 0 5 °C以上、 より好まし くは 1 2 0 °C以上、 特に好ましくは 1 3 0 °C以上のものである。 滅菌法には y線 照射等の加熱を必要としない方法もあるが、 最も簡便な滅菌方法としては、 加熱 を要する方法、 特に煮沸による方法とスチーム滅菌があげられる。 煮沸による滅 菌ではガラス転移温度が 1 0 5 °C以上であれば問題ないが、 スチーム滅菌では滅 菌時の温度設定によって要求される耐熱性が異なる。 最も一般的なスチーム滅菌 はオートクレープを用いた 1 2 1 °Cで行う方法である。 この場合、 ガラス転移温 度が 1 3 0 °C以上のものが好ましい。 一般に、 環数が多いモノマーを多く使うほ ど樹脂のガラス転移温度が高くなり、 例えば、 4環体以上の単量体のみの開環重 合体の水素添加物は、 通常 1 3 0 °C以上のガラス転移温度を有する。 また、 付加 型重合体の場合は、 ノルボルネンの付加型重合体でも、 ガラス転移温度は 3 0 0 て以上である。 しかし、 ガラス転移温度が高すぎると、 射出成形が困難になるな どの弊害もあるので、 モノマー、 コモノマー、 重合方法などを選択して、 目的に 応じたガラス転移温度の熱可塑性ノルボルネン系榭脂を製造すればよい。 When used for medical applications, it is preferable to prevent the transition metal derived from the polymerization catalyst from remaining in the resin to elute. Pore volume 0. 5 cm 3 or less on, preferably 0. 7 cm 3 / g or more, preferably adsorbent on the specific surface area 2 5 0 cm 2 or more, for example adsorbents such as alumina, hydrogenation such as nickel The polymer is hydrogenated using a heterogeneous catalyst carrying a catalytic metal, the resin solution is treated with such an adsorbent to adsorb metal atoms, and the resin solution is treated with acidic water and pure water. It is possible to reduce the amount of transition metal atoms derived from the polymerization catalyst in the resin to 1 ppm or less by repeatedly washing the resin, etc., and such a resin is safe for medical use. Further, the thermoplastic norbornene-based resin used in the present invention preferably has a higher glass transition temperature, and when used in medical applications, it is preferably at least 105 ° C, more preferably at least 120 ° C, Particularly preferably, the temperature is 130 ° C. or higher. Some sterilization methods do not require heating such as y-ray irradiation, but the simplest sterilization methods include methods that require heating, especially boiling methods and steam sterilization. For sterilization by boiling, there is no problem if the glass transition temperature is 105 ° C or more, but for steam sterilization, the required heat resistance depends on the temperature setting during sterilization. The most common method of steam sterilization is to use autoclave at 121 ° C. In this case, those having a glass transition temperature of 130 ° C. or more are preferable. In general, the more monomers having a large number of rings, the higher the glass transition temperature of the resin.For example, a hydrogenated product of a ring-opened polymer consisting of only four or more monomers usually has a temperature of 130 ° C or more. Glass transition temperature. In addition, in the case of the addition type polymer, even the addition type polymer of norbornene has a glass transition temperature of 300 or more. However, if the glass transition temperature is too high, there are adverse effects such as difficulty in injection molding.Therefore, select a monomer, comonomer, polymerization method, etc. to obtain a thermoplastic norbornene resin having a glass transition temperature according to the purpose. It may be manufactured.
また、 熱可塑性ノルボルネン系樹脂には、 本発明の目的を損なわない範囲で、 各種添加剤を添加してもよい。 例えば、 熱可塑性ノルボルネン系樹脂の場合、 フ Xノ一ル系ゃリン系等の老化防止剤; フ Xノール系等の熱劣化防止剤: ベン ゾフ二ノン系等の紫外線安定剤; ァミン系等の帯電防止剤; 脂肪族アルコー ルのエステル、 多価アルコールの部分エステル及び部分エーテル等の滑剤; 等 の各種添加剤を添加してもよく、 他の樹脂、 ゴム等を混合して用いることもでき る。 本発明の樹脂組成物を調製する前に添加しても、 調製時に添加しても、 調製 後に添加してもよい。 Further, various additives may be added to the thermoplastic norbornene-based resin as long as the object of the present invention is not impaired. For example, in the case of a thermoplastic norbornene resin, an anti-aging agent such as a phenol X-based resin; a thermal degradation inhibitor such as a phenol X-based resin; an ultraviolet stabilizer such as a benzofudinone-based resin; Lubricants such as esters of aliphatic alcohols, partial esters of polyhydric alcohols and partial ethers; and other resins, rubbers, and the like. Can You. It may be added before the resin composition of the present invention is prepared, added at the time of preparation, or added after the preparation.
(樹脂組成物)  (Resin composition)
本発明の熱可塑性ノルボルネン系樹脂組成物は、 熱可塑性ノルボルネン系榭脂 中にシラン化合物被覆無機フィラーを分散させたものである。  The thermoplastic norbornene-based resin composition of the present invention is obtained by dispersing a silane compound-coated inorganic filler in a thermoplastic norbornene-based resin.
両者の量比は、 熱可塑性ノルボルネン系樹脂 1 0 0重量部に対して、 シラン化 合物被覆無機フィラー 0. 1重量部以上、 好ましくは 0. 5重量部以上、 より好 ましくは 1重量部以上、 特に好ましくは 1 0重量部以上、 2 5 0重量部以下、 好 ましくは 1 5 0重量部以下、 より好ましくは 1 0 0重量部以下である。 熱可塑性 ノルボルネン系樹脂組成物は、 シラン化合物被覆無機フイラ一の量が少なすぎる と機械的強度、 例えば弾性率が改善されず、 多すぎると引っ張り伸びが低下し、 耐衝撃強度が低下し、 脆くなり、 また、 成形品の表面精度が悪くなる。  The amount ratio of both is 0.1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight, based on 100 parts by weight of the thermoplastic norbornene resin. Parts by weight, particularly preferably at least 10 parts by weight, at most 250 parts by weight, preferably at most 150 parts by weight, more preferably at most 100 parts by weight. The thermoplastic norbornene-based resin composition is too brittle when the amount of the silane compound-coated inorganic filler is too small, so that the mechanical strength, for example, the elastic modulus, is not improved. In addition, the surface accuracy of the molded product deteriorates.
両者の混合方法は、 特に限定されず、 二軸混練機を用いる方法など通常の方法 でよい。 また、 シラン化合物被覆無機フィラーの高澳度の組成物を予め調整して おき、 熱可塑性ノルボルネン系樹脂と該組成物を混合して所定の濃度のものを調 製してもよい。  The method for mixing the two is not particularly limited, and a usual method such as a method using a twin-screw kneader may be used. Alternatively, a composition having a high concentration of the silane compound-coated inorganic filler may be prepared in advance, and a thermoplastic norbornene-based resin and the composition may be mixed to prepare a composition having a predetermined concentration.
(成形方法)  (Molding method)
本発明の樹脂組成物を成形する方法は特に限定されず、 通常の熱可塑性樹脂に 用いられる成形方法、 例えば、 射出成形、 押し出し成形、 圧空成形、 真空成形、 熱プレス成形などが用いられる。  The method for molding the resin composition of the present invention is not particularly limited, and molding methods used for ordinary thermoplastic resins, for example, injection molding, extrusion molding, pressure molding, vacuum molding, hot press molding, and the like are used.
(成形品)  (Molding)
本発明の樹脂組成物から成る成形品は、 引っ張り強さが大きく、 引っ張り伸び が大きく、 引っ張り弾性率が高く、 耐衝撃性が高く、 寸法安定性に優れると同時 に、 引っ張り伸びの低下が小さく、 また、 表面精度に優れる。 本発明の樹脂組成 物は、 引っ張り強さが好ましくは 5 2 0 k g/cm2 以上、 より好ましくは 5 3 0 k g/cm2 以上、 引っ張り伸びが好ましくは 5%以上、 より好ましくは 6% 以上、 引っ張り弾性率が好ましくは 2 0 0 0 0 k g/cm2 以上、 より好ましく は 2 5 0 0 O k gZcm2 以上、 ノッチ付き I Z 0 D衝擊値が好ましくは 3 · 0 k g/cm2 以上、 より好ましくは 3. 5 k g/cm2 以上、 線膨張係数が好ま しくは 6 . 0 X 1 0 " 5 d e g '以下、 より好ましくは 5 . O x i 0 " 5 d e g '以 下である。 また、 表面に発現したフイラ一により形成される突出が好ましくは 1 0個 Z c m2 以下、 より好ましくは 5個 Z c m2 以下のものである。 The molded article made of the resin composition of the present invention has a large tensile strength, a large tensile elongation, a high tensile elasticity, a high impact resistance, excellent dimensional stability, and a small decrease in the tensile elongation. Excellent surface accuracy. The resin composition of the present invention, tensile strength is preferably 5 2 0 kg / cm 2 or more, more preferably 5 3 0 kg / cm 2 or more, a tensile elongation of preferably 5%, more preferably at least 6% , tensile elastic modulus preferably 2 0 0 0 0 kg / cm 2 or more, more preferably 2 5 0 0 O k gZcm 2 or more, notched IZ 0 D衝擊value of preferably 3 · 0 kg / cm 2 or more, More preferably 3.5 kg / cm 2 or more, and a coefficient of linear expansion is preferred. Properly it is 6. 0 X 1 0 "5 deg ' or less, more preferably 5. O xi 0" 5 deg ' is below. In addition, the protrusions formed by the filler on the surface are preferably 10 Zcm 2 or less, more preferably 5 Zcm 2 or less.
(用途)  (Application)
本発明の樹脂組成物は、 用途は限定されず、 透明性を要求される用途以外の熱 可塑性ノルボルネン系樹脂の用途一般に使用でき、 具体例としては、 精密成形品 (情報ディスク基板、 ミラー基板、 機械部品など) 、 被覆材 (電線用、 ケーブル 用など) 、 民生用 ·産業用電子機器匡体 (複写機、 コンピューター、 プリンター、 テレビ、 ビデオデッキ、 ビデオカメラなど) 、 構造部材 (パラボラアンテナ構造 部材、 フラッ トアンテナ構造部材、 レーダードーム構造部材など) などの電気絶 縁材料; 一般回路基板 (硬質プリント基板、 フレキシブルプリント基板、 多層 プリント配線板など) 、 高周波回路基板 (衛星通信機器用回路基板など) などの 回路基板; 透明導電性フィルム (液晶基板、 光メモリー、 面発熱体など) の基 材; 半導体封止材 (トランジスタ封止材、 I C封止材、 L S I封止材など) 、 電気'電子部品の封止材 (モーター封止材、 コンデンサ一封止材、 スィッチ封止 材、 センサー封止材など) の封止材; ルームミラーやメーター類のカバーなど 自動車用内装材料: ドアミラー、 フヱンダーミラー、 ビーム用レンズ、 ライ ト •カバ一など自動車用外装材料; などが例示される。  The application of the resin composition of the present invention is not limited, and can be generally used for thermoplastic norbornene-based resins other than those requiring transparency.Specific examples include precision molded products (information disk substrates, mirror substrates, , Coating materials (for electric wires, cables, etc.), consumer / industrial electronic equipment enclosures (copiers, computers, printers, televisions, VCRs, video cameras, etc.), structural members (parabolic antenna structural members) , Flat antenna structural members, radar dome structural members, etc .; electrical insulating materials; general circuit boards (hard printed boards, flexible printed boards, multilayer printed wiring boards, etc.), high-frequency circuit boards (circuit boards for satellite communication equipment, etc.) ) Etc. Circuit board; transparent conductive film (liquid crystal board, optical memory, surface heating element, etc.) Base materials; semiconductor encapsulation materials (transistor encapsulation materials, IC encapsulation materials, LSI encapsulation materials, etc.), electric and electronic parts encapsulation materials (motor encapsulation materials, capacitor encapsulation materials, switch encapsulation materials) , Sealing materials for sensors, etc.); interior materials for automobiles such as rearview mirrors and meter covers; exterior materials for automobiles such as door mirrors, fender mirrors, beam lenses, light covers, etc .;
実施例 Example
以下に、 実施例、 比較例を挙げて、 本発明を具体的に説明する。 なお、 引っ張 り強度、 引っ張り伸び、 引っ張り弾性率などの測定は J I S K 7 1 1 3に準 じて、 引っ張り速度 5 mmZm i ηで行った。 I Z O D衝撃値の測定は  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples. The measurement of tensile strength, tensile elongation, tensile elastic modulus, etc. was performed at a tensile speed of 5 mmZmiη according to JIS K7113. Measurement of I Z O D impact value
J I S K 7 1 1 0に準じて行った。  The measurement was performed according to JIS K 7110.
(無機フィラーの製造)  (Manufacture of inorganic filler)
実施例 1 Example 1
トリメ トキシーンクロへキシルシラン 5 gを水 9 9 5 gに加えたものを十分に 撹拌している中に、 真球状シリカビーズ (ァドマテック製、 ァドマファイン S 0 一 C 2、 平均粒径し 0 m、 粒径 0 . 2〜 2 mの粒子が 9 5重量%以上) を 1 0 0 gを加え、 1時間撹拌した。 その後、 粒子を濾別し、 1 3 0 °Cの環境に 2 時間放置して水分を乾燥させて、 表面積 1 cn 当たり約 0. 3 gのシラン化 合物により被覆された本発明の無機フィラーを得た。 Spherical silica beads (Admatech, Admafine S0-C2, average particle size 0 m, particle size 0 m) were added to a mixture of 5 g of trimethoxine chlorohexylsilane and 995 g of water with sufficient stirring. (0.2 to 2 m particles are 95% by weight or more), and stirred for 1 hour. Afterwards, the particles are filtered off and placed in a 130 ° C environment. After leaving it for a while to dry the water, an inorganic filler of the present invention coated with about 0.3 g of the silane compound per 1 cn of the surface area was obtained.
実施例 2 Example 2
トリメ トキシ一シクロへキシルシランの代わりにトリメ トキシー n—へキシル シランを用いる以外は実施例 1 と同様にして、 表面積 1 cm2 当たり約 0. 4 U gのシラン化合物により被覆された本発明の無機フィラーを得た。 But using trimethyl butoxy hexyl silane to single cycloalkyl instead of Kishirushiran to trimethyl Tokishi n- in the same manner as in Example 1, inorganic invention coated with a silane compound of about 0. 4 U g per surface area 1 cm 2 A filler was obtained.
比較例 1 Comparative Example 1
トリメ トキシーンクロへキンルシランの代わりにトリメ トキシビニルシランを 用いる以外は実施例 1 と同様にして、 表面積 1 cm2 当たり約 0. 4 tz gのシラ ン化合物により被覆された無機フィラーを得た。 なお、 これは本発明のシラン化 合物被覆無機フィラーではない。 An inorganic filler coated with about 0.4 tz g of a silane compound per 1 cm 2 of surface area was obtained in the same manner as in Example 1 except that trimethoxyvinylsilane was used instead of trimethoxycyclohexane silane. This is not the silane compound-coated inorganic filler of the present invention.
(樹脂組成物の製造)  (Production of resin composition)
実施例 3 Example 3
熱可塑性ノルボルネン系樹脂 (日本ゼオン製、 ZEONEX 2 8 0、 ノルボ ルネン系単量体開環重合体水素添加物、 分子量約 2 8, 00 0、 ガラス転移温度 1 4 0°C、 水素添加率 9 9. 7 %以上) 90重量部に、 実施例 1で得た本発明の シラン化合物被覆無機フイラ一 1 0重量部を添加し、 樹脂温度 2 5 0てでニ軸押 出機 (東芝機械製、 TEM3 5 B) を用いて混練し、 本発明の樹脂組成物を得た。 樹脂組成物は、 ペレタイザ一によつて、 ペレツ トにした。  Thermoplastic norbornene resin (ZEONEX 280, manufactured by Nippon Zeon Co., Ltd., hydrogenated norbornene monomer ring-opening polymer, molecular weight about 28,000, glass transition temperature 140 ° C, hydrogenation rate 9 9.7% or more) To 90 parts by weight, 10 parts by weight of the silane compound-coated inorganic filler of the present invention obtained in Example 1 was added, and at a resin temperature of 250, a twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) And TEM35 B) to obtain a resin composition of the present invention. The resin composition was pelletized by a pelletizer.
このペレッ トを用いて射出成形によりダンベルを作製し、 引っ張り特性を測定 したところ、 引っ張り強さは 5 6 0 k g/cm2 、 引っ張り伸びは 7 %であり、 降伏点が認められた。 引っ張り弾性率は 2 8 0 0 0 k g/cm2 であった。 また、 線膨張係数は 4. 0 X 1 0—5d e g '、 ノッチ付 I ZOD衝撃値は 3. 9 kg - cmZcmであった。 成形物を破断し、 断面を走査型電子顕微鏡で観察したとこ ろ、 フィラーと樹脂の間に間隙の形成は認められなかった。 さらに、 成形品表面 は滑らかであり、 原子間力顕微鏡で観察したところ、 0. 5 m以上の高さの突 起は認められなかった。 A dumbbell was prepared by injection molding using this pellet and its tensile properties were measured. The tensile strength was 560 kg / cm 2 , the tensile elongation was 7%, and the yield point was recognized. The tensile modulus was 2800 kg / cm 2 . Further, the linear expansion coefficient of 4. 0 X 1 0- 5 deg ' , I ZOD impact value Notched 3. 9 kg - was CmZcm. When the molded product was broken and the cross section was observed with a scanning electron microscope, no formation of a gap between the filler and the resin was observed. Furthermore, the surface of the molded product was smooth, and when observed with an atomic force microscope, no protrusion with a height of 0.5 m or more was observed.
実施例 4  Example 4
実施例 1で得たシラン化合物被覆無機フィラ一の代わりに実施例 2で得たシラ ン化合物被覆無機フィラーを用いる以外は実施例 3と同様に本発明の樹脂組成物 を得、 ペレツトにし、 ダンベルを作製した。 引っ張り特性を測定したところ、 引 つ張り強さは 5 4 0 k g/cm2 、 引っ張り伸びは 9%、 引っ張り弾性率は 2 7 0 0 0 k g/cm2 であり、 降伏点が認められた。 フィラーと樹脂の間に間隙の 形成は認められなかった。 また、 線蟛張係数は 3. 9 X 1 0"5d e g"1. ノッチ 付 I ZOD衝挲値は 3. 7 k g - cmZcmであった。 さらに、 成形品表面は滑 らかであり、 0. 5〃m以上の高さの突起などは認められなかった。 The silane obtained in Example 2 was used in place of the silane compound-coated inorganic filler obtained in Example 1. A resin composition of the present invention was obtained and pelletized in the same manner as in Example 3 except that an inorganic compound-coated inorganic filler was used, and a dumbbell was produced. When the tensile properties were measured, the tensile strength was 540 kg / cm 2 , the tensile elongation was 9%, the tensile elastic modulus was 270 kg / cm 2 , and the yield point was recognized. No gap was formed between the filler and the resin. The linear expansion coefficient was 3.9 X 10 " 5 deg" 1. The notched I ZOD impact value was 3.7 kg-cmZcm. Furthermore, the surface of the molded product was smooth, and no protrusions with a height of 0.5 mm or more were observed.
比較例 2 Comparative Example 2
実施例 1で得たシラン化合物被覆無機フィラ一 代わりに比較例 1で得たシラ ン化合物被覆無機フィラーを用いる以外は実施例 3と同様にして樹脂組成物を得、 ペレットにし、 ダンベルを作製した。 引っ張り特性を測定したところ、 引っ張り 強さは 5 2 0 k gZcm2 、 引っ張り伸びは 3 %、 引っ張り弾性率は 2 9 0 0 0 k g/cm2 であった。 降伏点は認められなかった。 また、 線膨張係数は 4. 2 X 1 0— 5d e g '、 ノッチ付 I ZOD衝撃値は 2. 5 k - cm/ cmであった。 一部のシラン化合物被覆無機フイラ一と熱可塑性ノルボルネン系樹脂の間に間隙 が認められた。 さらに、 成形品表面に、 0. 5 m以上の高さの突起が約 7個A resin composition was obtained in the same manner as in Example 3 except that the silane compound-coated inorganic filler obtained in Comparative Example 1 was used instead of the silane compound-coated inorganic filler obtained in Example 1, and a dumbbell was prepared. . When the tensile properties were measured, the tensile strength 5 2 0 k gZcm 2, a tensile elongation of 3%, the tensile modulus was 2 9 0 0 0 kg / cm 2. No yield point was observed. Further, the linear expansion coefficient of 4. 2 X 1 0- 5 deg ' , I ZOD impact value Notched 2. 5 k - was cm / cm. Gaps were observed between some silane compound-coated inorganic fillers and thermoplastic norbornene resin. In addition, about 7 protrusions with a height of 0.5 m or more are formed on the molded product surface.
C ΠΊ2 認めりれた C ΠΊ 2 recognized
比較例 3 Comparative Example 3
実施例 1で得たシラン化合物被覆無機フイラ一の代わりに被覆していない無機 フィラー (アドマファイン S 0— C 2) を用いる以外は実施例 3と同様にして榭 脂組成物を得、 ペレツトにし、 ダンベルを作製した。 引っ張り特性を測定したと ころ、 引っ張り強さ 5 0 0 kg/cm2 、 引っ張り伸びは 2%、 引っ張り弾性率 は 2 8 0 0 0 k gZ cm2 であった。 降伏点は認められなかった。 また、 線膨張 係数は 3. 9 X 1 (T5d e g 、 ノッチ付 I ZOD衝撃値は 1. 6 k g · c mZ cmであった。 ただし、 一部のフィラーと樹脂の間に、 比較例 1の試料よりも数 多くの、 大きな間隙の形成が認められた。 さらに、 成形品表面に、 0. 以 上の高さの突起が約 1 5個 Zcm2 程度認められた。 A resin composition was obtained and pelletized in the same manner as in Example 3 except that an uncoated inorganic filler (Admafine S0-C2) was used instead of the silane compound-coated inorganic filler obtained in Example 1. A dumbbell was made. When the tensile properties were measured, the tensile strength was 500 kg / cm 2 , the tensile elongation was 2%, and the tensile modulus was 2800 kgZ cm 2 . No yield point was observed. The coefficient of linear expansion was 3.9 X 1 (T 5 deg, notched I ZOD impact value was 1.6 kg · cmZ cm. The formation of a large number of gaps was observed more than in the sample No. 5. Further, about 15 protrusions having a height of 0. 0 or more were observed on the surface of the molded article at about Zcm 2 .
比較例 4 Comparative Example 4
熱可塑性ノルボルネン系樹脂 (ZEONEX 2 8 0 ) を用いて、 射出成形に よりダンベルを作製した。 引っ張り強さ 7 20 k gZcm2 、 引っ張り伸びは 1 1 %、 引っ張り弾性率は 1 7000 k g/ cm であった。 降伏点は認められな かった。 また、 線膨張係数は 7. 0 X 1 0_5d e g '、 ノツチ付 I ZOD衝撃値 は 3. 0 k g · cm/c mであつた。 さらに、 成形品表面には突起が認められな 力、つた。 Injection molding using thermoplastic norbornene resin (ZEONEX 280) More dumbbells were made. The tensile strength was 720 kgZcm 2 , the tensile elongation was 11%, and the tensile modulus was 17000 kg / cm. No yield point was found. Further, the linear expansion coefficient of 7. 0 X 1 0_ 5 deg ' , I ZOD impact pricing Notsuchi is 3. Atsuta at 0 kg · cm / cm. Furthermore, there was no force on the surface of the molded product.
本発明のシラン化合物被覆無機フイラ一を含有する熱可塑性ノルボルネン系樹 脂組成物は、 引っ張り特性、 耐衝搫性に優れ、 線膨張係数が小さいので温度変化 に対する寸法精度に優れ、 成形性、 成形品の表面精度に優れる。  The thermoplastic norbornene-based resin composition containing the silane compound-coated inorganic filler of the present invention is excellent in tensile properties and impact resistance, and has a small coefficient of linear expansion, so that it has excellent dimensional accuracy with respect to temperature change, moldability, and molding. Excellent surface accuracy of products.

Claims

請 求 の 範 囲 The scope of the claims
1. 一般式 1 1. General formula 1
R I 1 I λ 2 X 3  R I 1 I λ 2 X 3
一般式 2 General formula 2
R2 R3 S i X, Χ5 および R 2 R 3 S i X, Χ 5 and
一般式 3General formula 3
Figure imgf000015_0001
Figure imgf000015_0001
(一般式 1〜3中の R, 〜R6 はアルキル基を表し、 X, 〜X6 は加水分解可能 な基を表す) で表わされるすくなくとも一種のシラン化合物の層で表面を被覆し た無機フイラ一。 (R in the general formula 1 to 3, to R 6 represents an alkyl group, X, to X 6 represents a hydrolyzable group) were coated surface with a layer of at least one silane compound represented by inorganic Huila one.
2. シラン化合物が一般式 1で表されるものである請求項 1記載の無機フィラ ο  2. The inorganic filler according to claim 1, wherein the silane compound is represented by the general formula 1.
3. R, 〜R6 が一般式 4
Figure imgf000015_0002
3. R, up to R 6 is the general formula 4
Figure imgf000015_0002
一般式 5  General formula 5
、〇〉— Cb H2b―、 , 〇〉 — C b H 2b ―,
一般式 6  General formula 6
Cc H2c + .- ^O) -、 Cc H 2c + .- ^ O)-,
一般式 7 General formula 7
Figure imgf000015_0003
Figure imgf000015_0003
一般式 8  General formula 8
<H>-C, H2(—、 <H> -C, H 2 ( —,
一般式 9  General formula 9
C, Η2Ί + ι - (H> —および C, Η 2Ί + ι- (H> — and
一般式 10  General formula 10
Ch H2l,-.-(i)-C, H2, (一般式 4~1 0中の a、 b、 d、 e、 f、 h、 iは自然数を表し、 c、 gは 0 または自然数を表す) で表わされる基から選ばれたものである請求項 1記載の無 機フイラ一。 C h H 2l , -.- (i) -C, H 2 , (Where a, b, d, e, f, h, and i in the general formulas 4 to 10 represent natural numbers, and c and g each represent 0 or a natural number). The inorganic filler described in 1.
4. a〜 iが 3〜5のものである請求項 3記載の無機フイラ一。  4. The inorganic filler according to claim 3, wherein a to i are 3 to 5.
5. X> 〜X6 力く、 アルコキシ基、 ァセトキシ基、 ハロゲンから選ばれたもの である請求項 3〜 4記載の無機フイラ一。 5. X> to X 6 Chikaraku, alkoxy group, Asetokishi group, inorganic FILLER one of claims 3-4, wherein a member selected from halogen.
6. シリカ、 ガラス、 石英、 またはアルミナである請求項 1〜 5記載の無機フ イラ一。  6. The inorganic filler according to claim 1, which is silica, glass, quartz, or alumina.
7. 平均粒径 0. 0 1〜 5 0 / m以下の粒子状である請求項 1〜 6記載の無機 フィラー。  7. The inorganic filler according to claim 1, which is in the form of particles having an average particle diameter of 0.01 to 50 / m or less.
8. 平均粒径の 1/1 0〜 1 0倍の範囲の粒子が 7 0重量%以上であるもので ある請求項 1〜 7記載の無機フイラ一。  8. The inorganic filler according to claim 1, wherein particles in a range of 1/10 to 10 times the average particle diameter are 70% by weight or more.
9. 請求項 1〜 8記載の無機フィラ一と熱可塑性ノルボルネン系樹脂からなる 組成物。  9. A composition comprising the inorganic filler according to claim 1 and a thermoplastic norbornene-based resin.
10. 熱可塑性ノルボルネン系樹脂 1 0 0重量部に対して、 シラン化合物被覆無 機フイラ一量が 0. 1〜2 5 0重量部である請求項 9記載の組成物。  10. The composition according to claim 9, wherein the amount of the silane compound-coated inorganic filler is 0.1 to 250 parts by weight based on 100 parts by weight of the thermoplastic norbornene resin.
11. 引っ張り強さが 5 2 0 k g/cm2 以上である請求項 9〜 1 0記載の組成 物。 11. Tensile strength 5 2 0 kg / cm 2 or more at which claims 9-1 0 composition.
12. 引っ張り伸びが 5 %以上である請求項 9〜 1 1記載の組成物。  12. The composition according to claims 9 to 11, which has a tensile elongation of 5% or more.
13. 引っ張り弾性率が 2 0 0 0 0 k g/cm2 以上である請求項 9〜 1 2記載 の組成物。 13. Tensile claim 9-1 2 composition according modulus is 2 0 0 0 0 kg / cm 2 or more.
14. ノッチ付き I ZOD衝搫値が 3. O k g/cm2 以上である請求項 9〜1 3記載の組成物。 14. The composition according to any one of claims 9 to 13, wherein the notched I ZOD impact value is 3. O kg / cm 2 or more.
15. 線膨張係数が 6. 0 X 1 0 5d e g '以下である請求項 9〜 1 4記載の組 成物。 15. linear expansion coefficient of 6 is 0 X 1 0 5 deg 'subclaims 9-1 4 set composition as described.
16. 表面に発現したフイラ一により形成される突出が 1 0個/ cm2 以下であ る請求項 9〜 1 5記載の組成物。 16. protrudes formed by FILLER one expressed on the surface of 1 0 / cm 2 or less der Ru claim 9-1 5 composition.
17. 熱可塑性ノルボルネン系榭脂の数平均分子量が、 卜ルェン溶媒によるゲル •パ—ミエーシヨン . クロマトグラフィ法で測定したポリスチレン換算値で、 1 0, 0 0 0〜 2 0 0, 0 0 0である請求項 9〜 1 6記載の組成物。 17. The number average molecular weight of the thermoplastic norbornene-based resin is calculated by gel permeation using a toluene solvent. The composition according to claim 9, wherein the composition has a molecular weight of 0.0000 to 200,000.
18. 熱可塑性ノルボルネン系樹脂がその金属含有量が 1 p pm以下である請求 項 9〜 1 7記載の組成物。  18. The composition according to claim 9, wherein the thermoplastic norbornene resin has a metal content of 1 ppm or less.
19. 熱可塑性ノルボルネン系樹脂がそのガラス転移温度が 1 0 5 °C以上である 請求項 6〜 1 8記載の組成物。  19. The composition according to any one of claims 6 to 18, wherein the thermoplastic norbornene resin has a glass transition temperature of 105 ° C or more.
PCT/JP1995/001973 1994-09-30 1995-09-28 Surface-treated filler and composition containing said filler WO1996010611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26170794 1994-09-30
JP6/261707 1994-09-30

Publications (1)

Publication Number Publication Date
WO1996010611A1 true WO1996010611A1 (en) 1996-04-11

Family

ID=17365596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001973 WO1996010611A1 (en) 1994-09-30 1995-09-28 Surface-treated filler and composition containing said filler

Country Status (1)

Country Link
WO (1) WO1996010611A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293843A (en) * 2001-03-30 2002-10-09 Jsr Corp Cycloolefinic copolymer, its composite material, these crosslinked material and optical material therefrom
JP2005325296A (en) * 2004-05-17 2005-11-24 Mitsubishi Plastics Ind Ltd Thermoplastic resin composition and resin film obtained using the same
JP2006152190A (en) * 2004-12-01 2006-06-15 Shin Etsu Chem Co Ltd Thermoplastic synthetic resin film
JP2010241852A (en) * 2009-03-31 2010-10-28 Nippon Zeon Co Ltd Method for producing modified silica, resin composition for insulation material and film for insulation film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0143784B2 (en) * 1981-04-08 1989-09-22 Chisso Corp
JPH02185558A (en) * 1989-01-11 1990-07-19 Teijin Ltd Inorganic material-filled polymer molding and preparation thereof
JPH04218557A (en) * 1990-04-13 1992-08-10 Nippon Zeon Co Ltd Molding of thermoplastic saturated norbornene-based polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0143784B2 (en) * 1981-04-08 1989-09-22 Chisso Corp
JPH02185558A (en) * 1989-01-11 1990-07-19 Teijin Ltd Inorganic material-filled polymer molding and preparation thereof
JPH04218557A (en) * 1990-04-13 1992-08-10 Nippon Zeon Co Ltd Molding of thermoplastic saturated norbornene-based polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293843A (en) * 2001-03-30 2002-10-09 Jsr Corp Cycloolefinic copolymer, its composite material, these crosslinked material and optical material therefrom
JP4632009B2 (en) * 2001-03-30 2011-02-16 Jsr株式会社 Cyclic olefin copolymer, composite, cross-linked product thereof, and optical material
JP2005325296A (en) * 2004-05-17 2005-11-24 Mitsubishi Plastics Ind Ltd Thermoplastic resin composition and resin film obtained using the same
JP4601324B2 (en) * 2004-05-17 2010-12-22 三菱樹脂株式会社 Thermoplastic resin composition and resin film using the same
JP2006152190A (en) * 2004-12-01 2006-06-15 Shin Etsu Chem Co Ltd Thermoplastic synthetic resin film
JP4575128B2 (en) * 2004-12-01 2010-11-04 信越化学工業株式会社 Thermoplastic synthetic resin film
JP2010241852A (en) * 2009-03-31 2010-10-28 Nippon Zeon Co Ltd Method for producing modified silica, resin composition for insulation material and film for insulation film

Similar Documents

Publication Publication Date Title
US7737198B2 (en) Wholly aromatic liquid crystal polyester resin molded product
EP0712898B1 (en) Resin composition and molding produced therefrom
JP6547913B2 (en) Composition, cured product and laminate
WO2017209237A1 (en) Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
KR102644665B1 (en) Oxazine compounds, compositions and cured products
KR102320490B1 (en) A maleimide compound containing a substituted or unsubstituted allyl group, a method for preparing the same, and a composition and cured product using the compound
CN108473642B (en) Oxazine compound, composition and cured product
JP4714955B2 (en) Cyclic olefin addition polymer and process for producing the same
JP2019065063A (en) Composition and cured product
WO1996010611A1 (en) Surface-treated filler and composition containing said filler
JPH1143566A (en) Norbornene-based resin composition
KR20040084676A (en) Solution composition of aromatic liquid-crystalline polyester
CN1116355C (en) Flame-retardant polyester resin composition
JP2723330B2 (en) Lightweight lamp reflector
JPH09118811A (en) Thermoplastic norbornene-based resin composition and molding
JP6268565B2 (en) Oxazine compound, composition and cured product
JP5207501B2 (en) Epoxy resin composition for optical material and cured product thereof
JP6977257B2 (en) Hydroxyl-containing maleimide compound
WO2008041619A1 (en) Fully aromatic polyester
CA2224040A1 (en) Thixotropic agent for filled cycloolefins
WO2019124256A1 (en) Liquid crystalline polyester composition and molded article
JP3899527B2 (en) Heat resistant flame retardant resin composition
JP2018100233A (en) Hydroxyl group-containing maleimide compound
WO2019124249A1 (en) Liquid-crystal polyester composition, molded article, and method for producing liquid-crystal polyester composition
JPH1129693A (en) Epoxy resin composition and its cured material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase